
On Effective Testing of Health Care Simulation Software

Christian Murphy1, M. S. Raunak2, Andrew King1, Sanjian Chen1, Christopher
Imbriano1, Gail Kaiser3, Insup Lee1, Oleg Sokolsky1, Lori Clarke4, Leon Osterweil4
1Dept. of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104

{cdmurphy, kingand, sanjian, imbriano, lee, sokolsky}@cis.upenn.edu
2Dept. of Computer Science, Loyola University Maryland, Baltimore MD 21210

raunak@loyola.edu
3Dept. of Computer Science, Columbia University, New York NY 10027

kaiser@cs.columbia.edu
4Dept. of Computer Science, University of Massachusetts Amherst, Amherst MA 01003

{clarke,ljo}@cs.umass.edu

ABSTRACT
Health care professionals rely on software to simulate ana-
tomical and physiological elements of the human body for
purposes of training, prototyping, and decision making. Soft-
ware can also be used to simulate medical processes and
protocols to measure cost effectiveness and resource utiliza-
tion. Whereas much of the software engineering research
into simulation software focuses on validation (determining
that the simulation accurately models real-world activity),
to date there has been little investigation into the testing of
simulation software itself, that is, the ability to effectively
search for errors in the implementation. This is particularly
challenging because often there is no test oracle to indicate
whether the results of the simulation are correct. In this pa-
per, we present an approach to systematically testing simu-
lation software in the absence of test oracles, and evaluate
the effectiveness of the technique.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Reliability, Verification

Keywords
Software Testing, Oracle Problem, Metamorphic Testing

1. INTRODUCTION
Simulation software is used in the health care field to

model anatomical and physiological elements for predicting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0585-3/11/05 ...$5.00.

the effects of medical procedures [33] and for purposes of
training and education [3, 13]. Such software may simulate
only a specific organ such as the heart [20], or may incorpo-
rate an entire physiological system [19]. Simulation software
is also used to evaluate medical processes, such as the impact
of resource allocation on patient waiting time in a hospital
Emergency Department (ED) [15, 27], or the response time
of Emergency Medical Service technicians [30].

From a software engineering perspective, research into
simulators typically is concerned with validating how well
the simulation matches the real-world events it is trying to
model [5], and not necessarily whether the implementation
is free of defects. Researchers who investigate the verifica-
tion of simulation software often suggest well-known best
practices from software engineering [29], such as test-driven
development and formal code reviews, but to date there has
been little assessment of how effective these techniques are
at discovering errors in the implementation.

Testing simulation software is particularly challenging be-
cause such software falls into a category that Davis and
Weyuker describe as “Programs which were written in or-
der to determine the answer in the first place. There would
be no need to write such programs, if the correct answer were
known” [14]. Without a“test oracle” [32] to indicate that the
output is incorrect, it becomes difficult to find subtle calcu-
lation errors that could adversely affect the correctness of
the simulation.

In this paper, we seek to systematically test simulation
software, specifically focusing on the domain of health care,
with the aim of discovering defects in the implementation.
Our approach is based on the observation that many applica-
tions without test oracles, including simulation software, ex-
hibit the following property: although we cannot in advance
know the relation between an input and its corresponding
output (since there is no oracle), it may be possible to then
modify the input in a certain way, such that we can predict
what the change to the output should be. If the application
appears to exhibit such a property and the new output is
as expected, that does not necessarily mean that the imple-
mentation is working correctly. However, if the property is
violated, and the output is not as expected, then there is
either a potential error in the implementation, or the prop-
erty is not sound and needs to be modified for the particular
domain or software. In either case, our approach leads to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEHC’11, May 22-23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0585-3/11/05 ...$10.00

40

better understanding of the software and its inner working.
This approach, introduced by Chen et al. [9], is known as

metamorphic testing, and has previously been shown to be
applicable to testing applications without oracles [11]. To
our knowledge, we are the first to use this technique to test
software in the field of simulation in general, and healthcare-
oriented simulation software in particular. In this paper,
rather than focusing on validation, i.e., determining whether
the model used in the simulation is correct, we focus on the
implementation, and seek to test the implementation sys-
tematically to discover any error that may exist in the code.
In addition to describing our observations about the prac-
tical application of the technique, we also present evidence
that demonstrates that metamorphic testing is an effective
approach for testing simulation software.

2. BACKGROUND
In this section, we further discuss the metamorphic testing

approach, and introduce the simulation software to which we
have applied it.

2.1 Metamorphic Testing
An early approach to testing applications without test or-

acles, including simulation software, was to use a “pseudo-
oracle” [14]. This approach is based upon the notion of “N-
version programming” [8], in which independent program-
ming teams develop an application (perhaps using different
technologies or programming languages) from the same spec-
ification; then, identical sets of input data are processed and
the results are compared. If the results are the same, that
does not necessarily mean that they are correct (since the
implementations may all have the same defect, for instance),
but if the results are not the same, then a defect has likely
been revealed in at least one of the implementations.

Among the many limitations related to the applicability
of the N-version programming approach [22], one obvious
issue is that multiple versions of a program may simply not
exist. In the absence of multiple implementations, however,
metamorphic testing [9] can be used to produce a similar ef-
fect. Metamorphic testing is designed as a general technique
for creating follow-up test cases based on existing ones, par-
ticularly those that have not revealed any failure.

In metamorphic testing, if input x produces an output
f (x), the function’s so-called “metamorphic properties” can
then be used to guide the creation of a transformation func-
tion t, which can then be applied to the input to produce
t(x); this transformation then allows the expected value of
the output f (t(x)) to be predicted based on the (already
known) value of f (x). If the metamorphic property is clearly
applicable to the function (and is sound), but the new out-
put is not as expected, then a defect must exist.

Of course, like any testing approach, this can only show
the existence of defects and cannot demonstrate their ab-
sence, since the correct output cannot be known in advance
(and even if the outputs are as expected, both could be in-
correct). This approach, however, provides a mechanism
of revealing potential defects in such programs that do not
have a test oracle [11].

2.2 Health Care Simulation Software
In this paper, we apply metamorphic testing to two dif-

ferent simulators that are used in the field of health care.

2.2.1 JSim
JSim [34] is a rigorous process based Discrete Event Sim-

ulation (DEVS) engine that has been effectively used to
model and simulate, among other human-centric processes,
the flow of patients through a hospital emergency room [27,
26]. Developed in Java by researchers at the University of
Massachusetts Amherst, JSim’s input consists of a complete
process definition, represented graphically as a tree of steps
and constituent substeps; a set of special resources called
agents who perform the steps, such as a nurse in the emer-
gency department; a set of non-agent resources, which in-
clude entities that agents may need to carry out the steps,
such as beds, x-ray machine, medicine, etc.; specification of
artifacts that carry information from one step to another,
such as a patient chart; a resource manager that manages
the availability and assignments of agent and non-agent re-
sources; and an oracle, which dictates when process events
should occur and how long they should take (not to be con-
fused with a test oracle, of course). The oracle in the case of
JSim is primarily a specification of agent behavior in terms
of when an agent starts working on a task(step), when an
agent completes a task, etc.

The JSim simulation engine maintains a timeline mod-
ule into which events are placed. When the simulation is
run, each agent is assigned items on its agenda, or a list of
step instances to perform. The simulator goes through the
process, and the JSim Agent Behavior Specification (the“or-
acle”) indicates whether it is time for an agent to perform
the next step on its agenda. If it is, and sufficient resources
are available, then the agent performs the step and moves
on to the next item on its agenda; if the required agent or
the non-agent resources are not available, then depending on
the configuration, the simulation engine either blocks (waits
for the required resource) or throws an exception, in which
case the process may be terminated. This continues until
all agents have completed all items on their agendas and
there are no more events in the timeline. The output of the
simulation is the sequence of events related to each step’s
lifecycle, including the times at which they were started and
completed, as well as the agents involved.

Testing JSim effectively has been challenging, as it is very
complex and consists of many interacting components [28].
Adding to the challenge is the fact that JSim can be non-
deterministic depending on the system configuration and re-
source constraints. For instance, the amount of time each
step in the simulation takes to complete may be random
over a range, either using a uniform distribution or using a
triangular distribution with an inflection point at a speci-
fied mode. Thus the time it takes for the entire process to
complete can often be non-deterministic in practice.

2.2.2 GCS: Glycemic Control Simulator
The Glycemic Control Simulator, or GCS, is a MATLAB

program being developed by researchers at the University
of Pennsylvania to simulate the behavior of different closed-
loop insulin titration algorithms on a virtual patient. GCS
can be integrated into larger simulations in order to sup-
port the model driven development of closed loop medical
systems, similar to the general approach described in [2].

The GCS has two different simulation components: (1)
the patient simulation, which is an implementation of the
type I diabetic patient model from [19]; and (2) a closed
loop glycemic control algorithm that computes insulin in-

41

fusion rates from the patient’s blood glucose readings. In
the current version, the control algorithm was derived from
the glycemic control guidelines in use at the University of
Pennsylvania Hospital. The simulator is run by specifying
the initial conditions (such as patient weight, in addition to
other metabolic parameters) and the amount of time to sim-
ulate. The simulation then produces the trajectory of the
virtual patient’s blood glucose, insulin infusion rate, and nu-
trition rate versus time.

Although the patient model and control algorithm could
conceivably be separated and tested in isolation, we choose
to consider them as a whole, to demonstrate that metamor-
phic testing can be applied to such closed-loop simulation
software, as well as discrete event simulators such as JSim.

3. APPROACH
To demonstrate that metamorphic testing is an effective

technique for testing health care simulation software, we
started by identifying the metamorphic properties that we
would expect most simulators (including our target applica-
tions) to exhibit, and then applied those properties to see
if we could detect any defects or inconsistencies. Then, to
determine the effectiveness of metamorphic testing, we sys-
tematically inserted defects into the software and measured
how many of the defects were detected, as described in Sec-
tion 4.

3.1 Identifying Metamorphic Properties
In [24], we enumerated six different classes of metamorphic

properties, all of which are typically suited to applications
that are principally numerical, such as machine learning or
scientific computing. Here, we present some general guide-
lines for identifying metamorphic properties, using a running
example of simulation software such as JSim that is used to
model the flow of patients through a hospital’s emergency
department (ED).

First, we consider the metamorphic properties shared by
all applications in the given domain. In the case of
discrete event simulators, regardless of the particular algo-
rithm, there are generally “resources” that are modeled in
the simulation. These resources may be doctors and nurses
in a hospital, developers and testers in a software company,
or postal workers who deliver mail. No matter what algo-
rithm is used, and no matter what is being simulated, all
of these share some common metamorphic properties. For
instance, if resources are being fully utilized, increasing the
number of all resources would be expected to lower each
resource’s average utilization rate, assuming the amount of
work to be done remains constant. On the other hand, if
certain resources are underutilized due to a bottleneck re-
source, increasing that bottle-necked resource should result
in increased utilization of other under-utilized resources. As
another example, if the timing of all events in the simulation
is multiplied by a constant factor, then the resource utiliza-
tion should not change, since the ratio of the time spent
working to the total time of the simulation should not be
affected (because each are scaled up by the same factor).

We can also consider the properties specific to the imple-
mentation of the algorithm used to solve the problem. A
given application that uses the chosen algorithm may have
particular metamorphic properties based on features of its
implementation, the programming language it uses, how it
processes input, how it displays its output, etc. For instance,

in simulating the operation of a hospital ED, the process
definition language Little-JIL [6] and its corresponding sim-
ulator tool (in this case, JSim) may be used to specify the
steps that an incoming patient goes through after arriving.
In this implementation, the unique identifiers and the de-
scriptions for the different resources (doctors, nurses, etc.)
are specified in a relational database. Thus this implemen-
tation exhibits the metamorphic property that permuting
the order of the resources in the database table should not
affect the simulated process.

Last, we consider properties that are applicable only to
the given input that is being used as part of the test case.
Often it is the case that some metamorphic properties of an
application will only hold for certain inputs. Consider an
input to the hospital ED simulation in which the number of
resources is sufficiently large so that no patient ever needs
to wait. For this particular input, increasing the number
of resources should not affect the simulation, since those
resources would go unused.

Although the examples provided here are specific to the
domain of discrete event simulations in general, and simu-
lations of a hospital ED in particular, this approach can be
applied for other types of medical (as well as non-medical)
simulation software, such as modeling of a diabetic patient’s
response to insulin [19], as discussed in section 3.1.2.

3.1.1 JSim Metamorphic Properties
To identify the metamorphic properties specific to Jsim,

we have considered the effect that changes in event timings
would have on the utilization rates for the different resources
in the simulation. Specifically, if the event timings were in-
creased by a positive constant, then the utilization rate (i.e.,
the time the resource is used, divided by the overall process
time) of the most utilized resource would be expected to de-
crease, since the total increase in the overall process time
would outweigh the small increase in the resource’s time
spent working.

As a simple example, consider a process that has steps
that take times a, b, and c to complete, and a resource that
is used only in the third of these steps. Its utilization would
thus be c/(a + b + c). If the time for each step were in-
creased by one, then the utilization rate would change to
(c + 1)/(a + b + c + 3). If this resource has the high-
est utilization, i.e. c > a > 1 and c > b > 1, then the
new utilization rate will be lower, because the change to the
numerator is proportionally smaller than the change to the
denominator.

In the cases in which JSim uses non-deterministic event
timing, we applied statistical metamorphic testing (SMT),
which has been proposed as a technique for testing non-
deterministic applications that do not have test oracles [16].
SMT can be applied to programs for which the output is
numeric, such as the overall event timing in JSim, and is
based on the statistical properties of multiple invocations of
the program. That is, rather than considering the output
from a single execution, the program is run numerous times
so that the statistical mean and variance of the values can
be computed. Then, a metamorphic property is applied to
the input, the program is again run numerous times, and
the new statistical mean and variance are again calculated.
If they are not as expected, then a potential defect has been
revealed.

For instance, we could specify a non-deterministic event

42

timing over a range [α, β] and run the simulation 100 times
to find the statistical mean µ and variance σ of the over-
all event timing in the process (i.e., the time to complete
all the steps). We could then configure the simulator to
use a range [10α, 10β], run 100 more simulations, and ex-
pect that the mean would be 10µ and the variance would
be 10σ. Of course, the results would not exactly meet those
expectations, so we could use a Student T-test to see if any
difference was statistically significant.

3.1.2 GCS Metamorphic Properties
As described in Section 2.2.2, the GCS contains two main

components: the patient simulator and the control algo-
rithm. A software defect in either component could have a
large impact on the simulation result. We investigated two
domain-specific metamorphic properties and one algorith-
mic property of the GCS. Each property, whether domain-
or algorithm-based, relates to how the patient simulation
models insulin sensitivity in the virtual patient. Insulin sen-
sitivity describes the tendency for insulin to affect a change
in the body’s blood glucose level. A patient with high in-
sulin sensitivity will require less insulin than a low sensitivity
patient to achieve normal glycemic levels.

The first domain property specifies that patients who weigh
more will be less sensitive to insulin and require more in-
sulin to achieve normo-glycemia: given a simulation of a
patient with weight w1, if the total insulin delivered during
the therapy is I1 and the simulation is then executed with
weight w2 > w1 then the resulting total of insulin delivered
I2 should be greater than I1.

The second property is similar. Instead of weight, the
endogenous glucose production EGP parameter is varied:
given a simulation of a patient with endogenous glucose pro-
duction EGP1, if the total insulin delivered during the ther-
apy is I1 and the simulation is then executed with EGP2 >
EGP1, the resulting total amount of insulin delivered I2
should be greater than I1.

We also identified a metamorphic property which should
hold in the specific simulation algorithm we implemented.
The insulin kinetics described in [19] is a collection of dif-
ferential equations that relate insulin absorption, blood glu-
cose levels and nutritional intake. One of these equations
describes the rate of insulin absorption in the human body:

dI(t)

dt
=
kaS2(t)

VI
− keI(t)

Among all the equations that are collectively used to model
the patient dynamics, this is the only equation with the term
VI , which represents the insulin distribution volume. Note
that the insulin absorption rate varies inversely with VI . If
VI is increased, the absorption rate will decrease, and more
insulin should be required to maintain normoglycemia. Thus
we can construct a metamorphic property with the param-
eter VI : given a simulation of a patient with VI , if the total
insulin delivered during the therapy is I and the simulation
is then executed with V ′I > VI , the resulting total of insulin
delivered I ′ should be greater than I.

Note that these properties might not hold for all control
algorithms. For example, if the simulator executes a control
algorithm with poor stability (and exhibits lots of oscillatory
behavior) then more insulin might be delivered than neces-
sary. In our testing, we chose a metamorphic interval for

each of these properties that we believed would exhibit the
above properties if the control algorithm were implemented
correctly; these are shown in Table 1.

Parameter Variable Value 1 Value 2
Patient weight w 60kg 160kg
Endogenous glucose
production EGP 4 × 10−3 25 × 10−3

Insulin distribution

volume VI 10-2 15-2

Table 1: Values used in metamorphic testing of GCS.

3.2 Applying Metamorphic Testing
After identifying metamorphic properties, we applied them

to the simulation software, and present our most interesting
results here.

For JSim, we applied the metamorphic property related
to expected trends in resource utilization that result from
changing resource availability. As a necessary part of per-
forming this test, we kept variability at a minimum by keep-
ing all the step times fixed. We ran simulations using a
simplified model of the emergency department (ED), which
we shall refer to as the ‘VerySimpleED’ process. Space lim-
itation allows us to only provide a very brief description of
the process; the detailed description is available in [28].

In the ‘VerySimpleED’ process, when a patient arrives at
the ED, she first gets seen by a triage-nurse (TriagePatient
step) and consequently gets a triage acuity level assigned.
The patient then goes to the registration clerk for registra-
tion (RegisterPatient step). The registration clerk collects
information from the patient including insurance informa-
tion and puts it in the patient’s record. The registration
clerk also generates and places an ID-band on the patient.
The patient then goes inside the treatment area of the ED
(often referred to as main-ED) if a bed is available. If all
beds inside the main-ED are occupied, the patient waits in
the waiting room until a bed becomes available. This is
modeled by a blocking acquisition request for a bed resource
instance in PatientInsideED step.

Once a bed is successfully acquired, the patient is placed
in a bed (PlacedInBed step) inside the main-ED. Here the
patient is first seen by a nurse in the RNAssessment step,
followed by an assessment by the attending doctor (MD-
Assessment step). The doctor assessment may result in some
tests. These test related activities have been represented as
a single abstract step named Tests. There are also some bed-
side procedures that may be performed on the patient by the
nurse (RNProcedure step) and by the doctor (MDProcedure
step). Once all the tests and procedures are done, the at-
tending doctor makes a final assessment of the patient and
decides whether to admit the patient or to discharge her
(MDDischarge step), which is followed by paperwork that is
performed by the nurse (RNDischarge step).

Both the above description and actual observed experi-
ences suggest that beds are potentially bottleneck resources
in EDs. We thus ran a set of simulations where the number
of beds was varied, keeping other resources constant, start-
ing with a single bed and adding more beds to the resource
mix. We computed and plotted the average length-of-stay
(LOS) against the increased number of beds. The output of

43

(a) Avg. Length-of-Stay (b) Avg. doctor utilization

Figure 1: Validating simulation results by increasing the number of beds.

this experiment, shown in Figure 1a, demonstrates that as
more and more beds were added into the resource mix, the
LOS metric improved (i.e., was reduced). However, the im-
provement diminished with the increase of this one resource
only and there was no impact of adding that resource after
a certain point. This graph demonstrates a simple case of
the “law of diminishing returns”.

To continue with other metamorphic properties of this do-
main, it is reasonable to expect that if more beds are added
to the resource mix, the utilization levels of other under-
utilized resource instances should increase. This is because
having more beds should result in more patients simultane-
ously getting treatment inside the ED, thus requiring ser-
vices from other resource instances such as doctors, nurses,
etc. Consequently, that suggests that these other resources
would be utilized more heavily with increases in the number
of beds in the simulation. Further, we can expect that the
amount of improvement would decrease as we continue to
increase only the bed resource instances. To test this prop-
erty, we collected utilization levels of all resource instances
(not just the bed resource instances) used in the previously
described set of simulations. This set of simulations used
a resource mix that contained two triage nurses, two regis-
tration clerks, four doctors and four nurses. We took the
utilization levels of each of the doctors as determined by the
JSim simulation runs, and computed average doctor utiliza-
tion for each. Figure 1b shows the graph of these results.
As we expected, the average doctor utilization improved as
more and more patients were allowed inside the ED simul-
taneously as a result of adding more beds. However, the im-
provement in the utilization was diminishing and gradually
flattened out as the number of beds continued to increase.
This also points to another metamorphic property: if there
is no more waiting taking place due to resource contention,
adding more resources should not improve the LOS.

As we applied the metamorphic property to JSim with a
variety of different configurations, we did encounter one par-
ticularly interesting case in which the metamorphic property
was violated. In this test, we simulated five patients arriving
one after another every six minutes, with a resource mix of
three beds, one doctor, one nurse, one clerk and one triage
nurse. The simulation resulted in an average LOS of 217.4.
When we increased the number of nurses to two, we saw
the average LOS slightly increase to 220.2. This unexpected
increase in average LOS led us to a deeper investigation of

Figure 2: Length-of-Stay computation per patient

what was happening. As shown in Figure 2, we discovered
that with the addition of one nurse, the LOS for Patient 3
decreased from 183 to 180, but the LOS for Patient 4 in-
creased from 275 to 292.

Further investigation by the JSim developers revealed that
this was happening due to the particular scheduling algo-
rithm in place. In the case of one nurse, when Patient 4 was
ready for step MDDischarge, Patient 5 was not yet ready for
its next step, MDProcedure. Consequently, the doctor agent
first picked up the job of completing step MDDischarge for
Patient 4 and then performed step MDProcedure for Patient
5. When one more nurse was added to the resource mix,
Patient 5 became ready for MDProcedure early, but Patient
4 was still not ready for MDDischarge. JSim follows a greedy
scheduling mechanism: it assigns the task of MDProcedure
for Patient 5 first, and consequently the doctor performs the
step MDDischarge for Patient 4 later, hence the additional
time for patient 4. If the simulation software somehow could
always ensure an optimum schedule in terms of the smallest
average LOS, the scheduler would come to the conclusion
that for the doctor, instead of starting to work on step MD-
Procedure for Patient 5 as soon as the step was ready, it is
better to just wait and then start working on step MDDis-
charge for Patient 4.

This discovery led us to revise our metamorphic property
for discrete event simulations. We realized that the prop-
erty that “adding one resource should not increase average
service time” is not applicable for all situations, especially
where interrelated resource contentions are possible. Never-
theless, starting out with this metamorphic property led the
developers to understand the impact of JSim’s scheduling
choices.

44

4. EVALUATION
This section describes the results of experiments in which

we demonstrate the effectiveness of metamorphic testing in
detecting injected defects in the implementations of the ap-
plications of interest.

4.1 Methodology
In this experiment, we used mutation testing to system-

atically insert defects (e.g., changing “+” to “-”, “>” to “<”,
etc.) into the source code and then determined whether or
not the defects could be detected using metamorphic testing.
Mutation testing has been shown to be suitable for evalua-
tion of effectiveness, as experiments comparing mutants to
real faults have suggested that mutants are a good proxy for
comparisons of testing techniques [1].

To determine which mutation variants were suitable for
testing, the output of each was compared to the output of
the application with no mutants, which was considered the
“gold standard”. If the outputs of the gold standard and
the variant were the same, the mutation would be consid-
ered unsuitable for testing, since the mutation may not have
been on the execution path, or may have been an“equivalent
mutant” that did not affect the overall output. Additionally,
if the mutation yielded a fatal error (crash), an infinite loop,
or an output that was clearly wrong (for instance, being non-
sensical to the application expert, or simply being blank),
that variant was also discarded since any reasonable testing
approach would detect such defects.

For JSim, of the 104 mutants we generated, only 25 mu-
tants could be used in the experiment. The two principle
reasons why we were only able to create a small number of
mutants were that there simply are not many mathemati-
cal calculations in JSim, and that many of the mutants we
generated led to obvious errors, such as crashing. We investi-
gated the use of a mutant generator tool such as µJava [23],
which would also create other types of mutations specific
to Java (such as modifying inheritance hierarchies, variable
scope, etc.) but the current implementation of µJava (ver-
sion 3) as of this writing does not support Java generics 1,
which are used throughout the JSim implementation.

Most of the JSim mutants were related to the event tim-
ing in the LinearRangeDuration and TriangleRangeDura-
tion classes, so that when the configuration specified a tim-
ing range from A to B for a given event, the actual range
would be [A+1, B] or [A, B-1] or [A+1, B-1]. We could
not use defects that had ranges starting at A-1 or ending at
B+1 because of checks that already existed within the code
that would notice such out-of-range errors and raise an ex-
ception, further reducing the number of mutations that we
could use in the experiment.

As described above, we used the statistical metamorphic
testing approach for these cases that involved non-determin-
ism. We validated the properties with the gold standard
implementation (i.e., in which we had not inserted any de-
fects), and found that the distributions that resulted from
applying the properties were not significantly different, with
p < 0.05. In the metamorphic testing of JSim, we used the
same data set used in the emergency room simulation work
presented in [27].

For the GCS, 950 mutants were generated using MAT-

1http://cs.gmu.edu/~offutt/mujava/

mute 2. Of those mutants, 226 either did not produce out-
put different than the unmutated program, or were not on
the execution path, and were excluded from the experiment.
Of the remaining mutants, 487 were mutations of the pa-
tient model implementation and 237 were mutations of the
control algorithm. All three metamorphic properties of the
GCS were applied to detect defects sequentially; if no defect
was detected with the weight-based property, then the EGP
property was applied, and so on.

4.2 Results
For both JSim and GCS, we applied the metamorphic

properties discussed in Section 3.1 to each mutated version
of the code, and measured how many mutants were killed
(i.e., how many injected defects were revealed) using this
approach.

The metamorphic testing approaches were able to kill all
of the mutants in JSim, and 60% of the mutants in the GCS.
Metamorphic testing was more effective killing mutants in
the patient simulation component of the GCS (68% of de-
fects detected) versus the control algorithm section of code
(25%), as shown in Table 2.

Control Alg. Patient Simulation
Det. by Weight 39 254
Det. by EGP 9 41
Det. by Vi 10 38
Not detected 179 154
Det. rate 25% 68%

Table 2: Applying metamorphic testing to GCS.

4.3 Analysis
Here we discuss our results and explore the effectiveness

of the different metamorphic properties.

4.3.1 Analysis of JSim Results
The most interesting result here is that in previous ex-

periments to demonstrate the effectiveness of metamorphic
testing when applied to machine learning applications [25],
the metamorphic property based on multiplication was typ-
ically ineffective at killing off-by-one mutants; in this case,
though, it was very effective. Upon further investigation, we
see that this is due to the nature of the particular way in
which the off-by-one mutant is manifested.

Consider a simple function f (a, b) = a + b, and a mutated
version with an off-by-one error f ’ (a, b) = a + b - 1. We
would expect f to exhibit the metamorphic property that
f (10a, 10b) = 10f (a, b); obviously, f ’ does not exhibit this
property, since f ’ (10a, 10b) = 10a + 10b - 1 = f ’ (a, b) - 1.
In this case, the property based on multiplication reveals the
defect. The code we mutated in JSim included such simple
functions, thus the property was very effective.

Although we did not compare metamorphic testing to
other approaches in this study, we note that techniques such
as assertion checking would be unlikely to detect any of the
JSim defects related to event timing because they only con-
sider a single execution of the program, or of the function
that produces the random number in the specified range.

2http://matmute.sourceforge.net

45

Consider a function that is meant to return a number in the
range [A, B], but has a defect so that the range is actually
[A, B-1]. No single execution will violate the invariant that
“the return value is between A and B”, so assertion checking
would not reveal this defect.

However, statistical metamorphic testing will detect this
defect because over the course of 100 executions of the pro-
gram (as in our experiment), the mean and variance show
a statistically significant difference compared to what is ex-
pected; other testing approaches may only run the program
once, and would not consider the trend of the program over
a number of independent executions.

4.3.2 Analysis of GCS Results
While our metamorphic properties of the GCS were able

to detect and kill many of the patient simulation mutants,
they were less successful detecting defects injected in the
control algorithm implementation. The control algorithm
used in this version of the GCS is composed of 10 condition-
als of the form “if patient blood sugar is x then adjust infu-
sion rate by y”. The defect introduced by any single opera-
tor mutation will affect only one of the conditionals (either
changing the guard, or linearly altering the control action
the algorithm would take in that instance.) In many sim-
ulations, the condition related to the patient’s blood sugar
may only rarely be true under a given guard and any muta-
tion protected by the guard would have little impact on the
overall amount of insulin delivered to the patient. For this
kind of control algorithm, less coarse metamorphic proper-
ties would be desired to achieve a high defect detection rate.

4.4 Summary
This experiment shows the feasibility of metamorphic test-

ing as a technique for detecting defects in simulation soft-
ware. By following the guidelines from Section 3.1 above, we
were able to identify metamorphic properties that detected
100% of the defects in JSim, and 60% of the defects in GCS.

5. RELATED WORK
Researchers concerned with the validation and verification

of simulation software often acknowledge the need for soft-
ware testing, but typically do not present techniques beyond
using some sort of formal specification [31], or approaches
that are common for all types of software, such as test-driven
development or code reviews [4, 21, 29]. Others have sug-
gested similar techniques for testing software in the field of
scientific computing [17, 18], as well, but we are not aware
of any work that has attempted to reveal coding defects in
simulators by using a systematic approach as we do here.

Applying metamorphic testing to situations in which there
is no test oracle has previously been studied by Chen et al.
[11]. In some cases, these works have looked at situations
in which there cannot be an oracle for a particular applica-
tion [12], as in the case of non-testable programs; in others,
the work has considered the case in which the oracle is sim-
ply absent or difficult to implement [7]. Much of the work
on applying metamorphic testing to applications without
test oracles has focused on specific domains, such as ma-
chine learning [24], computational biology [10], or graphics
[16]. To our knowledge, we are the first to focus on applying
metamorphic testing to the domain of simulation software
in general, and health care related simulation software in
particular.

6. CONCLUSION
In this paper, we have demonstrated that metamorphic

testing is an effective technique for testing simulation soft-
ware that is used in the field of health care. We provided
guidelines for deriving the properties on which the technique
relies, and discussed how we used metamorphic testing to
systematically test real-world simulation systems for effec-
tive discovery of potential defects. We also presented the
results of a study that measured the effectiveness of meta-
morphic testing, revealing it to be very useful at finding
injected defects in medical simulation software.

Future work could expand our study to include more im-
plementations of simulation software, and to compare meta-
morphic testing to other techniques. Additionally, a pos-
sible direction for this research could be to consider using
metamorphic testing for validation purposes, i.e., to discover
whether the implementation of simulation software suffi-
ciently matches the phenomenon it is attempting to model.
If a metamorphic property based on domain knowledge and
expectation of real-world behavior is violated, it may be the
case that the error exists in the understanding of how to
simulate the activity, and not in the implementation itself.

As practitioners rely more and more on simulation soft-
ware to model the results of medical procedures and related
processes, it is clear that the ability to reliably test these
applications is critical. We believe that our work is an im-
portant first step in improving the quality of simulation soft-
ware used in the health care field.

7. ACKNOWLEDGMENTS
We would like to thank T.Y. Chen for his guidance with

metamorphic testing, and Guillaume Viguier-Just and Sandy
Wise for their assistance with the JSim software. We also
thank Roman Hovorka and Gosia Wilinska for their help
with understanding their diabetic patient models including
the one we implemented for the experiments presented in
this paper.

Murphy and Kaiser are members of the Programming
Systems Lab, funded in part by NSF CNS-0717544, CNS-
0627473 and CNS-0426623, and NIH 2 U54 CA121852-06.
King, Chen, Lee, and Sokolsky are members of the PRE-
CISE Center, funded in part by NSF CNS-0834524, CNS-
0930647, CNS-1035715, and NSF CNS-0720518. Raunak,
Osterweil, and Clarke are members of the Laboratory for
Advanced Software Engineering Research, funded in part
by CCR-0427071, CCR-0204321 and CCR-0205575.

8. REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is

mutation an appropriate tool for testing experiments?
In Proc. of the 27th International Conference on
Software Engineering (ICSE), pages 402–411, 2005.

[2] D. Arney, M. Pajic, J. M. Goldman, I. Lee,
R. Mangharam, and O. Sokolsky. Toward patient
safety in closed-loop medical device systems. In
Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS ’10,
pages 139–148, New York, NY, USA, 2010. ACM.

[3] N. Arshad, A. Akhtar, S. Khan, and D. Sabih.
Software engineering for simulation systems in medical
training - some initial experiences. In Proc. of 2nd
Wkshp on Software Engineering in Health Care, 2010.

46

[4] O. Balci. Verification, validation and accreditation of
simulation models. In Proc. of the 29th conference on
winter simulation, pages 135–141, 1997.

[5] J. Banks, B. L. Nelson, and D. M. Nicol.
Discrete-Event System Simulation, 5th ed.
Pearson/Prentice Hall, 2010.

[6] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, S. M. Sutton Jr., and A. Wise.
Little-JIL/Juliette: A process definition language and
interpreter. In Proc. of the 22nd International
Conference on Software Engineering (ICSE), pages
754–757, 2000.

[7] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A
metamorphic testing approach for online testing of
service-oriented software applications. International
Journal of Web Services Research, 4(1):60–80,
April-June 2007.

[8] L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software
operation. In Proc. of the 8th Symposium on
Fault-Tolerance Computing, pages 3–9, 1978.

[9] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic
testing: a new approach for generating next test cases.
Technical Report HKUST-CS98-01, Dept. of
Computer Science, Hong Kong Univ. of Science and
Technology, 1998.

[10] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie. An
innovative approach for testing bioinformatics
programs using metamorphic testing. BMC
Bioinformatics, 10(24), 2009.

[11] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Fault-based
testing without the need of oracles. Information and
Software Technology, 44(15):923–931, 2002.

[12] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. Semi-proving:
an integrated method based on global symbolic
evaluation and metamorphic testing. In Proc. of the
International Symposium on Software Testing and
Analysis (ISSTA), pages 191–195, 2002.

[13] D. Chodos et al. Healthcare education with
virtual-world simulations. In Proc. of 2nd Workshop
on Software Engineering in Health Care, 2010.

[14] M. D. Davis and E. J. Weyuker. Pseudo-oracles for
non-testable programs. In Proc. of the ACM ’81
Conference, pages 254–257, 1981.

[15] G. W. Evans, T. B. Gor, and E. Unger. A simulation
model for evaluating personnel schedules in a hospital
emergency department. In Proc. of 28th Conf. on
Winter Simulation, pages 1205–1209, 1996.

[16] R. Guderlei and J. Mayer. Statistical metamorphic
testing - testing programs with random output by
means of statistical hypothesis tests and metamorphic
testing. In Proc. of the Seventh International
Conference on Quality Software, pages 404–409, 2007.

[17] M. A. Heroux and J. M. Willenbring. Barely sufficient
software engineering: 10 practices to improve your
CSE software. In Proc. of the 2009 ICSE Workshop on
Software Engineering for Computational Science and
Engineering, pages 15–21, 2009.

[18] D. Hook and D. Kelly. Testing for trustworthiness in
scientific software. In Proc. of the 2009 ICSE
Workshop on Software Engineering for Computational
Science and Engineering, pages 59–64, 2009.

[19] R. Hovorka et al. Nonlinear model predictive control
of glucose concentration in subjects with type 1
diabetes. Physiological Measurement, 25(4), 2004.

[20] Z. Jiang, M. Pajic, A. T. Connolly, S. Dixit, and
R. Mangharam. Real-time heart model for implantable
cardiac device validation and verification. In Proc. of
22nd Euromicro Conference on Real-Time Systems,
2010.

[21] J. P. C. Kleijnen. Verification and validation of
simulation models. European Journal of Operational
Research, 82(1):145–162, April 1995.

[22] J. Knight and N. Leveson. An experimental evaluation
of the assumption of independence in multi-version
programming. IEEE Transactions on Software
Engineering, 12(1):96–109, 1986.

[23] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An
automated class mutation system. Journal of Software
Testing, Verification and Reliability, 15(2):97–133,
June 2005.

[24] C. Murphy, G. Kaiser, L. Hu, and L. Wu. Properties
of machine learning applications for use in
metamorphic testing. In Proc. of the 20th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 867–872, 2008.

[25] C. Murphy, K. Shen, and G. Kaiser. Automated
metamorphic system testing. In Proc. of the 2009
ACM International Conference on Software Testing
and Analysis (ISSTA), pages 189–199, 2009.

[26] M. Raunak, L. Osterweil, and A. Wise. Developing
discrete event simulations from rigorous process
definitions. In Proc. of the 2011 conference on Theory
of Modeling and Simulation/Discrete Events
Simulation (TMS/DEVS11), 2011.

[27] M. Raunak, L. Osterweil, A. Wise, L. Clarke, and
P. Henneman. Simulating patient flow through an
emergency department using process-driven discrete
event simulation. In Proc. of the 2009 ICSE Workshop
on Software Engineering in Health Care, pages 73–83,
2009.

[28] M. S. Raunak. Resource Management in Complex,
Dynamic Environments. PhD thesis, University of
Massachusetts Amherst, 2009.

[29] R. G. Sargent. Verification and validation of
simulation models. In Proc. of the 37th conference on
winter simulation, pages 130–143, 2005.

[30] S. Su and C. L. Shih. Modeling an emergency medical
services system using computer simulation.
International Journal of Medical Informatics,
72(1-3):57–72, Dec 2003.

[31] W. T. Tsai, X. Liu, Y. Chen, and R. Paul. Simulation
verification and validation by dynamic policy
enforcement. In Proc. of the 38th annual Symposium
on Simulation, pages 91–98, 2005.

[32] E. J. Weyuker. On testing non-testable programs.
Computer Journal, 25(4):465–470, November 1982.

[33] N. Wilson, K. Wang, and R. W. Dutton. A software
framework for creating patient specific geometric
models from medical imaging data for simulation
based medical planning of vascular surgery. LNCS,
2208/2001:449–456, 2001.

[34] A. Wise. JSim agent behavior specification language.
http://laser.cs.umass.edu/documentation/jsim.

47

