
Developing Discrete Event Simulations From Rigorous Process Definitions
Mohammad S. Raunak1, Leon J. Osterweil, Alexander Wise

Department of Computer Science
University of Massachusetts Amherst
{raunak, ljo, wise}@cs.umass.edu

Keywords: Executable process models, Resource Man-
agement, Complex and Dynamic systems, Human-centric
processes, Health care simulation.

Abstract
A process modeling language that is easy to learn and use
while grounded in rigorous semantics to facilitate execu-
tion and simulation has always been a big challenge for re-
searchers. In this paper, we describe Little-JIL, a visual pro-
cess modeling language and its runtime-infrastructure, Juli-
ette, that is capable of driving a process with the help of
participating human or computing agents. We then introduce
JSim, a discrete-event simulation environment with flexible
artifact management and intricate resource management ca-
pability built on top of the Little-JIL and Juliette framework.
The factored architecture and rich modeling mechanism for
both the process description as well as the resource specifica-
tion has allowed us to simulate some dynamic and complex
real-life systems in details.

1. MOTIVATION
Sufficiently precise and completely defined processes can

be used as the basis for efforts at process improvement, trig-
gered by the identification and subsequent removal of process
defects using different types of static analysis techniques such
as finite state verification [4], or fault-tree analysis [5]. Such
static analysis do not require the execution of the process, but
then also do not benefit from various advantages that would
be offered by the executability of the defined process. The
use of an executable process definition, for example, creates
the possibility that the iteratively improved process could, at
each iteration, be executed to provide increasingly effective
and satisfactory results. This, in essence, boils down to the
use of dynamic analysis approaches to support iterative im-
provement of processes as complements to the static analyses
used to identify potential process defects. In this paper we
describe such an effort, namely the use of a sufficiently com-
plete, precise, and executable process definition as the basis
for discrete event simulation. In this paper we show how we
have been able to generate discrete event simulations from an
executable process definition language. One important advan-
tage of this approach is that we can use the same process mod-

1The author is currently a visiting Assistant Professor at Loyola Univer-
sity Maryland.

els for developing simulations that have already been used for
other analyses purposes. This reduces the considerable cost
of developing precise process models by amortizing it over
various analyses. It also ensures that different analyses were
aimed at studying and improving the same process.

Another important contribution of this paper is presenting
the importance of careful resource (including actors) mod-
eling and management for proper process simulation. Exe-
cutable modeling languages for business processes such as
WSBPEL [8] and its extension to include humans [9] have
lacked detailed definition of resources [11]. Similarly, al-
though there have been a number of discrete event simula-
tion efforts for modeling and simulating software processes
[17], very few of these simulation models paid attention to
modeling resources as well as process context adequately.
This paper describes how our focus on resource modeling and
management has resulted in sufficient details of particularly
complex and dynamic human centric processes where process
context may dictate resource utilization.

2. APPROACH
Our approach in developing a process simulator starts with

the use a complete, yet nicely factored process definition lan-
guage, whose semantics is rigorously defined to enable pro-
cess execution. In our view, an executable process definition
framework needs to have a coordination aspect focusing on
activities and the flow of control, a resource aspect focusing
on actors and tools required to carry out the activities and
the runtime binding of actors and other resources to activi-
ties, and an artifact aspect focusing on data that are produced,
consumed and shared by actors in performing their assigned
work. A process interpreter can then be developed to take the
static coordination specification and provide communication
and synchronization mechanism with modules defining the
artifact model, providing resource-management services, and
the actors responsible for carrying out the activities. Given
such a process definition and interpretation framework that
provides the means for coordination amongst participating
actors through maintaining the control and data flow and thus
enabling execution of the process, one can extend the archi-
tecture to replace the real-life actors with simulated actor be-
haviors to create a flexible simulation service. This is pre-
cisely what this paper describes as the methodology we have
used. We have developed a process simulation infrastructure

117



called JSim leveraging the flexible architecture of a process
execution framework.

2.1. Little-JIL: A Rigorous and Executable
Process Language

Little-JIL, the modeling language used as the basis for our
discrete-event simulation infrastructure, is a process defini-
tion language [3, 14] that, along with Juliette, its interpreta-
tion framework, supports specification, execution, and anal-
ysis of processes that are performed by sets of agents (ac-
tors) that may be humans, software, or hardware devices. A
Little-JIL process definition is composed of three orthogonal
aspects: a visual activity coordination specification, a collec-
tion of artifacts with an artifact-flow specification, and a col-
lection of resources.

The activity coordination specification is a hierarchical
structure of steps each of which is an abstraction of an ac-
tivity. Child steps are connected to their parent by edges that
represent both control flow and artifact flow. Each step con-
tains a specification of the type of agent resource needed to
perform the task associated with that step. Thus, for example,
in a hospital patient care process, the agents would be doctors,
nurses, registration software etc. Specific agent instances are
assigned to steps at runtime by a resource manager (all agents
are considered to be resources). The collection of steps as-
signed to an agent defines the interface that the agent must
satisfy to participate in the process. Note that the coordina-
tion specification includes a description of the external view
and observable behavior of such agent resources. But a spec-
ification of how the agent resources themselves perform their
tasks (their internal behaviors) is NOT part of the coordina-
tion specification. These behaviors are defined in a separate
specification component.

More formally, the activity coordination specification
of a Little-JIL process definition P is a tree structure
(ST,rt,E,R,F) where:
• ST is a set of steps, each of which is an abstract spec-

ification of an activity that can be instantiated multiple
times in an actual execution or simulation of a process.
• A root step, rt ∈ ST , that defines the beginning or entry

point for P.
• E, a set of edges each of which is an ordered pair of

steps (stp,stc) ∈ E connecting stp and stc in a parent-
child relationship.
• R is a set of resource specifications associated with each

step st.
• F is a set of artifact specifications associated with step

declarations and edges connecting the steps.
We now briefly introduce the syntax and semantics of a

Little-JIL process definition. A step, the primary building
block of a Little-JIL process, has a number of badges associ-
ated with it, which provides its semantic. The interface badge

is a circle on the top of the step name that connects a step to
its parent. The interface badge holds information about the
artifacts used in and produced by the step as well as require-
ments for resources needed for the execution of the step. The
step’s execution agent requirement is specified here as well.
Below the circle is the step name. A step may also include
pre-requisite and/or post-requisite badges, which are repre-
sentations of simple predicates or entire step structures that
are to be executed before and/or after (respectively) the step.
Inside the central black box of the step structure, are three
more badges. On the left is the control flow badge, which
specifies the order in which the step’s children are to be exe-
cuted. Based on the control-flow, Little-JIL has four different
step kinds, namely sequential, parallel, try and choice. Chil-
dren of a sequential step, as seen in most non-leaf steps in fig-
ure 1, are executed one after another from left to right. Chil-
dren of a parallel step can be executed in any order, including
in parallel, depending on when the agents actually pick up,
and begin execution of, the work assigned in those steps. A
detailed discussion of step kinds is available at [14].

On the right of the step bar is an X sign, which represents
the exception handler capabilities of the step. Attached to this
badge by red-colored exception edges are any and all han-
dlers defined to deal with exceptions that may occur in any
of the descendants of this step. Each handler may itself be a
step, and is annotated to indicate the type of exception that it
handles. Here too, artifact flow between the parent and the ex-
ception handler step is represented by annotations on the edge
connecting them. When an exception is thrown by a step, it
is passed up the tree until a matching handler is found. Little-
JIL also defines four different continuation semantic after an
exception has been handled [14]. In the middle of the step
bar is a lightning sign, which represents the message han-
dling capabilities of the step. Attached to this badge by mes-
sage handling edges (also known as reaction handling edges)
are any and all handlers defined to deal with messages that
may emanate from any step in the process definition or even
from outside the process. The message handling capability is
quite similar to the exception handling capability, but, while
exception handlers respond only to exceptions thrown from
within their substep structure (a scoped capability), message
handlers can respond to message thrown from anywhere (an
unscoped capability). If there are no child steps, message han-
dlers, or exception handlers, the corresponding badges are not
depicted in the step bar.

2.2. A Little-JIL Process Example
To illustrate how Little-JIL can be used to define a pro-

cess, we present the ‘EDCare’ process, a simplified model of
how care is provided to hospital Emergency Department (ED)
patients, shown in figure 1. EDRoot, the root step of the ED-
Care process, has a sub-process structure defined as a reaction

118



Figure 1. The root diagram of ‘EDCare’ process

handling scope. When the root step receives a message of type
PatientArrivalMessage (specified inside EDRoot step’s in-
terface badge), the process sub-tree TreatOnePatientScope
that defines how patient care is provided, is instantiated. Thus
each PatientArrivalMessage results in a potentially parallel
instantiation of the process structure rooted at TreatOnePa-
tientScope. For each patient, the process begins with a triage
nurse performing triage on the patient, as defined by the
TriagePatient step. The required resource characteristics for
the agent that can perform this task is defined as part of the
step, but, is not visible in the figure to reduce visual clutter.
One outcome of executing this step is the assignment of an
acuity level for the patient. In a simplified nominal version of
the ED process, a patient next goes for Registration where
insurance and other information is taken from the patient and
an Id-band is placed on the patient. The patient next waits
to be taken into the treatment area of the ED (the mainED)
depending on the availability of bed. However, figure 1 de-
scribes a variation of the simple patient care process. This was
modeled in order to study the impact of a policy change where
a patient can be placed inside the mainED without waiting to
undergo the regular registration activity. Inside the mainED,
(defined in the elaboration of the reference step TreatPati-
entInsideED) if a patient has not yet gone through registra-
tion, a shortened registration called quick-registration is per-
formed first, and then the rest of the registration (e.g. col-
lecting insurance information) is completed in parallel with
the treatment process. The process flow, in this case, takes
a patient through the TriagePatient step, and then imme-
diately tries to acquire a bed through the AcquireBedNon-
block step. One of the required resources for this step is the
bed. If the bed acquisition is successful, process flow contin-
ues to the sub-tree rooted at TreatPatientInsideED. In case
AcquireBedNonblock fails to acquire a bed an exception of
type ResourceUnavailableException is thrown and propa-

gated up to the TreatOnePatientScope step, where a sepa-
rate process (BedNotAvailableScope) is defined to handle
the exception. The handler process, starts by performing the
step RegisterOutside and then tries to acquire a bed with a
blocking request call. TreatPatientInsideED is a reference
step that refers to the root of another Little-JIL diagram that
elaborates the treatment process inside the mainED. There is
a parameter named patientInfo that is instantiated with the in-
formation about each patient at TreatOnePatientScope and
is flowed through the process from step to step as an artifact.
Attributes of this artifact can be used as predicates associated
with the pre-requisites and post-requisites of the steps that
this artifact flows through. Note that the yellow post-it notes
in figure 1 are comments and not part of the formal process
definition.

3. LITTLE-JIL RUNTIME ENVIRONMENT
Juliette, the Little-JIL runtime environment, uses agen-

das (to-do lists) to coordinate agents {A1,A2,A3, · · ·An} that
are specified to execute a Little-JIL process definition. Each
agent Ai has associated with it an agenda NAi , which is the
public interface that allows activities to be assigned to that
agent. Thus, at any time during the execution of a process,
NAk = {N1

Ak
,N2

Ak
, · · ·Nn

Ak
} is a potentially empty set of agenda

items, where an agenda item Ni
Ak

is an instance of an activity
assigned to agent Ak. Note that at runtime, a step stm, which is
a type level specification of an activity, may get instantiated
many times. Let STm = {si1m,si2m, · · ·sinm} denote the set of all
instances associated with step stm ∈ ST in an execution of a
process P. Since instances of steps are carried out by agents, a
step instance si j

m ∈ STm, when bound to an agent Ak becomes
an agenda item Ni

Ak
. In Little-JIL runtime environment, this

is done by using a common abstraction for both the step in-
stance si j

m and its corresponding agenda item, such as, Ni
Ak

.
Figure 2 shows the component structure of Little-JIL run-

time environment. The solid boxes represent main com-
ponents of the system. A solid directional line defines a
call from one component to another (the uses relationship).
When two components communicate with each other asyn-
chronously, it is shown with bi-directional lines connecting
the components. The process specification has been shown as
a broken line box with its three components inside it.

The lifecycle of a step’s execution is defined through a fi-
nite state machine that defines how execution moves through
the key states (initial, posted, started, completed, or termi-
nated) and transitional phases (elaboration, starting, execu-
tion, finishing ). The lifecycle of a step instance si j

c is as fol-
lows.
• Elaboration phase: In this phase, the Step Interpreter

copies artifacts from step instance si j
p based on the pa-

rameter flow annotations between stp (parent) and stc
(child). The Resource Manager is then sent the agent

119



Figure 2. Little-JIL Runtime Environment

resource requirement associated with the definition of
the step being elaborated, i.e., stc. The Resource Man-
ager makes a decision on an agent Ak that matches the
requirements. With a message back from the Resource
Manager, the Step Interpreter assigns the step instance
si j

c to agent Ak by placing an agenda item Nn
Ak

in Ak’s

agenda. This takes si j
c from a initial state to posted state.

• Starting phase: The agent Ak chooses to start the activity
si j

c at some point t, which chages si j
c to be in started

state.
• Execution phase: The execution phase defines what hap-

pens while si j
c is in started phase. If si j

c is a leaf step, Ak
will complete the activity potentially making changes to
the artifacts that were passed to it and then notifies the
Step Interpreter that it has completed the work. If si j

c,
on the other hand, is a non-leaf step, the Step Interpreter
will drive the execution of each of its sub-steps follow-
ing the sequencing specification associated with static
definition of the step stc.
• Finishing phase: As part of the finishing state of a step

instance’s life cycle, the Step Interpreter copies out the
values of the parameters that have been specified to be
returned from si j

c to its the parent step instance si j
p. The

Resource Manager is then asked to release the agent Ak

and other resources used in si j
c. During this phase si j

c
transitions from started state to completed state or to the
terminated state in case si j

c could not complete normally
for some reason.

Thus, the execution of a process is a resultant behavior that
emerges from the interconnected execution of step instances.
This high level description leaves out a number of Little-JIL
language features and details of the Juliette process execution
environment. More complete discussions about the language
and the interpretation are available at [3, 16, 14]. One im-
portant thing to note here is the separation of concerns en-
forced by the runtime architecture. The step interpreter inter-
acts with other components at specific points in the life cycle
of a step and this interaction is governed by well-defined APIs

that restricts the type of information communicated. Artifact
types and their flow behavior are defined within the Artifact
Manager. The decision to select an agent and to couple its
agenda to a step instance is done by the Resource Manager.
The agents participate in the process by fulfilling the contract
specified by their interaction API in the AMS. With this archi-
tecture, the interpreter can assure that the control and artifact
flow semantics of Little-JIL are enforced without needing to
know anything about the resource management policies or ar-
tifact type structures. However, the participating agents need
to register with the Agenda Management System making their
agenda public. A participating agent is also expected to listen
for agenda items placed in its agenda and fulfill its contract
by notifying the corresponding Step Interpreter when it has
completed its work or if it decides to terminate the work fail-
ing to complete it.

4. THE JSIM ARCHITECTURE
Section 3 has described an execution framework capable

of driving a process definition with the participation of agents
and through the interaction of different components such as
Step Interpreters, Resource Manager and Artifact Manager.
In a simulation environment, we are not going to have live
agents (humans or computer programs) interacting with the
interpreters. Thus an essential part of developing a discrete
event process simulator would require replacing the interac-
tions with agents by a component capable of producing syn-
thetic, yet flexible, agent behavior. The following diagram de-
scribes the JSim component structure.

In figure 3, the process definition represents both the static
step definitions as well as runtime step instances. Each Step
Instance object has a Step Interpreter associated with it that
maintains and drives the life cycle of the Step Instance ac-
cording to a finite state machine defined by the type of the
Little-JIL step [3]. These finite state machines are already
specified as part of Little-JIL semantics and thus do not re-
quire any additional programming. The Simulator Agenda
Management System (SAMS), a little modified implemen-
tation of the original AMS used for process execution, is at
the heart of maintaining and facilitating all the communica-
tions amongst the Step Interpreters and other modules in the
runtime system, such as the Resource Manager and the Arti-
fact Manager. As noted earlier, the important difference here
from the generic runtime environment of Little-JIL is the ab-
sent of real agents, which were shown in figure 2 as execu-
tion clients. One of the components that would now become
the client of SAMS service is the JSim Agent Behavior Spec-
ification (JABS) module [15], which holds specification of
agents’ behaviors. This module answers queries as to what an
agent would do when it is given a step instance to perform. A
Step Instance object, with the help of its associated Step Inter-
preter object communicates with other Step Instance objects,

120



Figure 3. Subsystem view of JSim process simulator

agents, and other components of the runtime environment us-
ing the Simulator AMS service. It should be noted here that
the communications between Step Instances and agents are
asynchronous. In the simulation environment, with the ab-
sence of real agents, a mechanism is needed to notify a Step
Instance that is waiting to hear back from an agent. This is
accomplished with the Timeline module and the Simulator
Agenda Management System.

The Timeline module holds all the events generated by
simulated agents as specified in the Agent Behavior Speci-
fication component as well as events corresponding to some
global messages. With the above components in place, a sim-
ulation driver is used to serially read events from the Timeline
module and to deliver them to appropriate Step Instance ob-
jects. The event deliveries result in state changes in the Step
Instance objects, which may generate more events to be cre-
ated and placed in the Timeline. The Simulation driver waits
until no more events can be generated as a result of an event
delivery. Once all subsequent events that resulted from an
event delivery to the SAMS have been placed in the time-
line, the simulation driver goes on to pick the next event and
delivers it. The simulation stops when there is no more event
to be delivered.

In practice, the process definition component may often be
reused from earlier construction of the process for different
static analysis purposes. The resource requirement specifica-
tion, and resource related constraints are usually added to the
process and resource definition for simulating specific scenar-
ios. If the process definition has been used before for execu-
tion, then there is almost no change required in resource or
artifact models. It is the JSim agent behavior and the initial
distribution of events in the timeline that requires program-
matic specification to setup a specific simulation. We have
developed tools to partially automate the process of generat-
ing agent behavior as well as initial event distribution.

4.1. ROMEO Resource Management Service
One of the primary purposes of studying simulations of

processes is to look at the resource contention and utilization

and its impact on some measurement of production or ser-
vice time under different contextual settings including varia-
tions in service request load and available resources. In pro-
cesses such as software development or patient care services
in an ED, the resources of interest mainly includes human
actors in that domain such as software designers, developers
or doctors, nurses, clerks etc. In a patient care process, there
are also non-agent resources such as the bed, medical equip-
ment, medicine etc., which are of crucial importance. These
resources are quite diverse in their characteristics. Some can
participate as actors in a process (such as the humans) while
others can not (e.g. bed in an ED), some are reusable (e.g.
bed) while others are consumable (e.g. medicine). More in-
triguingly, some of these resources, especially the agent re-
sources, may provide capabilities only under some circum-
stances and not under others. We note, for example, a physi-
cian assistant in an ED may perform an activity such as writ-
ing an order (i.e. prescribing medication) for a patient with
chest pain in an extraordinary situation, whereas this is a task
that would only be performed by a doctor under ordinary cir-
cumstances. It is thus imperative to have a flexible resource
management service that can model such diverse kinds of re-
sources with often complex and dynamic characteristics ade-
quately.

As an essential support service for both Little-JIL process
execution as well as JSim simulation infrastructure, we have
developed a flexible resource management service named
ROMEO. During the execution or simulation of a Little-JIL
process, when activities become ready to get started, ROMEO
is sent these required resource specifications as requests for
resource acquisitions. The ROMEO resource manager, in
turn, performs a search through its repository of resources,
identifies resources capable of fulfilling the required specifi-
cation and chooses one of those resources based on some suit-
ability or utility metric. The resource request specifications in
a Little-JIL step may also carry indication as to whether the
process will wait until resources become available (blocking
request) or whether it wants to be notified immediately by the
Resource Manager in case a resource was not readily avail-
able (non-blocking request).

When ROMEO receives requests for agents and other re-
sources that can not be immediately fulfilled, it puts them in
a queue of pending requests. As the simulation progresses,
when resources become free as a result of completion of ac-
tivities that had started earlier, the resource manager picks up
requests from the pending queue and fulfills them. One of the
important features of ROMEO is its rich modeling mecha-
nism of both agent and non-agent resources, the request lan-
guage to specify resource requirement, and allocation con-
straint that can be specified as part of the Little-JIL process
definition or the resource model in ROMEO. The key idea
behind ROMEO’s modeling of resources is that it consid-

121



ers a resource, especially the agent resource, as a provided
of a set of capabilities. For example, in the ED, a nurse re-
source can provide such capabilities as triage, administer-
medication, vital-check etc. However, each capability has as-
sociated with it a guard function that defines under what cir-
cumstances can the resource provide that capability. This pro-
vides us with considerable flexibility in modeling dynamism
in a simulated process. Space limitation does not allow us to
write about the details of ROMEO’s architecture, its resource
modeling mechanism, the request language that it supports
and its allocation strategies here. We have extensively written
about our resource management capabilities in [10].

4.2. JSim Agent Behavior Specification
To allow us to specify simulated agent behaviors in a flex-

ible way, we have developed an XML based rule language,
named the JSim Agent Behavior Specification (JABS) lan-
guage [15]. In a Little-JIL process execution environment,
once an agent is assigned some activity, it participates in the
running process in two ways. First, it notifies the interpreta-
tion module when an activity is started by the agent and when
it is completed. Second, the agent may use, modify or produce
artifacts as part of performing the activity. These artifacts are
passed into and out of a Little-JIL step using parameters that
define the flow of the artifacts between steps.

JABS allows us to specify the behavior of an agent or a set
of agents based on the static name of a Little-JIL step or based
on the name of the agent itself. When a rule is defined in terms
of a step name, the behavior of any agent assigned to perform
an instance of that step is deduced from this rule. Each rule in
JABS language is composed of a matching part and a set of
action elements. The matching part holds the name of a step
or an agent. The action elements specify information such as
the relative start time and end time of a step with respect to the
current simulation clock time when an instance of this rule is
invoked. The action elements may also specify setting of any
field of an artifact or the entire artifact that is bound to the
step where this rule is being applied. While specifying timing
information an agent would take to perform a step, it is im-
portant to provide some statistical distribution. JABS allows
us to specify uniform, triangular and Gaussian distribution as
the time it takes to perform any step. It is possible to have
multiple rules that match a particular simulation context of a
step execution. In this case, JABS performs a top down search
in the rule base and selects the first matching rule and applies
it. The JABS module also allows for arbitrary nesting of the
agent behavior rules.

4.3. Generating Simulation Output
The raw output of JSim are the lifecycle events and their

occurrence time according to the simulation timeline. The
following list describes the major events that are logged by
JSim.

1. A step instance si j
c is ready to be posted at time t1 based

on the control flow of the process definition.

2. The Resource Manager assigns an agent Ak to carry out
step instance si j

c at time t2.

3. Agent Ak decides to start executing si j
c at time t3.

4. Agent Ak completes si j
c at time t4.

Using the data captured in the trace information, we have
been able to compute a wide number of statistics of interest
for many simulated processes. Most of the statistics we have
generated fell under the following two categories:

• Time information: we can compute the time taken for
executing any leaf or non-leaf step. This translates to
time information regarding activities at different levels
of granularity captured in the process definition. We can
also compute time information specific to any particular
agent.

• Resource Utilization: The trace provides data specifying
when tasks were assigned to agents, when they started
working on a task, and when did they complete a partic-
ular task. From these time information, we can compute
utilization level of the agents and other resources.

4.4. Validation of JSim
Extensive efforts were made to assure that simulation out-

put produced by JSim was consistent with its specifications
[10]. Some of these efforts amounted simply to careful visual
scrutiny of the resource assignment decisions as well as en-
suring that starting and completion of the steps are happening
according to the simulation specification. Both JSim develop-
ers and our ED domain expert spent considerable amounts of
time looking at simulation results to verify JSim’s simulation
traces. We also compared the results obtained from JSim to
those predicted by Little’s Law [2, 10], a well-known “rule of
thumb” used to estimate and validate the overall behaviors of
queue-based simulations.

To gain more confidence in the inner workings of the JSim
infrastructure and simulation results produced by it, we de-
cided to compare our results with a well established commer-
cial discrete event simulation product: Arena [6, 1]. Arena
is an object-based, hierarchical modeling and simulation tool
that has been used in a wide range of simulation applications.
Of particular relevance to our studies is the fact that many ED
simulation studies have used Arena as their modeling tool.

For purposes of comparison, we modeled a simple ED pro-
cess using both JSim and Arena and ran simulations with pa-
tients arriving at a fixed rate. The process definition we used
for this study is similar to the one showed in figure 1, albeit a
little more simplified. The task times were kept fixed and only
one type of resource was varied, namely the bed resource. We
plotted both how long the simulation ran in total time as well
as the average length of stay (LOS) for each patient. We went

122



through a number of iterations of simulations and inspections
to ensure that details of both the Arena and the JSim models
were describing the exact same process. The output produced
by the two simulation engines were same [10].

5. EXPERIENCE AND CASE STUDIES
We have used Little-JIL, ROMEO and JSim to simulate

a number of different processes related to how patient care
is provided in a hospital ED. With Little-JIL, JSim and
ROMEO, we have been able to simulate some complex and
dynamic scenarios related to ED. While designing case stud-
ies, we investigated the following two attributes of our JSim
simulation infrastructure:

• How capable is our modeling mechanism to capture
some intricate domain policies in such dynamic pro-
cesses in hospital EDs.
• How easy or difficult is it for a novice modeler to model

new complex simulation using JSim.

We have found that the JSim architecture affords expedited
access to each of the key architectural components, and many
different points at which the parameters used to configure
these components can be tuned and adjusted quickly. This
has been useful in facilitating the tuning and setup of specific
simulations or sets of simulations. We have also found that
the non-technical domain experts (in this case, doctors and
nurses) quickly picked up the Little-JIL notation and were
able to follow and suggest detailed specification in the pro-
cess definition.

We now present an example of the kinds of experiments
we have performed with JSim. Earlier in the paper, while
introducing the Little-JIL notation, we described the ‘ED-
Care’ process. This process was developed with by extend-
ing a nominal and simpler ED process that we used for initial
validation purposes. Here we have added different types of
resource acquisitions (both blocking and non-blocking). As
noted earlier, there is a detailed part of the process that is
rooted in the TreatPatientInsideED step, which has not been
shown in figure 1.

Figure 4. Blocking vs. non-blocking bed acquisition
For this set of simulation runs, the patient arrivals were

generated using a Poisson distribution with mean inter-arrival

time of six (6), which translates into roughly ten (10) patients
per hour. The execution times of the steps were specified us-
ing a triangular distribution. We looked at the average of all
the average LOS measures from the simulation runs. Figure 4
summarizes the output of these simulations. As intuitively ex-
pected, the situation where a patient is immediately placed
inside the ED when a bed is available results in improved pa-
tient flow. We were also interested in observing how easy or
difficult it is to set up our simulation and resource manage-
ment infrastructure for such an experiment. So, we assigned
the task to a relative novice of Little-JIL and JSim, a grad-
uate student with less than 2 months experience in our lab,
and timed him in doing the simulation setup. The process
augmentation required about 2 hours and 24 minutes. Once
we had the process model elaborated, switching from a non-
blocking request scenario to the blocking request scenario to
setup this particular experiment required less then twenty (20)
minutes to complete. Our other experiments with a novice
user have also validated JSim’s ability of expressing complex
scenarios easily and quickly. In one of the ED simulations,
we modeled a scenario where a triage-nurse could perform
some of the discharge-related paper-works that is usually per-
formed only by a regular nurse. But we allowed the substitu-
tion only when the ED was overcrowded. Details of this and
all our other experiments can be found in [10].

6. RELATED WORK
Different workflow and process modeling languages have

been used by researchers over the past decade to sim-
ulate software development and other human-centric pro-
cesses [17]. The capabilities in these languages are usually
restrictive, however, especially when it comes to resource
specification and management. BPEL4WS [8] and BPEL4-
People [9] haven been popular for modeling business pro-
cesses for simulation and analysis. These languages have also
been shown to lack in terms of capabilities for modeling re-
sources and process context details [11].

Schriber [12] provides a nice explanation of the generic
structures of discrete-event simulation software with an anal-
ysis of four commercial tools, namely SIMAN, ProModel,
GPSS/H, AutoMod and SLX [7]. Many of these commercial
simulation tools presented in [12] as well as a number of new
ones such as Arena [1], AnyLogic [13] and others have nice
user interfaces, but often are not as programmable as our JSim
simulation infrastructure. In particular, the resource modeling
and managing flexibility that we can deliver using JSim seems
to be very difficult, if not impossible, with many of these com-
mercial tools. The rich exception management mechanism of
Little-JIL and contextual assignment of resources to activities
are features that seem to set our infrastructure apart.

123



7. CONCLUDING REMARKS
We believe there is considerable value in creating a

discrete-event simulation infrastructure based on rigorous
and executable process definitions that is accessible to non-
technical domain experts. The formal semantics of such pro-
cess modeling languages would also allow one to perform
different kinds of static analysis of processes [4, 5]. In this
paper we have presented such a process definition language
- Little-JIL, its runtime environment - Juliette, and a discrete
event simulation framework that we have developed on top
of them called JSim. One important component of JSim is
its rich resource management component, ROMEO, which is
capable of modeling dynamic agent behavior that is depen-
dent on the state of the system. Using this infrastructure, we
have successfully simulated some intricate variations of how
patient care is provided in a hospital ED [10]. We have also
performed case studies to evaluate the versatility and usability
of our simulation framework.

Acknowledgement
The authors gratefully acknowledge the important contri-

butions made to this work by Guillaume Viguier-Just and
Tiffany Chao, who provided support for the construction of
case studies and other evaluative activities. Dr. Philip L. Hen-
neman, MD, Prof. Hari Balasubramanian, Prof. Lori Clarke,
and Prof. George Avrunin provided a great deal of help and
support through their continuing interaction about this work.

This work was supported by the US National Science
Foundation under Award Nos. CCR-0427071, CCR-0204321
and CCR-0205575. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of The National Science
Foundation, or the U.S. Government.

Biography
Dr. Mohammad S. Raunak is currently a Visiting Assis-

tant Professor at Loyola University Maryland. His research
interests include process simulation and analysis of com-
plex systems with a special focus on resource management.
Prof. Leon J. Osterweil is an ACM fellow and a professor of
University of Massachusetts Amherst. Mr. Alexander Wise
is a senior technical staff at Laboratory for Advanced Soft-
ware Engineering Research (LASER) at University of Mas-
sachusetts Amherst.

REFERENCES
[1] V. Bapat and D. T. Sturrock. The arena product family: enter-

prise modeling solutions: the arena product family: enterprise
modeling solutions. In Proceedings of the 35th conference on
Winter simulation, pages 210–217, 2003.

[2] D. Bertsimas and D. Nakazato. The distributional little’s law
and its applications. Operations Research, 43:298–310, 1995.

[3] A. G. Cass, B. S. Lerner, S. M. Sutton, E. K. McCall, A. E.
Wise, and L. J. Osterweil. Little-jil/juliette: a process defini-
tion language and interpreter. In International Conference on
Software Engineering (ICSE), pages 754–757, 2000.

[4] B. Chen, G. Avrunin, L. Clarke, and L. Osterweil. Auto-
matic fault tree derivation from little-jil process definitions. In
Q. Wang, D. Pfahl, D. Raffo, and P. Wernick, editors, Software
Process Change, volume 3966 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg.

[5] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J.
Osterweil, and P. L. Henneman. Analyzing medical processes.
In Proceedings of the 30th international conference on Soft-
ware engineering, ICSE ’08, 2008.

[6] J. E. Hammann and N. A. Markovitch. Introduction to arena.
In WSC ’95: Proceedings of the conference on Witer Simula-
tion, San Diego, CA, USA, 1995. Society for Computer Simu-
lation International.

[7] J. O. Henriksen. An introduction to slx. In Proceedings of the
29th conference on Winter simulation, WSC ’97, pages 559–
566, Washington, DC, USA, 1997. IEEE Computer Society.

[8] D. Jordan and J. Evdemon. Web services business process ex-
ecution language version 2.0; oasis standard. Technical report,
April 2007.

[9] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rick-
ayzen, C. Riegen, P. Schmidt, and I. Trickovic. WS-BPEL
extension for people. Technical report, IBM, 2007.

[10] M. S. Raunak. Resource Management in Complex Dy-
namic Environments. PhD thesis, University of Massachusetts
Amherst, Department of Computer Science, 2009.

[11] N. Russell and W. van der Aalst. Evaluation of the
BPEL4People and WS-HumanTask Extensions to WS-BPEL
2.0 using the Workflow Resource Patterns. Technical report,
2007.

[12] T. J. Schriber and D. T. Brunner. Inside simulation software:
inside discrete-event simulation software: how it works and
why it matters. In Proceedings of the 33nd conference on Win-
ter simulation, WSC ’01, pages 158–168, Washington, DC,
USA, 2001. IEEE Computer Society.

[13] Wikipedia. Anylogic — wikipedia, 2010.

[14] A. Wise. Little-jil 1.5 language report. Technical Report 2006-
051, University of Massachusetts Amherst, October 2006.

[15] A. Wise. Jsim agent behavior specification. http://-
laser.cs.umass.edu/documentation/jsim/language.html, 2009.

[16] A. E. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Os-
terweil, and S. M. Sutton. Using little-jil to coordinate agents
in software engineering. In Automated Software Engineering,
pages 155–164, 2000.

[17] H. Zhang, B. Kitchenham, and D. Pfahl. Reflections on 10
years of software process simulation modeling: a systematic
review. In Proceedings of the software process (ICSP’08),
pages 345–356. Springer-Verlag, 2008.

124




