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ABSTRACT

Strategy mining is a new area of research about discover-
ing strategies for decision-making. It is motivated by how
similarity is assessed in retrospect in law. In the legal do-
main, when both case facts and court decisions are present,
assessing case similarity by accounting for both case facts
and court decisions is more natural than solely considering
case facts. In this paper, we formulate the strategy min-
ing problem as a clustering task with the goal of finding
clusters that represent disparate conditional dependency of
decision labels on other features. Existing clustering algo-
rithms are inappropriate to cluster dependency because they
either assume feature independence, such as K-means, or
only consider the co-occurrence of features without explic-
itly modeling the special dependency of the decision label on
other features, such as Latent Dirichlet Allocation (LDA).
We propose an Expectation Maximization (EM) style unsu-
pervised learning algorithm for dependency clustering. Like
EM, our algorithm is grounded in statistical learning theory.
It minimizes the empirical risk of decision tree learning. Un-
like other clustering algorithms, our algorithm is irrelevant-
feature resistant, and its learned clusters modeled by deci-
sion trees are strongly interpretable and predictive. We sys-
tematically evaluate both the convergence property and so-
lution quality of our algorithm using a common law dataset
comprised of actual cases. Experimental results show that
our algorithm significantly outperforms K-means and LDA
on clustering dependency.

1. INTRODUCTION

Strategies play a key role in decision-making. In the con-
text of decision-making, strategies involve how to evaluate
decision-influential features and which decisions to make.
Different people might use disparate strategies to make de-
cisions. For example, physicians with different ‘schools of
medical thought’ may prescribe different treatments for pa-
tients based on evaluating their previous medical complica-
tions, reported symptoms, and results of various tests, as
shown in Figure 1. The Supreme court and federal courts

may follow different doctrines to rule for recovery after eval-
uating case facts such as product defect, injuries, and pro-
fessional duties. Decision-making is also at the crux of po-
litical activity. In politics, different presidential administra-
tions use different strategies to make decisions about war
and peace, about budgetary funding priorities, and about
which political candidate to support along with innumerable
other choices. Organizations make grand strategic decisions
about investment and direction of future growth; individual
persons make decisions about how to live a life. When the
outcome of a decision is observable (e.g., radical mastectomy
leads to shorter or longer recovery time from breast can-
cer than lumpectomy does), uncovering the decision-making
process is highly desirable. This is because strategies, once
discovered, they can shed light on how to achieve a desired
outcome and avoid an unwanted one, and can also enable
strategy comparisons. This new area of research about dis-
covering strategies in decision-making is what we call strat-
egy mining.

In this paper, we formulate the strategy mining problem as
a clustering task, called the latent-strategy problem. In a
latent-strategy problem, a corpus of data instances is given,
each of which is represented by a set of features and a deci-
sion label. The inherent dependency of the decision label on
the features, as shown in the above examples, is governed
by a latent strategy. The goal is to discover the conditional
dependency in order to reveal the strategy.

The difference between dependency-based clustering and con-
ventional object-based clustering [1] is noteworthy. Object-
based clustering deals with the joint distribution of all fea-
tures in the feature space, whereas dependency-based clus-
tering deals with the conditional distribution of the decision
label on the other features. Existing clustering algorithms
are inappropriate to cluster dependency because they either
assume feature independence, such as K-means [5] and mix-
ture models, or only consider the co-occurrence of features
without explicitly modeling the special dependency of the
class label (i.e., decision label) on other features, such as
LDA [7]). In this paper, we propose a baseline algorithm for
dependency clustering on the basis of the following assump-
tion.

e Data instances with similar features but different out-
comes come from different conditional distributions.

Our algorithm models conditional dependency with decision
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Figure 1: The relationship among strategy, decision labels, and features & examples in various domains

trees [6] and iterates between an assignment step and a mini-
mization step to learn a mixture of decision tree models that
represent latent strategies. We call this algorithm Assign-
ment Minimization for Decision Tree Mixtures (AM-DTM).
Like the Expectation Maximization (EM) algorithm [4] [3],
AM-DTM is grounded in the PAC learning theory [8]. The
difference, however, is that AM-DTM uses a non-parametric
model, whereas EM-like algorithms often use parametric
models.

AM-DTM is irrelevant-feature resistant, and its learned clus-
ters (modeled by decision trees) are strongly interpretable
and predictive.

1. Irrelevant-feature resistant.
AM-DTM is not sensitive by irrelevant features, unlike
most clustering algorithms. The reason is that decision
tree models are not only capable of ignoring irrelevant
features but also able to identify what the key features
are and how their interactions influence the decision.

2. Strongly interpretable.
AM-DTM is a glass-box learning algorithm. It not
only clusters the data but also learns the structure of
the latent strategies (decision tree models). Therefore,
one can easily evaluate and explain the clustering re-
sults by examining the “look” of the trees.

3. Predictive.
Clustering methods can be distinguished by the sim-
ilarity function used to realize the clustering. In our
case, the decision tree model can be viewed as a sim-
ilarity measure. Table 1 shows that the learned de-

cision tree models allow for similarity-based case re-
trieval and classification tasks on new data.

In this exploratory study, we evaluated the performance of
AM-DTM using a real-world common law dataset. In this
domain, there are 151 actual cases taken from a variety of
jurisdictions in the United States and the United Kingdom.
Our task is to learn the disparate strategies that court used
to rule the cases. The experimental results show that (1)
AM-DTM converges quickly, (2) the learned decision tree
models resemble disparate legal doctrines well, and (3) AM-
DTM outperforms K-means and LDA on the task of clus-
tering dependency.

The rest of the paper is organized as follows. In Section 2,
we first show an example that motivates this paper and then
define the latent-strategy problem. In Section 3, we present
our baseline algorithm with a proof of convergence. Section
4 is devoted to the systematic evaluations of our algorithm.
Related work is detailed in Section 5 and we conclude in
Section 6.

Table 1: Example scenarios of using learned decision
trees in different tasks

Tasks Examples

Similarity-based case | For a query instance with features

retrieval and expected outcome specified,
similar cases can be retrieved.
Classification For a query instance with features

specified, outcomes from different

strategies can be predicted.




2. THE LATENT-STRATEGY PROBLEM

2.1 A Motivating Example

From 1853 to 1973, a great change occurred in the doctrine
governing the recovery from damages by a remote buyer of a
product that caused injury. Until the changes only a buyer
who dealt directly with the manufacturer of the product —
that is, who was said to be in ‘privity of contract’ — could
recover for injury caused by the product. The old privity
rule stated that if the buyer and maker of the product were
not in a direct (privity) relation, there could be no recovery.
The change in the doctrine was set into motion in 1852 by
the landmark case of Thomas and Wife v. Winchester, (6
N.Y. 397 (1852)). In this case, Mr. and Mrs. Thomas would
not have been able to recover from Winchester because they
did not buy the product directly from him. However, the
court decided to make an exception to the privity require-
ments in this case because the substance (bottle of poison
(belladonna) mislabeled as ‘dandelion extract’) was so dan-
gerous and the harm so severe. The court thus created an
exception for things “imminently dangerous”. This case set
in motion the creation of a new doctrine that allowed for re-
covery from damages caused by so-called “imminently dan-
gerous” things even if the injured party and the maker of the
goods were not in a direct contractual (privity) relationship.
In 1916 another landmark case MacPherson v. Buick Mo-
tor Co., (217 N.Y. 382, 111 N.E.1050 (1916)) was decided
that completed the common law evolution of the doctrine.
In this case, the wheel of an automobile fell off and injured
the owner of the car (MacPherson). Since MacPherson had
bought the car from a dealer, and not Buick directly, there
was no privity. Also, a “car” is not in itself an ‘imminently
dangerous’ article so it did not fit under the Thomas excep-
tion. At this point, The highest court in New York changed
the law and rejected the requirement for ‘privity’ and the
need to characterize a product “imminently dangerous” al-
together, allowing for an injured party to recover for damage
done by a defective product.

In the above example, there are three doctrines: (1) priv-
ity for recovery; (2) imminently dangerous exception to the
privity rule; and (3) recovery by remote buyers for defective
products. In Anglo-American law, it is often the case that
the fading of an old doctrine requires the passage of time.
The older doctrine of privity was not unfollowed by later
cases immediately after the occurrence of the landmark case
establishing the new doctrine. Rather, the privity doctrine
faded as more cases were decided under the new doctrine.
A similar situation occurred to the second and the third
doctrine. In a separate study [references omitted], we con-
structed a dataset from this domain, where the information
of the doctrines were missing. The research problem for this
study is how to uncover the doctrines.

2.2 Problem Definition

Uncovering doctrines in the example above can be viewed as
a clustering problem with the goal of finding clusters, each
containing cases decided by the same doctrine. As a result,
“similarity” in this domain should be interpreted as “similar
strategies” that courts used to decide cases based on case
facts, or “similar conditional dependence” of court decisions
on case facts.

This way of interpreting similarity is different from the con-

ventional interpretation of similarity. Traditionally, similar-
ity is often assessed by examining the joint distribution of
all features in a nondiscriminating feature space. In this pa-
per, we try to solve a clustering problem whose similarity is
judged based on the class-conditional distribution in a dis-
criminating feature space. We believe that some unobserved
latent variables are responsible for how the mappings from
features (e.g., case facts) to class labels (e.g., court decisions)
are generated and, therefore, suggest that an EM-style pro-
cess should be used to learn a generative model that specifies
a joint probability distribution over the observed mappings
and those latent labels.

After introducing the problem characteristics, we now define
the latent-strategy problem. Examples are shown in Figure
1.

DEFINITION 1. In a latent-strategy problem, a corpus of
data instances I is given, each of which is represented by
a set of features F' and a decision label D. The inherent
dependency of the decision label on the features is governed
by a latent strateqy S. The objective is to find clusters, each
containing data instances governed by the same strategy.

3. A BASELINE ALGORITHM ON CLUS-

TERING CONDITIONAL DEPENDENCY
As shown in Algorithm 1, AM-DTM, models conditional
dependency with decision trees and iterates between an as-
signment step and a minimization step to learn a mixture of
decision tree models that represent latent strategies.

Consider a dataset containing a set of data instances D.
Each case has a set of features, among which there is a spe-
cial class label feature. AM-DTM starts from partitioning
D into K disjoint datasets D; ... Dy, or K clusters. The
partition can be done either with the guidance of domain
knowledge or at random. Those K datasets are used to build
K initial decision trees. Techniques should be used to avoid
overfitting.

The main body of AM-DTM consists of two iterative steps:
an assignment step (A-step) and a minimization step (M-
step). In the A-step, instances are assigned to clusters based
on decision tree classification results. The assignment strat-
egy is as follows: if an instance in a cluster is correctly classi-
fied by the decision tree built from that cluster, it will stay in
the original cluster; otherwise, it will move to a cluster whose
decision tree correctly classifies it. When there is more than
one decision tree that correctly classifies a misclassified in-
stance, that instance will move to the cluster whose decision
tree yields the highest classification probability for it. Fur-
ther ties are broken by preferring the decision tree whose leaf
node has a greater number of instances. If there is no deci-
sion tree that correctly classifies an instance, that instance
stays in its original cluster.

In the M-step, decision tree learning is performed and the
total training error of all decision trees is minimized under
the assumption that the assignment from the A step is cor-
rect. To ensure and speedup convergence, we replace an
older decision tree with a new one for a cluster only when
the new tree has a lower training error. This process is re-



Algorithm 1: AM-DTM

Input: D - Data instances; K — the number of clusters
Output: Learned decision trees DT's loaded with cases
Initialization: Randomly reshuffle cases in D; Partition
D into K disjoint datasets D1 ... Dk
foreach D; do
Build a decision tree DT; using proper strategies to
avoid over-fitting
nd
epeat
A-step:
foreach DT do
M < find data instances that are misclassified
foreach X in M do
DTree + find the decision tree, over which X is
correctly classified with the highest classification
probability ;
if DTree# NULL then
D; <+ find dataset used to train DT'ree

= 0

Move X to Dj
end
end
end
M-step:

foreach D; do
Rebuild a decision tree NewDT; with proper
strategies to avoid over-fitting
TrainError(NewDT) + find the training error of
the NewDT;
MisclassificationRate(DT) « find the
misclassification error by evaluating DT; on D;
if TrainError(New DT;) <
MisclassificationRate(DT; ) then

| Replace DT; with NewDT;
end

end

until convergence;
return DT's

peated until no instance is moved. The goal of the iteration
is to minimize the overall training error so that the learned
decision trees representing coherent concepts can be found
accurately.

THEOREM 1. Using AM-DTM, the total training error

strictly monotonically decreases until the algorithm converges.

PROOF. In each iteration of the AM-DTM algorithm, the
misclassified data instances in one cluster are moved to an-
other cluster only when they are correctly classified by the
decision tree trained using that cluster. When the dataset
of a cluster changes, a new tentative decision tree is created
from the changed dataset. The decision tree for each cluster,
however, will be replaced by the new decision tree only when
the new tree has a lower training error. Therefore, the to-
tal training error strictly monotonically decreases until the
error reaches zero or no case are moved between clusters. []

4. EXPERIMENTS AND RESULTS

Table 2: Features and domain values in the common
law dataset

Variables Domain values

Outcome P-win, D-win

Privity Yes, No

Age Infant/Youth, Adult

Plaintiff 1D Injured party, Representing
injured party

Injury Severe, Mild/ No injure

Injured-party occupation | Experienced user, Other
Defendant occupation Manufacture, Vendor, Man-
ufacture & Vendor, Other
Type Food/drink,
Drug/medicine, Chemi-
cals, Personal care, Car,
Machine, Other

IP role Mere middleman, Dominant
person

Existence of TP Yes, No

Defect Yes, No

Non-obvious defect Yes, No

Inherently dangerous Yes, No

Professional duty Yes, No

Our evaluation dataset, as shown in the motivating exam-
ple, is from the common law domain, consisting of 151 ac-
tual cases taken from a variety of jurisdictions in the United
States and the United Kingdom. Cases are represented by
14 features shown in Table 2. We carried out 4 experiments
to evaluate the performance of AM-DTM. In the first exper-
iment, we evaluate the convergence property of AM-DTM;
in the second experiment, we evaluate the AM-DTM’s capa-
bility of discovering K with human interaction; in the third
experiment, we evaluate how well the learned decision trees
resemble the three disparate legal doctrines; and in the last
one, we compare the performance of AM-DTM with that of
LDA and K-means.

4.1 Convergence

We ran AM-DTM 10 times with random initialization. As
shown in the left panel of Figure 2, the total error rate is
plotted over the number of iterations. Error bars along the
curve show the deviation across 10 runs. The monotonic
decrease of the total error rate indicates the convergence
of AM-DTM, which usually occurred within 5 iterations.
The misclassification rate of each learned decision tree cor-
responding to each of the three clusters as a function of the
number of iterations is shown on the right panel of Figure
2.

4.2 Discovering K with human interaction

In order to learn the number of latent legal doctrines, we
provided AM-DTM with different values of K. The train-
ing error and stratified 10-fold cross-validation error of each
learned decision tree as a function of the number of leaf
nodes are plotted for each specification of K in Figure 3,
4 and 5, respectively. The best tree has to meet the fol-
lowing three criteria: (1) it needs to be compact because
the doctrines are often not very complex legal rules; (2) it
has low training error meaning that the cluster is coherent;
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and (3) it has low cross-validation error. As can be seen
from Figure 5, only when K=3, the learned decision trees
are compact and have low training errors (0.01 on average)
and low cross-validation errors (0.04 on average).

4.3 Examining the learned decision trees

Recall that each case in the common law dataset was de-
cided by one of the following three doctrines: (1) privity for
recovery; (2) imminently dangerous exception to the privity
rule; and (3) recovery by remote buyers for defective prod-
ucts. The fact that an older doctrine was not unfollowed by
later cases immediately after the occurrence of a landmark

case establishing the new doctrine presents a challenge to
our clustering task because using landmark cases as cutoff
lines to evaluate cluster membership would not work. Alter-
natively, we can evaluate the solution quality of AM-DTM
by examining how well the decision trees learned by AM-
DTM represent the three doctrines.

To show that the learned decision trees resemble the doc-
trines, we ran AM-DTM 10 times with random initialization
and K set to 3. The top 5 features with the highest aver-
age weights across 10 runs for each learned decision tree are
shown in Table 3. A feature weight is defined as the ratio of
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the number of cases assigned to a feature node to the number
of cases underneath the root node in the same tree. Over-
all, the ranking lists with feature weights resemble the doc-
trines well. For example, in the case of the second doctrine
— ‘recovery for imminently dangerous products’, it is easy
to explain what the doctrine is based on the corresponding
ranking list. Specifically, ‘imminently dangerous’ (the sec-
ond one on the ranking list) implies that only certain types
of products (the first one on the ranking list, e.g., drugs)
were considered to be imminently dangerous and therefore
only certain defendant occupations (the third on the rank-
ing list) were considered to be liable for the injuries (the
fifth on the ranking list) caused by defective products. The

defects of an imminently dangerous product (e.g., drug) are
often not obvious (the fourth on the ranking list), for ex-
ample, a patient could hardly tell a dandelion extract (a
harmless medicine) from an extract of belladonna (a deadly
poison). The first and the third doctrines can be explained
in a similar way based on their corresponding feature rank-
ing lists. Note that the presence of “defendant occupation”
in the first ranking list is due to the fact that defendant oc-
cupations determine whether a case is a privity one or not
(e.g., consumers when buying certain things from a grocery
store are contracted with the vendor not the manufacture).
The presence of “defendant occupation” in the third ranking
list is because the manufacturer of a defective product was



Table 3: The ranking list of the top 5 features with the highest average weights

(a) The Learned Decision Tree 1

(b) The Learned Decision Tree 2

(c) The Learned Decision Tree 3

Features Weights Features Weights Features Weights
Product type 0.62 Product type 0.79 Product type 0.86
Defendant occupation 0.57 Imminently dangerous 0.67 Defendant occupation 0.76
Privity 0.41 Defendant occupation 0.43 Imminently dangerous 0.39
Defect 0.40 Non-obvious defect 0.37 Defect 0.38
Injury 0.40 Injury 0.36 Non-obvious defect 0.29

always considered to be liable for the injuries according to
the third doctrine.

4.4 Comparing AM-DTM with K-means and

LDA on clustering dependency

We also compared AM-DTM with K-means and LDA for
clustering dependency. K-means and LDA are interesting
comparisons because one (i.e., K-means) assumes feature
independence and the other (i.e., LDA) only considers the
co-occurrence of features without explicitly modeling the de-
pendency of the decision label on other features. The basic
idea of LDA is that documents are represented as random
mixtures over latent topics, where each topic is characterized
by a distribution over words. In our application, doctrines
are mapped to topics in the text analysis, cases are mapped
to documents, and case features are mapped to words. More-
over, the term frequency of a feature was set to 1 or 0 de-
pending on the presence of that feature. As we can see from
Figure 6 and 7, decision trees built from clusters discovered
by K-means and LDA (with alpha=17 and beta=0.01) have
high bias and variance and are relatively complex. Specifi-
cally, both K-means and LDA have an average 0.2 training
error and 0.5 cross-validation error. LDA produced decision
trees that were slightly more compact (7 leaf nodes on av-
erage) than K-means did (10 leaf nodes on average). We
were not surprised by the fact that LDA did not outper-
form K-means on clustering dependency because it did not
model those desired dependency explicitly. Combining with
the results from Figure 5, we can easily see that AM-DTM
significantly outperformed K-means and LDA in the task of
clustering dependency.

5. RELATED WORK

To the best of our knowledge, strategy mining is a new
concept for data mining. No prior work has attempted to
solve the latent-strategy problem we proposed in this paper.
Because AM-DTM is a model-based clustering algorithm
and uses an EM-style procedure to learn a non-parametric
model, we focus on reviewing related work on the front of
clustering analysis and the front of non-parametric EM al-
gorithm for learning latent variables.

Comparing other works in clustering analysis, we think LDA
is the one most similar to our work. Although LDA considers
the co-occurrence of features, it does not explicitly model the
special dependency of the decision label on other features.
Most other clustering algorithms, such as K-means, often
assume feature independence.

Although EM-style procedures are often used to learn para-
metric models, such as Gaussian mixtures, prior work has

been done on using EM to learn non-parametric models,
such as [2]. That work presents an EM-style algorithm for
learning a K-nearest neighbor (KNN) model to impute miss-
ing values in the data. However, the question of how to in-
sure the convergence of non-parametric EM-style algorithm
like KNN was left to open discussions. In this paper, we pre-
sented two mechanisms (i.e., when to move data and when
to replace trees) to guarantee the convergence of AM-DTM
for a mixture of decision tree models.

We think, most importantly, the main difference between
those algorithms and AM-DTM is that they are not appli-
cable to clustering conditional dependency.

6. CONCLUSION

Two objectives have been fulfilled by this paper. First, we
defined latent-strategy discovery as a new problem for data
mining. Its goal is to cluster conditional dependency. Sec-
ond, we presented a baseline unsupervised algorithm to solve
the problem. In our preliminary study of learning disparate
legal doctrines from a real-world common law data set, ex-
perimental results show that our algorithm significantly out-
performs K-means and LDA on the task of clustering depen-
dency.

For future work, we will extend AM-DTM to automatically
estimate the number of clusters. We will also explore the
use of other models to represent conditional dependency and
compare their performance with the current algorithm using
decision tree models. For example, we can choose other non-
parametric statistical models (e.g., kernel Fisher discrimi-
nant analysis), parametric discriminative models (e.g., logis-
tic regression), and parametric generative models (e.g.,naive
Bayes).
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