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ABSTRACT

IMPROVING PROCESSES USING STATIC ANALYSIS
TECHNIQUES

FEBRUARY 2011

BIN CHEN

B.Sc., PEKING UNIVERSITY, CHINA

M.Sc., PEKING UNIVERSITY, CHINA

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lori A. Clarke and Professor George S. Avrunin

Real-world processes often undergo improvements to meet certain goals, such as

coping with changed requirements, eliminating defects, improving the quality of the

products, and reducing costs. Identifying and evaluating the defects or errors in the

process, identifying the causes of such defects, and validating proposed improvements

all require careful analysis of the process. Human-intensive processes, where human

contributions require considerable domain expertise and have a significant impact on

the success or failure of the overall mission, are of particular concern because they can

be extremely complex and may be used in critical, including life-critical, situations.

To date, the analysis support for such processes is very limited. If done at all, it is

usually performed manually and can be extremely time-consuming, costly and error-

prone. There has been considerable success lately in using static analysis techniques
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to analyze hardware systems, software systems, and manufacturing processes. This

thesis explores how such analysis techniques can be automated and employed to

effectively analyze life-critical, human-intensive processes.

In this thesis, we investigated two static analysis techniques: Finite-State Verifica-

tion (FSV) and Fault Tree Analysis (FTA). We proposed a process analysis framework

that is capable of performing both FSV and FTA on rigorously defined processes. Al-

though evaluated for processes specified in the Little-JIL process definition language,

this is a general framework independent of the process definition language. For FSV,

we developed a translation-based approach that is able to take advantage of existing

FSV tools. The process definition and property to be evaluated are translated into

the input model and property representation accepted by the selected FSV tool. Then

the FSV tool is executed to verify the model against the property representation. For

FTA, we developed a template-based approach to automatically derive fault trees

from the process definition. In addition to showing the feasibility of applying these

two techniques to processes, much effort has been put on improving the scalability

and the usability of the framework so that it can be easily used to analyze complex

real-world processes. To scale the analysis, we investigated several optimizations that

are able to dramatically reduce the translated models for FSV tools and speed up

the verification. We also developed several optimizations for the fault tree derivation

to make the generated fault tree much more compact and easier to understand and

analyze. To improve the usability, we provided several approaches that make analysis

results easier to understand.

We evaluated this framework based on the Little-JIL process definition language

and employed it to analyze two real-world, human-intensive processes: an in-patient

blood transfusion process and a chemotherapy process. The results show that the

framework can be used effectively to detect defects in such real-world, human-intensive

processes.
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CHAPTER 1

INTRODUCTION

Processes pervade our society. Products are produced by various manufacturing

processes; software is developed following software development processes; govern-

ment or business services are provided via established processes; and healthcare is

delivered through different medical processes. Likewise, processes in many other do-

mains can be identified quite readily. Although different terminology might be used

in different application domains, a process usually consists of a set of tasks that co-

ordinate and communicate with each other to achieve certain goals and objectives,

where a task defines a specific unit of work performed by an agent that can be either

a human (e.g., a software developer or a medical practitioner) or automated (e.g., a

piece of software or a electronic device).

Real-world processes often undergo continuous improvements to meet certain

goals, such as coping with changed requirements, eliminating defects, increasing the

quality of the products, and reducing costs. As suggested by industrial process im-

provement practices (e.g., [106]), effective process improvements need to be carried

out incrementally through continuous improvement iterations, as opposed to radical

re-engineering. A process improvement iteration usually involves five major steps:

1) define the concrete problem to be solved; 2) measure the process performance if

necessary; 3) identify and evaluate the root causes of the problem; 4) change the

process to address the root causes; 5) validate that no errors are introduced and the

changes indeed solve the problem.
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Analysis plays a critical role in this incremental process improvement. Identifying

and evaluating the root causes of the problem require careful analysis of the process.

In addition, since errors may be introduced by changes to the process, analysis should

be carried out to detect such errors before the modified process is deployed. Analyses

are usually performed based on the specification of the process. In many domains,

processes are defined in natural language, perhaps supplemented by diagrams or other

informal notations. Processes defined with such informality are often ambiguous, in-

complete or inconsistent, preventing many formal analyses from being applied on

these processes. Even the analyses that can be applied have to be performed manu-

ally and can be highly time-consuming and costly. Such informal analyses may also

produce inaccurate or even incorrect results, leading to ill-advised changes that fail

to achieve the improvement goal. To date many process definition languages have

been developed to formally define processes, but their support for analysis is still

very limited.

Human-intensive processes, where “the human contributions require considerable

domain expertise and have a significant impact on the success or failure of the over-

all mission” [34], are of particular concern because they can be extremely complex

and prone to errors. Medical processes are excellent examples of human-intensive

processes that involve many different types of medical professionals, such as doctors

and nurses with different specializations and roles, pharmacists, lab technicians, and

support staff. Such processes usually contain complex interactions and constraints

between human agents and their collaborating hardware and software agents. These

agents often perform their activities in parallel, introducing substantial amounts of

concurrency and communication into the process. During the execution of the pro-

cess, exceptional conditions may arise requiring specialized exception handling actions

that may vary considerably depending upon the circumstances. Dealing with such
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concerns can make human-intensive processes extremely complex, presenting a great

challenge for analysis.

Many human-intensive processes, like medical processes, are used in critical, in-

cluding life-critical, situations. Even a small defect in such a process may lead to

hazards that threaten human life. A hazard is “a state or set of conditions of the

system that, together with certain other conditions in the environment, will lead

inevitably to an accident” [80]. One fundamental requirement of developing or im-

proving such a process, therefore, is to prevent or control the potential hazards. A

variety of analysis techniques have been developed to identify potential hazards, as-

sess their effect, and identify and evaluate the causal factors that could lead to the

hazards [80]. Some of these have achieved considerable success lately in analyzing

complex hardware systems, software systems, or processes in certain manufacturing

industries. We believe that these analysis techniques can also be employed effectively

to analyze life-critical human-intensive processes. We also believe that some of these

analysis techniques may be automated if the process is specified in a language that

has precisely defined semantics.

In this thesis, we investigate how two selected analysis techniques, Finite-State

Verification (FSV) and Fault Tree Analysis (FTA), can be automated and applied to

analyze human-intensive processes. Both of these are static analysis techniques, in

that they are performed without actually executing the system. Such static analysis

techniques can be very costly for large systems. Finite-State Verification (FSV) has

been successfully applied to analyze complex hardware and software systems. It is

able to systematically detect errors by exhaustively checking all possible executions

of a system against a property that formally defines a specific aspect of the system

behavers. When the property is violated, a violation trace will usually be provided

to show how the violation occurs. Fault Tree Analysis (FTA) is widely used in many

industries, including the nuclear industry and the aerospace industry. It is used
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to produce fault trees that systematically identify and evaluate all possible events

in a system that could lead to given hazards. Once a fault tree has been derived,

qualitative and quantitative analysis can be applied to provide information that can

be used to identify weakness in the process. For instance, Minimal Cut Sets (MCSs)

can be computed to show sets of events that are sufficient to cause the hazard to

occur.

We developed an analysis framework that is capable of performing both FSV and

FTA on processes specified in a process definition language with precisely defined

semantics. For FSV, we developed a translation-based approach that is able to take

advantage of existing FSV tools. The process definition is first translated into the in-

put model of the selected FSV tool. The property is also translated into the property

representation accepted by the FSV tool. Then the FSV tool is executed to verify

the model against the property representation. For FTA, we proposed a template-

based approach to derive the fault tree from the process definition. We also provided

support for computing MCSs and generating representations that help process de-

velopers to easily understand MCSs. This design of this process analysis framework

is independent of the process definition language. We implemented and evaluated

this framework using the Little-JIL process definition language. Little-JIL is a gen-

eral process definition language well suited to capture the full complexity inherent

in human-intensive processes. It provides support for abstraction, composition, and

restricted, well-formed control flow constructs that are able to capture the rich con-

trol models needed for human behaviors. It also has extensive support for exception

handling, a major aspect of many processes, particularly human-intensive processes.

Furthermore, Little-JIL has well-defined semantics that facilitate the two kinds of

analysis that we want to apply. Our contributions can be summarized as follows.

• To make human-intensive process analysis techniques easier to apply and less

prone to human error, we provide automated support for two of them. For FSV,
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translators are implemented to automatically translate process definitions as

well as the associated property specifications to input representations of various

existing FSV tools. For FTA, an automatic fault tree derivation algorithm has

been developedd to construct fault trees from process definitions. Furthermore,

Minimal Cut Sets (MCSs), which are critical for evaluating fault trees, are also

computed automatically.

• We proposed several optimizations to scale the analysis. For FSV, optimizations

are performed during the translation, dramatically reducing the translated mod-

els and speeding up the verification. For FTA, optimizations performed during

the fault tree derivation make the derived fault tree much smaller.

• To improve the usability, we provided several approaches that make analysis

results easier to understand. For FSV, a counter-example trace produced by

the underlying FSV tool is represented as an execution of the input model of the

FSV tool. Due to the translation and optimizations used to create this model,

such counter-example traces can be hard to understand. To address this issue,

we developed a high-level process trace generator that generates a high-level

process trace from a counter-example trace. In addition, we proposed several

graphic representations to show the high-level process traces to the analysts.

For FTA, the high-level process trace generator is also used in FTA to generate

high-level process traces from a MCS. The high-level process trace shows how

the events in the MCS can cause a hazard to happen. In addition to the high-

level process trace, we also developed an approach to create a sub fault tree for

a MCS to help the analyst to understand the MCS.

• We evaluated the proposed process analysis framework by applying our imple-

mentation of the framework to two real-world medical processes: an in-patient

blood transfusion process and a chemotherapy process. The results showed
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that the framework can be used to effectively detect the defects in such real-

world human-intensive processes. The FSV detected a large number of errors

in the process definitions and the property specifications. More interestingly, it

identified a subtle error in the chemotherapy process itself. Through FTA, we

discovered a single point of failure in the chemotherapy process.

It should be noted that although discussions in this thesis are based on our imple-

mentation for Little-JIL, most of the issues as well as the approaches that we proposed

to handle those issues, are also applicable to other process definition languages.

The rest of this thesis is organized as follows. Chapter 2 presents the background

and related work of process improvement, process modeling, finite-state verification,

and fault tree analysis. Chapter 3 describes the architecture of our translation-based

process verification framework. The focus of this chapter is put on the translation and

the optimizations, as well as certain related issues. Chapter 4 discusses the automatic

fault tree derivation algorithm for processes. It also briefly talks about the evaluation

of fault trees. Chapter 5 presents the high-level process trace generator as well as two

visual representations for high-level process traces. Chapter 6 introduces the two case

studies used in the evaluation of our approach, and it discusses the results and some

observations based on this experience. Finally, Chapter 7 presents our conclusions

and discusses potential future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The first part of this chapter presents a brief history as well as an overview of the

state-of-the-art of process improvement research and practice in the manufacturing

domain and the software development domain. The second part introduces the Little-

JIL language - the process definition language that we used in our research. A survey

of the most influential process modeling languages from various domains is then given.

The last part discusses the backgrounds and related work of two analysis techniques:

Finite-State Verification and Fault-Tree Analysis.

2.1 Process Improvement

Process improvement has long been studied and practiced in manufacturing indus-

tries. Various approaches have been proposed and adopted, resulting in significant

improvements in the quality and the productivity associated with these processes.

Encouraged by the success of industrial manufacturing process improvement, the

software development community is trying to adapt those approaches to improve the

software development process. This section focuses on the process improvement in

these two domains.

2.1.1 Industrial Process Improvement

In the early 20th century, the practice to improve product quality in manufac-

turing industries focused on product inspection. Specifically, the product quality

was improved by identifying and then fixing or removing finished products with low
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quality. The cost, however, was also increased because of the extra effort involved

in product inspection. To improve product quality without increasing the cost, the

manufacturing processes had to be changed to produce fewer low quality products.

This required systematic measurement and analysis of the processes. Walter Andrew

Shewhart, known as the father of statistical quality control, was the first to bring

statistical control into product process improvement [117]. He pointed out that de-

graded quality products are the results of variation in the manufacturing process.

Such variation has two kinds of distinct causes: common causes which he called

“chance causes”, and special causes which he called “assignable causes”. Common

causes are factors that are constantly present in the process, and special causes are

unusual conditions or factors from outside the process. To improve the processes,

the first step is to eliminate the special causes and bring the process under statistical

control. Once the process is in statistical control, which means that it becomes stable

and predictable, analysis can be taken to identify the common causes. Then changes

to the process can be made in response to those common causes to further reduce

the variation. Shewhart developed the control chart to distinguish common causes

and special causes. A control chart is a graphic display of the values of a selected

variable in the process over time. If the process is in statistical control, the values

should distribute consistently within certain ranges in the control chart. Any abnor-

mal pattern in the control chart, therefore, suggests the presence of the special cause.

Note that the control chart only indicates the existence of special causes. It does not

show what special causes actually cause the abnormal patterns. The manager or the

process designer would need to consider all possible conditions or factors to identify

the special cause with the help of control charts. Shewhart’s idea was developed into

Statistical Process Control (SPC) and the control chart is still the primary tool for

SPC.
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Figure 2.1. DMAIC Model

William Edwards Deming applied SPC to improve production in the United States

during World War II. From 1950, he taught top management in Japan how to improve

manufacturing and business processes using various statistical methods. His theory

was described in his book “Out of the Crisis” [41]. The primary limitation of SPC is

that it only provides a way to monitor and measure the performance of processes. It

does not show how to improve the processes. Therefore, Deming proposed fourteen

key principles for management to improve manufacturing and business processes.

The basic idea is to apply incremental process improvement as opposed to radical

re-engineering. The improvement should be based on analyzing the whole process as

a system instead of focusing on optimization of some parts of the process.

In 1986, Bill Smith at Motorola introduced Six Sigma [106] to standardize the

practices, including ones developed by Shewhart and Deming, to systematically im-

prove processes. The core of Six Sigma is the DMAIC model for process improvement.

DMAIC stands for the five steps performed by the process improvement team (see

Figure 2.1):

• Define the concrete problem to be solved. Problems typically are inefficiency,

high cost, or certain defects in the product.
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• Measure process performance. Various techniques are performed to collect

data/information about the existing process.

• Analyze the data/information to determine the root causes of the problem.

• Improve the process by changing the process to address the root causes. It is

often necessary to iterate through the Measure-Analyze-Improve steps until the

problem is solved.

• Control the improved process to sustain its performance.

2.1.2 Software Process Improvement

The success of the industrial manufacturing process improvement approaches en-

couraged people to apply them to software development processes. Those approaches,

however, were not directly applicable because the software development process has

some characteristics that distinguish it from the traditional manufacturing processes.

The software development process involves many intellectual design activities as well

as communication and coordination of humans. Therefore, many approaches have

been proposed to improve software process development. Among these, the most

widely known and used are the Capability Maturity Model (CMM) [97] [98], which has

been superseded by the Capability Maturity Model Integration (CMMI) [125] [124],

and the Software Process Improvement and Capability dEtermination (SPICE) [44].

Realizing that the quality of a software product is mainly determined by the

software development process used to produce it, the Software Engineering Institute

(SEI) at Carnegie-Mellon University developed CMM to evaluate the maturity of

software development processes. The CMM defines five maturity levels for software

development processes [97]. Processes with a higher maturity level are considered to

have higher predictability of timely production of high quality software products.
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1. Initial The software products are developed in an ad hoc, sometimes even

chaotic, way. Success depends on individual effort and is unpredictable.

2. Repeatable For a project, basic project management processes are used to keep

track of cost, schedule and functionality. This enables the repetition of earlier

successes on projects with similar applications.

3. Defined A standard software process is defined. Management and engineering

activities in this process are documented, standardized and integrated. All

projects are developed and maintained by an approved and tailored version of

this standard process.

4. Managed Both the software process and the product are quantitatively mea-

sured and controlled.

5. Optimizing Once the process is in control, continuous process improvement can

be implement to remove defects or incorporate new ideas and technologies based

on the quantitative feedback.

Except for Level 1, each maturity level is associated with several predefined Key

Process Areas (KPA). KPAs identify the issues that must be addressed to achieve a

maturity level. For example, to achieve level 4, two KPAs, Software Quality Man-

agement and Quantitative Process Management, must be satisfied. For each KPA,

CMM provides several Key Practices that “describe the infrastructure and activities

that contribute most to the effective implementation and institutionalization of the

key process area.” [97]. These activities reflect best practices that successful projects

have demonstrated to achieve the KPA.

The CMM is also intended to be used as a framework to guide an organization to

improve its processes. First, the current status of the software development process in

an organization is determined by evaluating and assessing the organization’s practices
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in terms of KPAs at each level. The assessment also help the organization to identify

the highest priority KPAs that need to be focused on to achieve a higher level of

maturity. The Key Practices then can be followed to implements those KPAs.

After the adoption and usage of the CMM to improve the software development

processes in many organizations, the CMM was adapted for other disciplines such

as system engineering, risk management, and personnel management etc. The use

of multiple models within one organization is problematic because of the overlap

and inconsistencies among those models. Therefore, the CMM Integration (CMMI)

Project was formed to integrate the various CMMs into a single integrated frame-

work. Three widely adopted models, the Capability Maturity Model for Software

(SW-CMM) V2.0 (Draft C) [70], the Systems Engineering Capability Model (EIA/IS

731) [13], and the Integrated Product Development Capability Maturity Model (IPD-

CMM) V0.98a (Draft) [69], are integrated into the first version of CMMI. The CMMI

framework was designed to be flexible enough to support the integration of models

for other disciplines in the future.

SPICE described in ISO/IEC 15504 was developed by the Joint Technical Sub-

committee between ISO (International Organization for Standardization) and IEC

(International Electrotechnical Commission). It is a software process assessment and

improvement framework similar to CMMI. Compared with CMMI, the SPICE frame-

work not only defines five capability level for processes, but also explicitly distin-

guishes different kinds of processes. SPICE divides processes into five process cat-

egories: customer-supplier, engineering, supporting, management, and organization.

Another difference is that SPICE focuses on software development processes while

CMMI is more generic.

CMM and SPICE are basically best practices based approaches where the best

practices only reflect common practices used in previous successful projects. Careful

adoption of such best practices might indeed increase the chance that a project will
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be successful. Instead of being an honest self assessment method, however, maturity

or capability levels are often misinterpreted as the rank of a company. Therefore,

without careful investigation, some companies spend a lot of effort to adjust their

processes and produce the required documents just to fit into a higher maturity level.

2.2 Process Modeling

Process modeling plays a critical role in process improvement. A well specified

process model facilitates effective communication, training, and application of the

process. It also provides a solid basis for further analysis to identify weaknesses and

defects and to guide the improvement of the process. In our research, we choose

the Little-JIL process definition language [26] to define processes because it provides

supports for the complex behaviors that often arise in processes, such as concurrency

and exception handling, and has well-defined semantics that facilitate the kinds of

analysis that we want to apply. In addition, Little-JIL has a visual representations

that can be relatively easily understood by domain experts, including those outside

of computer science.

2.2.1 Little-JIL Process Definition Language

A Little-JIL process definition consists of three components, an artifact specifi-

cation, a resource specification, and a coordination specification. The artifact spec-

ification contains the items that are the focus of the activities carried out by the

process. The resource specification specifies the agents and capabilities that sup-

port performing the activities. The coordination specification ties these together by

specifying which agents and supplementary capabilities perform which activities on

which artifacts at which time(s). A Little-JIL coordination specification has a visual

representation, but is precisely defined using finite-state automata, which makes it

amenable to definitive analyses. Among the features of Little-JIL that distinguish
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Figure 2.2. Little-JIL Step

it from most process languages are its 1) use of abstraction to support scalability

and clarity, 2) use of scoping to make step parameterization clear, 3) facilities for

specifying parallelism, 4) capabilities for dealing with exceptional conditions, and 5)

clarity in specifying iteration. The analysis capabilities developed for this thesis use

the information in the coordination specification, so only this aspect of Little-JIL is

defined here.

A coordination specification consists of hierarchically decomposed steps (see Fig-

ure 2.2), where a step represents a task to be done by an assigned agent. Each step

has an interface specifying its input/output artifacts, the resources it requires, the

exceptions it throws, etc. A step with no sub-steps is called a leaf step and represents

an activity to be performed by an agent, without any guidance from the process.

Non-leaf Little-JIL steps may be decomposed into two kinds of substeps, ordi-

nary substeps and exception handlers. Ordinary substeps define how the step is to be

executed and are connected to their parent by edges that may be annotated by speci-

fications of the artifacts that flow between parent and substep and also by cardinality

specifications. Cardinality specifications define the number of times the substep is

instantiated, and may be a fixed number, a Kleene *, a Kleene +, or a Boolean ex-
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pression (indicating whether the substep is to be instantiated). Exception handlers

define how exceptions thrown by the step’s descendants are handled.

A non-leaf step has a sequencing badge (an icon on the left of the step bar; e.g., the

right arrow in Figure 2.2) that defines the order of substep execution. For example,

a sequential step (right arrow) indicates that substeps execute from left to right. A

parallel step (equal sign) indicates that substeps execute in any (possibly interleaved)

order, although the order may be constrained by such factors as the lack of needed

inputs. A choice step (circle slashed with a horizontal line) indicates a choice among

alternative substeps. A try step (right arrow with an X on its tail) indicates the

sequence in which substeps are to be tried as alternatives.

A Little-JIL step can be optionally preceded or succeeded by a pre-requisite, repre-

sented by a down arrowhead to the left of the step bar, or a post-requisite, represented

by an up arrowhead to the right of the step bar. Pre-requisites check if the step execu-

tion context is appropriate before starting execution of the step, and post-requisites

check if the completed step execution satisfied its goals. The failure of a requisite

triggers an exception.

Channels are message passing buffers, directly connecting specified source step(s)

with specified destination step(s). Channels are used to synchronize and pass artifacts

among concurrently executing steps.

In a Little-JIL process, each step is defined exactly once. A step, however, may be

used multiple times. These uses are represented by step references. A step reference

is represented as a step bar without arrowheads that represent pre-requisite and post-

requisite.

Although originally developed to define software development and maintenance

processes, Little-JIL can also used to define process in other domains. It has been

applied to define medical processes [65] [28], labor-management negotiation processes

[93], election processes [109], and scientific data processing processes [21]. The work
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Figure 2.3. Simplified Blood Transfusion Process

in each domain has exposed several inadequacies of Little-JIL, such as the lack of

good support for specifying timing constraints and transactions, but has confirmed

the general applicability of this language.

Little-JIL is chosen as the process definition language in the implementation of

our process analysis framework because it is well suited to capture the full com-

plexity inherent in human-intensive processes that our analysis framework targets.

It provides support for abstraction, composition, and restricted, well-formed control

flow constructs that are able to capture the rich control models needed for human

behaviors. It also has extensive support for exception handling, a major aspect of

many processes, particularly human-intensive processes. Furthermore, Little-JIL has

well-defined semantics that facilitate the two kinds of analysis that we want to apply.

Figure 2.3 shows the coordination specification of a simplified blood transfusion

process defined in Little-JIL. The root step “Blood Transfusion Process” is a sequen-

tial step, meaning that its four sub-steps need to be carried out in order from left

to right. The step “Obtain Patient’s Blood Type” is a try step. When this step is

started, its first sub-step “Contact Lab for Patient’s Blood Type” will be executed.

If the patient’s blood type is already presented in the lab’s database, “Contact Lab
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for Patient’s Blood Type” is completed. This also completes the parent step “Obtain

Patient’s Blood Type”. The nurse can then go ahead to pick up the blood product

from the blood bank. On the other hand, if the patient’s blood type is not avail-

able, an exception PatientBloodTypeUnavailable will be thrown. In the parent step

“Obtain Patient’s Blood Type”, there is an exception handler that is able to handle

exception PatientBloodTypeUnavailable. The exception handler has a continue con-

trol flow badge represented by the right arrow, which indicates that the next sub-step

of “Obtain Patient’s Blood Type” need to be executed to test patient’s blood type.

Once the blood product is picked up, step “Perform Bedside Check” is executed to

first identify the patient and then check the blood product. If the patient is not the

one who needs the blood, “Identify Patient” throws an exception WrongPatient. The

parent step “Perform Bedside Check” does not have an exception handler to handle

this exception, so it will be terminated and re-throw this exception. Since the root

step also does not have an appropriate exception handler, exception WrongPatient

eventually terminates the whole process. Since step “Check Blood Product ” is a par-

allel step, its two sub-steps may run in parallel. If the blood product is expired, step

“Check Expiration Date” throws an exception BloodExpired. For step “Check Product

Info Match Patient Info”, an exception WrongBlood will be thrown if the info (i.e.

patient’s name, patient’ birthday, and patient’ blood type) on the blood product tag

does not match the patient’s info. Similar to exception WrongPatient, BloodExpired

and WrongBlood will also terminate the whole proces because they do not have ap-

propriate exception handlers. After “Perform Bedside Check” completes, step “Infuse

Blood” is executed to infuse the blood product to the patient. This process will be

used as a running example in the discussion of the implementation of our process

analysis framework.
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2.2.2 Other Process Modeling Languages

A wide range of process modeling languages and formalisms have been proposed

both in various domains. Here, we only provide an overview of several most widely

used languages.

2.2.2.1 BPEL

Business Process Execution Language (BPEL) [11] is a business process modeling

language developed by IBM, BEA, SAP, Siebel and Microsoft, and contains features

from two previous language: IBM’s Web Service Flow Language (WSFL) [81] and

Microsoft’s XLANG [129]. BPEL is designed to specify business processes built on

applications encapsulated in web services. It provides various constructs borrowed

from imperative programming languages, such as Java, to glue the distributed web

services together to achieve certain business goals.

A BPEL process model is a composition of activities. An activity is either a

basic activity or a structured activity. A set of predefined basic activities are used to

define the atomic behaviors of a process. For instances, an invoke activity invokes

an operation of a service (either synchronously or asynchronously), a receive activity

simply waits for a matched message from a service, and a reply activity sends a

message to a service. The other basic activities include assign (assign message data),

wait (wait for a certain period of time), empty (just do nothing), throw (signal faults),

terminate (terminate the whole process) etc.

A structured activity is composed of a set of activities and defines the control

flow on those activities. BPEL provides several kinds of structured activities to

capture the most commonly used control flow patterns, including sequence (sequen-

tial execution), flow (parallel execution), switch (conditional branching), pick (non-

deterministic choice), and while (iterative execution).
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In BPEL, a scope can be defined to wrap an activity. During the execution of the

activity contained in the scope, faults might be triggered either by the throw activities

or invoke activities. A fault handler can be attached to the scope to intercept and

handle specific kind of faults occurring within the scope. In some situations, to

keep the process in a consistent state, a fault hander may require certain completed

activity in another scope to be reversed. To achieve this, a compensation handler can

be attached to the scope wrapped around that activity. The compensation handler

will be invoked to reverse the completed activity when a compensate signal from the

fault handler is received.

BPEL processes are specified using XML and can be executed by an execution

engine. XML is designed to facilitate data passing and processing between computers,

but it is difficult for humans to write and understand directly. To solve this problem,

the Business Process Modeling Notation (BPMN) [61] is proposed to provide a stan-

dardized graphic notation for BPEL. A process in BPMN is represented as a Business

Process Diagram (BPD), which is basically a flow chart with notations tailored for

elements in BPEL. Like many other flow chart representations, a BPD tries to display

everything in the process, including message passing, event handling, and control-flow

etc. For a large process, the BPD quickly becomes too complicated to specify and

manage. Another problem with BPMN is that a BPD has to be translated into BPEL

to be executed. Since formal semantics of the BPMN are not defined in the BPMN

specification, many subtle details are actually decided by the translator. Therefore,

the resulting BPEL process might not accurately reflect the intention of the process

designer.

As mentioned above, BPEL is primarily designed to define business processes

based on web services. It does not support processes that involve user interaction.

An BPEL extension BPEL4People [77], therefore, is proposed to incorporate human

activities into the process definition.
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2.2.2.2 UML

The Unified Modeling Language (UML) [63] is a visual specification language

for modeling the object-oriented(OO) software design. It is intended to unify the

different OO design modeling approaches and serve as a standard modeling notation

for software developers to document and communicate the design. The first version of

UML was based on Booch’s method [20], the Object Modeling Technique [113] and the

Object-Oriented Software Engineering method [73]. After that, more individuals and

organizations joined the development and many new features have been incorporated.

It is currently an independent standard developed and maintained by the Object

Management Group(OMG).

Instead of defining one single notation that can be used to model all aspects of

the software system design, UML offers various types of diagrams to model different

facets of the design. Structural diagrams, such as class diagrams, component dia-

grams, and object diagrams, can be used to model the static structures of the system

(e.g. objects, operations, and relationships). Behavior diagrams, such as statechart

diagrams, activity diagrams, and sequence diagrams, are able to specify the dynamic

behavior of the elements in the system. Details about those diagrams can be found

in [63]. Since each UML diagram only provides a specific view of the entire system,

a complete model of a system in UML need to include a collection of diagrams. On

the other hand, those UML diagrams are not designed to be orthogonal. The same

elements or behavior may be modeled using different diagrams. Therefore, not all of

the standard UML diagrams are required to be used in the model.

Because of its rich notations as well as flexibility and extensibility, UML is not

restricted to modeling the design of OO software system. For instance, SysML [62] is

a customized subset and interpretation of UML used for systems engineering model-

ing. People have also used UML as a process modeling language to model processes

for different domains. In [68], Hruby explained how to use UML to define business
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processes by mapping various business workflow concepts to UML concepts. For ex-

ample, business objects can be mapped to classes and objects in UML, and workflows

can be modeled using the UML sequence diagram and the UML activity diagram.

In [78] and [92], clinical practice guidelines or processes are modeled using UML ac-

tivity diagrams complemented by other diagrams such as class diagrams. The UML

activity diagram is a variation of a control flow graph that shows the overall flow of

control in the system.

There are several problems that arise when using UML as a process modeling

language. Since a process model will probably need to be represented using several

different kinds of UML diagrams, it might be problematic to ensure the completeness

and consistency of the overall model. In addition, the semantics of the UML activity

diagram, which is used by many approaches to represent the process logic, is still

described informally in the current version of UML. In fact, a few issues have been

found during attempts to formalize the semantics of the activity diagram(e.g. [122]

and [49]).

2.2.2.3 Petri Nets

Invented in 1962 by Carl Adam Petri in his dissertation [102] (English translation

[103]), the Petri net is a well known formalism for the specification and analysis

of concurrent, discrete-event systems. It provides graphical annotations that have

precisely defined semantics. This facilitates the rigorous analysis of the Petri net

models. Many Petri net based approaches have been proposed to model software

development processes, such as SLANG [16], FUNSOFT Nets [47], and SoftPM [88].

SLANG [16] is a Petri net based software process modeling language developed at

Politecnico di Milano and CEFRIEL. It is a part of a software process environment

SPADE [15] that supports software process design, analysis, and enactment. SLANG
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is based on Environment/Relationship (ER) net [58], which is a high-level extension

of the Petri net formalism.

A SLANG process specification consists of Process Type definitions and Process

Activity definitions. Process types define the static structure of the process. The

types of all artifacts used in the process are described in a similar way with the class

description represented with an object-oriented type hierarchy. Process activities

define the dynamic behavior of the process. Each process activity definition consists

of an interface and an implementation. An activity interacts with the other activities

in the process through its interface, which contains a set of starting events and a set

of ending events. Those events are represented as transitions. An activity is invoked

when one of the starting events occurs and produces an ending event when it finishes.

The interface also includes a set of places that are used for parameter passing. The

implementation of an activity then defines how input parameters are transformed into

output parameters using ER nets.

One interesting feature of SLANG is that it supports modeling the dynamic

changes of a process. Activities in SLANG are treated as artifacts and can be ma-

nipulated by other activities. Therefore, activities can be changed or created on the

fly.

Although Petri net approaches like SLANG are highly expressive, they are awk-

ward in specifying some common aspects of processes, such as exception handling and

resource management. Furthermore, graphical annotations of Petri nets are very low-

level. It is difficult to specify and understand complex processes using such notations,

even for experts.

2.2.2.4 Rule-Based

Rule-based process modeling languages, such as the one used in MARVEL [76],

are based on features from languages used for knowledge-based systems. MARVEL is
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a software development environment that provides automated execution support for

the developers.

In MARVEL, objects used by a software development process (e.g. modules,

procedures, and design documents) are stored in a database called the object base.

The types of objects are defined as an object-oriented type hierarchy. A type definition

of a object consists of a set of attributes indicating status of the object and activities

that can be performed on the object.

The software development process is defined as a set of rules. Each rule consists of

an activity, a precondition, and a postcondition. The activity represents a development

task that may be performed by a tool (e.g. compile a module) or by a developer (e.g.

edit a module). An activity will be executed only if the associated precondition

is satisfied. The execution of the activity may have different results. The effects

of these results are captured by the postcondition. The postcondition consists of

several mutually exclusive assertions. Each assertion reflects the effect of one result.

For example, compiling a module may succeed or fail. Therefore, the postcondition

contains two assertions. One assertion indicates that the compiled attribute of the

module must be true if the compilation succeeds. The other asserts that the error

attribute of the module has to be true if the compilation fails. Both the precondition

and the postcondition are first-order predicates in terms of the object attributes.

A process is executed through forward chaining and backward chaining. Forward

chaining is applied when a rule finishes. Depending on the result, one assertion in

the postcondition of the rule becomes true. This triggers the runtime environment to

evaluate preconditions that might be affected by that assertion. Rules with precondi-

tions being satisfied are enabled and will be executed. Backward chaining is triggered

when a user attempts to invoke a rule whose precondition is not satisfied. The runtime

environment identifies rules whose postconditions might satisfy this precondition and

attempts to execute them. These rules may in turn cause further backward chain-
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ing. This procedure continues until the precondition of the rule invoked by the user

is satisfied, or a notification is reported to the user indicating the rule cannot be

executed.

In rule-based process modeling languages like MARVEL, the control flow of a

process is implicit. Therefore, they do not have the problem of defining uncommon

flow of control as in many other languages. This, however, is also a major weakness.

It is difficult for users to specify and understand a process defined as a set of such

rules.

2.2.2.5 Medical Guideline Modeling Languages

Medical guidelines (or medical protocols) are emerging as an important technology

to increase the quality of heath-care in modern medical practice. Derived from up-to-

date best practice, medical guidelines are essentially processes that provide medical

practitioners with decision options and respective courses of actions about appropriate

health-care for specific circumstances. In recent years, a large number of medical

guidelines have been published (e.g. [5] [6]). The problem is that these guidelines are

usually informally described and are often ambiguous, incomplete, and inconsistent.

To address this problem, a large number of medical guideline specification languages

as well as supporting systems have been developed to specify, manage, analysis, and

execute medical guidelines (e.g. the Arden Syntax [121], GLARE [128], GLIF [22]

[100], Asbru [116], PROforma [123], EON [91], GUIDE [107], and PRODIGY [75]).

The OpenClinical website [7] gives a relatively complete list of the most influential

approaches, and the paper [99] compares several major approaches. Here, we focus

on the medical guideline modeling languages used in a few selected approaches.

GLARE is a medical guideline acquisition, representation and execution system

developed by Terenziani at University of Piemonte Orientale A. Avogadro, Italy [128].

A medical guideline specification in GLARE is defined in terms of actions. GLARE
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distinguishes between atomic actions and composite actions. Atomic actions are el-

ementary steps in a guideline. There are four types of atomic actions: work actions

(basic tasks performed by physicians), query actions (data acquisition), decision ac-

tions (decisions to choose alternatives), and conclusion actions (output of a decision

action). Composite actions are composed of sub-actions (atomic or composite). The

execution order of the sub-actions are specified using the pre-defined control rela-

tions: sequence, controlled, alternative, and repetition. The controlled relation allows

the user to define flexible temporal constraints, such as “A during B”, “start of A

at least 1 hour after the beginning of B”, etc. These flexible temporal constraints

could introduce inconsistency into the medical guideline specification. To solve this

problem, a temporal reasoning algorithm is used to check the consistency of the spec-

ification. GLARE also provides simple failure and exceptions handling mechanism,

such as restart, abort, and suspend. To enhance the user-friendliness, a visual editor

was developed for users to specify the guideline. In the editor, the structural decom-

position of a guideline is displayed by a tree and the control flow is represented by a

variation of a flowchart. Compared to Little-JIL, GLARE lacks explicit agent speci-

fications and adequate artifact flow specifications. Its exception handling mechanism

is also relatively weaker than the one in Little-JIL.

GLIF (GuideLine Interchange Format) is a structured medical guideline repre-

sentation language developed by the InterMed Collaboratory at Stanford Univer-

sity [22] [100]. A GLIF guideline contains an Algorithm, represented as a flowchart

that captures the temporal ordering of clinical steps. There are four kinds of steps

in GLIF: action steps (representing tasks to be performed by medical professionals),

decision steps (indicating decision points to choose alternatives), branch and synchro-

nization steps (modeling multiple simultaneous paths), patient-state step (explicitly

characterizing patient’s clinical state). The action steps can be nested steps that

contain subguidelines. An expression language is provided for representing decision
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criteria, triggering events, exceptional conditions, and states. In the most recent ver-

sion, GLIF3, a guideline can be specified in three levels of abstraction: the conceptual

level, the computable level, and the implementable level. The conceptual level focus

on the control flows of the guideline, represented as a flowchart. Many details, such

as decision criteria, relevant patient data, and iteration information are added to the

specification at the computable level, which allows the validation and simulation of the

guideline. At the implementable level, actions and data in the guideline are mapped

to existing procedures and electronic medical records in a specific institute so that the

guideline can be incorporated into the institutional information system. The main

problem with GLIF is that the flowchart representation is cumbersome for capturing

large guidelines with complex exceptional control flows.

Asbru is a medical guideline specification language used in the Asgaard project,

which was collaboratively developed at Ben Gurion University and the Vienna Uni-

versity of Technology [116]. A guideline in Asbru is called a “plan”. Similar to many

other languages, a plan can be further decomposed into sub-plans. There are three

kinds of decomposable plans: sequential, concurrent, and cyclical. A plan that is not

decomposed needs to be executed by the user or by an external call to a computer

program. The semantics of a plan is rigorously defined by a state-transition system.

One important feature of Asbru is that it provides rich real-time annotations that

enables the expression of uncertainty in the starting time, ending time, and duration

of a time interval, with the use of absolute, relative, and even cyclical reference an-

notations. This uncertainty allows a plan to capture the essence of a guideline but

leaves room for execution-time flexibility. Since Asbru was designed to be a text-

based, machine-readable language, it is difficult for humans to understand. Another

limitation is that it lacks support for exception handling.

PROforma [123] was developed at the Advanced Computation Laboratory of Can-

cer Research, UK. The basic building block of a guideline definition in PROforma is
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the task. A task specification includes title, identifier (name and parameters), descrip-

tion, goal, trigger conditions, pre-conditions, post-conditions, and etc. PROforma

supports four types of tasks: plan, decision, action, and enquiry. A plan is a compo-

sition of sub-tasks. The tasks in a guideline are organized hierarchically into plans.

A decision is a point at which certain decision needs to be made to determine an

alternative to take. An action represents some procedure that needs to be carried

out by a medical professional or a computer system. An enquiry represents a point

at which data needs to be acquired. A flowchart-based graphic representation is also

provided to enhance the uder-friendliness. Like other flowchart-based representation,

this approach is not intuitive for modeling large guideline with complex exceptional

control flows.

2.3 Finite-State Verification

In this section, we first give a brief introduction to finite-state verification. Then

we discuss several existing finite-state verification tools. Finally, we present selected

approaches that apply finite-state verification techniques to analyze business processes

and medical processes.

2.3.1 Introduction to Finite-State Verification

Finite-state verification(FSV) is a static analysis technique that has been suc-

cessfully applied to detect errors in complex software systems. Such systems often

contain complex control flows and data flows among different components. For con-

current systems, the system behavior could be more complicated because even with

the same input, the non-determinism of task scheduling may lead to different orders

in which instructions from different tasks are executed, causing the concurrent sys-

tem to produce different results. Subtle errors in such systems often involve intricate

interactions between various components. In addition, some errors only manifest
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themselves under a few specific schedules. Therefore, it is extremely difficult to find

such errors. Testing is the most widely used method for identify errors in software

systems. For most systems, however, only a tiny fraction of the possible executions

can be tested. FSV, on the other hand, is able to systematically detect certain kind

of errors by exhaustively checking all possible executions against a given property.

FSV involves a finite-state model, a property, and a verification engine. The

model, which is constructed from the system of interest, represents all possible rele-

vant executions of the system. A property specifies an invariant that should always

hold in the system. FSV is able to verify a large class of properties called temporal

properties. A temporal property, which prescribes the temporal ordering of certain

events in the system, can be rigorously defined using formalisms including Linear-time

Temporal Logic(LTL) [105], Computation Tree Logic (CTL) [32], and automata [43].

Although slightly different from each other in terms of expressivity, these formalisms

are all able to capture most of the safety properties and the liveness properties. Infor-

mally, a safety property specifies that something bad never happens during execution

of a system. A liveness property, on the other hand, states that something good

will eventually happen. It is important to note that one property only defines a

partial specification of system’s correctness. Thus, verification of a system usually

requires a set of properties. Given a property and a model, the verification engine

explores all executions through the model and checks whether the property holds on

each execution. If the property does not hold, a counter-example trace through the

model is produced to show a scenario where the property is violated. By studying the

counter-example trace, the analyst can pinpoint the source of the error in the system.

The analyst then can fix the error and try again. Note that finite-state verification is

only able to identify errors with respect to the given properties. It cannot guarantee

the complete correctness of the system. Errors may remain undetected if their corre-

sponding property is not provided. The benefit of FSV is that by ensuring that the
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system satisfies the important and relevant properties, we increase our confidence in

the correctness of the system.

The major issue faced by FSV is the state explosion problem. During verification,

the explored states of the system need to be stored so that they will not be visited

again. This prevents the FSV from being applied to large systems that have extremely

huge state spaces. To attack this problem, many optimizations have been proposed,

such as abstraction [40] [60], partial order reduction [33] [59], and symbolic methods

[87]. It has been shown that FSV can often scale up to handle a lot of very large

software systems with the help of these optimizations.

Similar to the software systems, real world processes often tend to be complex,

concurrent, and exception-prone. This suggests that FSV might as well be effective

in identifying errors in processes.

2.3.2 Finite-State Verification Tools

A variety of finite-state verification tools have been developed to verify software

systems. Here, we discuss several selected approaches that exploit different algorithms

for verification to give an idea of the range of approaches.

2.3.2.1 SPIN

SPIN is a widely used distributed system verification tool based on reachabil-

ity analysis [67]. It accepts system models specified in a modeling language called

Promela (Process Meta Language). A Promela model consists of a set of processes

that communicate synchronously or asynchronously with each other using channels

and global variables. The property to be verified can be written in standard Linear

Temporal Logic (LTL) [105]. To verify the property, SPIN performs a Depth First

Search (DFS) to visit each state that is reachable from the initial state. States ex-

plored during the search are stored so that they will not be visited again. To speed
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up the verification and save the memory, SPIN provides several optimizations such

as partial order reduction, state compression, and bitstate hashing.

2.3.2.2 SMV

Instead of representing states explicitly, the Symbolic Model Verifier (SMV) [87]

uses a data structure called Binary Decision Diagrams (BDD) to compactly encode a

set of states. A BDD [25] is a directed acyclic graph that denotes a Boolean function,

a compact representation of a set of the states that correspond to the assignments that

make the function true. In addition, the transition relations can also be represented

as Boolean functions and hence be encoded using BDDs. The verification, therefore,

can be performed using efficient BDD operations. SMV is able to check properties

expressed in a branching-time temporal logic called Computation Tree Logic [32].

The Cadence SMV [2], which is an extension of SMV, supports a more expressive

modeling language and compositional verification. Another extension called NuSMV

combines BDD-based model checking and SAT-based model checking [30].

2.3.2.3 FLAVERS

FLow Analysis for VERification of Systems (FLAVERS) is a finite-state veri-

fication tool developed to verify event-based, behavioral properties of concurrent

systems [43]. In FLAVERS, the system is automatically abstracted into a concise

event-based model that explicitly represents inter-task communication, synchroniza-

tion, and event orderings. Then a polynomial-time, data-flow analysis algorithm is

applied to determine whether the system satisfies a given property defined as a finite-

state automaton. Unlike many other approaches that directly verify the complete

system model, FLAVERS exploits an incremental procedure through which analysis

of increasing precision can be constructed. First, a very small abstract model is con-

structed and verified. This abstract model might be adequate to verify the property.

If the counter-example trace produced is an infeasible trace, the current model is not
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precise enough. In this case, the counter-example trace can be used to select a con-

straint to refine the model, and the refined model is verified again. This procedure

continues until no violation of the property is found, or a feasible counter-example

is reported. Usually, properties can be verified without using the complete system

model. Therefore, this approach often seems to scale quite successfully.

2.3.2.4 INCA

The Inequality Necessary Conditions Analysis (INCA) applies integer linear pro-

gramming techniques to the verification of concurrent programs [37]. In this ap-

proach, the system model is turned into a set of inequalities that describe the legal

flow through the system. The complement of the property, which is supposed to hold

for the system, is also represented as an inequality. Then integer linear programming

techniques can be applied to determine whether there exists a solution for those in-

equalities or not. A computed solution indicates a violation of the property because

it represents a legal flow through the system that also satisfies the complement of the

property. Although the integer linear programming has an exponential complexity

in the worst case, INCA is often able to verify large systems because the inequalities

generated are usually extremely simple.

2.3.2.5 LTSA

The Labeled Transition System Analyzer (LTSA) was designed to modeling and

analyzing the behavior of systems represented by labeled transition systems (LTSs)

[84]. In LTSA, a concurrent system is modeled by a set of interacting processes,

where a process is described textually as a finite-state process (FSP) that consist

of sequences of events. The behavior of the concurrent system is captured by the

composition, or cross-product, of all FSPs in the system. A property in LTSA is

specified as an FSP in the same way as a process except for the additional ERROR

state. Any sequence of events that reaches the ERROR state indicates a violation
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of the property. Checking for violation of a property is performed on-the-fly while

computing the composite FSP of all processes FSPs and the property FSP.

2.3.2.6 Bandera

As discussed above, most verification tools only accept models specified in their

own specification languages (e.g. state machines, label transition systems). They

cannot be directly applied to verify software systems that are written in high-level

programming languages such as Java. To address this issue, Bandera [38] is proposed

to verify Java program using existing verification tools such as SPIN and SMV. It

employs a two-stage translation approach to translate a Java program into the input

models of various verification tools. The Java program is first translated into an

intermediate representation called Bandera Intermediate Representation (BIR) [36].

The BIR modeling language is a guarded-command language for describing state-

transition systems and was intended to support translation into the input languages

of a variety of verification tools. The BIR is further translated into the input models

of various verification tools. Then the resulting input models can be verified against

given properties by the corresponding verification tools. If a property does not hold,

a violation trace is provided to show how the property is violated.

To enhance the scalability, optimizations such as slicing and abstraction are per-

formed during the Java to BIR translation to remove control points, variables, and

data structures that are irrelevant for checking a given property. Since the input

model is considerably different from the original Java program after the translation

and optimizations, the violation trace provided by the underlying verification tool is

usually very difficult to understand for the analyst. To solve this problem, Bandera

maps violation traces produced by the underlying verification tools back to traces

through the original Java program.
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At a high-level, our implementation of the process verification functionality in

our process analysis framework is very similar to Bandera. Our implementation first

translates Little-JIL processes into BIR models and then to input models for var-

ious verification tools. In addition, we also apply optimizations in the translation

to enhance the scalability and generate high-level Little-JIL traces from low-level

violation traces. A main difference is that our implementation targets Little-JIL pro-

cesses instead of Java program. Because of this, the optimizations that we propose

are quite different from the ones used in Bandera. Further more, we use a search

algorithm to generate the high-level trace from the violation traces, as oppose to the

reverse-mapping approach in Bandera.

2.3.3 Verification of Business Process

Different formalisms, such as Petri nets, finite-state automata, and process alge-

bra, etc., have been exploited to formally define the semantics of BPEL, allowing

formal verification to be applied to BPEL processes.

In [119], Stahl provided a mapping of BPEL constructs to Petri net patterns. A

tool called BPEL2PN has been implemented to automatically translate BPEL pro-

cesses into Petri nets [66]. While the control flow of the BPEL processes is preserved

by the translation, messages and data are abstracted as black tokens. The Petri nets

then can be verified using the Low Level Petri Net Analyzer(LoLA) [115]. LoLA is

able to analyze various Petri net general properties, such as reachability and bound-

edness [50]. It also supports the verification of process specific properties specified in

the branching time temporal logic CTL. As pointed out by the authors, the direct

translation does not scale because the models generated contain too many details that

are not relevant to the property. Therefore, it is necessary to apply optimizations in

the translation to reduce the size of the models.
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Ouyang et. al developed a similar approach, called BPEL2PNML, [95] that trans-

lates BPEL into the Petri Net Markup Language (PNML) [133]. This approach also

focuses on the translation of the control flow of BPEL processes. The resulting model

can be verified by WofBPEL tool [94]. WofBPEL is able to perform three kinds of

general analysis: detecting unreachable activities, detecting multiple activities that

may consume the same message, and checking whether a message may eventually be

consumed.

Colored Petri Nets (CP-nets) [74] have also been used for formalizing the semantics

of BPEL. CP-nets extend the ordinary Petri nets by providing high-level constructs

for data manipulation, which makes a CP-nets model of a business process more

compact than the corresponding Petri nets model. Yang et. al proposed a set of rules

that map most of the BPEL activity constructs to the CP-nets [137]. The verification

of CP-net models can then be performed using existing CP-nets verification tools.

Fu, Bultan and Su developed the Web Service Analysis Tool (WSAT) to verify

BPEL processes [56]. A BPEL process is first translated to a guarded automata

model. The guarded automata model is further mapped to Promela and verified

by SPIN. As opposed to most other work, which only focuses on translating the

control flow of the process, WSAT is able to handle data manipulation using XPath

expressions. This allows the verification of properties about message content [55].

Since SPIN is a finite-state verification tool, the size of the input queues has to

be bound during the translation to achieve a finite model. This usually makes the

verification unsound. They proved that for certain kind of processes with unbounded

input queues, the verification of a bounded model is sound [54]. They called such

processes “synchronizable” processes and gave several sufficient conditions that can

be used to decide whether a process is “synchronizable” or not.

Nakajima also used SPIN to verify BPEL processes [118]. First, a BPEL activity

is translated into an extended finite automaton. Then, the automaton is represented
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in Promela. During the translation, some abstraction techniques are used to reduce

the resulting model.

Arias-Fisteus, Fernandez and Kloos develop a tool called VERBUS that trans-

late BPEL processes into finite-state machines [51]. These finite-state machines are

subsequently mapped onto Promela and the input language for SMV and NuSMV.

Foster, Uchitel, Magee, and Kramer have developed the tool LTSA-WS [52], an

extension of LTSA, to verify BPEL processes. The activities of BPEL are translated

into FSPs and verified by LTSA.

2.3.4 Verification of Medical Processes

A few approaches have been proposed to apply formal methods, mostly finite-state

verification, to improve the quality of medical guidelines.

In [126], to analyze a medical guideline, the text description of the guideline

is first turned into an Asbru model with the help of domain experts. Asbru [116]

is specification language specific for modeling medical guidelines. Its semantics is

formally defined using Structural Operational Semantics (SOS) [104]. This allows the

Asbru model to be translated to a formal representation for the interactive theorem

prover KIV [14]. KIV is able to verify properties specified using a variant of interval

temporal logic (ITL) [90]. If a property does not hold, a counter example is provided to

show how the property is violated. This approach was applied to two real-life medical

protocols, a jaundice protocol and a diabetes mellitus protocol, and several flaws in

the jaundice protocol were detected during the verification. The major problem with

this approach is that it is not fully automatic. Some encodings have to be performed

by the analyst for the translation. Moreover, in many cases, KIV might require the

analyst to provide additional assumptions to complete a proof of the property.

In [17], the Asbru model is translated into the input language of the SMV model

checker and verified by Cadence SMV. A simple data abstraction is proposed to
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abstract the data flow and time. This allows the translation to be performed au-

tomatically. The abstraction, however, might introduce infeasible counter-example

paths. If this occurs, the analyst has to manually refine the model to eliminate the

infeasible counter-example paths. This work also used the jaundice protocol as an

example and found errors in it.

In [127], the clinical guideline defined in GLARE [89] is translated to a Promela

[67] representation and verified by the SPIN model checker. As a proof of concept

paper, no details of the evaluation were presented.

2.4 Fault-Tree Analysis

2.4.1 Introduction to Fault-Tree Analysis

During execution, faults might occur in components of a system due to hardware

failures, human errors, etc. Those faults might propagate through the system and

eventually cause hazards to occur. In the context of safety analysis, a hazard refers to

an unsafe state of the system that will lead inevitably to a serious accident if certain

conditions in the environment are presented. To prevent or control the potential

hazards, one needs to understand what hazards could occur in the system and how

they could happen. A variety of hazard analysis techniques have been developed to

identify potential hazards, assess their effect, and identify and evaluate the causal

factors related to the hazards [80]. Fault-Tree Analysis (FTA) [131] is a hazard

analysis technique used to systematically identify and evaluate all possible causes of

a given hazard.

Given a hazard, a fault tree is produced to show all the parallel and sequential

combinations of events that could lead to the hazard. The basic elements of a fault

tree are events and gates. Events are used to represent faults, such as component

failures, human errors, or other pertinent conditions in the system or environment.

Figure 2.4 shows symbols of several commonly used events and gates. Basic events
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Figure 2.4. Fault Tree Elements

Figure 2.5. Fault Tree Example

are basic initiating faults or conditions. Undeveloped events are events that are not

developed any further, either because necessary information for deriving the fault

tree leading to these events is unavailable or because these events are considered to

have insignificant consequence. Basic events and undeveloped events are also called

primary events because they require no further development. As opposed to primary

events, intermediate events are events that need to be developed. An intermediate

event is developed by investigating the system to identify the immediate, necessary,

and sufficient events that cause this event, and then connecting those events to it via

a proper gate. In a fault tree, events are connected using gates. Each gate connects

one or more input events to a single output event. The output event of an AND gate

occurs if all of the input events occur. While the output event of an OR gate occurs

if any of the input events occurs. Figure 2.5 shows an example fault tree.
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Typically, FTA involves 3 steps:

1. Modeling the system. The system model is usually specified using a flow graph.

It prescribes the boundary and granularity of the analysis.

2. Constructing a fault tree. Given the system model, the fault tree construction

process starts with the TOP event, which is an intermediate event representing

the given hazard. For each intermediate event, all immediate and necessary

events that could lead to this event are identified and connected to this event

using appropriate gates. These new events themselves may be intermediate

events and need to be developed. This process continues until all leaf nodes in

the fault tree are primary events.

3. Evaluating the fault tree. Once a fault tree has been derived, qualitative and

quantitative analysis can be applied to provide information, such as specific

sequences and sets of events that are sufficient to cause a hazard and overall

system vulnerability to a hazardous outcome resulting from the occurrence of

a particular event. This information can then be used as guidance for improve-

ment of the design or implementation of the system.

Once a fault tree has been derived, Minimal Cut Sets (MCSs) for this fault tree

can be computed. An MCS contains a minimal set of primary events that ensure that

the hazard will occur. The MCSs may indicate certain weakness of the process and

provide guidance for improvement of the design or implementation of the system. For

instance, if a MCS only contains one event, the process is exposed to the single point

of failure – the hazard will definitely occur if the event occurs. Therefore subsequent

changes might need to be made to the process to remove these weaknesses. There

exists many tools, such as Espresso [3], OpenFTA [8], and Galileo [4], that can be

used to compute the MCSs.
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2.4.2 Related Work of Fault-Tree Analysis

Fault-Tree Analysis was first developed by H.A.Watson of Bell Labs for the US. Air

Force to study the Minutemen Launch Control System [48]. It then was adopted and

extensively applied by the Boeing Company for designing and evaluation commercial

aircrafts. Following its adoption by aerospace industry, FTA became widely used in

many other industries, such as the nuclear power industry, the chemical industry, and

the automotive industry.

To our knowledge, Leveson was the first to apply FTA to safety analysis of software

systems. In [27], Leveson et al. proposed to use fault trees to guide the analyst to

identify errors that cause an Ada program to produce incorrect outputs. The fault

tree is constructed using templates, one for each kind of statements in Ada. The

incorrect output of the program is represented as the top event. Then the set of

causes that might occur in the previous statements are derived using the appropriate

template. By inspecting the code, the analyst may eliminate some causes that are

inconsistent with the corresponding statement. The remaining causes can then be

further developed until the errors are identified.

Many other template-based approaches have been proposed for different languages

thereafter. For instance, [53] presented a set of fault tree derivation templates for

Pascal. Leveson et al. designed a fully automatic fault tree derivation tool that uses

templates to generate fault trees from the Requirements State Machine Language

(RSML) specifications [108]. The approach by Pai et al. is able to automatically

derives fault trees from UML models [96]. This approach requires the dependency

relationships to be explicitly specified in addition to the UML model. In [85], McK-

elvin et al. described an algorithm that produces fault trees from Fault Tolerant Data

Flow (FTDF) models.

Instead of using templates, some approaches, such as [82] and [86], use model

checking to generate fault trees. In these approaches, explicit state machine models

39



need to be incorporated into the system model to represent all possible faults that

may occur within components. Given a system model and a hazardous output, a

model checking tool is applied to verify the system model against the property that

states that the given hazardous output will never occur. The fault tree then can

be constructed using the resulting violation paths. For each violation path, events

in this path are connected to an intermediate event representing this path using an

AND gate. Then events that represent all violation paths are connected to the TOP

event using an OR gate. One problem with these approaches is that there may be an

infinite number of paths. In their papers, however, the authors do not explain how

their approaches deal with this problem.
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CHAPTER 3

FINITE-STATE VERIFICATION

A human-intensive process often requires coordinating the efforts of many differ-

ent parties who often perform their activities in parallel. This introduces substantial

amounts of concurrency and communication into the process. Moreover, a human-

intensive process also has to cope with various exceptional situations during the exe-

cution of the process. Handling of exceptions often leads to diversion of the normal

control flow and causes the processes to be even more complicated. Such complexity

increases the risk of errors in a process. Software engineers will readily note that the

software development community already deals with the creation of complex proce-

dures (e.g., complex software systems) that present a range of difficulties analogous

to those found in processes. This suggests that the finite-state verification techniques

used in software engineering to detect errors in complex, distributed systems might be

effective in analyzing processes. In fact, many approaches have already been proposed

to apply finite-state verification to processes, several of which have been discussed in

the previous chapter. In these approaches, a process definition is first translated into

the input model of an existing finite-state verification tool. Then the verification

tool is executed to verify the model against given properties. The existing process

verification approaches that we have investigated have the following issues.

• Flexibility: Most approaches translate process definitions to models of a

single selected verification tool. Since each existing verification tool has its own

strengths and weaknesses, being tied to a specific tool limits the verification

capability of these approaches.
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• Scalability: Many approaches only demonstrate the feasibility of applying

finite-state verification to analyze processes. They do not address the state-

explosion problem that is frequently encountered in verifying complex human-

intensive processes. Such approaches will frequently fail to work as the processes

become more complicated.

• Usability: Most approaches do not pay much attention to usability issues.

Since the process definition is translated into the input model of the underlying

verification tool, to verify the process, the properties need to be specified in

terms of constructs in the translated model. This requires the users to have a

fair understanding of the translation. Moreover, when a property is violated,

the verification tool will produce a violation trace that shows how the violation

occurs. Such violation traces are hard to understand due to the significant

difference between the process definition and the translated input model.

To address these issues, we proposed a general process analysis framework that

can be adapted to verify processes defined in different process definition languages

using different finite-state verification tools.

3.1 Process Verification Framework

Figure 3.1 shows the architecture of the general process verification framework.

At a high-level this framework works as follows. It first translates the given process

definition into the model recognized by the underlying verification tool. During the

translation, several optimizations are applied to reduce the model. Similarly, the

property is also translated into the representation fitting with the verification tool.

The underlying verification tool is then invoked to verify the translated model against

the translated property. If the property does not hold for the process, the verification

tool will produce a violation trace, showing how the property is violated. This low-
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Figure 3.1. Process Verification Framework

level violation trace is automatically turned into the corresponding high-level trace

through the original process, which is presented to the analyst via various graph

representations.

At a high-level the framework can be viewed as consisting of five components, as

indicated by dashed rounded rectangles in Figure 3.1, each intended to address one

or more of the issues listed above. These components are:

• Process Translation A two-stage translation approach is employed to address

the flexibility issue. The process definition is first translated into a General

Intermediate Model Representation (GIMR). The GIMR is then translated into

the input model of the selected verification tool. The GIMR is a low-level

representation that contains simple constructs that can be easily translated

into input models of various verification tools.

• Optimizations To address the scalability issue, optimizations are applied to

reduce the model during the translation. An optimization can either be per-
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formed during the process-to-GIMR translation (Pre-GIMR optimization) or

be performed during the GIMR-to-verifier-model translation (Post-GIMR opti-

mization). Pre-GIMR optimizations are able to achieve considerable reduction

because they can exploit specific features of the process definition language. Be-

ing performed during the process-to-GIMR translation also allows Pre-GIMR

optimizations to benefit all verification tools. Post-GIMR optimizations, on the

other hand, are able to take advantage of features specific to the input modeling

languages of the corresponding verification tools. Unlike Pre-GIMR optimiza-

tions, Post-GIMR optimizations are only applicable to specific verification tools.

• Property Translation Instead of requiring the analyst to encode a property

with respect to the input model of the underlying tool, to better support usabil-

ity we ask the analyst to specify the property in terms of constructs in the pro-

cess definition. The property translation component automatically translates

this high-level property specification into the equivalent property representation

accepted by the selected verification tool.

• High-Level Trace Generation As noted, the violation trace is usually very

difficult to understand for the analyst. To address this useability problem,

the high-level trace generation component generates a trace over the original

process based on the violation trace produced by the verification tool. Since

the high-level trace represents an execution through the original process, it is

much easier to understand.

• Trace Visualization Since human-intensive processes are often very complex,

the high-level traces may be lengthy and verbose. To help the analyst to quickly

identifying the error indicated by violation traces and thus help the useability,

the trace visualization displays traces using graphic representations that allow

the analyst to easily navigate the traces.
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This framework is designed to support verifying processes defined in different pro-

cess definition languages. To support a new process definition language, one needs to

implement Process-to-GIMR Translation in the Process Translation component. Cer-

tain Pre-GIMR Optimizations can also be provided to reduce the translated GIMR

models. In addition, one needs to implement a High-Level Trace Generation com-

ponent and a Trace Visualization component to generate and display the high-level

traces through the process defined in the target process definition language from vio-

lation traces produced by the verification tool. The rest of the framework, including

GIMR-to-Verifier-Model Translation, Post-GIMR Optimizations and Property Trans-

lation, can be reused for different process definition languages.

The framework is also designed to support different verification tools. Process-to-

GIMR Translation, Pre-GIMR Optimizations, and Trace Visualization can be reused

for different underlying verification tools. To support a new verification tool, one

needs to implement a GIMR-to-Verifier-Model Translation component, a Property

Translation component, and a High-Level Trace Generation component for this veri-

fication tool. If necessary, certain Post-GIMR Optimizations can also be added.

To demonstrate the effectiveness of this framework, we provided an implemen-

tation of this framework and applied it to verify two real-world human-intensive

processes. In this implementation, we selected Little-JIL as the process definition

language. This is because this language provides rich facilities with well defined

semantics that allow us to model the complex concurrency, coordination, and excep-

tion handling that often arise in human-intensive processes and we had Little-JIL

definitions for some human-intensive processes to evaluate the framework. In addi-

tion, since we had access to the internal representation of the Little-JIL processes,

the process translation would be easier to implement. The GIMR that we chose is

the Bandera Intermediate Representation (BIR) [36] used by Bandera [38]. There

are many existing finite-state verification tools as discussed in the background chap-
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Figure 3.2. Simplified Blood Transfusion Process

ter. Each tool has its own strengths and weaknesses. In our implementation, we

chose to use FLAVERS [43] and SPIN [67] simply because we are familiar with them

(FLAVERS was developed in our laboratory), and they represent distinct modeling

and checking approaches.

Since the High-Level Trace Generation and Trace visualization are also used by the

Fault-Tree Analysis, they are presented later in Trace Generation and Visualization

Chapter. In the remainder of this chapter, we focus on three components Process

Translation, Property Translation, and Optimizations. Figure 3.2 shows the simplified

blood transfusion process presented in the Background and Related Work Chapter.

It will be used as the running example in our discussion. It should be noted that

although the discussions here are based on our implementation of the framework,

most of the issues that we discuss, as well as the approaches used to handle those

issues, are also applicable to other implementations.

3.2 Process Translation

Figure 3.3 shows the details of our implementation of the Process Translation

component for Little-JIL process definition language and two verifiers FLAVERS
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Figure 3.3. Implementation of Process Translation

and SPIN. As mentioned above, Process Translation contains two sub-components:

Process-to-GIMR Translation and GIMR-to-Verifier-Model Translation. The imple-

mentation of Process GIMR Translation sub-component consists of three modules:

Process Well-Formedness Check, Process Unrolling and Little-JIL-to-BIR Transla-

tion. Process Well-Formedness Check checks the well-formedness of the process. Pro-

cess Unrolling turns the process into a finite representation. And Little-JIL-to-BIR

Translation translates the finite representation of the process into the BIR model.

As discussed in Background and Related Work chapter, this implementation is very

similar to Bandera. The main difference is that our implementation targets Little-JIL

processes instead of Java programs.

For GIMR-to-Verifier-Model Translation, a BIR-to-TFG Translation module and

a BIR-to-Promela Translation module are provided for FLAVERS and SPIN respec-

tively (Promela [67] is the input modeling language used by SPIN). Fortunately,

the BIR-to-TFG Translation module for FLAVERS was already provided by the

FLAVERS/Java front-end and the BIR-to-Promela Translation module has been

constructed by the Bandera team [1]. Since BIR is a low-level representation, the
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translation from BIR to the input model of the verification tool should be easy to

implemented. Therefore, in this section we focus on the tree modules in the imple-

mentation of Process-to-GIMR Translation sub-component.

3.2.1 Process Well-Formedness Check

The Little-JIL-to-BIR translator assumes that the Little-JIL process definition

is well-formed. Errors such as a non-leaf step without any sub-step or a parameter

without an associated parameter binding could cause the verification tool to produce

confusing or even incorrect results. Such errors can be detected by checking certain

simple critics. A critic is basically a rule that addresses a specific aspects of the

well-formedness of Little-JIL processes. For example, critics to catch two kinds of

errors mentioned above can be “any non-leaf step must have at least one sub-step”

and “any parameter must have at least one parameter binding” respectively. Instead

of hard-coding the checkers for these critics in the translation component, they are

implemented as separate plug-ins to the Little-JIL process editor. This not only

allows those errors to be caught as early as possible but also greatly simplifies the

implmentation of Little-JIL-to-BIR translation. The implementation of critic checkers

is straight-forward, and hence is not discussed here.

3.2.2 Process Unrolling

Little-JIL is a very expressive language, allowing users to precisely model complex

real-world processes. Such expressiveness, however, also presents a challenge for the

verification: Little-JIL process definitions allow an unbounded number of threads to

be created during the runtime. Unbounded numbers of threads in a Little-JIL process

can be introduced by two sources: unbounded cardinality and recursion. Figure 3.4(a)

shows an example of unbounded cardinality. The cardinality of the step “C ” is +,

indicating that any number of instances of the step “C ” can be created during an

execution. Because the parent step “P” is a parallel step, those instances of “C ” may
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Figure 3.4. Unbounded Threads Examples

be executed in parallel. Figure 3.4(b) is an example of recursion. The parent step

“P” is a parallel step, and the first child step is a step reference that refers to the

parent step. Thus, during an execution, any number of instances of “P” and “C ”

could be created recursively and potentially run in parallel.

A Little-JIL process with an unbounded number of threads cannot be directly

handled by most finite-state verification tools, including the ones that we target

(FLAVERS and SPIN). As a matter of fact, this is a common problem in soft-

ware model checking research. Many important software systems can also create

unbounded numbers of threads, including web severs that might create service threads

for unspecified number of requests or token ring algorithms involving any number of

processes. This common model-checking problem is called the parameterized model-

checking problem. It has been shown that to decide whether a temporal property

holds for systems with unbounded numbers of threads is undecidable in general [12].

Approaches that attempt to tackle this problem fall into two categories [46]. One

focuses on restricted subclasses of the systems and the properties, and applies various

abstraction techniques to obtain finite models of those systems so that they can be

verified [24] [31] [136]. The other kind of approaches simply impose a bound on the

number of threads that can be created [71] [72] [19]. The underlying premise of these

bounded approaches is called the “small scope hypothesis” [72], which suggests that
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most flaws in a system can be revealed by considering instances of the system with

a small bound. Some researches [45] have indeed shown that a sound bound can

be achieved for some particular subclasses of systems. No one, however, is able to

provide the proof to valid this assertion in the general cases. Therefore, the analyst

needs to bear in mind that this kind of bounded analysis may be unsound.

In our work, we take the bounded approach to solve this problem. The analyst is

asked to designate upper bounds for recursive steps as well as steps with unbounded

cardinalities. Given these bounds, a process unrolling preprocessor unrolls the input

Little-JIL process definition into a unrolled version of the process that contains a

finite number of step instances. In addition, a step may be used multiple times in a

Little-JIL process via step references. The process unrolling preprocessor also turns

each step reference into a step instance. As a result, the unrolled process becomes

a tree of step instances. This unrolled process then can be further translated into a

finite model that can be verified by FLAVERS or SPIN. Since the simplified blood

transfusion process does not contain steps with cardinalities, recursive steps or step

references, the unrolled process is the same as the original one.

In the remainder of this chapter, the discussions assume an unrolled Little-JIL

processes. And unless stated otherwise, we use “step” and “step instance” inter-

changeably to refer to a step instance in an unrolled Little-JIL process.

3.2.3 Little-JIL-to-BIR Translation

The Little-JIL-to-BIR Translator translates a given unrolled Little-JIL process

into a BIR program. In this subsection, we first briefly introduce the BIR specification

language. Then we give a high-level overview of the mapping between the Little-JIL

process and the BIR program. Next, we discuss the translation templates. Finally,

we describe our template-based process translation algorithm.
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3.2.3.1 Bandera Intermediate Representation

Bandera Intermediate Representation is a guarded command language used in

the Bandera project, developed at KSU, for model checking concurrent Java pro-

grams [71]. BIR contains constructs close to Java, including threads, monitor locks

and asynchronous communication primitives (e.g., wait, notify, notifyAll). Our

translation is based on the BIR specification version 0.6 [36]. Here, we only briefly

describe features that are enough to understand the translation templates. More

details about BIR can be found in the BIR specification.

A BIR program is called a process. A process consists of a set of threads, and

one of them is designated to be the main thread. The main thread is automatically

executed when the process starts. BIR provides several thread actions that can be

used to update the thread status. Threads other than the main thread need to be

started by explicitly invoking the start action. Invoking the exit action changes the

state of current thread to inactive. The join action cause the current thread to be

blocked until another thread is inactive.

A thread is basically a directed graph represented as a non-empty list of locations.

The first location in the list is the start location. Each location has a unique label

that can be used to refer to the location. A location contains one or more transforma-

tions. Each transformation has a Boolean guard expression, a sequence of actions, and

a goto target. When the execution reaches a location, guard expressions of all trans-

formations in this location are evaluated. The transformation whose guard expression

turns out to be true is enabled. The actions of the enabled transformation are then

performed in the order of which they are defined. When all the actions complete, the

control goes to the location identified by the goto target of the transformation. It is

possible that more than one transformations are enabled. In this case, only one such

transformation is non-deterministically selected to be executed.
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BIR supports seven basic data types and their corresponding operations. Cur-

rently, we only used the boolean type, the integer range type, and the lock type

in our translation. Locks are used to synchronize the threads. Operations similar to

Java are provided on the locks, such as lock, unlock, wait, unwait, notify, and

notifyAll. Threads can communicate with each other via global variables declared

in the definition section of the process. A thread may also declare local variables that

are only visible within the scope of the thread.

BIR allows predicates to be defined on the states of the process. A predicate

consists a unique identifier and a Boolean expression. The Boolean expression is

defined over two kinds of basic predicate expressions: thread location tests and remote

references. A thread location test threadName@locLabel becomes true when the

execution of the thread threadName reaches the location with the label locLabel. A

remote reference threadName:locLabel refers to the local Boolean variable locLabel

in the thread threadName.

3.2.3.2 Translation Overview

Given an unrolled process, the Little-JIL-to-BIR translator produces a BIR pro-

gram that consists of threads, variable declarations and predicates.

3.2.3.2.1 Threads

The root step of the process is translated into the main thread in the BIR program.

In addition, steps that may potentially run in parallel with other steps, including

sub-steps of a parallel step, exception handling steps, and sub-steps of a choice step,

are also translated into BIR threads. As indicated by the name of the sequencing

badge, sub-steps of a parallel step may execute in any (possibly interleaved) order,

and therefore are turned into different threads. At an exception handling point, e.g.

after termination of a sub-step of a sequential step, multiple exceptions may have

been thrown. Different exception handling steps could be invoked to handle these
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exceptions. According to the Little-JIL specification, these exception handling steps

may run in parallel. Therefore, all exception handling steps should also be translated

into threads. Translating sub-steps of choice steps into threads is not so intuitive

because the choice is supposed to choose only one sub-step to execute each time.

The problem is that the choice step does not restrict the order of its sub-steps. In

other words, sub-steps of a choice step may execute in any order although not in

parallel. One straight-forward translation option is to enumerate all possible such

orders in the BIR code. This could easily blow up the BIR code if the choice step

has many sub-steps. Instead, we translate sub-steps of a choice step into BIR thread

and force them to run one after another. This ordering is achieved by adding a

choice variable that indicates which sub-step is selected. In addition, each sub-step is

assigned one done variable that represents whether the sub-step is done or not. The

choice variable is randomly assigned to the index of a single sub-step at the beginning

of each iteration. Then all sub-step threads are started. The thread of a sub-step first

tests if it has been done. If so, the thread ends immediately. Otherwise the thread

proceeds to check the sub-step index against the choice variable. Only the thread

whose index equals the value of the choice variable will continue. And other threads

simply retract their corresponding sub-steps. The major advantage of this approach

is that it produces more compact BIR code, greatly relieving the burden of the model

construction for verification tools. For the simplified blood transfusion process, the

root step is translated to the main thread and two sub-steps of the parallel step “Check

Blood Product” are translated to two threads respectively.

3.2.3.2.2 Variables

Variables in the BIR program are translated from Little-JIL artifacts, which in Little-

JIL include exceptions and channels. In our approach, since the BIR program is

intended to be used to verify the event-based temporal properties and to create the

reversed control flow graph for fault tree derivation, the resulting BIR program needs
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to preserve the control flow of the original Little-JIL process. Details of artifacts that

do not affect the control flow are ignored by the translation. In addition, temporary

variables are introduced to enforce constraints imposed on certain steps, such as the

constraint mentioned above to enforce the ordering of threads translated from sub-

steps of a choice step.

• Exception Variables In Little-JIL, an exception can be defined as any type. In

our translation, however, we only care about whether the exception is thrown

or not, since that is the only way that an exception can affect the control flow

of the process. Thus, each exception is translated into a Boolean type exception

variable. An exception variable is initially set to false. It changes to true if

the corresponding exception is thrown and reset to false after the exception is

successfully handled by the exception handler. If the exception is re-thrown by

the exception handler, the exception variable remains true. In the simplified

blood transfusion process, there are four exceptions: PatientBloodTypeUnavail-

able, WrongPatient, BloodExpired and WrongBlood. Therefore, four exception

variables are created for these exceptions during the translation.

• Channel Variables Channels in Little-JIL are used for passing artifacts as

well as for synchronizing different steps. In our current implementation, a very

simple model is used to translate channels. A channel can hold any number

of artifacts. Similar to how unbounded numbers of threads are handled as

discussed in process unrolling subsection, a bound needs to be imposed on

channels to make the BIR program finite. In our model, the bound is set to 1.

In addition, since the Little-JIL process definition does not define the behavior

of a leaf step, in our translation the behaviors of leaf steps are abstracted using a

conservative model (Please refer to the discussion of Leaf Step Started Template

later for more details). Our implementation is based on Little-JIL 1.4. In this

version, an artifact may only affect the flow of control in a leaf step. Since
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such effects are subsumed by the abstract model of the leaf step, the content

of the artifact can be ignored. With only one artifact whose content can be

ignored, a channel can simply be translated to a Boolean type channel variable

that indicates whether the channel is empty. An channel variable is initially

set to false, indicating the channel is empty. It changes to true when a

Write operation puts an artifact into the channel. It is reset to false after a

Take operation removes the artifact in the channel. This simplified model of

channels captures most synchronization scenarios caused by the channels. This

is enough for the verification of the processes in our case studies. If necessary,

however, one can always replace this model with a more complicated model.

This can be achieved by substituting the default channel translation module

in our implementation with the one that creates a complicated channel model.

Since the simplified blood transfusion process does not use channels, no channel

variable is created during the translation.

• Temporary Variables Temporary variables are used to enforce constraints im-

posed on choice and parallel steps. As mentioned above, one choice variable

is introduced for each choice step, and one done variable is assigned to each

sub-step of a choice step. Similarly, one done variable is also assigned to each

sub-step of a parallel to avoid re-entering the finished sub-step. In the simplified

blood transfusion, step “Check Blood Product” is a parallel step. For each of its

sub-steps, one done variable is created during the translation.

3.2.3.2.3 Predicates

Predicates in the BIR program are translated from Property Event Bindings that

map abstract events in property specifications to concrete events in the Little-JIL

process. Detailed discussion of property event bindings and their translation is given

in Section 3.3.
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3.2.3.3 Translation Templates

An unrolled Little-JIL process is a tree composed of steps. The translation of

the Little-JIL process, therefore, is based on the translation of steps in the process.

Depending on certain attributes (e.g. step kind, step kind of the parent step, etc.),

steps may behave quite differently from each other. For example, a step may go from

the POSTED state to the RETRACTED state if its parent is a parallel step or a

choice step. But this will never happen if the parent step is a sequential step or a try

step. When started, a step will invoke its sub-steps if it is a non-leaf step, but the

order in which sub-steps are executed is decided by the sequencing badge of the step.

Implementing the translation of a step as a monolithic step translator would result in

a large chunk of code that is hard to maintain. Instead, we designed a few types of

translation templates. Each type of template is responsible for translating a specific

part of the behavior of a step. For example, a Started Template translates the behavior

of a step after it is started, and the Exception Handling Template translates the

exception handling actions of a step. One template type may have several templates

that correspond to different values of a specific attribute. For instance, there are five

Started Templates corresponding to five step kinds. A step translator simply consists

of a collection of templates, one for each type. To translate a given step, a specific

step translator can be constructed by selecting appropriate templates according to

attributes of the step.

According to the Little-JIL semantics, we propose twelve templates that belong

to seven template types.

• Posting Template Type This type of template translates the behaviors

before a step is posted, including passing in parameters and obtaining artifacts

from channels. Since such behaviors are the same for all steps, only one template

is defined for this type.
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• Posted Template Type This type of template translates the behaviors after

a step is posted. After being posted, a step may be opted-out or retracted under

some circumstances. If it is not opted-out or retracted, the step is started. This

type has only one template that simply uses the appropriate Retracted Template

and Opted-Out Template to translate behaviors that check whether the step

should be opted-out or retracted respectively.

• Retracted Template Type This type of template translates the behavior

that checks whether a step should be retracted. Two templates are defined:

Choice Sub-Step Retracted Template handles the sub-steps of choice steps and

Parallel Sub-Step Retracted Template handles the sub-steps of parallel steps.

• Opted-Out Template Type This type of template translates the behavior

that checks whether an optional step should be opted-out. Only one template

is defined for this type.

• Started Template Type This type of template translates the behaviors

after a step is started. Corresponding to the five step kinds, five templates

are defined for this type: Sequential Step Started Template, Try Step Started

Template, Parallel Step Started Template, Choice Step Started Template, and

Leaf Step Started Template.

• Completing Template Type This type of template translates the behaviors

right before a step is completed, including passing out parameters, and putting

artifacts in channels, etc. Such behaviors are the same for all steps, so only one

template is defined for this type.

• Exception Handling Template Type This type of template translates the

exception handling behavior for non-leaf steps. If exceptions are thrown from

its sub-steps, a non-leaf step identifies and invokes the appropriate exception
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1 loc Check_Expiration_Date_STARTED:
2 when true do { }
3 goto Check_Expiration_Date_COMPLETED;

4 when true do { b_BloodExpiration := true; }
5 goto Check_Expiration_Date_TERMINATED;

Figure 3.5. BIR Representation for Leaf Step Started Template

handlers to handle these exceptions. Such exception handling behaviors are the

same for all non-leaf steps, so only one template is defined for this type.

We only discuss four representative templates here: Leaf Step Started Template,

Sequential Step Started Template, the Parallel Step Started Template, and the Ex-

ception Handling Template. The description of all the templates can be found in

Appendix A.

3.2.3.3.1 Leaf Step Started Template

In a Little-JIL process, leaf steps are performed by the assigned agents once they are

started. The behaviors of agents, however, are not modeled in the Little-JIL process

definition. The process definition only specifies the interface of a leaf step, which

declares the parameters used by the step as well as exceptions that might be thrown

by the step. Based on the interface, we translate the started behavior of a leaf step

into a BIR model that conservatively captures such behavior.

In the simplified blood transfusion process, leaf step “Check Expiration Date”

might throw exception BloodExpired. Figure A.17 shows the BIR code generated by

Leaf Step Started Template for this step. There are two transformations in this loca-

tion, corresponding to two behaviors that step “Check Expiration Date” might have.

Both transformations have the condition true. This means that when the execution

reaches the location, one transformation will be non-deterministically selected to be

executed. In the first transformation (line 2-3), no exception is thrown and the step

“Check Expiration Date” is completed. In the second transformation (line 4-5), the
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exception Blood Expired is thrown and the step “Check Expiration Date” is termi-

nated. This is a conservative model because the conditions in which two behaviors

may occur are ignored. It turns out that such conservative model for leaf steps is

enough for verifying two processes in our case study.

3.2.3.3.2 Sequential Step Started Template

The Sequential Step Started Template is used to construct the behavior of a sequential

step after it has been started. When a sequential step is started, its sub-steps are

executed one by one from left to right. And the sequential step is only successfully

completed after all of its sub-steps have successfully completed.

Figure A.8 shows the root step as well as its four sub-steps in the simplified blood

transfusion. The corresponding BIR representation is given in the Figure A.9. When

the sequential step “Blood Transfusion Process” is started, the first sub-step “Obtain

Patient’s Blood Type” is posted (line 1-3). When “Obtain Patient’s Blood Type” is

completed, the next sub-step “Pick up Blood from Blood Bank” is posted (line 8-10).

Similarly, “Perform Bedside Check” is posted as soon as “Pick up Blood from Blood

Bank” is completed (line 15-16) and “Infuse Blood” is posted as soon as “Perform

Bedside Check” is completed (line 20-21). The sequential step “Blood Transfusion

Process” is completed when its last sub-step is completed (line 27-29). Note that

step “Perform Bedside Check” may throw exceptions. Therefore, BIR code must

be inserted to check and handle those exceptions (line 22-23). This is achieved by

invoking the Exception Handling Template.

3.2.3.3.3 Parallel Step Started Template

The Parallel Step Started Template is applied to construct the behavior of a parallel

step after it has been started. It is quite different from the Sequential Step Started

Template that we just discussed. When a parallel step is started, all its sub-steps

are posted at the same time. Then the sub-steps can be executed in any (possibly
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Figure 3.6. Sequential Step Example

1 loc Blood_Transfusion_Process_STARTED:
2 when true do { }
3 goto Obtain_Patients_Blood_Type_POSTED;

4 loc Obtain_Patients_Blood_Type_POSTED:
5 when true do { }
6 goto Obtain_Patients_Blood_Type_STARTED;

7 ... // Obtain Patient ’s Blood Type

8 loc Obtain_Patients_Blood_Type_COMPLETED:
9 when true do { }

10 goto Pick_up_Blood_from_Blood_Bank_POSTED;

11 loc Pick_up_Blood_from_Blood_Bank_POSTED:
12 when true do { }
13 goto Pick_up_Blood_from_Blood_Bank_STARTED;

14 ... // Pick up Blood from Blood Bank

15 loc Pick_up_Blood_from_Blood_Bank_COMPLETED:
16 when true do { } goto Perform_Bedside_Check_POSTED;

17 loc Perform_Bedside_Check_POSTED:
18 when true do { } goto Perform_Bedside_Check_STARTED;

19 ... // Perform Bedside Check

20 loc Perform_Bedside_Check_COMPLETED:
21 when true do { } goto Infuse_Blood_POSTED;

22 loc Perform_Bedside_Check_TERMINATED:
23 ... // Exception handling

24 loc Infuse_Blood_POSTED:
25 when true do { } goto Infuse_Blood_STARTED;

26 ... // Infuse Blood

27 loc Infuse_Blood_COMPLETED:
28 when true do { }
29 goto Blood_Transfusion_Process_COMPLETED;

Figure 3.7. BIR Representation for the Sequential Started Template
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interleaved) order. And the parallel step is only completed after all of its sub-steps

has successfully completed.

Step “Check Blood Product” in the simplified blood transfusion is a parallel step.

The BIR representation generated by the Parallel Step Started Template for this step

is given in the Figure A.13. Before the Parallel Step Started Template is applied, the

sub-steps of the parallel step have already been translated into different BIR threads.

In this example, threads T Check Expiration Date and T Check Product Info

Match Patient Info are created for sub-step “Check Expiration Date” and “Check

Product Info Match Patient Info” respectively. When the parallel step “Check Blood

Product” is started, two threads of its sub-steps are started by the start action (line

3-7). Then the parallel step waits until these thread to finish (line 8-23). Note that

each join action on a thread is followed by a threadTerminated test for that thread.

This is a constraint imposed by the BIR language specification. Note that the target

of the last location is empty. It will be set to the label of the first location in the

exception handling BIR code generated by the Exception Handling Template.

3.2.3.3.4 Exception Handling Template

The Exception Handling Template is invoked by various Started Templates to generate

the code to handle exceptions thrown by the sub-steps. When a sub-step throws an

exception, the matching exception handler associated with the parent step is invoked

to handle the exception. If the handler is associate with an exception handler step,

the handler step is executed. The exception handler also has a control-flow badge

indicating how the step catching the exception executes after the handler step finishes.

Since this exception handling mechanism is the same for all kinds of steps, only one

Exception Handling Template is defined.

Figure A.20 shows the exception handling code generated by the Exception Han-

dling Template for step “Check Blood Product” to handle two exceptions, BloodExpired

and WrongBlood, thrown by its sub-steps. There are two transformations in the only
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1 loc Check_Blood_Product_STARTED:
2 when true do { } goto Check_Blood_Product_fork_subs;

3 loc Check_Blood_Product_fork_subs:
4 when true do {
5 start(T_Check_Expiration_Date );
6 start(T_Check_Product_Info_Match_Patient_Info );
7 } goto Check_Blood_Product_join_Sub1;

8 loc Check_Blood_Product_join_Sub1:
9 when true do { join(T_Check_Expiration_Date ); }

10 goto Check_Blood_Product_terminate_test_Sub1;

11 loc Check_Blood_Product_terminate_test_Sub1:
12 when threadTerminated(T_Check_Expiration_Date) do { }
13 goto Check_Blood_Product_join_Sub2;

14 loc Check_Blood_Product_join_Sub2:
15 when true do {
16 join(T_Check_Product_Info_Match_Patient_Info );
17 } goto Check_Blood_Product_terminate_test_Sub2;

18 loc Check_Blood_Product_terminate_test_Sub2:
19 when
20 threadTerminated(
21 T_Check_Product_Info_Match_Patient_Info
22 )
23 do { } goto t;
24 ... // Exception Handling

Figure 3.8. BIR Representation for the Parallel Started Template

1 loc Check_Blood_Product_control_rethrow:
2 when (b_BloodExpired ==true || b_WrongBlood ==true)
3 do { }
4 goto Check_Blood_Product_TERMINATED;

5 when (b_BloodExpired == false && b_WrongBlood == false)
6 do { }
7 goto Check_Blood_Product_COMPLETED;

Figure 3.9. BIR Representation for the Exception Handling Template
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location in this code. The first transformation (line 2-4) checks whether those two ex-

ceptions are thrown. If any one is thrown, step “Check Blood Product” is terminated

because no exception handlers are provided to handle these exceptions. In addition,

the exception variables for two exceptions are not reset to false because they will be

re-thrown to the parent step of “Check Blood Product”. The second transformation

(line 5-7) handles the case where no exception is thrown. In this case, step “Check

Blood Product” is completed. Note that this simple example does not involve excep-

tion handlers. For more complicated exception handling scenarios, please refer to the

discussion of the Exception Handling Template in Appendix A.

3.2.3.4 Translation Algorithm

The translation algorithm involves three phases. Phase 1 goes over the unrolled

process, creating various BIR variables mentioned earlier. In Phase 2, the algorithm

performs a post-order traverse over the unrolled process, which is basically a tree of

step instances. Upon visiting a step instance, the children of this step instance have

already been translated into the BIR representations. A step translator for this step

instance is constructed by selecting appropriate templates according to attributes of

the step instance. The step translator is then applied to assemble the BIR repre-

sentations of its children and produce the BIR representation for this step instance.

All the BIR threads are completed when the traverse is finished. Phase 3 identifies

all locations in BIR threads where concrete events defined in property event bindings

occur and generates predicates based on these locations. The BIR program translated

from the simplified blood transfusion process is presented in Appendix C.

3.2.4 Summary

In this section, we discussed three issues that we encountered in the implemen-

tation of the process translation. The first issue is the well-formedness checks of the

process definition. Performing the well-formed check on the process definition before
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the translation is very important because it not only catches errors earlier but also

greatly simplifies the implementation of the translation templates. In our approach,

the well-formedness check is achieved by checking the process against a set of pre-

defined critics. The critics that we developed as well as their implementation are

specific to the Little-JIL language and cannot be used for other process definition

languages. Using critics to check the well-formedness, however, is a general idea that

can be applied in the realizations of the framework for other languages.

The second issue is how to handle unbounded numbers of threads in the process.

Currently, we simply impose upper bounds on the number of threads that can be

created. The problem of this approach is that it might be unsound for some properties.

In the future, we may consider implementing some abstraction approaches that are

sound for certain classes of processes.

The last issue is how to actually translate the process. In our approach, we

proposed a template-based translation algorithm that simplifies the implementation

of the process translation. In the original design, only five templates were provided

to translate five kinds of Little-JIL steps. It turned out that this design caused the

implementation of templates to be very complex, containing a lot of duplicated code.

Therefore, we revised the design and divided those five templates into templates with

finer granularity. Each template translates a specific part of the behavior of a step.

Our experience shows that the current design greatly simplifies the implementation of

the templates. It is also very flexible, allowing new templates to be easily added into

the translator to support new features. Although the templates and the translation

algorithm are Little-JIL dependent, the idea of using templates may also be applied

to simplify the translation of other languages.
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3.3 Property Specification and Translation

A property describes a single aspect of the behavior of a process. A process

often has different implementations that share certain common core components.

Therefore, the property should be stated at a high-level and usually is independent of

any specific implementation of the process. Typically, a property can is either event-

based or state-based. An event-based property is defined over events in the process and

a state-based property is defined over states in the process. In our implementation,

we used an event-based model for the property specification because it maps nicely

to Little-JIL process definitions, which tend to focus on events, represented as flow

of control, coordination, or task invocation. To be verified, a property needs to be

precisely specified using a formal notion. In addition, since the events in the property

specification are not tied to any process implementation, they need to be defined

in terms of events in the process implementation to be verified. Then the property

specification together with the property events definitions are translated into the

property representation accepted by the selected verifier.

In this section, we discuss our approach to specify and translate event-based prop-

erties. We first present the tool that we used to precisely specify properties. Then we

discuss property event bindings that are used to define the events in property speci-

fications. Finally, we describe the translation of property specifications and property

event bindings. In the discussion, property “the nurse must identify the patient be-

fore infusing the blood” for the simplified blood transfusion process is used a running

example. It should be noted that although this approach is based on the event-based

model, a similar approach can be applied for the state-based model.

3.3.1 Property Specification

Our experience shows that correctly specifying properties is a surprisingly difficult

task. Even experienced developers may overlook subtle, but important, details. In
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our approach, we use Propel to precisely specify properties. Propel provides users

with a set of property templates, each of which can be viewed as an extended Finite-

State Automaton representation, a Disciplined Natural Language representation, or

a Question Tree. Each representation contains options (or questions) that explicitly

indicate the variations that must be considered, thereby ensuring that users do not

overlook important subtle details. In addition, the Question Tree can be used to guide

the user in selecting the appropriate template. All three representations are views of

a single underlying representation so that a change in any representation is reflected

automatically in the others. More details about Propel can be found in [35].

3.3.2 Property Event Binding Specification

As noted, events in a property specification are not tied to a specific process im-

plementation. To verify a process implementation against the property specification,

the events in the property specification need to be clearly defined in terms of the

events in the process implementation. To distinguish those two kinds of events, “ab-

stract events” refer to the events in the property specification and “concrete events”

refer to the events in the process implementation. In our approach, we propose to

use property event bindings to define the abstract events in terms of concrete events.

A property event binding describes the mapping from an abstract event to one

or more concrete event. The property “the nurse must identify the patient before

infusing the blood” has two abstract events: “IdentifyPatient” and “InfuseBlood”. For

the simplified blood transfusion process example, it is obvious that the abstract event

“IdentifyPatient” and “InfuseBlood” can be defined as the concrete event “Identify

Patient COMPLETED” and “Infuse Blood STARTED” respectively. Therefore, the

property event bindings can be defined as:

IdentifyPatient -> Identify Patient COMPLETED

InfuseBlood -> Infuse Blood STARTED
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Figure 3.10. Process Example for Discussing Step Identifier

In this example, both concrete events only reference one step instance in the

process implementation. Therefore, we can use the step name to identify the cor-

responding step instance. This simple way of identifying step instances, however, is

not enough for complex real-world processes. During an execution of such processes,

multiple instances of a step may be created. A property may be concerned with a

concrete event occur only at some of those step instances. Therefore, one must be

able to distinguish a particular set of step instances from the others. In our approach,

the step instance identifier is introduced to identify a particular set of step instances.

To facilitate the discussion of the step instance identifier, we contrived an example

process, shown in Figure 3.10. There are four instances of step “S” in this unrolled

process, with label 1, 2, 3, and 4.

Figure 3.11 gives the syntax of the step identifier. The basic form of a step

instance identifier is step-name, which represents all instances of the step with the

name step-name. For instance, the step name S represent all four instances of step

“S” in the example process. To achieve finer granularity, however, certain constraints

have to be posed on the step name. There are three kinds of constraints that can

be used in step identifiers: prefix, index, and type. The prefix is used to distinguish

step instances from the others with different parents. The type is used to distinguish

step instances from their siblings according to their relationships with the parent (i.e.
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〈step-instance-identifier〉 ::= 〈prefix〉? 〈step-name〉
(‘[’〈type〉‘]’)? (‘[’〈index〉‘]’)?

〈prefix〉 ::= 〈step-instance-identifier〉 ‘.’

〈step-instance-identifier〉 ‘.’ 〈prefix〉
〈type〉 ::= SUB-STEP|PRE-REQUISITE|POST-REQUISITE|HANDLER
〈index〉 ::= 1|2|3|...

Figure 3.11. Step Instance Identifier Syntax

sub-step, pre-requisite, post-requisite, and exception handler). And the index is used

to distinguish different step instances with the same parent and the same relationship

with the parent.

• Prefix A prefix is a step instance identifier itself that defines a set of step in-

stances. Given a prefix prefix and a step instance identifier step-identifier,

prefix.step-identifier represents the set of step instances in step-

identifier whose parents appear in the set prefix. In the example process,

among all four instances of “S”, the instance labeled 4 is the only one that has

the parent step “P”. Therefore, we can use P.S to distinguish it from the other

instances. On the other hand, P.Q.S can be used to represent the instances

with label 1, 2 and 3. For this particular process, one may just use Q.S to

represent the instances with label 1, 2 and 3 because the instance with label 4

has a different parent “P”.

• Type In terms of the relationship with its parent, a step instance can be

one of four types: SUB-STEP, PRE-REQUISITE step, POST-REQUISITE step, or

(exception) HANDLER step. The type in the identifier is used to distinguish one

type of instances from the others. For example, S[HANDLER] uniquely identifies

the instance of “S” with label 3 because it is the only one that is an exception
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handling step. The other three are all sub-steps and therefore can be identified

by S[SUB-STEP].

• Index In a unrolled process, it is not unusual to see several instances of a

step that are sub-steps of the same parent, like the two instances of “S” labeled

1 and 2 in the example process. This usually results from unrolling steps with

cardinality + or *. In these cases, we may use an index (starting from 1) to

distinguish one instance from the others. For instances of “S” labeled 1 and

2 in the example process, S[SUB-STEP][1] represents the instance labeled 1

and S[SUB-STEP][2] refers to the one labeled 2. It should be noted that the

index does not imply the execution order of those instances. For example,

suppose the step “Q” is a parallel step, S[SUB-STEP][1] might be executed

after S[SUB-STEP][2].

Step identifiers are used to identify the step instances for the concrete events

in property event bindings. The syntax of the property event binding specification

language is shown in Figure 3.12. As mentioned earlier, an property event binding

maps an abstract event to one or more concrete event in the process. This means

that if any concrete event in the property event binding occurs during execution of

the process, the corresponding abstract event is considered to occur. Currently, we

support three kinds of concrete events: step state events, exception throwing events,

and parameter def/use events.

• Step State Event This kind of event occurs when a step instance identi-

fied by 〈step-identifier〉 goes into the particular state 〈step-state〉. The

〈step-state〉 contains all runtime step states defined in the Little-JIL language

specification (e.g. POSTED, STARTED, RETRACTED, OPTED-OUT, COMPLETED, and

TERMINATED).
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〈event-binding〉 ::= 〈abstract-event〉 ‘->’ 〈concrete-events〉+
〈concrete-events〉 ::= 〈concrete-event〉 ‘|’ 〈concrete-events〉

| 〈concrete-event〉
〈concrete-event〉 ::= 〈step-state-event〉

| 〈exception-throwing-event〉
| 〈parameter-def-use-event〉

〈step-state-event〉 ::= 〈step-identifier〉 ‘:’ 〈step-state〉
〈step-state〉 ::= POSTED|STARTED|RETRACTED

| COMPLETED|TERMINATED|OPTOUT
〈exception-throwing-event〉 ::= 〈step-identifier〉? ‘.’ 〈exception-name〉
〈parameter-def-use-event〉 ::= 〈step-identifier〉? ‘.’

〈parameter-name〉 ‘:’ 〈def-use〉
〈def-use〉 ::= DEF|USE

Figure 3.12. Property Event Binding Syntax

• Exception Throwing Event This kind of event occurs when an exception

with the name 〈exception-name〉 is thrown from a step instance identified by

〈step-identifier〉. The step identifier can be omitted if the property does

not care about from which step the exception is thrown.

• Parameter Def/Use Event This kind of event occurs when a parameter with

the name 〈parameter-name〉 is defined or used at a step instance identified by

〈step-identifier〉. Similar to Exception Throwing Events, the step identifier

in a parameter def/use event definition can also be omitted if it does not matter

at which step the parameter is defined or used. In Little-JIL, only leaf steps can

manipulate parameters and the non-leaf steps are used to pass the parameters.

Therefore, the definition or use of a parameter only occurs at a leaf step. There

are two issues with the parameter def/use events. First, since the Little-JIL

process definition does not define the behavior of a leaf step, we have no way of

knowing the exact point where the parameter is defined or used. Therefore, we
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Figure 3.13. Parameter Def/Use Event Example

consider that the parameter is defined when the corresponding leaf step instance

is COMPLETED, and is used when the corresponding leaf step instance is STARTED.

Second, when a property refers to the definition or use of a parameter, it usually

means “each time the artifact held by that parameter is defined/used”. Since

the artifact may be propagated through the process, being held by different

parameters and being defined or used at different leaf step instances, the analyst

has to provide the complete set of bindings, each connecting to one parameter

at one leaf step instance.

Figure 3.13(a) shows an example process. Step “S1” produces an artifact and

passes it out as parameter P1. The artifact is passed to the IN/OUT parameter

P2 at step “S2” and then to the IN parameter P3 at step “S3”. Suppose that

an event e intends to indicate the definition of this artifact. According to the

artifact flow discussed above, one can see that the artifact is created in step

“S1” and may be changed in step “S2”. Therefore, the event can be defined

as e -> S1:P1 DEF | S2:P2 DEF. The artifact flows in a real-world process,

however, could be very complex. In addition, an artifact may be passed to

parameters with different names. Identifying step instances where an artifact

is defined or used manually could be very difficult and prone to errors.
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To reduce the burden of the analyst, we construct an artifact flow graph from

the process definition. The analyst only needs to provide the binding for a

parameter at one step instance. The rest of them then can be automatically

inferred based on the artifact flow graph. The formal definition of the arti-

fact flow graph and how it is constructed are discussed in Fault Tree Analysis

Chapter. For now, it is enough to know that it is a directed graph representing

the artifact flows in a process definition. Figure 3.13(b) shows the artifact flow

graph for the example process. To define the event mentioned above, the ana-

lyst only needs to provide the property event binding e -> S2:P2 DEF, which

only contains the definition of one parameter. All parameters that connect to

this parameter in the artifact graph can be identified. In this example, those

parameters are S1:P1 and S3:P3. S1:P1 may define the artifact because it is

an OUT parameter and S3:P3 may not define the artifact because it is an IN

parameter. Therefore, the given property event binding can be expended to e

-> S1:P1 DEF | S2:P2 DEF. This property event binding can also be inferred

if the analyst provides the property event binding e -> S1:P1 DEF.

3.3.3 Property Specification and Property Event Binding Translation

To be verified, the property specification and the property event bindings need

to be translated to the property representation accepted by the underlying verifier.

A usual way to achieve this is to first translate the property specification into the

property representation accepted by the underlying verifier. Then the events in the

translated model for the verifier are identified for abstract events based on the prop-

erty event bindings. Finally, the abstract events in the verifier’s property representa-

tion are replaced by the corresponding events in the translated model for the verifier.

Implementation of this approach could be difficult because identifying the events in
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the translated model for the abstract events requires the understanding of both the

process-to GIMR-model translation and the GIMR-to-verifier-model translation.

In our implementation, we employ a different approach that takes advantage of

the predicate feature provided by BIR. The property specification is translated into

the property representation accepted by the verifier. Then instead of substituting the

abstract events in the verifier’s property representation, the property event bindings

are translated into predicates in the BIR model. The predicates, when translated

to the constructs in the verifier’s process model, allow the verifier to recognize the

occurrence of abstract events in the verifier’s process model.

Propel provides a translator that translates Propel properties into properties ac-

cepted by FLAVERS. The property translator for SPIN and other verifiers can be eas-

ily implemented. Therefore, we only discuss how to translate property event bindings

into BIR predicates here. This translation is implemented in the Little-JIL-to-BIR

translator. Remember that a BIR predicate consists a unique identifier and a Boolean

expression. The Boolean expression is defined over two kinds of basic expressions:

thread location tests and remote references. In the property event binding translation,

only the thread location tests are used. An property event binding is translated into

one predicate. The abstract event in the property event binding is directly mapped to

the identifier in the predicate. For each concrete event in the property event binding,

the Little-JIL-to-BIR translator first finds out the step instances identified by the

step identifier in the concrete event. Then it identifies the threads in which the BIR

representations of those step instances reside. After that, the exact locations where

the concrete event occurs are determined by the type of the concrete event. With the

threads and locations, a set of thread location tests can be constructed. Eventually,

the conjunction of such thread location tests for all concrete events in the property

event binding forms the Boolean expression in the predicate.
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As an example, let’s look at how to translate property event binding InfuseBlood

-> Infuse Blood STARTED mentioned earlier. The abstract event InfuseBlood is

directly mapped to the identifier InfuseBlood in the predicate. For the concrete

event, the step instance identified by the step identifier is “Infuse Blood ”. The BIR

representation of this step instance is embedded in the main thread T Perform Blood

Transfusion. The location at which this concrete event occurs is the location with

label Infuse Blood STARTED. Therefore the thread location test corresponding to

the concrete event is T Perform Blood Transfusion@Infuse Blood STARTED. As a

result, the predicate translated from the property event binding is:

InfuseBlood: T Perform Blood Transfusion@Infuse Blood STARTED

Similarly, the property event binding IdentifyPatient -> Identify Patient

COMPLETED is translated to:

IdentifyPatient:

T Perform Blood Transfusion@Identify Patient COMPLETED

3.3.4 Summary

In our realization of the process verification framework, we used an event-based

model for the property specification because it maps nicely to process definition. Since

property specifications are usually independent of any particular process definition,

we assume that a property is specified over abstract events and map these events

to the concrete events in the process based on property event binding specifications.

This approach can be easily adapted for verifying processes defined in other languages

if an event-based model for property specification is used. For state-based model, a

similar approach can be applied. One can define properties in terms of abstract states

and map them to concrete states in processes using property state bindings.
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3.4 Optimizations

As noted, a human-intensive process often entails substantial amounts of concur-

rency and communication. It may also incorporate exception handlers to cope with

various exceptional situations during the execution of the process. Handling of ex-

ceptions often leads to diversion of the normal control flow and causes the process

to be more complicated. The state space of the process, therefore, becomes pro-

hibitively large. Despite the fact that verification tools usually have various built-in

optimizations, our preliminary experiments showed that direct translation of a pro-

cess into a verifier’s model representation often results in a model that easily exceeds

the capability of that verifier. For instance, direct translation of a real-world blood

transfusion process (comprised of about 120 steps) results in a BIR model containing

about 20K lines of code, 315 threads and 253 Boolean variables. Neither FLAVERS

nor SPIN is able to verify it. Therefore, it is necessary to use optimizations to reduce

the translated model.

A specific property is usually only concerned with the temporal ordering of a few

events in the process. To decide if the property holds, it is often sufficient to restrict

the model representation to specific aspects of the process. Based on this observation,

we proposed several optimizations that are able to greatly reduce the model, including

Step Abstraction, Step Removal, Thread Inlining, Exception Elimination, and Variable

Reuse. Except for step abstraction, these optimizations are sound, meaning that a

process will not be reported to be consistent with a property unless that is indeed

the case. Step abstraction is sound for safety properties, but is not sound for liveness

properties in general. If the process can always finish, however, step abstraction is

also sound for liveness properties. These optimizations are also precise in that they

will not introduce spurious violations. Spurious violations are property violations in

the optimized process that do not correspond to any real trace through the original

process.
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The optimizations that we have proposed are all Pre-GIMR optimizations. These

optimizations are not new. For instance, step abstraction and step removal are two

special cases of the alphabet refinement used in FLAVERS [43]. Being performed dur-

ing the Little-JIL-to-BIR translation (Pre-GIMR), however, allows them to achieve

more reduction in the model because they are able to take advantage of the scoping

and hierarchical information in the Little-JIL process definition. This high-level in-

formation in the process might be lost or scattered over the model after the process

is translated to the low-level BIR representation. Moreover, since an optimization

might not be provided in all verifiers, implementing it in Little-JIL-to-BIR transla-

tion facilitates using different verifiers.

Before describing the details of each optimization, relevant exceptions and rele-

vant steps, which are steps and exceptions relevant to events in the property, must

be identified. This can be achieved by comparing steps and exceptions to the prop-

erty event bindings for the given property. Specifically, exceptions that match ex-

ception throwing events in the property event bindings are relevant exceptions and

steps that match step state events in the property event bindings are relevant steps.

Steps that throw relevant exceptions are also considered to be relevant steps as are

steps that define or use parameters that match parameter def/use events in property

event bindings. In the simplified blood transfusion process, for property “the nurse

must identify the patient before infusing the blood” and the property event bindings

shown earlier, step “Identify Patient” and “ Infuse Blood” are relevant steps because

they match the step state event Identify Patient COMPLETED and Infuse Blood

STARTED in the property event bindings respectively. Given the relevant steps and

relevant exceptions, the optimizations basically abstract or remove various constructs

(e.g. step instances, threads, variables, etc.), without changing the execution ordering

of relevant step and relevant exceptions and, thus, without changing the ordering of

property events.
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3.4.1 Step Abstraction

An unrolled Little-JIL process is essentially a tree composed of steps. Steps rele-

vant to events in the property are scattered throughout the tree. The step abstraction

converts sub-trees that do not contain relevant steps into leaf steps. For a sub-tree

that does not contain any relevant steps, the only way it can alter the order of events

occurring in other part of the process is to throw exceptions. For instance, an ex-

ception from the sub-tree without an associated exception handlers at any ancestor

could terminate the whole process, preventing the succeeding events from occurring.

To preserve such effect, the leaf step that replaces the sub-tree should have the same

exception declarations as the root step of the sub-tree. Remember that the exception

declarations of a step declare the set of exceptions that may be thrown from the

step. The exceptions that are handled by non-rethrown handlers within the sub-tree

will not appear in the exception declarations of the root step of the sub-tree. Such

exceptions should not be included in the exception declarations of the new leaf step

because they have no impact on the occurrence of the relevant events.

In the simplified blood transfusion process, “Identify Patient” and “Infuse Blood”

are the only relevant steps. Since the sub-tree with the root step “Obtain Patient’s

Blood Type” does not contain any relevant step, it can be abstracted to a leaf step.

In addition, the exception PatientBloodTypeUnavailable is handled within “Obtain

Patient’s Blood Type”. Therefore, the abstracted leaf does not throw any exception.

Similarly, the sub-tree with the root step “Check Blood Product” is also abstracted to

a leaf step. Note that the step “Check Blood Product” does not handle the exception

BloodExpired and WrongBlood thrown by its sub-steps. Therefore, the abstracted leaf

should also throw the exception BloodExpired and WrongBlood. The process after step

abstraction is shown in the Figure 3.14.

Step abstraction is both sound and precise for safety properties. According to the

definition of the safety property, a violation trace of a safety property always contains
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Figure 3.14. Simplified Blood Transfusion Process after Step Abstraction

a finite prefix that leads the property to the violation state [18]. Given one such trace

in the original process, a corresponding trace in the abstracted process can always be

constructed by replacing the part relevant to the execution of the replaced sub-tree

with the execution of the abstracted leaf step. This trace also drives the property to

the violation state because the ordering of the property events is conserved in this

trace and both removed and inserted nodes do not contain any events in the property.

This means that step abstraction is sound in the sense that it will not remove any

violation trace in the original process. On the other hand, given a violation trace in the

abstracted process, a violation trace in the original process can also be constructed by

replacing the execution of abstracted leaf step with a corresponding execution of the

sub-tree. This means that no spurious violations that do not correspond to any real

traces through the original process will be introduced by step abstraction. Therefore,

step abstraction is also precise for safety properties.

Step abstraction, however, is not sound with respect to liveness properties. The

reason is that a violation trace of a liveness property may contain infinite loops.

Since replacing a sub-tree with a leaf step might eliminate loops in the sub-tree, step

abstraction may remove some violation traces through the original process. This is

not a serious problem because many real-world processes, especially for the ones in

the medical domain that interests us, have a hidden assumption that requires the
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processes to be able to finish. Under this assumption, the violation traces are finite

even for liveness properties. Using the same reasoning for the safety property, it

is easy to show that step abstraction becomes both sound and precise for liveness

properties under that assumption.

3.4.2 Step Removal

After step abstraction, the Little-JIL process should only contain the following

steps: (1) relevant steps and all their ancestors, (2) Leaf steps that are children of a

step in (1). Step removal tries to further reduce the size of the process by removing

some leaf steps in (2).

Step removal only considers the steps in (2) that do not throw exceptions and do

not reference any relevant events. For a pre-requisite step or a post-requisite step,

it can never change the execution order of events relevant to the property if it could

not throw any exception. Therefore, it is safe to remove it from the process. For

an exception handler, since the control flow badge decides the flow of control after

the exception handler step is completed, step removal only removes the exception

handler step instead of the whole exception handler. For a sub-step that does not

throw exceptions, whether to remove it or not depends on the kind of the parent step.

• If the parent step is a sequential step or a parallel step, the sub-step can be

removed because it does not have any impact on the execution of the other

steps.

• If the parent step is a try step, however, the sub-step that does not throw

exceptions should not be removed. According to the semantics of the try step,

when a sub-step completes, the try step is completed and the next sub-step will

not be executed. The only way that the next sub-step can be invoked is that the

previous sub-step throws an exception handled by an exception handler with

the continue badge. In other words, sub-steps following a sub-step that does
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Figure 3.15. Simplified Blood Transfusion Process after Step Removal

not throw exception are not reachable. Therefore, in a well-formed process, a

sub-step that does not throw exceptions can only be the last sub-step of a try

step. If this sub-step is removed, a NoMoreAlternative exception will be thrown

when an exception is thrown by the previous sub-step and the corresponding

exception handler with the continue badge tries to invoke the next sub-step.

Such NoMoreAlternative will not be raised if the last sub-step is not removed.

• If the parent step is a choice step, it is safe to keep only one such sub-step and

remove the others. A choice step is similar to a try step in a sense that they

both use the continue exception handler to invoke the next alternative, and

will throw a NoMoreAlternative exception if no alternative can be executed.

The difference is that the choice step randomly picks up a non-finished sub-step

while the try step always selects the next sub-step. Therefore, a choice step

may have multiple sub-steps that do not throw exception. It is easy to see that

keeping one such sub-step is enough to preserve the effect of all of them.

In the simplified blood transfusion process after step abstraction, as shown in

Figure 3.14, there are five leaf steps. Step “Identify Patient” and “Infuse Blood”

cannot be removed because they are relevant steps. Step “Check Blood Product” may

throw exceptions, and thus cannot be removed as well. Since step “Obtain Patient’s

80



Blood Type” and “Pick up Blood from Blood Bank” are sub-steps of a sequential step

and do not throw any exception, they will be removed by step removal. This results

in the process shown in Figure 3.15.

It is easy to show that step removal is both sound and precise for safety properties

using the same reasoning for step abstraction. Furthermore, since the steps removed

are leaf steps, no loops in the original process will be removed. Therefore, step removal

is both sound and precise for liveness properties as well.

3.4.3 Thread Inlining

During the translation, steps that may potentially run in parallel with other steps,

including sub-steps of a parallel step, exception handling steps, and sub-steps of a

choice step, are translated into BIR threads. A real-world process often contains many

parallel steps and exception handling steps. Translation of the processes, therefore,

often end up with a BIR model contains many threads and may run into the state ex-

plosion problem. Thread inlining is able to reduce the number of threads by inlining

certain threads into other threads. It is based on an observation that the behaviors

of the parallel step, the choice step, and the parent step of exception handling steps

follow the same pattern: the parent step posts all its child steps (sub-steps or excep-

tion handling steps), and then is blocked until all those child steps finish (completed,

terminated, opt-outed, or retracted). Although those child steps may run in parallel

with each other, the parent step never interleaves with its child steps. Therefore, we

can choose one child step and insert its thread into the thread corresponding to the

parent step. Inlining threads like this is perfectly safe for both the safety property

and the liveness property because it can neither eliminate existing paths from the

original process, nor introduce new infeasible paths into it.

After step abstraction and step removal, the simplified blood transfusion process

shown in Figure 3.15 does not contain any opportunity for thread inlining because
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1 loc Check_Blood_Product_STARTED:
2 when true do { } goto Check_Blood_Product_fork_subs;

3 loc Check_Blood_Product_fork_subs:
4 when true do {
5 start(T_Check_Product_Info_Match_Patient_Info );
6 } goto Check_Expiration_Date_begin;

7 loc Check_Expiration_Date_begin:
8 ... // Code for Check Expiration Date

9 loc Check_Expiration_Date_exit:
10 when true do {} goto Check_Blood_Product_join_Sub2;

11 loc Check_Blood_Product_join_Sub2:
12 when true do {
13 join(T_Check_Product_Info_Match_Patient_Info );
14 } goto Check_Blood_Product_terminate_test_Sub2;

15 loc Check_Blood_Product_terminate_test_Sub2:
16 when
17 threadTerminated(
18 T_Check_Product_Info_Match_Patient_Info
19 )
20 do { } goto t;
21 ... // Exception Handling

Figure 3.16. BIR Code After Thread Inlining

it only has one thread. For some other properties, however, it is possible that the

parallel step “Check Blood Product” as well as its two sub-steps are not abstracted

or removed. In this case, the thread for one of these two sub-steps can be inlined.

Suppose that the thread for “Check Expiration Date” is selected to be inlined. The

BIR code in Figure 3.16 shows how the thread for “Check Expiration Date” is inserted

into the thread for the parent parallel step. The fork location (line 3-6) only starts

threads for“Check Product Info Match Patient Info”. Then instead of joining this

thread, it goes to the first location in the thread corresponding to “Check Expiration

Date”. When the thread for “Check Expiration Date” exits, it goes to the location

that starts the join of “Check Product Info Match Patient Info” (line 9-10).

The benefit of thread inlining is that it reduces the states that are created during

verification. In finite-state verification, a state typically contains a program counter

for each thread to keep track of the execution at the thread. The space for storing
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the program counter for a thread can be saved if the thread is removed. In addition,

thread inlining can achieve even more savings for some verification tools such as

FLAVERS. In FLAVERS, synchronizations between threads are explicitly captured

using concurrency constraints represented as finite-state automata. The state also

need to keep the states of those constraints. If a thread for a child step is inlined into

the thread for its parent step, the concurrency constraint used to synchronize these

two threads can be eliminated, resulting in further reduction of the state size.

3.4.4 Exception Elimination

A robust real-world process usually needs to consider many exceptional situations.

Therefore, the process definition usually contains a large number of exceptions, which

becomes a major source of the state explosion problem when verifying the process.

For a particular property, however, some exceptions are equivalent in a sense that

they have the same impact on the execution of the relevant steps or exceptions. To

verify such a property, it is enough to keep only one such exception and eliminate the

others.

To identify the sets of equivalent exceptions, we adopt a heuristic that checks

equivalence of exceptions based on some simple rules. Specifically, two exceptions are

considered to be equivalent if:

1. Neither of them is a relevant exception, and

2. They are thrown in the same leaf step. This rule is not as restrictive as it seems

to be because after step abstraction, a sub-tree may be replaced by a leaf step

that has all the exceptions propagated from the root of the sub-tree. And

3. They don’t have exception handlers or they have equivalent exception handlers.

For the second case, it is possible that an exception handler re-throws the excep-

tion that it catches, causing the exception to have multiple exception handlers
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Figure 3.17. Simplified Blood Transfusion Process after Exception Elimination

at different ancestors. In this case, exception handlers at each ancestor step are

equivalent. The equivalence of two exception handlers can be checked against

the following conditions:

(a) Both handlers have the same kind of control flow badge, and

(b) Neither of them has an exception handling step, or both point to the same

exception handling step.

The simplified blood transfusion process after step abstraction and step removal

is shown in Figure 3.15. Step “Check Blood Product ” throws two exceptions: Blood-

Expired and WrongBlood. These two exceptions are equivalent because 1) they are

not relevant exceptions, 2) they are thrown in the same step, and 3) they don’t have

exception handlers. Therefore, any one of them can be removed. Figure 3.17 shows

the process where BloodExpired is removed.

Exception elimination is both sound and precise for all properties. Since it does

not introduce any traces to the optimized process, the exception elimination is sound.

On the other hand, it is possible that certain violation traces may be removed by the

exception elimination. Nevertheless, it is still precise in that for any violation trace in

the original process that is removed, an equivalent trace can be constructed from the

optimized process. There are two kinds of violation traces that can be removed: the
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trace where a single eliminated exception is thrown, and the trace where more than

one equivalent exception is thrown. For a trace of the first kind, we can always find

an equivalent trace in the optimized process by substituting the eliminated exception

with the remaining exception. For a trace of the second kind, we can also find the

equivalent trace as follows: if the remaining exception is not thrown in the trace,

replace one eliminated exception with the remaining exception, and then remove the

nodes relevant to all the eliminated exceptions. In both cases, since all eliminated

exceptions and the remaining exception are not relevant exceptions, no trace nodes

that reference the property events will be removed or introduced. Therefore, the trace

constructed from the optimized process is equivalent to the corresponding removed

trace with respect to the property.

3.4.5 Variable Reuse

The translated BIR model contains a variety of BIR variables, such as exception

variables, parameter variables, variables indicating whether sub-steps of a parallel

or choice step finishes or not, etc. Since these variables might be used in different

threads, they are defined as global variables. By the variable reuse optimization, the

number of variables in the BIR model can be reduced without changing the behavior

of the model.

Variable reuse borrows the idea from the register allocation [23] in compiler opti-

mizations. When a compiler generates a target program, it is often the case that the

number of variables in the target program is much larger than the number of available

CPU registers. In this case, some variables have to be saved to memory, and loaded

back to registers later if needed. If two variables will not interfere with each other,

however, we can use the same register to store both of them without changing the

behavior of the program. A variable may interfere with another variable if both may

live (hold a value that may be needed in the future) at the same time. Based on this

85



idea, the register allocation tries to allocate as many variables as possible to registers

to reduce the expensive memory access operations. It first constructs a interference

graph, which is an undirected graph where a node corresponds to a variable in the

target program and an edge connects two nodes whose variables may interfere with

each other. Then an existing graph coloring algorithm can be applied to identify the

minimal number of registers to cover all variables.

In the case of variable reuse, the variables in the original BIR model are analogous

to the variables in the target program of the compiler, and the BIR variables in the

optimized model are similar to the CPU registers. The differences are the definition

of inference relationships and the way to compute them. (To make the following

discussion easier, we refer to variables in the original BIR model as “BIR variables”

and variables in the optimized model as “register variables”.) In variable reuse,

two variables are considered to interfere with each other if any one of the following

condition is satisfied:

1. They have different types Note that even though range types may have different

range, they are treated as the same type because we can always use a register

variable with the highest range to hold values of those range types.

2. Any one is relevant to a property event Some variables may be associated with

certain property events. For instance, an exception variable may correspond to

an exception throwing event. Share the register variable with other variables

could create spurious events in the optimized model.

3. They may live at the same time This is the same as in the register allocation.

The first two conditions are easy to decide. The current implementation employs a

much simpler approach to check the third condition. Instead of applying the liveness

analysis, as in register allocation, this approach takes advantage of scoping informa-

tion provided by the Little-JIL process. Specifically, each variable is associated with
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Figure 3.18. Check Whether Two Steps May in Parallel

one or more step instances in the process that indicate the scope in which the variable

is alive. For example, an exception variable is associated with the step that throws

the corresponding exception and the exception handling step, if one exists. To decide

whether two variables may be live at the same time becomes a simple check to deter-

mine whether their associated steps may execute in parallel. Given two steps s1 and

s2, as shown in Figure 3.18, their least common ancestor s can be identified following

the tree structure of the process. s′
1 is an ancestor of s1, and s′

2 is an ancestor of s2.

Both s′
1 and s′

2 are children of s. We conservatively assume that s1 and s2 may run

in parallel if s′
1 and s′

2 may run in parallel. To decide if s′
1 and s′

2 may run in parallel,

we only need to check if s′
1 and s′

2 are sub-steps and s is a parallel step, or s′
1 and s′

2

are exception handling steps. Theoretically, this simple approach is not as precise as

liveness analysis. There are two reasons why we prefer to use it however. One is that

to perform the liveness analysis, we need to construct the global control flow graph,

which is not available during the translation. The other reason is that in our experi-

ence, it is quite effective and can lead to great reduction of the number of variables.

Once the interference relationships between variables are decided, the variable reuse

can find the minimal set of register variables using existing graph coloring algorithms.
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For the simplified process shown in Figure 3.17, two exception variables, corre-

sponding to exception WrongPatient and WrongBlood, are created in the BIR model.

Since the parent step is a sequential step, “Identify Patient” and “Check Blood Prod-

uct” will never run in parallel. The two exception variables thus will not live at the

same time. Since both exceptions are not relevant to the property events, variable

reuse only assigns one register variable for them.

After optimizations including step abstraction, step removal, exception elimina-

tion and variable reuse, the simplified blood transfusion process is translated to the

BIR program shown in the following figure. Comparing this program to the one with-

out optimizations (as shown in Appendix C), it is obvious that those optimizations

achieve significant reduction. Three threads (one main thread and two threads cor-

responding two sub-steps of parallel step “Check Blood Product”) are reduced to a

single main thread, six variables (four exception variables and two done variables for

two sub-steps of parallel step “Check Blood Product”) are reduced to one, and total

lines of BIR code is reduced from 217 to 71.

1 process Process_Blood_Transfusion_Process ()

2 b_e1: boolean := false;
3

4 main thread T_Blood_Transfusion_Process
5 loc Blood_Transfusion_Process_POSTED:
6 when true do { }
7 goto Blood_Transfusion_Process_STARTED;

8 loc Blood_Transfusion_Process_STARTED:
9 when true do { }

10 goto Perform_Bedside_Check_POSTED;

11 loc Perform_Bedside_Check_POSTED:
12 when true do { }
13 goto Perform_Bedside_Check_STARTED;

14 loc Perform_Bedside_Check_STARTED:
15 when true do { }
16 goto Identify_Patient_POSTED;

17 loc Identify_Patient_POSTED:
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18 when true do { }
19 goto Identify_Patient_STARTED;

20 loc Identify_Patient_STARTED:
21 when true do { }
22 goto Identify_Patient_COMPLETED;

23 when true do { b_e1 :=true ; }
24 goto Identify_Patient_TERMINATED;

25 loc Identify_Patient_COMPLETED:
26 when true do { }
27 goto Check_Blood_Product_POSTED;

28 loc Identify_Patient_TERMINATED:
29 when ( b_e1==true ) do ()
30 goto Perform_Bedside_Check_TERMINATED;

31 loc Check_Blood_Product_POSTED:
32 when true do { }
33 goto Check_Blood_Product_STARTED;

34 loc Check_Blood_Product_STARTED:
35 when true do { }
36 goto Check_Blood_Product_COMPLETED;

37 when true do { b_e1 :=true ; }
38 goto Check_Blood_Product_TERMINATED;

39 loc Check_Blood_Product_COMPLETED:
40 when true do { }
41 goto Perform_Bedside_Check_COMPLETED;

42 loc Check_Blood_Product_TERMINATED:
43 when ( b_e1==true ) do ()
44 goto Perform_Bedside_Check_TERMINATED;

45 loc Perform_Bedside_Check_COMPLETED:
46 when true do { } goto Infuse_Blood_POSTED;

47 loc Perform_Bedside_Check_TERMINATED:
48 when ( b_e1==true ) do { }
49 goto Blood_Transfusion_Process_TERMINATED;

50 loc Infuse_Blood_POSTED:
51 when true do { } goto Infuse_Blood_STARTED;

52 loc Infuse_Blood_STARTED:
53 when true do { } goto Infuse_Blood_COMPLETED;

54 loc Infuse_Blood_COMPLETED:
55 when true do { }
56 goto Blood_Transfusion_Process_COMPLETED;

57 loc Blood_Transfusion_Process_COMPLETED:
58 when true do { }
59 goto T_Blood_Transfusion_Process_exit;

60 loc Blood_Transfusion_Process_TERMINATED:
61 when true do { }
62 goto T_Blood_Transfusion_Process_exit;

63 loc T_Blood_Transfusion_Process_exit:
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64 end T_Blood_Transfusion_Process;
65

66 predicates
67 IdentifyPatient =
68 T_Blood_Transfusion_Process@Identify_Patient_COMPLETED;
69 InfuseBlood =
70 T_Blood_Transfusion_Process@Infuse_Blood_STARTED;
71 end Process_Blood_Transfusion_Process;

3.4.6 Summary

In this section, we presented several optimizations used to reduce the translated

models. Our evaluation, discussed later in this thesis, showed that these optimizations

significantly improved the scalability of our implementation of the process verifica-

tion framework. All properties for two complex real-world processes were verified in a

few seconds. Although these optimizations are described based on the Little-JIL and

BIR, they are pretty general and can be easily used in the translation of other pro-

cess definition languages. As noted earlier, all of these optimizations are Pre-GIMR

optimizations and have the benefit of applying to different verifiers. Unfortunately,

we did not find any opportunity for new Post-GIMR optimizations. As discussed

in future work, we plan to investigate and incorporate more optimizations into the

process verification framework.
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CHAPTER 4

FAULT-TREE ANALYSIS

A human-intensive process consists of tasks that are performed by various agents,

including hardware devices and human agents. The process verification framework

discussed in the previous chapter primarily detects event sequence errors. It assumes

that the tasks are done correctly and is concerned with the ordering of events occurred

at some tasks, as specified by the given temporal properties. Due to hardware failure

or human error, however, faults may be introduced during the execution of a task.

If not detected and corrected, such a fault may propagate to the successors without

violating those temporal properties and eventually lead to hazards. “Hazard” is a

term used in the system safety analysis community. It is defined as “a state or

set of conditions of the system that, together with certain other conditions in the

environment, will lead inevitably to an accident” [80]. The accident usually results in

harm to people or damage to property. For example, a hazard for a blood transfusion

process could be “the blood unit to be transfused to the patient is wrong”. This

hazard could cause transfusion reaction that endangers the patient’s life. Developing

such a safety critical process also requires to prevent or control potential hazards. This

can be achieved by incorporating various mechanisms to prevent or control faults that

could lead to the hazards. For instance, a failure-resistant agent could be assigned

to some tasks where major faults could occur. Additionally, consistency checks could

be added to well-chosen places in the process to stop the propagation of faults. To

add such mechanisms into the process, the process developers need to identify the

potential hazards that could occur in the process, as well as the faults that could
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lead to those hazards. Due to resource limitations or other constraints, the process

developers are usually only able to apply the fault prevention mechanisms to the most

important faults, which requires assessing and prioritizing the faults. This kind of

analysis (i.e. identifying and assessing hazards and faults) is called “hazard analysis”

in the system safety analysis community. So far, many hazard analysis techniques

have been proposed and successfully applied in several industries [80]. We believe

that these techniques can also be adopted to analyze safety critical processes.

In this work, we investigated a selected hazard analysis technique called Fault

Tree Analysis (FTA) [131]. Given a potential hazard in a system, FTA deductively

identifies events (faults or conditions) in the system that could lead to the hazard

and produces a fault tree, which provides a graphical depiction of all possible parallel

and sequential combinations of those events. Once a fault tree has been derived,

qualitative and quantitative evaluation can be applied to provide information, such

as specific sequences and sets of events that are sufficient to cause a hazard and overall

system vulnerability. This information can then be used as guidance for improvement

of the design or implementation of the system. To apply FTA on processes, we

developed a process FTA framework that is able to automatically derive and evaluate

fault trees for processes modeled in a process definition language. It also provides

supports that help process developers understand the analysis results.

4.1 Overview of Process Fault-Tree Analysis

Fault-tree analysis involves three steps: (1) defining the system, (2) deriving the

fault tree, and (3) evaluating the fault tree. Since systems in many domains are

defined in informal notations, the fault tree derivation has to be performed manually

by a group of experts and therefore is time-consuming, costly and error-prone. Some

researches, however, have demonstrated that this step can be automated if the system

is completely and precisely defined. As discussed in the background chapter, several
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template-based approaches have been proposed to automatically derive fault trees

from software systems defined in various specification languages. Since processes

definitions are essentially software, such template-based approaches may as well be

applied to automatically construct fault trees from rigorous process definitions. To

show this, we developed an automatic fault tree derivation algorithm for the Little-

JIL process definition language. During our research, we encountered three issues

that, as far as we know, were not well addressed in the previous software fault tree

amalysis approaches.

• Scalability A human-intensive process usually involves complex control and

artifact flows. The fault tree derived from it can easily become too large to

either be understood by humans or be analyzed by fault tree analyzing tools.

To address this issue, two optimizations are proposed to reduce the size of the

process before the fault tree is derived. In addition, an optimization is applied

to remove events from the fault tree after it is derived.

• Looping Constructs Processes often contain steps that are executed repeat-

edly. Fault trees derived from these processes, therefore, may contain loops (i.e.

an input and the output of an event connect to the same event). Since a fault

tree with loops is no longer a tree, existing techniques for analyzing fault trees

cannot be applied to it. To address this issue, we proposed an approach to

remove loops from the derived fault trees. As discussed later in this chapter,

this approach does not degrade the results.

• NOT Gate Traditionally, NOT gates are not used in fault trees because

they may introduce difficulties to the evaluation of fault trees. Without NOT

gates, however, some relationships between events cannot be captured in the

fault tree. This may cause the fault-tree analysis tools to produce inaccurate
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results. To improve the accuracy of analysis results, we introduced to use NOT

gates in our fault tree derivation and evaluation approach.

• Usability Once a fault tree has been derived, various qualitative and quan-

titative evaluation techniques can be applied to evaluate the fault tree. In this

work, we investigated the most commonly used technique – Minimal Cut Set

(MCS) analysis. For complex real-world processes, it is often very difficult to

understand how events in a MCS cause the hazard to occur. To address this us-

ability issue, we proposed two complimentary representations that help process

developers to easily understand the MCSs produced by the MCS analysis.

The remainder of this chapter is organized as follows. Section 4.2 presents our au-

tomatic fault tree derivation algorithm for the Little-JIL process definition language.

Section 4.3 gives a brief introduction to the MCS analysis. Section 4.4 discusses

the approaches that we proposed to handle four issues in process fault tree analysis

mentioned above. Finally, the limitation of our approach is discussed in Section 4.5.

4.2 Automatic Fault Tree Derivation

As discussed in the Background and Related Work chapter, a fault tree shows all

the parallel and sequential combinations of events that could lead to the given hazard.

The basic elements of a fault tree are events and gates. Events are used to represent

faults, such as component failures, human errors, or other pertinent conditions in

the system or environment. Basic events are basic initiating faults or conditions.

Undeveloped events are events that are not developed any further, either because

necessary information for deriving the fault tree leading to these events is unavailable

or because these events are considered to have insignificant consequence. Basic events

and undeveloped events are also called primary events because they require no further

development. As opposed to primary events, intermediate events are events that need

94



to be developed. In a fault tree, events are connected using various gates. Each gate

connects one or more input events to a single output event.

To derive a fault tree from a process, the given hazard is represented as an inter-

mediate event called the TOP event. Starting with a fault tree that only cotains the

TOP event, the fault tree derivation procedure proceeds to expand the fault tree by

developing intermediate events in it. An intermediate event is developed by inves-

tigating the process to identify the immediate, necessary, and sufficient events that

cause this event, and then connecting those events to it via a proper gate. The new

events may also be intermediate events that need to be developed. The derivation

procedure terminates when no undeveloped intermediate events is left in the fault

tree. To automate this derivation procedure, the process has to be precisely specified.

In addition, two problems need to be solved:

• How to automatically discover events that could possibly occur in the various

steps of the process. This could be difficult because the tasks performed by

different steps are quite different, and thus so are the events that could occur

in these steps.

• Given an intermediate event, how to automatically identify events that could

cause this event and connect them to this events using appropriate gates.

To address these problems, we propose a template-based automatic fault tree

derivation approach for Little-JIL process definitions. In this approach, the first prob-

lem is solved by classifying events that could possibly occur into several pre-defined

types so that they can be identified based on the simple uniform step interfaces spec-

ified in Little-JIL process definitions. The second problem is solved by defining a set

of templates according to the semantics of the Little-JIL process definition language.

Each template is used to develop a particular type of event. With these event types

and templates, a simple work-list algorithm can be applied to automatically derive
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Figure 4.1. Simplified Blood Process

fault trees from the Little-JIL process definition. Although the events and templates

are specific to the Little-JIL language, the basic idea of this template-based fault tree

derivation approach may be applied to automatically construct fault trees for other

process definition languages.

In the remainder of this section, we first present a simplified version of a blood

transfusion process that will be used as a running example in the discussion. Then we

show the set of pre-defined events types. We also discuss a few templates and show

how to apply them to develop events. After that, we describe the work-list algorithm

that derives the fault trees using the templates. Finally, we discuss three major issues

faced by the derivation algorithm as well as our approaches to address these issues.

Figure 4.1 shows the simplified blood transfusion process presented in the Back-

ground and Related Work chapter. For simplicity, step “Perform Bedside Check” as

well as its two sub-steps are removed. In this figure, arrows with dashed lines are

used to illustrate the parameter bindings, which play an important role in fault tree

derivation. To keep the figure simple, parameters of steps are not displayed. Such pa-

rameters, however, can easily be inferred from the parameter bindings. For example,

there is a parameter binding for Patient’ ID from step “Blood Transfusion Process”
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to “Obtain Patient’s Blood Type”. Therefore, both steps must have a parameter Pa-

tient’s ID. A serious hazard that could occur in a blood transfusion process is that

the blood product to be transfused to the patient is wrong (e.g., does not match the

patient’s blood type). This could cause a transfusion reaction that endangers the

patient’s life. We illustrate how to apply our approach to derive the fault tree for

this hazard and show how the analysis result can help to improve the safety of the

process.

4.2.1 Events

In fault-tree analysis, events usually represent faults of components in the system.

In addition to faults, some conditions in the environment are also considered to be

events if they may affect the propagation of faults. Steps are the basic building

blocks of Little-JIL process definitions. Based on the simple uniform interfaces of

Little-JIL steps, we proposed several pre-defined types of events, such as “All Inputs

are Correct, But S Produces Incorrect Output o”, “Artifact o is Wrong When S is

Posted” and “Exception e is Thrown by S”. In this work, we limit our attention to

the faults related to artifacts in Little-JIL process definitions. We believe that a large

number of interesting faults are artifacts faults or can easily be turned into artifact

faults. For example, in many human-intensive processes, some hazards are caused

by the delay of certain steps. To capture such faults, we can associate an artifact

representing the execution time to each step. Then our approach then can handle

unacceptable delays as an unacceptable output artifact value. For the faults that can

not be easily turned into artifact faults, our framework is designed in such a way that

a new kind of fault can be supported if the type of the event representing that fault is

defined and the appropriate template used to develop this type of event is provided.

The events that we proposed fall into three categories.
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4.2.1.1 Category 1

A fault may be introduced to a process in two ways. It may be caused by the

incorrect execution of a step in the process. It may also be generated outside the pro-

cess and passed to the process as certain wrong artifact. Category 1 events represent

the faults in the first case. The faults in the second case are represented as events of

type Event Type 2: Artifact o is Wrong When S is Posted defined in Category 2.

Event Type 1: All Inputs are Correct, But S Produces Incorrect Output o

In this type of event, the step S is a leaf step and o is an output artifact of S.

In Little-JIL, only a leaf step is able to manipulate its input artifacts and create

or change its output artifacts. Whereas non-leaf steps are only used to coordinate

their sub-steps and passing artifacts. Without losing generality, we assume that no

faults could occur during artifact passing. Unreliable artifact passing can be explicitly

modeled using additional leaf steps, so a fault that could occur during artifact passing

can be defined as this type of event. Therefore, this type of event can only occur at

leaf steps, representing the possibility that designated agents fail to execute those

steps as required. Since we do not look into the implementation of leaf steps, this

events of this type are always primary events.

4.2.1.2 Category 2

The second category contains events indicating that an artifact is incorrect when

a step is at a particular step state, including:

Event Type 2: Artifact o is Wrong When S is Posted

Event Type 3: Artifact o is Wrong When S is Started

Event Type 4: Artifact o is Wrong When S is Retracted

Event Type 5: Artifact o is Wrong When S is Opted-out

Event Type 6: Artifact o is Wrong When S is Completed

Event Type 7: Artifact o is Wrong When S is Terminated by Exception e
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These types of events are usually intermediate events that serve as the intermediate

nodes on the propagation paths of faults generated by the events in Category 1. The

only exception is when the step S in Event Type 2 is the root step of the process.

In this case, the artifact is already wrong when it is passed into the process. Since

the error in the artifact is not introduced within this process, such an event cannot

be developed based on this process and therefore is treated as a primary event. It

should also be noted that Event Type 7 has an additional parameter “exception e”.

The reason is that a step might throw more than one exception, which may lead to

different execution paths of the process. If we do not distinguish different exceptions,

the corresponding paths will be mixed together, which may introduce imprecision to

the fault tree.

The last type of event in this category does not correspond to any step state

defined in the Little-JIL specification. It says:

Event Type 8: Artifact o is Wrong When S is about to be Completed

An event of this type occurs after S is started and before S is completed. This

event type is introduced to break the large template for Event Type 6: Artifact o is

Wrong When S is Completed into four small templates: Template 6 and Template 7

for Event Type 6: Artifact o is Wrong When S is Completed and Template 10 and

Template 11 for Event Type 8: Artifact o is Wrong When S is about to be Completed.

These templates are discussed in Appendix B. Introducing this type of event not

only simplifies the code to generate the fault tree, but also makes the templates much

easier to describe and understand.

4.2.1.3 Category 3

Since a fault that leads to the hazard along one path may not cause the hazard to

occur on another path, it is necessary to introduce events to represent conditions that

might change the control flow of the process. In Little-JIL, there are several cases
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where the flow of control may be changed. The first case is the exception. When an

exception is thrown, the control flow is diverted to the exception handler. Therefore,

two types of events are introduced to represent whether an exception is thrown or

not.

Event Type 9: Exception e is Thrown by S

Event Type 10: Exception e is not Thrown by S

Another case is that an optional step may be opted out by the agent assigned to

the step. For instance, suppose a step has a cardinality (2..5), so five instances of

the step may be created during the execution. The first two instances are required

to be executed. The remaining three instances are optional. So the agent has the

choice not to perform those three instances. Therefore, two types of events are used

to represent whether a step is opted out nor not.

Event Type 11: Step S is Opted-out

Event Type 12: Step S is not Opted-out

The third case is that some step may be retracted under certain situations. For

example, a posted sub-step of a parallel step will be retracted if another sub-step

throws an exception. Posted sub-steps of a choice step will be retracted if they are

not chosen to be executed. Similarly, two types of events are introduced to represent

whether a step is retracted nor not.

Event Type 13: Step S is Retracted

Event Type 14: Step S is not Retracted

Given the interface of a step, the events that could occur in that step can be easily

identified. Let’s take step “Contact Lab for Patient’s Blood Type” in the simplified

blood transfusion process as an example. Its interface specifies that it has an input

parameter Patient ID and an output parameter Blood Type. It may also throw an

exception Patient’s Blood Type Unavailable. Based on this interface, events that could

occur at this step include:
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– All Inputs are Correct, But Contact Lab for Patient’s Blood Type

Produces Incorrect Blood Type

– Patient ID is Wrong When Contact Lab for Patient’s Blood Type is Posted

– Patient ID is Wrong When Contact Lab for Patient’s Blood Type is Started

– Patient ID is Wrong When Contact Lab for Patient’s Blood Type is

about to be Completed

– Blood Type is Wrong When Contact Lab for Patient’s Blood Type is Completed

– Blood Type is Wrong When Contact Lab for Patient’s Blood Type is Terminated

by Exception Patient’s Blood Type Unavailable

– Exception Patient’s Blood Type Unavailable is Thrown by

Contact Lab for Patient’s Blood Type

– Exception Patient’s Blood Type Unavailable is not Thrown by

Contact Lab for Patient’s Blood Type

While we can identify all the events in a process in this way, we do not have to do

so because a large number of them may have nothing to do with the given hazard. In

our fault tree derivation approach, events are generated on the fly by applying various

templates and the design of templates ensures that only events that are relevant to

the hazard will be generated.

To derive a fault tree, the hazard needs to be specified as an event, usually called

the TOP event. In our approach, the TOP event is required to be defined as an event

in Category 2. For the simplified blood transfusion process, the hazard of interest is

“the blood product to be transfused to the patient is wrong”, which can be translated

into the event “Blood Product is Wrong When Infuse Blood is Started”.

4.2.2 Templates

The fault tree derivation is an iterative procedure. A single intermediate event is

developed in each iteration. This is done automatically by applying the appropriate
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pre-defined template. Based on the Little-JIL semantics, we develop a collection of

templates, each of which is used to develop a particular type of events.

A template consists of a requirement and a partial fault tree. The requirement

specified the conditions under which the template can be applied. The partial fault

tree demonstrates how to develop an event. The root event of the partial fault tree is

the event to be developed. The leaves of the partial fault tree are the immediate and

necessary events that could lead to the root event. “Immediate” means that those

events should occur at step states immediately preceding the step state associated

with the root event (each event is explicitly or implicitly associated with a specific

step state, as shown in Section 4.2.1.) This partial fault tree has a generic form, which

needs to be instantiated when applied to develop an event. To develop an event, the

appropriate template will be identified according to the type of the event as well as

certain attributes of the step or the artifact in the event, such as whether the step

is a leaf step and whether the artifact is an output parameter of the step. Then the

partial fault tree of the template is instantiated according to the attributes of the

step and the artifact in the event. Finally, the event is replaced by the partial fault

tree instance.

The corresponding templates for different types of events are shown as Table 4.1.

Note that one type of event might have more than one template. Each template is

applicable for a particular situation. The templates are carefully designed so that for

any intermediate event, there is exactly one template that is applicable. Some types

of events are always primary events that do not need to be developed. Therefore, no

templates are associated with them.

Due to space limitation, we only discuss three selected templates in this section.

The detailed description of all the templates is given in Appendix B. In the discussion

of templates, we use “child steps” to refer to sub-steps, pre-requisite steps, post-

requisite steps, and exception handler steps. Child steps of the same parent step are
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considered to be “siblings” of each other. Before discussing templates, it is necessary

to first give the definitions of the Reverse Control Flow Graph and the Artifact Flow

Graph, which are used when instantiating the partial fault tree in a template.

4.2.2.1 Reverse Control Flow Graph and Artifact Flow Graph

The Reverse Control Flow Graph (RCFG) is used to find the previous step states

of a given step state. It is a directed graph Gc =< Nc, Ec >, where Nc is the set

of states of step instances in the process and Ec is the set of edges. There is an

edge from n1 to n2 iff the step state n2 may immediately precedes the step state n1

according to the Little-JIL process definition. In other words, the edge goes in the

opposite direction of the ordinary control flow. Figure 4.2 shows the reverse control

flow graph of the example process.

The Artifact Flow Graph (AFG) is used to decide whether an artifact is data

dependent on another artifact. It is a directed graph Ga =< Na, Ea >, where Na is

Table 4.1. Fault Tree Derivation Templates

Event Type Template(s)
Event Type 1 All Inputs are Correct, But S Produces In-

correct Output o
None

Event Type 2 Artifact o is Wrong When S is Posted Template 1, 2
Event Type 3 Artifact o is Wrong When S is Started Template 3
Event Type 4 Artifact o is Wrong When S is Retracted Template 4
Event Type 5 Artifact o is Wrong When S is Opted-out Template 5
Event Type 6 Artifact o is Wrong When S is Completed Template 6, 7
Event Type 7 Artifact o is Wrong When S is Terminated

by Exception e
Template 8, 9

Event Type 8 Artifact o is Wrong When S is about to be
Completed

Template 10, 11

Event Type 9 Exception e is Thrown by S None
Event Type 10 Exception e is not Thrown by S Template 12
Event Type 11 Step S is Opted-out None
Event Type 12 Step S is not Opted-out Template 13
Event Type 13 Step S is Retracted None
Event Type 14 Step S is not Retracted Template 14

103



Figure 4.2. Reverse Control Flow Graph for Simplified Blood Transfusion Process
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Figure 4.3. Artifact Flow Graph for Simplified Blood Transfusion Process

the set of artifact instances in the process and Ec is the set of edges. There is an edge

from n1 to n2 iff the artifact n2 may have an immediate data dependency on n1. For

instances, suppose both n1 and n2 are parameters, n2 may depend on n1 if 1) there is

a parameter binding indicating that n1 is passed to n2, or 2) n1 is an input parameter

and n2 is an output parameter of the same step. In general, if there is a path from

an artifact n1 to the artifact n2 in the graph, we know that the fault in n1 may be

propagated to n2. Figure 4.3 gives the artifact flow graph for the simplified blood

transfusion process. Note that parameters of different steps might have the same

name. For example, “Blood Transfusion Process”, “Pick up Blood from Blood Bank”,

and “Perform Transfusion” all have a parameter called Blood Product. Therefore, we

use “Parameter Name @ Step Name” to distinguish them.
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Figure 4.4. Partial Fault Tree for Template 3

4.2.2.2 Template for Artifact o is Wrong When S is Started

The event “Artifact o is Wrong When S is Started” is developed by Template 3.

Template 3

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Started

Partial Fault Tree:

The partial fault tree for this template is shown in Figure 4.4. In Little-JIL,

the only step state that may immediately precedes the state <S, Started> is <S,

Posted>. Since artifacts cannot be changed between these two states, event “Artifact

o is Wrong When S is Started” can occur only if the artifact o is already wrong when

the step S is posted. On the other hand, however, event “Artifact o is Wrong When S

is posted” does not always lead to “Artifact o is Wrong When S is Started”. The step

S may be a retractable step, e.g. S is a sub-step of a parallel step. S may go from

the posted state to the retracted state when another sub-step throws an exception.

When this occurs, the faulty o will not be propagated to the state <S, Started>.

The step S may also be an optional step. The agent responsible for S is allowed

to opt out of the posted step S. In this case, event “Artifact o is wrong when S is

posted” will not lead to “Artifact o is Wrong When S is Started” as well. Therefore,

to allow the faulty o to be propagated from the posted state to the started state, S
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Figure 4.5. Instantiated Partial Fault Tree for Template 3

should not be retracted or opted-out. Notice that the nodes for event “Step S is not

Opted out” and “Step S is not Retracted” are drawn using dash lines. This means that

these two events may or may not be present, depending on if the step S is optional or

retractable. “Step S is not Opted out” is present iff S is an optional step, and “Step

S is not Retracted” is present iff S is a retractable step.

This template can be used to develop the TOP event “Blood Product is Wrong

When Infuse Blood is Started” for the example process. Since step “Infuse Blood” is

neither optional nor retractable, the TOP event can only be caused by “Blood Product

is Wrong When Infuse Blood is Posted”, as shown in Figure 4.5. This new event is

an intermediate event, which can be further developed using a template that we are

going to discuss next.

4.2.2.3 Template for Artifact o is Wrong When S is Posted

Since the artifact o is already wrong when S is posted, the fault is not introduced

by the step S. It must be propagated from another step. Depending on whether the

step S is an exception handler or not, the control flows going to S are quite different.

Therefore, two templates are introduced to develop this type of events.

Template 1

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Posted, and
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Figure 4.6. Partial Fault Tree for Template 1

• Step S is an exception handler step

Partial Fault Tree:

The partial fault tree for this template is shown in Figure 4.6. If S is an exception

handler step, it can only be posted if the corresponding exception is thrown. There-

fore, event “Artifact o is Wrong When S is Posted” can only be caused by event

“Artifact o’ is Wrong When S’ is Terminated by Exception e”, where

• e is the exception handled by S;

• S ′ may throw exception e;

• o′ is an output parameter of S ′ that will be passed to o (via parameter bindings).

If no such parameter exists, o′ = o.

It is possible that the step S ′ does not have an output parameter o′ that is passed

to o. o′ may be an output of another step S ′′ that is executed before S ′ and be

passed to the exception handler. It is tempting to look several steps back to identify

S ′′, create an event “Artifact o’ is Wrong When S” is Completed”, and connect this

event to the OR gate. This, however, violates an important rule in the practice of

fault tree derivation: always look at the immediate causes each time [131]. Violating

this rule could result in overlooking some critical events between event “Artifact o’

is Wrong When S” is Completed” and “Artifact o is Wrong When S is Posted”. One

might argue that since we derive the fault tree automatically instead of manually, we
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can avoid overlooking such critical events by considering all possible situations and

incorporating them into the templates. The problem is that this will greatly increase

the size of the templates and make the derivation algorithm much more complicated.

Therefore, we choose to apply Template 1 and create the temporary event “Artifact

o is Wrong When S’ is Terminated by Exception e” in this case. This event can be

interpreted as: although the artifact o is not visible to the step S ′, it is already wrong

and still alive at the point when S ′ is terminated by exception e. After the fault tree

is derived, most of the temporary events introduced in this way can be removed by

the fault tree optimization techniques that are discussed later in this chapter.

To apply this template, the step that throws the exception e handled by S needs

to be identified. This can be achieved by looking up the successor nodes of the node

<S, Posted> in the Reversed Control Flow Graph. For any successor node that has

the form <S’, Terminated>, we further check if the step S ′ throws the exception

e. If so, S ′ is what we are looking for. We also need to find out whether there is

an output parameter of S ′ that will be passed to o. Given an output parameter of

S, whether this parameter may be passed to o can be decided by checking if there

is a path from this parameter to o in the Artifact Flow Graph. If there is one such

output parameter o′, we create an event “Artifact o’ is Wrong When S’ is Terminated

by Exception e” and connect it to the OR gate. Otherwise, the event “Artifact o is

Wrong When S’ is Terminated by Exception e” will be created instead.

Template 2

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Posted

• S is not an exception handler step

Partial Fault Tree:
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Figure 4.7. Partial Fault Tree for Template 2

The partial fault tree for this template is shown in Figure 4.7. If S is the root

step, the incorrect artifact must be passed in as a parameter to the process. How

the parameter went wrong is out of the scope of the process. Therefore, the event is

treated as a primary event that does not need to be developed further.

If S is neither an exception handler nor the root step, it may be posted in two

cases: it may be posted after its parent step is started or it may be posted after

a sibling step is completed. The first case occurs if S is the first child step to be

executed, e.g. S is a pre-requisite step, or S is the first sub-step of a sequential step

that does not have a pre-requisite step. Suppose S ′ is the parent step of S, S will be

posted as soon as S ′ is started. Since S ′ is a non-leaf step, it is not able to change the

artifact o. The artifact o must already be wrong at the point when the S ′ is started.

In other words, the event “Artifact o is Wrong When S is Posted” could be caused

by the event “Artifact o’ is Wrong When S’ is Started”, where:

• S ′ is the parent step of S, and S is the first child to be executed, and

• o′ is a parameter of S ′ that will be passed to o. If no such parameter exists,

o′ = o.

The second case occurs when S is not the first child step to be executed. In this

case, S can only be executed after one of its siblings is completed. For example, if S is

the second sub-step of a sequential step, it will be posted as soon as the first sub-step is
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completed. If the first step may throw an exception and the corresponding exception

handler has a continue badge, S can also be posted after the exception handler step

is completed. Note that if this exception handler does have a handler step, S can

actually be posted when the first step is terminated. To simplify the template, a

dummy handler step is added to an exception handler if it is not associated with a

hander step. For steps in the second case, event “Artifact o is Wrong When S is

posted” may be caused by event “Artifact o’ is Wrong When S’ is Completed”, where:

• S ′ a sibling of S and if S ′ is completed, S will be executed, and

• o′ is an output parameter of S ′ that will be passed to o. If no such parameter

exists, o′ = o.

To apply this template, we first need to identify the S ′, which can be done by

checking the conditions given above. This could become fairly complicated, especially

for the second case. With the help of the Reversed Control Flow Graph, however, S ′

can be identified easily. We start with looking up the successor nodes of the node <S,

Posted>. For any node that has the form <S’, Started>, if S ′ is the parent step of

S, S ′ satisfies the condition for the first case. For any node that has the form <S’,

Completed>, if S ′ has the same parent as S, S ′ satisfies the condition for the second

case. We then can further check the parameters using the Artifact Flow Graph and

create an event accordingly.

We now use this template to develop the event “Blood Product is Wrong When

Infuse Blood is Posted” in the fault tree for the example process. In the Reversed

Control Flow Graph shown in Figure 4.2, the node <Infuse Blood, Posted> only

has one successor <Pick up Blood from Blood Bank, Completed>. Since “Pick up

Blood from Blood Bank” and “Perform Transfusion” has the same parent step, “Pick

up Blood from Blood Bank” is eligible for the second case. Next, we need to check

if “Pick up Blood from Blood Bank” has an output parameter that can be passed to
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Figure 4.8. Instantiated Partial Fault Tree for Template 2

the parameter Blood Product of “Infuse Blood”. “Pick up Blood from Blood Bank”

has one output parameter Blood Product. This parameter will be passed to Blood

Product of “Infuse Blood” because there is a path from the node <Blood Product @

Pick up Blood from Blood Bank> to the node <Blood Product @ Infuse Blood>

in the Artifact Flow Graph shown in Figure 4.3. Therefore, “Blood Product is Wrong

When Infuse Blood is Posted” can only be caused by the event “Blood Product is

Wrong When Pick up Blood from Blood Bank is Completed”, as shown in Figure 4.8.

4.2.3 Derivation algorithm

The fault tree derivation algorithm for Little-JIL process definitions consists of

three phases:

• Perform Process Unrolling The state space of a Little-JIL process definition

might be infinite because of the recursion and unbound cardinality. The fault

tree, on the other hand, is a finite representation. To be able to automatically

derive a fault tree from a Little-JIL process definition, we first make the state

space of the process finite using the same unrolling technique discussed in the

previous chapter. The recursive steps and steps with unbound cardinality are

unrolled to step instances up to bounds given by the analyst.
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• Construct RCFG and AFG To construct the Reversed Control Flow Graph,

we first build a regular control flow graph from the unrolled process, then reverse

all its edges. The Artifact Flow Graph can be easily constructed based on the

parameter bindings in the unrolled process. Both algorithms can be done in

polynomial time.

• Derive Fault Tree With the unrolled process, the RCFG, and the AFG, the

following work-list algorithm applies the templates to develop the fault tree for

the given TOP event.

Input: Unrolled Little-JIL process definition, TOP event, RCFG, AFG

Output: Fault Tree

Initialize the visited event vs set to empty;

Initialize work-list wl set to empty;

Add TOP event into the work-list wl;

while wl is not empty do

Remove an event e from wl;

if vs contains e then

continue;

end

Find the appropriate template t for e;

Instantiate t using the RCFG and AFG;

Replace e with the partial fault tree in the instantiated t;

foreach leaf e’ in the partial fault tree do

if e’ is not a primary event then

Add e′ to the work-list wl;

end

end

end

Algorithm 1: The Fault Tree Derivation Algorithm
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This algorithm is a polynomial time algorithm. Suppose there are n step instances

and m artifacts in the unrolled process. There are at most m ∗ n events that will

be created. This algorithm ensures that each event will be developed at most once.

Therefore it can be finished in O(m ∗ n).

Given the TOP event “Blood Product is Wrong When Infuse Blood is Started”, the

fault tree derived by this algorithm from the simplified blood transfusion process is

shown in Figure 4.9. One might immediately notice that it is not exactly a tree. The

event “Patient ID is Wrong When Contact Lab for Patient’s Blood Type is Started”

serves as an input to two gates. We can certainly expand the graph into a tree by

creating two sub-trees and connect them to those two gates respectively. For fault

trees derived from real-world processes, however, fully expanded versions are usually

much larger than the compact graph representations. While much smaller and easier

to understand, the compact graph representation produces the same MCSs as its

fully expanded counterpart. Therefore, we choose to use this graph representation.

Without causing confusion, we still call these graphs fault trees.

4.3 Evaluating Fault Trees

Once a fault tree is derived, all faults that might cause the hazard to happen

can be obtained from the primary events in the fault tree. The process developer

can then change the process to control or eliminate occurrence of those faults. For

instance, a failure-resistant agent could be assigned to steps where faults could occur.

Additionally, consistency check steps could be added to well-chosen places in the

process to stop the propagation of faults. In practice, due to resource limitations

or other constraints, the process developer usually is only able to apply the fault

prevention mechanisms to a few of the most important faults.

Priorities of the faults can be determined by evaluating the derived fault tree [131].

The most important fault tree evaluation technique is the Minimal Cut Set Analysis.
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Figure 4.9. Fault Tree for Simplified Blood Transfusion Process
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It computes a set of Minimal Cut Sets(MCSs) from the fault tree. A cut set is a set

of primary events whose occurrence ensures that the TOP event occurs. An MCS is

a cut set that cannot be further reduced. In other words, an MCS will not be able to

cause the hazard to occur if any event in it is missing. The importance of a MCS can

be grossly estimated by its size. Smaller MCSs are considered to be more important

than larger ones since fewer faults need to arise to cause the top event to occur. The

process developer, therefore, can start with the faults in MCSs with smallest size. If

probabilities of all the primary events in the fault tree are provided, statistic analysis

can be applied to compute probabilities of MCSs. As the indicator, the probability is

more accurate than the size. The quantitative evaluation can even obtain the numeric

evaluation of overall system vulnerability to a hazard caused by the occurrence of a

particular fault. In this section, we focus on the computation of MCSs.

To compute MCSs from a fault tree, each gate in the fault tree is first translated

into a Boolean equation. Consider the fault tree derived from the simplified blood

transfusion process (Figure 4.9) as an example. The Boolean equations corresponding

to several gates are shown as follows.

Gate 1: E1 = E2

Gate 2: E2 = E3

Gate 3: E3 = E4

Gate 4: E4 = E5 + E6

. . .

Gate 8: E9 = E11E12

. . .

Given these equations, existing Boolean Minimization tools can be applied to get

rid of all the intermediate events, except the TOP event, and obtain an equation that

only contains the TOP event and primary events. In this equation, the left side is the

TOP event and the right side is a formula of primary events in Conjunctive Normal
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Form. Each clause in this formula corresponds to a MCS, which contains all events

in that clause. The final equation computed for the example fault tree is:

E1 = E6 + E17 + E25 + E15¬E14

From this equation, we get four MCSs:

1) {E6}

2) {E17}

3) {E25}

4) {E15,¬E14}

MCS 1, 2, and 3 only contain one event, indicating that the process is exposed

to a single point of failure. The hazard will definitely occur if either wrong blood

product is picked up at the blood bank(E6), wrong blood type is produced by the

blood testing(E17) or the patient ID passed to the process is wrong (E25). Therefore

subsequent changes need to be made to remove these single points of failure.

MCS 4 does not indicate a single point of failure because it contains two events E15

and ¬E14. If we look carefully at these events, however, we can see the problem with

this MCS. E15 says “All Inputs are Correct, But Contact Lab for Patient’s Blood Type

Produces Wrong Blood Type”. Since the agent for step “Contact Lab for Patient’s

Blood Type” already produces the blood type, although it is wrong, the agent will not

throw the exception Patient’s Blood Type Unavailable. Therefore, E15 implies ¬E14,

which represents that the exception Patient’s Blood Type Unavailable is not thrown

by “Contact Lab for Patient’s Blood Type”. We can see that E15 is a indeed single

point of failure even though the MCS says that it is not. Since our analysis treats leaf

steps as black boxes, it is not able to deduce relationships between primary events

that occur at leaf steps. Therefore it is up to analysts to identify such relationships

and generate more accurate results. Although MCSs computed by our approach may

not be minimal, there is one thing that is guaranteed – if a MCS contains only one

event, the event must be a single point of failure.
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4.4 Process FTA Issues

We encountered four major issues during our study of process fault tree analysis:

scalability, looping contructs, NOT gates, and it Useability. In this section, we discuss

these issues as well as our approaches to address these issues.

4.4.1 Scalability

A real-world human-intensive process usually involves complex control and artifact

flows. The fault tree derived from it can easily become too large either to be easily

understood by humans or be analyzed by fault tree evaluation tools. To address

this issue, two optimizations, Step Abstraction and Step Removal, are applied to

the unrolled process before the fault tree is derived. Similar to step abstraction

and step removal in the process verification framework, Step Abstraction abstracts

sub-processes into leaf steps and Step Removal removes certain steps that do not

have impact on the propagation of faults. In addition to these two optimizations, the

optimization Equivalent Event Removal can be applied to remove certain intermediate

events from the fault tree after it is derived. All three optimizations guarantee that

the optimized fault tree is equivalent to the original one in the sense that both fault

trees generate the same minimal cut sets.

4.4.1.1 Step Abstraction

In the process verification framework, the Step Abstraction first identifies a set of

relevant steps where property events could occur, and then abstracts sub-processes

that do not contains relevant steps into leaf steps. The Step Abstraction for fault

tree derivation is almost the same as the one for verification, except for the way in

which relevant steps are identified. In our approach, the hazard is represented as

an incorrect artifact at a specific point in the process. The faults that could cause

the hazard to occur can only originate from two sources: a leaf step that produces a

wrong output or a wrong input to the root step. The other steps can only change the
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Figure 4.10. Step Abstraction for Fault Tree Derivation

propagation of the faults by throwing exceptions. Therefore, relevant steps for fault

tree derivation are the root step and the steps that have an OUT parameter that may

flow to the artifact in the TOP event. As noted earlier, the TOP event is required to

be defined as an event in Category 2, which always has an artifact. These relevant

steps can be easily identified with the help of the Artifact Flow Graph. Once the

relevant step set is obtained, any sub-process that does not contain relevant steps

can be replaced with a leaf step that throws the same exceptions as the root step

of the sub-process. In this way, intermediate events associated with the steps in the

sub-process will not be created.

Figure 4.10(a) shows an example. The step S1 creates the parameter p1, which is

passed to the parameter p3 of the step S5 via the temporary parameter p2. Suppose

the hazard is “Artifact p3 is Wrong When S5 is Started”. The only step that has

an output parameter that may flow to p3 is step S1. Therefore, the hazard can only

be caused by the fault “All Inputs are Correct, But S Produces Wrong p1”. The

sub-process with the root S2 can never create faults that lead to the hazard. We can

safely replace the sub-process with a leaf step S ′
2, as shown in Figure 4.10(b). This

results in a fault tree without intermediate events containing states of step S3 and

S4. The fault tree derived after the step abstraction is equivalent to the fault tree
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Figure 4.11. Step Removal for Fault Tree Derivation

derived without step abstraction. Both have one MCS: {“All Inputs are Correct, But

S Produces Wrong p1”}.

4.4.1.2 Step Removal

Different from the one for process verification, the Step Removal for fault tree

derivation removes a step only if it satisfies the following conditions:

1. It is not a relevant step, and

2. It does not throw any exceptions

The first condition guarantees that the step will never produce a fault that could

lead to the hazard. The second condition ensures that the step cannot change the

propagation of faults that may cause the hazard to occur. For the process shown in

Figure 4.11(a), we can remove S ′
2 because it satisfies both conditions. Figure 4.11(b)

is the process after removing S2. It is easy to see that the fault tree derived from this

process is equivalent to the fault tree derived from the original process.

4.4.1.3 Equivalent Event Removal

While the previous two optimizations are performed on the process before the

fault tree is derived, the Equivalent Event Removal optimization is applied to remove

certain intermediate events from the fault tree after it is derived. This optimization

first partitions the events in the fault tree into different equivalent groups. Each
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Figure 4.12. Groups in Fault Tree for Simplified Blood Transfusion Process
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equivalent group has a source event that is a primary event or an event whose input

gate connects to event(s) in another group. Except for the source event, each event

in an equivalent group occurs if and only if the source event occurs. Note that the

idea of equivalent groups is similar to basic blocks of control flow graphs in compiler

optimizations [9]. Figure 4.12 shows the groups identified in the fault tree derived

from the simplified blood transfusion process. Each equivalent group is enclosed in a

box with the dashed line. To make the figure less crowded, the boxes for groups with

a single event are not drawn. Take group 1 as an example. E4 is the source event.

The other three events are included in this group because they may occur if and only

if E4 occurs.

Here, we give an informal description of the algorithm that we use to identify

equivalent groups. The algorithm performs a post-order traverse over the given fault

tree. Upon visiting an event e, a new group is created to include e if e is a primary

event or input gate of e is a NOT gate. Otherwise, e must be an intermediate event

whose input gate g is either an AND gate or an OR gate. In this case, the algorithm

proceeds to check the input events of g. If all these input events belong to the same

group, e is added into this group. Otherwise, a new group is created to include e.

For each equivalent group, the Equivalent Event Removal optimization selects

certain event(s) and removes the other events in the group. Specifically, the TOP

event and primary events are always selected to be kept. If a group does not contain

the TOP event or a primary event, any event in the group can be selected. Based

on the definition of equivalent groups, it is easy to prove that this optimization will

result in a fault tree that is equivalent to the original one. This optimization is able

to greatly reduce the size of the fault tree. The problem, however, is that removing

intermediate events creates “gaps” between events that may cause the fault tree to be

difficult to understand. To solve this problem, events are only temporarily removed

when the MCSs are calculated. When the fault tree is displayed to the user, an
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Figure 4.13. Example of Process Containing Loop

equivalent group with more than one event is collapsed into a node. If necessary, the

user can expand the node to see the events in the group.

4.4.2 Looping Constructs

Processes often contain steps that are executed repeatedly. Fault trees derived

from these processes, therefore, may contain loops (i.e. an input and the output

of an event connect to the same event). Figure 4.13 shows a process example. In

this process, the sub-step S1 may throw exception e. The exception is handled by a

restart handler. Step S has an INOUT parameter o that will be passed and changed

by S1. Exception handler step S2 cannot change o. Since the exception handler is a

restart handler, S1 and S2 might be executed repeatedly. Given the hazard “Artifact

o is Wrong When S is completed”, the fault tree derived by our algorithm is shown

in Figure 4.14. For each intermediate event, the template used to develop this event

is shown next to the event. Note that there is an edge from the input gate of event

e14 to event e7. This edge introduces a loop into the fault tree.

Since a fault tree with loops is no longer a tree, existing techniques for analyzing

fault trees cannot be applied to it. To address this issue, we simply remove loops

from the derived fault tree f in the following way:

• Detecting a loop A depth search is performed on the fault tree f , starting from

the hazard event. If an input event of a gate points to an event in the stack,
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Figure 4.14. Fault Tree Containing Loop
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Figure 4.15. Fault Tree without Loop

a loop is detected. In the fault tree shown in Figure 4.14, the loop is detected

when the edge from the input gate of event e14 to event e7 is visited.

• Removing the loop Before discussing how to remove a loop, we first define an

elimination operation f\e, where f is a fault tree and e is an event in f . This

operation produces another fault tree f ′ as follows. As discussed in Section 4.3,

events in a fault tree can be considered as Boolean variables and gates as Boolean

equations. The event e in the operation is first assigned it to false. This may

cause some other events to be evaluated to false. For example, suppose there

is an AND gate that has two input events, e and e′, and an output event e′′.

The equation for this gate is e′′ = ee′. Since e is assigned to false, e′′ will be

evaluated to false too according to this equation. This may cause more events
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to be evaluated to false. Removing all events evaluated to false from the

fault tree f results in f ′.

To remove a loop, a new event e is created and the back edge in the loop is

connected to this new event. Then the operation f\e is applied to obtain fault

tree f ′. Removing the loop in the fault tree shown in Figure 4.14 results in the

fault tree shown in Figure 4.15.

A loop in a fault tree is caused by certain steps that are executed repeatedly.

Removing a loop in the above way basically results in a fault tree corresponding to

the case where those steps executed once. Compared to this fault tree, a fault tree

corresponding to the case where those steps executed more than once usually produces

larger MCSs. Since process developers usually focus on small MCSs, we believe that

it should be enough to only consider the fault tree corresponding to the case where

those steps executed once. If necessary, however, a fault tree corresponding to the

case where those steps executed more than once can be easily created from the fault

tree with the loop.

4.4.3 NOT Gate

Traditionally, NOT gates are not used in fault trees because they may introduce

difficulties to the evaluation of fault trees. The use of NOT gates will result in a

non-coherent fault tree, meaning that the fault tree is no longer a monotone Boolean

function [10]. For non-coherent fault trees, the original concept of minimal cut sets

does not apply and should be replaced by prime implicants. Usually, computing prime

implicants for non-coherent fault trees is much more difficult than computing minimal

cut sets for coherent fault trees. Without NOT gates, however, the fault-tree analysis

may produce inaccurate results because relationships between many events cannot be

captured in the fault tree. Therefore whether to use NOT gates is a trade off between

efficiency and accuracy. In the early stage of fault-tree analysis (1960s–1980s), due to
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Figure 4.16. Simple Process for Discussing NOT gates

the limitation of computing power and algorithms, fault trees were derived without

using NOT gates so that they could be evaluated. Since then, the computing power

has been increased significantly. More importantly, recent research has showed that

prime implicants for large non-coherent fault trees can be computed using symbolic

or heuristic approaches [112] [39] [3]. Because of this progress, many FTA approaches

now choose to use NOT gates in order to achieve more accurate results.

In our research, we decided to use NOT gates to capture relationships between

certain conditional events. For example, in Template 12, event “Exception e is not

Thrown by S” is connected to event “Exception e is Thrown by S” via a NOT gate.

Here, we use a simple example to show why FTA of processes may produce inaccurate

results without NOT gates. In the process shown in Figure 4.16, the root step “P”

is a sequential step with two sub-steps. The first sub-step “S1” may throw exception

e, which will be handle by a continue handler. The root step has an input parameter

o that cannot be changed by its sub-steps. For the hazard “o is Wrong When S2

is Started”, the fault tree derived without NOT gates is shown in Figure 4.17. The

MCSs computed from this fault tree are {o is Wrong When P is Posted (E10), e

is Thrown by S1 (E5)} and {o is Wrong When P is Posted (E10), e is not Thrown

by S1 (E7)}. These two MCSs fail to indicate the single point of failure – event “o

is Wrong When P is Posted”, which always causes the hazard to occur no matter

whether S1 throws exception e or not. The reason is that the relationship between
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Figure 4.17. Fault Tree without NOT Gates

event “e is not Thrown by S1” and “e is Thrown by S1” is not captured in the fault

tree. To get the expected MCS {“o is Wrong When P is Posted”}, a NOT gate needs

to be introduced to connect these two events.

4.4.4 Usability

To control or eliminate a fault in a MCS, the process developer needs to understand

how this fault together with the other events in the MCS could cause to hazard to

occur. Usually, this can be done by first identifying events from the MCS in the fault

tree and then following the fault tree up to the TOP event. The problem is that fault

trees derived from real-world processes could be very large. To solve this problem,

we generate two representations, Partial Fault Trees and a Process Trace, which are

designed to help process developers to better understand MCSs.
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Figure 4.18. Partial Fault Tree for MCS {E6}

4.4.4.1 Partial Fault Tree

The fault tree derived from a process shows combinations of all events that could

lead to the hazard. Large parts of the fault tree actually have nothing to do with the

events in a MCS. Therefore, we generate a partial fault tree for the MCS by removing

events irrelevant to the MCS from the fault tree. Given a MCS m and the fault tree

f from which m is computed, an event e is an irrelevant event if f\e is still able to

produce MCS m. f\e is the elimination operation discussed in Section 4.4.2. Since

the partial fault tree does not contain irrelevant events, it is much smaller and is

easier to follow. Figure 4.18 shows the partial fault tree for the minimal cut set {E6}

generated from the fault tree for the simplified blood transfusion process.

4.4.4.2 Process Trace

In many cases, events in a MCS could lead to the hazard along different executions

of the process. In a large partial fault tree, it is often difficult to distinguish events

occur along one execution from events along another execution. To address this issue,
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we generate process traces that show how events in a MCS cause the hazard to occur.

Details about this trace generation algorithm are given in Chapter Trace Generation

and Visualization.

4.5 Limitations of Our Approach

To use our process FTA approach, process developers need to be aware of several

limitations that may cause the analysis results to be imprecise or even incorrect.

• The completeness a fault tree derived from a Little-JIL process definition by our

automatic algorithm depends on the completeness of the process. Thus, in cases

where the Little-JIL process definition fails to completely represent steps in a

real-world process that have an effect upon critical artifact flows, our algorithm

will, accordingly, produce an incomplete fault tree.

• Since the fault tree derivation algorithm only looks at step interfaces, which

do not specify how a leaf step produces its outputs from its inputs, it has to

assume that any output of a leaf step depends on all its inputs. Thus, leaf steps

that do not satisfy this assumption may cause the derived fault tree to contain

superfluous sub-trees.

• As shown in the example discussed in Section 4.3, computed MCSs may not be

minimal because our analysis is not able to identify the relationships between

different primary events.

4.6 Summary

In this chapter, we present our template-based automatic fault tree derivation

algorithm for the Little-JIL process definition language. Although the events and

templates are specific to the Little-JIL language, the basic idea of this template-based

fault tree derivation approach may be applied to automatically construct fault trees
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for other process definition languages. When applying FTA to real-world, human-

intensive processes, we encountered three issues. To address the scaling issue, we

proposed three optimizations that are able to significantly reduce the size of fault

trees so that they can be understood and evaluated more easily. To address the

loop issue, we applied a simple approach to remove loops in fault trees so that they

can be analyzed using existing fault tree evaluation techniques. To obtain more

accurate results, we chose to use NOT gate to capture relationships between certain

conditional events. We believe that these issues may also be found when applying

FTA to processes defined in other languages and believe our approaches provide

suggestions for addressing such issues. In addition to support for automatic fault tree

derivation, we proposed two representations that make MCSs more easily understood,

no matter how the fault trees were derived.
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CHAPTER 5

TRACE GENERATION AND VISUALIZATION

In software engineering, an execution of a software system is a sequence of system

states from initialization to termination. A state is a configuration of the system where

every variable in the system is assigned to a specific value. Here we define a trace to be

a partial view of an execution. Specifically, a trace is a sequence of states, where the

set of states in the trace is a sub-set of the states in the corresponding execution and

the order of states in the trace is the same as the order in which those states appear in

the execution. Traces have been widely used in many software engineering techniques.

For instance, to debug a software system, the developer may follow a particular trace

generated by the debugger to diagnose the bugs in the system. System logs, which can

be considered as a particular kind of traces, are used to recorded information about

certain executions of the system. The system logs help the system administrator to

detect abnormal behavior of the system. In system simulation, the analyst needs to

study the traces of the simulator to make sure that the simulator correctly captures

the behaviors of the real system. The trace also plays an important role in two

analysis techniques that we study in this thesis. As mentioned earlier, during process

verification, if the property is violated by the process, a counter-example trace will

be generated by the verifier to demonstrate how a property is violated. The counter

example trace represents one possible execution of the translated model along which

the property is violated. For the Fault-Tree Analysis, we generate traces for a MCS

to aid the analyst in understanding how events in a MCS may eventually cause the

hazard to occur.
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In this section, we focus on an important yet often neglected issue: how to make

traces more accessible to the analyst. We proposed an approach to generate a high-

level Little-JIL trace from a low-level violation trace of the underlying verification

tools used by our verification framework. This Little-JIL trace generation approach is

designed in a generic way so that it is also able to produce a Little-JIL trace based on a

Minimal Cut Set (MCS) computed by the fault tree analysis. In addition, we proposed

two visual representations that allow the user to navigate and understand the Little-

JIL trace more easily. We believe these approaches are able to greatly enhance the

user-friendliness of both process verification and process fault tree analysis. Although

the discussion in the remainder of this chapter is based on the Little-JIL process

definition language, the underlying ideas of our approaches can be adopted to generate

and represent traces in other languages.

5.1 High-Level Trace Generation

In our process verification framework, we translate the Little-JIL process defini-

tion into the model used by the underlying verification tool. The counter-example

trace produced by the verification tool, therefore, is a trace through this model in-

stead of through the Little-JIL process definition. During the translation, high-level

constructs, such as exceptions and channels, are mapped to low-level representations

in the model. In addition, steps or artifacts might be removed or abstracted by the

optimizations. Therefore, the model often becomes considerably different from the

original Little-JIL process definition. As a consequence, the counter-example traces

become extremely difficult to understand, even for an expert with deep understanding

of the translation and optimization techniques.

To solve this problem, we implemented a tool that is able to generate a correspond-

ing trace through the Little-JIL process definition based on the counter-example trace

through the model used by the verification tool. Since the Little-JIL process defini-
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tion is mapped into the model via a sequence of transformations including translation

and various optimizations, the most straight-forward approach is to map the counter-

example trace backward, phase by phase, along those transformations. The problem

with this approach is that it requires the mapping information for each transforma-

tion to be stored. Furthermore, any change in the optimizations or the translation

might lead to change in the implementation of the tool. Instead, we chose to per-

form an A* search [114] on the Little-JIL process definition, where the search goal

is the sequence of property events as they appear in the counter-example. Since the

Little-JIL trace generated by the A* search contains the same sequence of property

events, it will drive the property into the violation state in the same way as the low-

level counter-example trace. For this A* search approach, no extra transformation

information needs to be stored, and changes in transformations usually will not affect

the implementation of tool. Another major advantage of this approach is that we

are able to reuse it to generate the Little-JIL traces from a MCS, with a few minor

changes as described below.

Since A* search could effectively generate high-level violation traces, one might

wonder why we do not use the A* search to verify a property in the first place. The

main reason is that A* search is not effective for proving the property is not violated.

In this case, the A* search would need to explore the whole state space of the process

and can easily run into the state explosion problem.

5.1.1 Introduction to A* Algorithm

Before discussing the high-level trace generation tool, it is necessary to give a

brief introduction to the A* search algorithm. The A* search algorithm is a best-first

graph search algorithm. Starting from an initial node, it is able to find the least-cost

path that satisfies the given goal. The algorithm maintains a work-list that contains

the nodes to be examined. During each iteration of the search, one node is taken
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from the work-list. This node is then examined to see if it meets the goal. If so,

the algorithm reconstructs and returns a path from the initial node to this node.

Otherwise, the successors of the node are added into the work-list. This is similar

to the many search algorithms such as depth-first and breath-first algorithms. What

sets A* algorithm apart from these algorithms is the order in which the nodes in the

work-list are visited. In the A* algorithm, the order of a node n to be examined

is determined by a heuristic function f(n). The node with the smaller f(n) has the

higher priority. Therefore, the algorithm always picks a node with the smallest f(n) to

examine during each iteration. The heuristic function f(n) for a node n is the sum of

two functions: g(n), which is the shortest distance from the initial node to node n, and

h(n), which is the estimate of the distance from node n to the goal. An important

property of A* search is that it will find the optimal path if the function h(n) is

admissible. h(n) is admissible if it is guaranteed to never overestimate the actual

minimal distance from node n to the goal. Formally, suppose h′(n) is the function

that gives the actual minimal cost from node n to the goal, h(n) is admissible if and

only if h(n) ≤ h′(n) for all node n. The proof of this property can be found in [114].

It should be noted that for a search problem, one may come up with different h(n)

functions. The A* algorithm is able to find an optimal path with all these functions

as long as they are admissible. The only difference is the performance. Compared to

the depth-first algorithm, A* search is usually able to find a shorter path. Compared

to the breath-first algorithm, A* algorithm is faster because it often explores fewer

states. Therefore, A* search is widely used to solve many practical search problem.

5.1.2 High-Level Trace Generation Tool Architecture

Figure 5.1 shows the architecture of the high-level Little-JIL trace generation tool.

There are four major components: a search engine, a goal constructor, a goal manager,

and an Little-JIL event manager.
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Figure 5.1. Little-JIL Trace Generation Tool Architecture

• The search engine applies the A* search algorithm to explore the state space

of the given Little-JIL process definition. Each time a process state is visited,

the search engine consults the goal manager to decide what to do next. There

are three possible results that may be returned by the goal manager. The goal

manager may indicate that the current process state meets the goal. If so, the

search engine will reconstruct the Little-JIL trace from the initial process state

to the current process state and stops the search. The goal manager may also

indicate that the goal can never be achieved after the current process state. In

this case, the search engine simply discards this state and picks up another state

from the work-list to visit. The last possible result is that the goal is not yet

met by the given process state but may possibly be achieved by its successors.

If this is the case, the search engine computes the successors of the current

process state and adds them onto the work-list.

• The goal constructor creates the goal that needs to be achieved by the search.

The goal constructor for FSV extracts the goal from a counter-example trace,
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while the goal constructor for FTA constructs the goal from a MCS. In our

approach, the goal is encoded as a finite-state automaton (FSA) for both FSV

and FTA. The labels in this FSA are events: either property events for FSV, or

fault tree events for FTA. Since both kinds of events are designed to share the

same interface, the goal can be implemented as a generic FSA, independent of

the underlying difference between these two kinds of events.

• The goal manager makes the decision of what the search engine should do

about a process state based on the goal. The process state passed from the

search engine contains a goal state that represents the state of the goal right

before this process state. The goal manager first forwards the process state to

the Little-JIL event manager to see whether any event may occur when the

process goes into that state. Based on the goal FSA, it then computes the next

goal state according to the events returned by the Little-JIL event manager.

If the next state is the accepting state, it will tell the search engine that the

goal is achieved by the process state. If the next state is the violation state, it

will tell the search engine to discard this process state because no successors of

this process state can achieve the goal. When the next goal state is neither the

accepting state nor the violation state, the goal manager will notify the search

engine to keep searching the successors of the process state. In this case, some

other information will also be return to the search engine, including the next

goal state and the value of h(x) for the process state. The next goal state will

be stored in the successors of the process state. The value of h(x) will be used

to compute f(x) for the successors of the process state. Given a process state

x, h(x) is defined as the distance between the next goal state corresponding to

x and the accepting state in the goal FSA. For an arbitrary FSA, the distances

between two states may differ on different paths connecting these states. The

goal FSA in our approach, however, guarantees that the distances between a
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goal state and the accepting state are always the same. We provide a more

detailed discussion of h(x) in Section 5.1.2.1 and 5.1.2.2.

• The Little-JIL event manager is used to generate event(s) for a given process

state. The search engine adopts an interleaved model of the Little-JIL process

definition. Therefore, only one step state in the process state is changed from

the previous process state. We call such a step state in a process state the active

step state. The Little-JIL event manager checks whether any event may occur

when the active step goes into the specific active step state. Although sharing

the same interface, the Little-JIL event manager for FSV and the one for FTA

use different methods to generate the events.

The major part of this framework, including the search engine and the goal man-

ager, can be shared for both FSV and FTA. The only two components that need to

be customized are the goal constructor and the Little-JIL event manager.

5.1.2.1 Customization for FSV

In this section, we describe the goal constructor that extracts a goal FSA from a

given counter-example trace. We also discuss the way in which events are generated

by the Little-JIL event manager for FSV. These two customized components allow

the search engine to find a Little-JIL trace that violates the property in the same way

as the low-level counter-example trace.

5.1.2.1.1 Goal Constructor

Our process verification framework allows the analyst to use various underlying ver-

ification tools such as FLAVERS and SPIN. Counter-example traces produced by

different verification tools may have different forms. Ignoring the syntax differences,

however, a counter-example trace can usually be represented as a sequence of nodes:

n1, n2, . . . , ni(e1), . . . nj(e2), . . . , nk(em), . . . , nk
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Figure 5.2. Goal FSA from Counter-Example Trace

Each node corresponds to one state of the model fed to the verification tool. Some

nodes (i.e. ni, nj, and nk) may be associated with an event in the alphabet of the

property. This means that the event associated with a node occurs when the model

goes into the state represented by that node. Given a counter-example trace, we can

extract a sequence of events:

e1, e2, . . . , em

The order of events in this sequence must remain the same as that in the counter-

example trace. This event sequence will drive the property into the violation state.

Since the model translated from the Little-JIL process definition is equivalent to the

Little-JIL process definition with respect to the property, there must exist a Little-JIL

trace that will produce the same event sequence. What we need to do, therefore, is to

construct a goal from the event sequence so that the A* search engine can find such

a Little-JIL trace. Given the event sequence e1, e2, . . . , en, the finite state automaton

for the goal is shown in Figure 5.2.

States s1, s2, . . . , sn correspond to events e1, e2, . . . , en respectively. sn+1 is the

accepting state, and sv is the violation state. At the state si(1 ≤ i ≤ n), only the

event ei can cause the state to move to state si+1. All the other events in the alphabet

will lead to the violation state. Once the goal state goes into the accepting state sn+1,

we know that the current Little-JIL trace can produce the given event sequence that

violates the property. So the search can stop and return the current Little-JIL trace.
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In this goal FSA, there is only one path from any state si(1 ≤ i ≤ n) to the

accepting state. Therefore we define h(si) as n−i+1. For a process state n associated

with si, any path from n to the process state nf that satisfies the goal must contain

process states associated with si+1, . . . , sn+1. The actual distance between n and nf

should be at least n − i + 1. So this h(si) is admissible function that can never

overestimate the actual distance.

5.1.2.1.2 Little-JIL Event Manager

The events for FSV are property events. They are generated according to the property

event bindings discussed in Chapter 3. An event binding maps a property event to

one or more concrete events in the process. There are three kinds of concrete events:

step state events, exception throwing events, and parameter def/use events. The step

state events can directly map to step states. For example, if there is a property event

binding saying “event e occurs if step s goes into the started state”, the Little-JIL

event manager will generate the event e if the active step state indicates that step s

is started. The exception throwing events correspond to TERMINATED step states with

specific exceptions. For instance, if there is a property event binding saying “event e

occurs if step s throws exception ex”, the Little-JIL event manager will generate the

event e only if the active step state indicates that step s is terminated with exception

ex. As discussed in Chapter 3, parameter def/use events can be treated as step

COMPLETED and STARTED states respectively.

5.1.2.2 Customization for FTA

In this section, we discuss how to customize the goal constructor and the Little-

JIL event manager for a MCS to allow the search engine to find a Little-JIL trace

that shows how events in the MCS cause the hazard to occur.
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5.1.2.2.1 Goal Constructor

Unlike the counter-example trace, the MCS contains a set of events that do not have

a specific order. Therefore the goal should accept sequences of those events occurring

in any order.

The MCS is a minimal set of primary events (or negation of primary events) that

could lead to the given hazard. As discussed in Chapter 4, only the following types

of basic events may appear in a MCS:

• Event Type 1: All inputs are correct, but S produces incorrect output o

• Event Type 2: Artifact o is wrong when S is posted (S is the root step)

• Event Type 9: Exception e is thrown by S

• Event Type 11: Step S is opted-out

• Event Type 13: Step S is retracted

Note that event of Event Type 2 can be a basic event only if the step S is the

root step. Otherwise, the event must be caused by another event within the process,

and thus cannot be a basic event. To match against the step state events generated

by the event manager, we need to do a simple event translation for the events in the

MCS. Notice that each basic event shown above is explicitly or implicitly associated

with a step state of the process. An event is translated to its corresponding step state

event using the following map:

All inputs are correct, but S produces incorrect output o → Step S is completed

Artifact o is wrong when S is posted → Step S is posted

Exception e is thrown by S → Step S is terminated by exception e

Step S is opted-out → Step S is opted-out

Step S is retracted → Step S is retracted
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The translation ignores the artifact information in the first two types of events.

This information is not necessary for generating the Little-JIL trace because whether

an artifact is wrong or not does not affect the control flow of the process. Suppose

there is a trace containing a step state event “S is completed”, we can interpret this

event as “All inputs are correct, but S produces incorrect output o” (o is an output of

S). This interpretation does not invalidate the trace.

After the event translation, a MCS becomes a set of step state events {e1, e2, . . . ,

en}. This is an unordered set of events as opposed to the ordered event sequence

extracted from the counter-example trace in FSV. Since we want to find a Little-JIL

trace along which events in the MCS cause the top event to occur, we should also take

the top event into consideration. The top event also needs to be translated into a

step state event h. Given the set {e1, e2, . . . , en} and h, the goal finite state automata

satisfies the following conditions:

1. Each state in the goal is a sub-set of {e1, e2, . . . , en}, except the accepting state

sa and the violation state sv. The initial state s0 is the set {e1, e2, . . . , en}.

2. Given a state s that is neither sa nor sv,

(a) If s is not an empty set, for each event e in s, there is a transition with the

label e from the state s to the state s′ = s− e. There is also a transition

with the label !e from s to the violation state sv. !e is the negation of event

e;

(b) For the state s that is the empty set, there are a transition labeled h from s

to the accepting state sa and a transition labeled !h from s to the violation

state sv. h here is the hazard event.

3. Given a state s, if an event e does not appear on a transition defined in 2, the

event e will not change the state.
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Figure 5.3. Goal FSA from MCS

Figure 5.3 shows the goal for a MCS that contains event e1 and !e2 after the event

translation.

Although there may exist multiple paths from a state to the accepting state, the

lengths of those paths are the same. For a state si that contains n events, it cannot get

to the accepting state unless all n events as well as the hazard event h are encountered.

Therefore, h(si) = n + 1. It is obvious that this h(si) is admissible and can never

overestimate the actual distance.

5.1.2.2.2 Little-JIL Event Manager

The Little-JIL event manager for FTA is trivial. As shown above, the FSA generated

by the goal constructor is defined over step state events. Therefore, the Little-JIL

event manager simply returns the event that corresponds to the active step state.

For example, Little-JIL event manager will generate the event Step S is started if the

active step state indicates that step S is started.

5.1.3 Scaling Problem

Although this approach avoids the difficulties faced by the reverse-mapping ap-

proach, it might not work if the counter-example trace contains too few events and the

process is very large. In this case, the A* search has to search almost all executions of

the Little-JIL process definition and may run out of memory. One possible solution
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is to automatically select some steps that change the control flow of the process and

annotate them with additional events during the translation. This will result in a

counter-example trace that contains more events, but should alleviate the problem.

In fact, the more events that are added, the faster the high-level trace can be found.

However, adding events to the model usually slows down the verification because it

increases the model size. For future work, it would be interesting to explore the

strategies to minimize total time and perform an experimental evaluation of those

strategies.

5.2 Trace Visualization

The Little-JIL trace produced by the high-level trace generation tool, as well

as other techniques such as simulation, is usually represented as a sequence of step

executions annotated with necessary information, such as events, time, and artifact

usage. Since the processes to be analyzed tend to be complex, the traces are often

lengthy and verbose. This prevents them from being easily comprehended by the

analyst.

To solve this problem, we implemented a generic Little-JIL trace visualization

tool that is able to display traces produced by different analysis tools using different

graphic representations. Since the traces often carry a lot of information, we suspect

that one single representation might not be that helpful. Instead, several comple-

mentary representations that display different aspects of the traces might sometimes

be a better choice. After investigating various existing techniques for representing

the phases and activities of work flows or project executions, such as the Gantt

Chart [57], we support two trace visual representations: the Structured Textual View

and the Timeline View. We believe that they are able to help analysts to navigate

and understand the Little-JIL traces more easily.
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Figure 5.4. Simple Trace Example

To present these two representations, we use the simple example showed in Fig-

ure 5.4. The trace on the right is a Little-JIL trace that violates a property of the

process on the left. The trace is a sequence of step states, some of which are associated

with property events. For example, state Leaf1 STARTED in the trace is associated

with event event1. Note that trace produced by other analyses may be annotated

with data other than the events. In the two representations that we discuss, this data

is treated in the same way as events.

5.2.1 Structured Textual View

An important feature of Little-JIL is that a process is organized as the hierarchical

decomposition of steps. The user can often understand the high-level logic of the

process by looking at the first few levels of steps. If necessary, the user can also

quickly pinpoint the step of interest by following the hierarchical structure of the

process. This hierarchical structure information, however, is buried in the Little-JIL

trace. The structured textual representation tries to retrieve the hierarchical structure

information as much as possible from the plain trace and present the trace to the user

using this information.
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Figure 5.5. Structured Textual View

Figure 5.5 shows the structured view of the example trace. The first column is a

tree. The leaf nodes are trace nodes from the Little-JIL trace. The non-leaf nodes

are called scope nodes that are intended to match the steps in the process. The

trace nodes under a scope node constitute a sub-trace. Because of the interleaving,

some steps in the process may not have corresponding scope nodes. In the example

trace, the trace nodes of step Leaf1 and Leaf2 interleave with each other because

the parent step Sub1 is a parallel step. Therefore, we are not able to put them under

different scope nodes without changing their order. The second column shows the

index for each trace nodes and the third column shows the events corresponding to

the trace nodes.

The structured textual view allows the user to collapse or expand scope nodes.

When a scope node is collapsed, the index range of the sub-trace corresponding to

the scope node will appear in the index column, and the sequence of events in the

sub-trace will appear in the event column. The view also allows the user to filter
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Figure 5.6. Timeline View

certain types of trace nodes. The user, therefore, is able to look into the slice of the

trace by filtering out all POSTED traces nodes.

5.2.2 Timeline View

The Timeline View consists of two panels. The left panel is the process tree view.

The right panel shows the trace nodes in the two dimensional way. The x-axis is

the time. Since there is no time information in the trace generated by the process

verification, we use the indexes of trace nodes to represent the time. The y-axis is

the steps in the left panel. The trace nodes of a step lay on the same horizontal

line corresponding to the step on the left panel. Different types of trace nodes are

distinguished using different letter and color. For instance, a node with letter P and

grey color represents a POSTED trace node. If a node is associated with an event, the

event will be shown above or below the node depending on the position of the node.

Moreover, there is a vertical red line crossing every node with event.

The Timeline View also allows the user to collapse non-leaf steps. When a step is

collapsed, the trace nodes between the first and the last node of the step become a

dash line, as shown in Figure 5.7. The events in-between, however, are still visible.
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Figure 5.7. Timeline View - Collapsed

5.3 Summary

In this chapter, we discussed our high-level trace generation approach that is able

to generate high-level process traces based on counter-example traces through the

model used by the verification tool. Instead of mapping the counter-example trace

backward along the translation and optimizations, this approach performs an A*

search on the process definition with the search goal being the sequence of property

events as they appear in the counter-example. One advantage of this approach is

that it will not be affected by changes in the translation and optimizations. Another

major advantage of this approach is that, with a few minor changes, it can be reused

to generate the process traces from MCSs produced by FTA. Due to the complexity in

real-world processes, process traces produced by the high-level trace generation tool

as well as other techniques could be lengthy and verbose, preventing them from being

easily comprehended by analysts. To make process traces more accessible to analysts,

we provided support for visualizing process traces using two graphic representations:

the Structured Textual View and the Timeline View. Although the discussion is based

on the Little-JIL process definition language, the underlying ideas of our approaches

can be adopted to generate and represent traces in other languages.

148



CHAPTER 6

EVALUATION

In this work, we designed and implemented an analysis framework that is capable

of performing Finite-State Verification(FSV) and Fault Tree Analysis(FTA) on Little-

JIL process definitions. It is intended to be used to effectively detect defects and

weakness in processes. To evaluate this analysis framework, we applied it to the

analysis of two non-trivial real-world, human-intensive medical processes: a In-Patient

Blood Transfusion process and a Chemotherapy process. The emphasis of these two

case studies has been on demonstrating errors and weaknesses found by the analysis

framework. In the remainder of this chapter, we first give a brief introduction to the

two selected medical processes. Then we present the two kinds of analysis techniques

that we applied. For each kind of analysis, we first describe the methodology employed

in applying the analysis, then present the analysis results and discuss the lesson

learned from the analysis.

6.1 Introduction to Selected Cases

Medical errors are a major cause of death in our society. A 1999 report from the

Institute of Medicine (IOM) [79] estimated that approximately 100,000 people die

each year in US hospitals from preventable medical errors. There is ample anecdotal

evidence that the complexity of the processes used to administer healthcare is a sig-

nificant source of the problem. The healthcare literature is replete with documented

evidence of such errors as administration of blood of the wrong type, misidentification

of patients, and incorrect dosages of potentially lethal medications.
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The medical community is aware of these problems and has approached them in a

number of ways. One principal approach has been to devise mandated procedures for

carrying out many healthcare activities, especially those identified as being particu-

larly high-risk. Mandated procedures are generally described in considerable detail,

sometimes in documents that are dozens of pages long. These documents consist

largely of natural language text, often supplemented by diagrams. These documents

are the basis for both the training of medical professionals and the actual processes

performed in hospitals. Despite the care that went into the creation of such docu-

ments, as well as other safety measures, a subsequent IOM study [110] revealed that

error rates in hospitals had not declined significantly in the five-year period following

the initial IOM report.

Examination of documents used to describe medical processes suggests several rea-

sons why such documents have proven to be inadequate. Documents describing such

processes as blood transfusion (e.g., [134], [135]) provide good examples of the prob-

lem. Despite attempts to be complete, they contain terms that are poorly defined

and inconsistently used, and important details are often missing, especially details

for handling special cases that might arise. Recognizing such limitations, the medical

community has tried to employ a number of modeling representations, but these are

usually based upon such formalisms as data flow graphs that make it relatively cum-

bersome to represent the handling of exceptional cases or complicated concurrency

and synchronization. As a result, these representations generally fail to represent the

full complexity of these processes.

Indeed, the many diverse circumstances under which activities like blood trans-

fusions must take place require processes of considerable complexity. Moreover, a

medical process often requires coordinating the efforts of many different parties, of-

ten performing their activities in parallel. The complexity of a process increases the

risk of defects. This suggests that the finite-state verification and fault-tree analysis
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used to analyze complex, distributed systems might be effective in analyzing medical

processes. Therefore, in our case study we chose two medical processes: an In-Patient

Blood Transfusion process and a Chemotherapy process. More specifically, the two

selected processes are real-world processes actually being performed in the hospital,

instead of processes defined in a textbook or medical reference. This is because we

hope that our analysis can directly help the medical professionals to identify errors

and weakness in the processes that they perform.

It should be noted that although both cases are medical processes, this work also

suggests the applicability of our approach to human-intensive, safety-critical processes

in other problem domains.

6.1.1 In-Patient Blood Transfusion Process

The blood transfusion process is used to administrate blood or blood product to a

patient’s bloodstream. It is a common, high-risk, human-intensive medical interven-

tion. Despite strict regulation by the US Food and Drug Administration as well as

healthcare accreditation agencies, the error rate in blood transfusion is significant and

believed to be underreported [64]. The blood transfusion process that we are going

to analyze is an In-Patient Blood Transfusion process, which is a blood transfusion

process specific for patients who are hospitalized overnight. Although usually follow-

ing the similar high-level steps, the in-patient blood transfusion processes practiced

in different hospitals or medical institutes may vary in details. In our case study, we

choose to model and analyze the one employed in the Baystate Medical Center in

Massachusetts.

Figure 6.1 shows the top-level diagram of this process defined in Little-JIL. The

full process is provided in Appendix D. The simplified blood transfusion process

used as the running example in the discussion of our process analysis framework is

a highly simplified version of this in-patient blood transfusion process, where several
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Figure 6.1. In-Patient Blood Transfusion Process

sub-processes are abstracted into leaf steps and most of the checks and exception

handlers are removed.

An in-patient blood transfusion process cannot start unless there is a blood trans-

fusion order from a physician. Therefore, the root step “perform in-patient blood

transfusion has a pre-requisite step “confirm physician order for blood transfusion.

This step checks whether a blood transfusion order is presented. If no order is pre-

sented, an exception “NoPhysicianOrder will be thrown and the whole process is

terminated.

One blood transfusion order may require blood products to be transfused to the

patient several times. The step “carry out physician order for transfusion” models the

process that needs to be followed each time the blood products are transfused. There

is a cardinality + adjacent to the edge between step “perform in-patient blood transfu-

sion” and step “carry out physician order for transfusion”, which means that “carry

out physician order for transfusion” will be done one or more times, as prescribed in

the physician order. Since “perform in-patient blood transfusion” is a sequential step

(note the right arrow in the left hand side of the step bar), instances of “carry out
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physician order for transfusion” must be executed sequentially. The step “carry out

physician order for transfusion” has five sub-steps. Since it is a sequential step, once

it is started, five sub-steps will be executed one by one, from left to right. The first

sub-step “check for existence of type and screen” obtains the blood type and screen

for the patient. Then the step “prepare documentation for blood pick-up” creates the

blood pick up document based on the blood type and screen. Given the pick up doc-

ument, blood products can be obtain from the blood bank following the step “pick

up blood from blood bank”. In the step “perform transfusion”, the blood products are

transfused to the patient. The step “perform follow through check” performs the nec-

essary last check on the patient. Note that all four sub-steps except “perform follow

through check” do not have triangles attached to their step bars, which means that

they are references. Each of them refers to a sub-process defined in another diagram.

6.1.2 Chemotherapy Process

Chemotherapy is the use of chemical substances to treat disease. In its modern-

day use, it refers primarily to the administration of cytotoxic drugs to treat cancer.

Chemotherapy medications are typically highly toxic, and thus it is of overriding

importance to be sure that the right patient receives the right medications in the

right dosages at the right times. To assure this, elaborate processes are carried

out that integrate the efforts of such diverse medical personnel as doctors, nurses,

pharmacists, and clerical workers. Chemotherapy processes aim to speed the flow

of treatment, while assuring that errors do not occur. Checks are in place to guard

against committing such errors. Similar to the in-patient blood transfusion process,

we also selected a chemotherapy process employed in the Baystate Medical Center.

Figure 6.2 is the top-level diagram of chemotherapy process defined in Little-JIL.

The entire Little-JIL process definition has more than 250 steps and is provided in

Appendix H. The root step “chemotherapy process” has two sub-steps. The first
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Figure 6.2. Chemotherapy Process

sub-step, “prepare for and administer first cycle of chemotherapy”, is further decom-

posed into six sub-steps to be executed in sequence. These six sub-steps capture the

major stages of the chemotherapy process. Although the agent assignments are not

given in this diagram, “perform consultation and assessment” is done by a Medi-

cal Doctor(MD); “perform initial review of patient records” by a Practice Registered

Nurse(RN) and a Triage Medical Assistant; “perform pharmacy task” by a Pharma-

cist; “perform patient teaching” by a Nurse Practitioner; “perform final tasks (day

before chemo)” by a Pharmacist and a Clinic RN; and “first day of chemo” is done

again by a Pharmacist and a Clinic RN. In the step “perform consultation and as-

sessment”, the doctor may determine that the patient’s pathology report does not

indicate cancer. In this case, the Pathology Report Does Not Indicate Cancer excep-

tion is thrown (the decomposition of the “perform consultation and assessment” step

is not shown due to space limitations). The exception propagates up the tree until it

reaches the root step that has a matching handler “consider alternative treatment”.
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Thus, control is transferred to “consider alternative treatment” and appropriate ac-

tion is taken.

The second sub-step of the root step is “create and process consult note”. It

is further decomposed into two sub-steps: “dictate consult note” performed by a

Medical Doctor(MD) and “transcribe and place consult note in patient’s record” by a

Medical Records Clerk. Since the consult note is primarily used for billing and legal

purposes and does not directly affect the patient’s treatment, the doctor may choose

to dictate the consult note right after evaluating the patient or later, while the tasks

in “prepare for and administer first cycle of chemotherapy” are already underway.

Therefore the root is modeled as a parallel step so that the “dictate consult note”

step can potentially execute in parallel with the step “prepare for and administer

first cycle of chemotherapy”. At the same time, the channel “consultation channel”

imposes the additional restriction that the doctor cannot dictate the consult note

before evaluating the patient’s condition — the step “dictate consult note” takes

a parameter from the “consultation channel” and thus cannot start until “perform

patient consultation” (not shown for lack of space), which is a sub-step of “perform

consultation and assessment”, completes and writes a parameter to the “consultation

channel”.

6.2 Methodology

Each case study involves four phases. We first rigorously specify the process in

Little-JIL language. Then the properties collected during the process specification

are defined using Propel. Given the Little-JIL process definition and the Propel

property specifications, the FSV tool is used to verify the process definition against the

property specifications. During the verification, the process definition and property

specification may need to be changed to eliminate the violations found by the FSV
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tool. Once there are no more violations, we finally apply the FTA to look for the

weakness in the process.

6.2.1 Process Specification

As mentioned above, we intend to analyze the process that is actually being fol-

lowed in the hospital, instead of the process defined in a textbook or medical reference.

To elicit such process, we met regularly with a group of medical professionals who

perform the real process. The medical professionals are responsible for describing

the processes and reviewing the material created by us. And we are responsible for

defining the process in Little-JIL. The process is first described by the medical pro-

fessionals in natural language, sometimes complemented by flow graphs. We then try

to capture the description using Little-JIL language. Due to misunderstandings, the

Little-JIL process definition may not correctly capture the real process. Therefore,

we need to explain the process that we specified to the medical professionals. To

do this, we employ a Little-JIL process description generation tool to automatically

create the detailed description of the process definition. The description explains

every details of the process definition in a disciplined natural language that can be

easily understood by the medical professionals. The medical professionals then study

this description to check for any inconsistency. With their feedbacks, we modify the

process definition accordingly and generate a new description. This iteration ends

when both sides agree that there is no inconsistency between the process definition

and the real process.

6.2.2 Property Specification

The FSV can only identify errors that violate the given properties. To detect

more errors, we need to come up with as many properties as possible. The initial set

of properties are collected from the requirements given in regulations and references.

While the process is being defined, it is also not unusual for goals or high-level re-
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quirements to be mentioned. These requirements are recorded into the requirement

set. After the process definition has begun to stabilize, meetings are then held to

elicit the set of requirements into properties that can be verified by the verification

framework. The requirements are usually initially stated informally in natural lan-

guage. We first work with the medical professionals to agree on a glossary of terms

that are used to more systematically describe the requirements, but still in natural

language. After agreement is reached on these statements, we work closely with the

medical professionals to develop the detailed property specifications using Propel.

Similar to the process definition, property specification is also an iterative process,

which ends when the property specifications are believed to correctly formulate the

requirements.

6.2.3 Finite-State Verification

As mentioned earlier, the formal properties are defined in terms of abstract events.

Before verifying such properties, we work together with the medical professionals to

specify event bindings that map abstract events in the properties to the concrete

events. After the process definition, property specifications, and property event bind-

ings are ready, we apply the FSV tools to evaluate whether the process definition is

consistent with the formal properties. It is often the case that the FSV tools find

problems in the process definition and in the property specifications as well as in the

process. We carefully record these problems during the verification, and consult the

medical professionals before making changes to the process definition, the property

specifications, or to the actual process to eliminate those problems. To make sure

that no error is introduced by the changes, we re-run the verification on the modified

process definition and property specifications. This iterative procedure completes

when no more problems are detected.
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6.2.4 Fault-Tree Analysis

After the verification is completed, the fault-tree analysis is applied on the process

definition. The hazards that we are interested are straight-forward for both processes

that we investigate. For the in-patient blood transfusion process, the hazard is that

the blood products to be transfused to the patient are wrong. For the chemotherapy

process, the hazard is that the chemo drugs to be administered are incorrect. For a

process, we first define the hazard as the top event. With the top event, our FTA tool

automatically derives the fault tree from the process definition. It also computes the

MCSs for the fault tree. We carefully investigate the MCSs to identify the weaknesses

of the process. The results are presented to the medical professionals as guidance for

them to further improve the process.

6.3 Results and Discussion

Each of the four phases may detect various problems and errors. Since this thesis

focuses on the process analysis, we only present and discuss the results of the finite-

state verification and fault-tree analysis here.

6.3.1 Finite-State Verification

The complete verification reports for the two processes can be found in Appendix E

and Appendix I. In this section, we first summarize the verification results of the two

processes. Then we discuss various kinds of problems and errors identified during the

verification in details.

For the in-patient blood transfusion process, 60 properties were specified. 5 of

these cannot be verified because they are timing properties. Another 6 cannot be

verified because we could not find appropriate bindings for them. Among the remain-

ing 49 properties that were verified, 41 properties were violated. For the chemotherapy

process, 57 properties were specified. 13 of these cannot be verified because we could
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not find appropriate bindings for them. Among the remaining 44 properties that were

verified, 11 properties were violated.

The errors found during the verification fall into three categories: errors in the

process definitions, errors in the property specifications, and errors in the real pro-

cesses.

6.3.1.1 Errors in the process definitions

The majority of errors fall into this category. Some of these were exposed when

we were trying to define the event bindings for certain properties. There simply

were no steps in the process definition that could be bound to the abstract events

used to specify those properties. In some cases, this was because the part of the

process intended to address the issue being captured by a property was simply missing

and had to be added. For instance, in the in-patient blood transfusion process,

there was no step that can be bound to the event “review patient history” in the

property “Must review patient history before infusing each unit of blood product”. This

pointed out that an important step “review patient history” as well as the exception

handler “handle previously unrecognized patient problem” to handle the exception

ProblemFoundInPatientHistory thrown by this step were missing. In other cases, the

problem was that certain steps needed to be further decomposed to identify the sub-

steps that should be bound to the property events. For example, there is an event

“review patient history” in the property “Must review patient history before infusing

each unit of blood product”. However, we were not able to identify a step in the

in-patient blood transfusion process that related to this event. This problem showed

that the leaf step “assess patient” needed to be decomposed to add a sub-step “review

patient history”.

The actual verification helped us to find errors in the process definitions. Some

of these were so subtle that they remained undiscovered despite careful inspection by
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both medical professionals and us. For example, the in-patient blood transfusion pro-

cess definition specified that if discrepancies occur during the “verify blood product”

step, then “verify blood product” is to be terminated and a FailedBloodProductCheck

exception is to be thrown. The handler “handle failed blood product check” requires

the nurse to send the blood product back to the blood bank and obtain a replace-

ment blood product. The exception continuation badge of this handler was specified

to be continue, which implied that, after this exception has been handled in this way,

the process continues with the nurse signing the blood bank form after obtaining

the replacement product. This process thus violated the property “Must verify the

blood product before it is transfused to the patient”, where the event “verify the blood

product” is bound to completion of the step “verify blood product”. It is clear that

this would introduce the potential for serious medical error, and in the actual process

the nurse verifies the patient identification and the product identification again after

obtaining the replacement product. Thus, attempting to verify this property indi-

cated that the exception’s continuation badge was wrong and needed to be changed

to restart.

6.3.1.2 Errors in the property specification

The verification also helped us to discover several errors in the property speci-

fication. Some properties were specified incorrectly because we overlooked certain

exceptional situations under which the properties are not required to hold. For in-

stance, a violation was initially found when we verified the in-patient blood transfu-

sion process against the property “Obtain Patient’s stated name and birth date before

infusing each unit of blood product”. The violation showed that when the patient

is unable to communicate to the nurse (i.e. the patient is in coma), an exception

PatientUnableToCommunicate will be thrown. The exception handler then directs

the nurse to obtain the patient’s name and birth date in another way. In this case,
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the event “obtain patient’s stated name and birth date” will not occur. It is obvious

that this property is not required for this exceptional situation. So we changed the

property specification to require the property to hold only if the exception Patien-

tUnableToCommunicate is not thrown. And verification showed no violation for the

modified property.

In addition, a few properties turned out to be unnecessary. In the in-patient blood

transfusion process, the step “verify blood product information” has four sub-steps

that check the different aspects of the blood product: “verify product tag matches

patient ID bracelet”, “verify product tag matches product label”, “check product ex-

piration date & time”, and “confirm product type on product tag matches that on

patient record”. There were several properties that required these sub-steps to be

executed in a specific order. The process definition, however, defines the parent step

“verify blood product information” to be a parallel step. This means that four sub-

steps may be executed in any order, which violates those properties. As we consulted

the medical professionals, they confirmed that in the real-world process, it does not

matter in which order those checks are performed, as long as they are completed

before the blood product is infused to the patient. Those properties only reflect the

choice of the person who suggested such properties, and should not be applied to

other practitioners.

6.3.1.3 Errors in the real processes

The most interesting error that we found is an error in the real-world chemother-

apy process. In attempting to verify the property “Consult note must be present

in patient’s record before chemotherapy can be administered”, we bound the event

“consult note is present in patient’s record” to the COMPLETED state of step “file

consult note in patient’s record”, and the event “administer chemotherapy” to the

STARTED state of step “administer chemo drug”. The verifier reported that the
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chemotherapy process may violate this property, and it produced a trace of a valid

execution of the process where “administer chemo drug is started before “file consult

note in patient’s record” is completed. To better understand the violation trace, let’s

look at Figure 6.2. Step “file consult note in patient’s record” is a sub-step of step

“transcribe and place consult note in patient’s record”, and step “administer chemo

drug” appears in the sub-process with the root step “first day of chemo”. Since the

root step “chemotherapy process” is a parallel step, step “administer chemo drug”

may indeed be executed prior to step “file consult note in patient’s record”. After

talking to the medical professionals, we found out that the medical records clerk who

files the consult note into the patient’s record assumes the clinic RNs check whether

the consult note is present in the patient’s record on the first day of chemotherapy.

The clinic RNs, however, said that they do not perform that check. Therefore, it is

possible that this error occurs in the real process. Although it probably will not lead

to an accident, it may cause serious legal issues if an accident happens. Such errors

exist because the process is very complicated, involving different people who have

conflicting assumptions about others’ responsibilities. Without formally specifying

and verifying the process. Such conflicts may remain undiscovered despite careful

inspection by the medical professionals.

The verification process involves defining the event bindings, running the verifier,

examining violation traces to identify the cause of errors, and consulting medical

professionals to eliminate errors. All these steps make the verification process very

lengthy. As we have seen, except the one in the real chemotherapy process, all errors

that we identified are in the formal process definitions and property specifications.

This is often the case when verifying software systems — much of the early effort of

verification is devoted to finding errors in the model and the properties. For human-

intensive processes, like two medical processes we investigated, this may be more
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significant since the initial artifacts from which process definition and properties are

derived are less concrete and precise than, say, source code.

Nevertheless, the effort invested on the verification, even for the blood transfusion

process where no errors in real process were found, still provided great benefits. The

direct benefit is that the verification greatly improves the accuracy of formal process

definitions, which are also intended to be used for other types of analysis (i.e. FTA),

simulation, and possibly even guidance in the clinical setting. With process definitions

that do not accurately reflect the real processes, these approaches may produce invalid

results or cause dangerous consequences. Another benefit is that verification provides

a solid foundation for process improvement in the future. As noted earlier, real-world

processes usually undergo continuous changes to cope with changed requirements,

discovered defects, inefficiencies, or the need to reduce costs, etc. The modifications

to the processes are usually made incrementally, with changes introduced to address

specific goal. To ensure that no errors are introduced by the change, one needs to

incorporate the change in the formal process definition and verify it against previously

verified properties. Often, the property event bindings can be reused, perhaps with

some changes to small parts of the process. The number of violations detected, if

any, should be much smaller than those detected for the original process definition.

Therefore, the verification process will usually be easier than that of the first round.

As mentioned earlier, the emphasis of verifying the two processes has been on

demonstrating that finite-state verification can be automated and applied to analyze

human-intensive processes. Although we did not perform a careful evaluation of how

optimizations improve the performance, verification of the two processes showed that

the optimizations can greatly scale up the verification framework. In our evaluation,

we used FLAVERS as the underlying verification tool in our process verification

framework. The verification was performed on a Dell Inspiron E1505 laptop with

Intel Core Duo CPU. Without applying the optimizations, the translated models for
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both processes caused FLAVERS running out memory with the maximum heap size

set to 1GB (FLAVERS is a Java program). When all the optimizations were enabled,

every property for both processes was verified in 1 minute.

6.3.2 Fault-Tree Analysis

For the In-Patient Transfusion process, we performed the FTA for the hazard

“the blood unit to be transfused to the patient are wrong”. On a Dell Inspiron E1505

laptop with Intel Core Duo CPU, it took our fault tree derivation tool 238 seconds

to derive the fault tree for this hazard. The fault tree contains 344 gates and 405

events (including 61 primary events and 344 intermediate events). Among the pri-

mary events, there are 25 fault events that could cause the hazard to occur and 36

conditional events that decide the propagation of those fault events. The Equivalent

Event Removal optimization removed 263 intermediate events and 263 gates, result-

ing in a fault tree with 142 events and 81 gates, as shown in Appendix F. To see

whether there is single point of failure in the process, MCSs need to be computed

from the fault tree. It took another 106 seconds to compute 37 MCSs, which are

listed in Appendix G. One might notice that there are more MCSs than primary

fault events. The reason is that one fault event may appear in more than one MCS,

representing different scenarios in which the fault event could cause the hazard to

occur. As discussed in Chapter 4, an MCS may contain spurious conditional events

that need to be removed. After manually removing those spurious events, all MCSs

still contain at least 6 events. Therefore, this process is not exposed to any single

point of failures with respect the given hazard.

For the Chemotherapy process, the hazard that we analyzed is “the chemo drug

to be administered to the patient is wrong”. It took 369 seconds to derive the fault

tree for this hazard. The fault tree contains 1345 gates and 1425 events (includ-

ing 80 primary events and 1345 intermediate events). Among the primary events,
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there are 52 fault events and 28 conditional events. The Equivalent Event Removal

optimization removed 1174 intermediate events and 1174 gates, resulting in a fault

tree with 251 events and 171 gates, as shown in Appendix J. 52 MCSs were com-

puted in 810 seconds. There is an MCS that contains only one event “Step handle

LabelAndOrderDontMatch(call pharmacy) produces wrong ChemoDrug”. Step “han-

dle LabelAndOrderDontMatch(call pharmacy)” is an exception handling step that is

invoked if any discrepancy between the chemo drug label and the chemo order is

detected. This step, therefore, needs to identify the error, in the chemo drug or in

the chemo order, that cause the discrepancy. If it turns out that the chemo drug is

wrong, the step needs to make a change to the chemo drug to fix the error. Since

this step is performed by a human agent, errors may be introduced into the chemo

drug during the execution of this step, as indicated by the fault event in the MCS.

The high-level process trace generated from this MCS shows that once step “han-

dle LabelAndOrderDontMatch(call pharmacy)” is completed, the process will proceed

to the next step and eventually execute step “administer chemo drug” because this

exception handling step is associated with a continue badge. Moreover, there is no

other step to check the chemo drug between this step and step “administer chemo

drug”. In other words, event “Step handle LabelAndOrderDontMatch(call pharmacy)

produces wrong ChemoDrug” will always cause the hazard to occur. This exposes a

single point of failure in the process definition.

6.4 Summary

We evaluated the proposed process analysis framework by applying our imple-

mentation of the process analysis framework to two real-world medical processes:

an In-Patient Blood Transfusion process and a Chemotherapy Process. The results

showed that the framework can be used to effectively detect the defects in such real-

world human-intensive processes. The FSV detected a large number of errors in the
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process definitions and the property specifications. More interestingly, it identified a

subtle error in the chemotherapy process itself. Through FTA, we discovered a single

point of failure in the chemotherapy process.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Processes are used in almost every domain in our society. For example, products

are produced by various manufacturing processes; software is developed following

software development processes; government or business services are provided via es-

tablished processes; healthcare is delivered through different medical processes. Such

real-world processes are often undergoing improvements in order to achieve various

goals, such as dealing with changed requirements, eliminating defects, increasing the

quality of the products, and reducing costs. Analysis should play a critical role in

process improvement. Identifying and evaluating the root causes of the problem (i.e.

failing to meet changed requirements, discovered defects and low quality) require care-

ful analysis of the process. In addition, since errors may be introduced by changes to

the process, re-analysis should be carried out to detect such errors before the modified

process is deployed. To date, the analysis support for such processes is very limited.

If done at all, it is usually performed manually and can be time-consuming, costly and

error-prone. Analysis of human-intensive processes, where the human contributions

require considerable domain expertise and have a significant impact on the success or

failure of the overall mission, are of particular concern because they can be extremely

complex and prone to errors.

In this thesis, we investigate how two selected safety analysis techniques — Finite-

State Verification (FSV) and Fault Tree Analysis (FTA) — can be automated and

applied to analyze human-intensive processes. We developed an analysis framework

that is capable of performing both FSV and FTA on processes specified in a process
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definition language with precisely defined semantics. For FSV, we proposed a general

process FSV framework that is intended to address three practical issues: flexibil-

ity, scalability and usability. To address the flexibility issue, a two-phase translation

approach was proposed to facilitate using different existing verification tools. To ad-

dress the scalability issue, several optimizations are proposed to reduce the size of the

translated models. To address the usability issue, automatic support is provided to

translate properties and violation traces. For FTA, we implemented a template-based

approach to automatically derive fault trees from Little-JIL process definitions. When

applying this approach to derive fault trees from real-world processes, we encountered

three issues: scalability, looping construct and NOT gate. To address the scalability

issue, we proposed three optimizations that are able to significantly reduce the size of

fault trees so that they can be understood and evaluated more easily. To address the

looping issue, we applied a simple approach to remove loops in fault trees so that they

can be analyzed using existing fault tree evaluation tools. To obtain more accurate

results, we chose to use NOT gates to capture relationships between certain condi-

tional events. In addition to the support for automatic fault tree derivation, we also

proposed two representations — partial fault tree and process trace — to make MCSs

more easily understood. This process analysis framework has been implemented for

the selected Little-JIL process definition language and been applied to analyze two

real-world human-intensive processes: an In-Patient Blood Transfusion process and a

Chemotherapy process. The results showed that the process analysis framework can

be used to effectively detect the defects in real-world human-intensive processes.

In the remainder of this chapter, we discuss several directions for future research.

7.1 Finite-State Verification

To verify real-world processes, scalability is always one of the most important

issues that need to be addressed. In our process verification framework, we proposed
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several optimizations that are able to take advantage of aspects of the structure of

the process definitions to reduce the size of the models. Our evaluation showed that

the optimizations were able to greatly improve the performance of the verification

of two selected medical processes. But those two processes are relatively simple.

As we extend our work to consider processes involving many medical professionals

carrying out many activities in parallel, we expect that the time and memory resources

required will limit the applicability of our analysis frameworks. Therefore, we need

to look for more optimizations to further scale up our analysis frameworks. We plan

to investigate existing optimizations used in software verification to see whether we

can incorporate them into our process verification framework. We will also look for

domain-specific optimizations that take advantage of special features of processes in

specific domains.

7.2 Fault Tree Analysis

The fault tree derivation algorithm that we implemented may produce inaccurate

results. Since a Little-JIL process definition only defines the interface of a leaf step,

which does not specify how the leaf step produces its outputs from its inputs. There-

fore, the fault tree derivation algorithm has to assume that any output of a leaf step

depends on all its inputs. Thus, leaf steps that do not satisfy this assumption may

cause the derived fault tree to contain superfluous sub-trees. Evaluation of such fault

trees may result in inaccurate results. In addition, as shown in the example discussed

in Section 4.3, computed MCSs may not be minimal because our fault tree derivation

algorithm is not able to identify the relationships between different primary events.

To improve the precision of FTA, we plan to extend the fault tree derivation algo-

rithm to allow analysts to precisely specify the dependencies between outputs and

inputs for certain leaf steps as well as relationships between different primary events.
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The fault tree derivation algorithm is a polynomial algorithm that is able to derive

fault trees from complex real-world processes. The bottleneck is in the understanding

and evaluation of derived fault trees. In our approach, we proposed three optimiza-

tions to reduce the size of fault trees so that they can be understood and evaluated

more easily. To further reduce the size of fault trees, we intend to consider a partition

approach that decomposes a large fault tree into several smaller sub-trees that are

easier to understand. To evaluate the fault tree, one should be able to evaluate the

sub-trees individually and then combine or summarize the results.

7.3 Trace Generation and Visualization

In our approach, we use an A* search algorithm to generate a high-level process

traces from a low-level counter-example traces produced by verification tools or a

MCS created by FTA. Although this approach avoids the difficulties faced by the

reverse-mapping approach, it might not work if the counter-example trace or the

MCS contains too few events and the process is very large. In this case, the A*

search has to search almost all executions of the Little-JIL process definition and

may run out of memory. One possible solution is to automatically select some steps

that change the control flow of the process and annotate them with additional events

during the translation. This will result in a counter-example trace that contains more

events, but should alleviate the problem. In fact, the more events that are added, the

faster the high level trace can be found. However, adding events to the model usually

slows down the verification because it increases the model size. For future work, it

would be interesting to explore the strategies to minimize total time and perform an

experimental evaluation of those strategies.
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7.4 Failure Mode and Effects Analysis

In this work, we adapted two analysis techniques to analyze processes. The

next technique that we start to investigate is the Failure Mode and Effects Analysis

(FMEA), also referred to as Failure Mode Effect and Criticality Analysis (FMECA)

[120]. It is a hazard analysis technique that can be used to evaluate the impact

of an individual failure mode of a component on the overall system. FMEA was

originally developed by the US military in 1949, described in Military procedure

MIL-P-1629 [130], to evaluate the effect of system and equipment failures. It was

then used by NASA in the early sixties for the Apollo Project. In the early 1980s,

FMEA was introduced to automotive industry in the U.S. The application led to an

industry-wide FMEA standard SAE J-1739 [29] developed by Chrysler Corporation,

Ford Motor Company and General Motors Corporation. Since then, the generic na-

ture of the method assisted the rapid spreading of FMEA to various other industries,

such as aerospace industry and chemical industry. Besides manufacturing industries,

many service providers, such as heath care providers [42], also apply FMEA to as-

sess and improve their service delivery processes. Introduced by Reifer in 1979 [111],

FMEA began to be used to analyze software based systems. Details about various

software FMEA approaches can be found in [101].

In FMEA, A failure mode at a component basically refers to a fault that could

occur at the component. FMEA usually involves five steps:

1. Modeling the system. The system model is usually specified using a flow chart.

It is also used to prescribe the boundary and granularity of the analysis.

2. Identifying failure modes. For each component in the system model, all possible

ways the component may go wrong need to be considered and represented as

failure modes.
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3. Determining failure effects. An inductive procedure is used to determine all pos-

sible hazards that could eventually be caused by each component failure mode.

Given a failure mode, the procedure identifies its immediate effects based on

the underlying dependency and interactions between components. Those failure

effects are represented as failure modes at successor or next higher level com-

ponents, which in turn need to be further developed. This iteration continues

until the hazards are reached.

4. Prioritizing failure modes Failure modes then can be prioritized by their risks.

There are a number of different methods that can be used to evaluate the risk

of a failure mode based on the severities of the hazards caused by it as well as

other data such as probability and detectability of a failure mode.

5. Identifying potential causes and proposing actions. For failure modes with high

priorities, potential causes are identified and actions that can be applied to

eliminate or reduce those causes are proposed.

The information produced during the FMEA, such as failure modes, hazards

caused by those failure modes, risks of failure modes, causes, and actions, are recorded

in a worksheet. This worksheet can then be used as guidance for improving the design

or implementation of the system.

Similar to the FTA, the traditional FMEA is also conducted manually by a team

with comprehensive knowledge of the system being analyzed. It is obvious that step

(1), (4), and (5) cannot be automated. Thus, we focus on developing an approach

that is able to automatically identify failure modes and determine failure effects. As

a matter of fact, the failure modes in FMEA and the events in FTA both refer to

the faults in components. Therefore, we can use the set of predefined events in the

automatic fault tree derivation to represent the failure modes. Templates used in

automatic fault tree derivation can also be used to determine failure effects of a given
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failure mode. As mentioned above, in each iteration of the procedure to determine

failure effects, the analyst need to identify other failure modes that could be caused

by a given failure mode. This can be automated by finding all templates whose leafs

contain the given failure modes. Since a template is a tree where the leaf cause

the root to occur, the roots of identified templates are the failure modes that could

be caused by the given failure mode. We have demonstrated the feasibililty of this

idea by implementing it in a prototype. This prototype was able to automatically

produce the FMEA worksheet from a simplified blood transfusion process defined in

the Little-JIL process definition language [132]. As future work, we plan to improve

this prototype and apply it on complex real-world, human-intensive processes.

7.5 Interplay of Different Analysis Techniques

All three analysis techniques (FSV, FTA, FMEA) have their own limits. They

seem to complement each other. We expect that more comprehensive results can be

produced by integrating these analysis techniques. In FSV, the kinds of errors can

be detected depend on the properties verified. In other words, errors could not be

found unless the corresponding property is verified. Therefore, the analyst needs to

think of as many properties as possible. This usually is a very difficult task. During

our preliminary experiments, we observed that a large part of the properties address

the checks for the faults occurring in steps. Therefore, the faults produced by FTA

or FMEA may help the analyst to think of more properties. On the other hand, by

detecting errors in the process definitions, FSV can help to increase the credibility of

the results produced by FTA and FMEA. Since both FTA and FMEA are performed

on the process definitions, such errors may cause FTA and FMEA to produce invalid

results. FTA and FMEA can also complement each other. For FTA, it is often

difficult to come up with all important hazards. On the contrary, a problem for

FMEA is that it might be a challenge to identify all possible failure modes in the
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system. Therefore, approaches such as [83] try to solve this problem by combining

FTA and FMEA. In these approaches, the primary events identified by FTA serve as

the inputs for FMEA. And hazards produced by FMEA may in turn be used to find

more primary events by FTA. Similar to these approaches, we also plan to investigate

how to combine FTA and FMEA to achieve more complete results.

Ultimately we envisage the development of a process environment in which a

spectrum of process analysis techniques are smoothly integrated with the process

definition tool. Such a support environment would hopefully lead to a systematic

and well-reasoned approach to process improvement.
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APPENDIX A

LITTLE-JIL PROCESS TRANSLATION TEMPLATES

Posting Template

This type of template translates the behaviors after a step is POSTING and before

it is POSTED. Since such behaviors are the same for all steps, only one template is

defined for this type.

After a step is POSTING and before it is POSTED, the step may pass in param-

eters and obtain artifacts from channels. Since the Little-JIL process definition does

not define the behavior of a leaf step, in our translation the behaviors of leaf steps

are abstracted using a conservative model (see A). Our implementation is based on

Little-JIL 1.4. In this version, a parameter may only affect the flow of control in

a leaf step. Since such effect is subsumed by the abstract model of the leaf step,

parameters and parameter passing can be ignored. Therefore, the posting template

only translates the behavior to obtain artifacts from channels.

As discussed in Chapter 3, a channel is simply translated into a Boolean variable

that indicates whether the channel is empty. Little-JIL provides four operators to

obtain an artifact from a channel: Blocking Take, Non-Blocking Take, Blocking Read

and Non-Blocking Read. Here we use a simple example to explain how these operators

are translated by the posting template. Suppose that there is a step S that has an

input parameters p and p gets an artifact from a channel channel.

Suppose that operator Blocking Take is used to obtain an artifact from channel

to p. If the channel is not empty, an artifact is removed from the channel and is

put into the parameter. Otherwise, the step is not posted until an artifact becomes
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1 loc S_POSTING:
2 when true do { } goto S_channel_take;

3 loc S_channel_take:
4 when ( channel == false ) do { }
5 goto S_channel_take;

6 when ( channel != false )
7 do { channel := false; }
8 goto S_POSTED;

Figure A.1. BIR for Posting Template - Channel Blocking Take

1 loc S_POSTING:
2 when true do { } goto S_channel_nbtake;

3 loc S_channel_nbtake:
4 when true
5 do { channel := false; }
6 goto S_POSTED;

Figure A.2. BIR for Posting Template - Channel Non-Blocking Take

1 loc S_POSTING:
2 when true do { } goto S_channel_read;

3 loc S_channel_read:
4 when ( channel == false ) do { }
5 goto S_channel_read;

6 when ( channel != false ) do { }
7 goto S_POSTED;

Figure A.3. BIR for Posting Template - Channel Blocking Read

1 loc S_POSTING:
2 when true do { } goto S_channel_nbread;

3 loc S_channel_nbread:
4 when true do { } goto S_POSTED;

Figure A.4. BIR for Posting Template - Channel Non-Blocking Read
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available in the channel. The BIR code generated by the posting template for step

S is shown in Figure A.1. Once in the POSTING state, the step proceeds to obtain

an artifact from the channel channel (line 3-8). It first checks whether the channel

is empty (channel == false). If so, it keeps going back to check again until the

channel is not empty. If the channel is not empty, the channel is set to be empty

(channel := false) and the step S goes into the POSTED state.

Figure A.2 shows the case where operator Non-Blocking Take is used. If the

channel is not empty, an artifact is removed from the channel and is put into the

parameter. Unlike Blocking Take, Non-Blocking Take does not block the step even if

the channel is empty. Therefore, the BIR code does not check whether the channel

is empty. It simpy sets the channel to be empty and posts the step.

Figure A.3 shows the case where operator Blocking Read is used. Blocking Read

is similar to Blocking Take except that the artifact is copy to the parameter and is

not removed from the channel. Therefore, if the channel is not empty, the BIR code

simply posts the step without setting the channel to be empty.

Figure A.4 shows the case where operator Blocking Read is used. In this case, no

matter whether the channel is empty or not, the BIR code posts the step without

setting the channel to be empty.

Posted Template

This type of template translates the behaviors after a step is POSTED. After

posted, a step may be opted-out or retracted under some circumstances. If it is not

opted-out or retracted, the step is started. The only template of this type simply

uses appropriate Opted-Out Template and Retracted Template to translate behaviors

that check whether the step should be opted-out or retracted.
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1 // For Sub1:

2 loc Sub1_test_retract:
3 when (S_choice != 0) do { } goto Sub1_RETRACTED;

4 when (S_choice == 0) do { } goto Sub1_test_optout;

5 loc Sub1_RETRACTED:
6 when true do { } goto T_Sub1_end;

7

8 // For Sub2:

9 loc Sub2_test_retract:
10 when (S_choice != 1) do { } goto Sub2_RETRACTED;

11 when (S_choice == 1) do { } goto Sub2_test_optout;

12 loc Sub2_RETRACTED:
13 when true do { } goto T_Sub2_end;

Figure A.5. BIR Representation for Choice Sub-Step Retracted Template

Retracted Template

This type of template translates the behavior that checks whether a step should be

retracted. In Little-JIL, only sub-steps if a choice step or sub-steps of a parallel step

may be retracted. Thereofre, two templates are defined: Choice Sub-Step Retracted

Template handles the sub-steps of choice steps; Parallel Sub-Step Retracted Template

handles the sub-steps of parallel steps.

Choice Sub-Step Retracted Template

A choice step allows agents to select one of several sub-steps to perform. A sub-

step of a choice step will be retracted if it is not the one chosen to be executed.

Suppose that there is a choice step S has two sub-step Sub1 and Sub2.

Figure A.5 shows the BIR code generated by Choice Sub-Step Retracted Template

for Sub1 and Sub2. This piece of code checks whether Sub1 should be retracted. The

first location (line 2-4) compares the variable S choice against constant 0. S choice

keeps the index of the sub-step that is chosen to be executed. The constant 0 is the

index of the sub-step Sub1. If S choice is not 0, Sub1 is not chosen to be executed.

Therefore it goes directly into the Retracted state, which ends the thread T Sub1.
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1 // For Sub1:

2 loc Sub1_test_retract:
3 when (e1 || e2) do { } goto Sub1_RETRACTED;

4 when !(e1 || e2) do { } goto Sub1_test_optout;

5 loc Sub1_RETRACTED:
6 when true do { } goto T_Sub1_end;

7

8 // For Sub2:

9 loc Sub2_test_retract:
10 when true do { } goto Sub2_test_optout;

Figure A.6. BIR Representation for Parallel Sub-Step Retracted Template

Otherwise, Sub1 continues to execute the code created by Opted-Out Template that

checks whether this sub-step is opted-out.

Parallel Sub-Step Retracted Template

For a posted sub-step of a parallel step, it should be retracted if any exception

is thrown by other sub-steps. Suppose that there is a choice step S has two sub-

step Sub1 and Sub2. Sub2 may thrown exception e1 and e2. Figure A.5 shows the

BIR code generated by Parallel Sub-Step Retracted Template for Sub1 and Sub2. In

this code, Boolean variable e1 or e2 becomes true if the corresponding exception

is thrown. Line 3-4 checks whether exception e1 or e2 is thrown. If so, Sub1 is

retracted. Otherwise, Sub1 continues to check if it is opted-out. Since Sub1 does not

throw any exception, Sub2 will never be retracted. Therefore, Sub2 goes directly to

check if it is opted-out.

Opted-Out Template

This type of template translates the behavior that checks whether a step should be

opted-out. Only one template is defined for this type. Suppose step S is an optional

step. It is up to the agent assigned to S to decide whether to opt out this step. Since

such decision making logic is not defined in the Little-JIL process, we conservatively
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1 loc S_test_optout:
2 when true do { } goto S_STARTED;

3 when true do { } goto S_OPTED_OUT;

Figure A.7. BIR Representation for Opted-Out Template

Figure A.8. Sequential Step Example

translate it into a non-deterministic choice. The BIR code generated by Opted-Out

Template is shown in Figure A.7.

Started Template

This type of template translates the behaviors after a step is started. Correspond-

ing to five step kinds, five templates are defined for this type: Sequential Step Started

Template, Try Step Started Template, Parallel Step Started Template, Choice Step

Started Template, and Leaf Step Started Template.

Sequential Step Started Template

The Sequential Step Started Template is used to construct the behavior of a se-

quential step after it has been started. When a sequential step is started, its sub-steps

will be executed one by one from left to right. And the sequential step is only suc-

cessfully completed after all of its sub-steps are successfully completed.

Figure A.8 shows a sequential step S that has three sub-steps: Sub1, Sub2, Sub3.

The BIR code produced by Sequential Step Started Template is given in the Fig-

ure A.9. When the sequential step S is started, the first sub-step Sub1 goes into
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1 loc S_STARTED:
2 when true do { } goto Sub1_POSTING;

3 ... // Sub1

4 loc Sub1_COMPLETED:
5 when true do { } goto Sub2_POSTING;

6 ... // Sub2

7 loc Sub2_COMPLETED:
8 when true do { } goto Sub3_POSTING;

9 ... // Sub3

10 loc Sub3_COMPLETED:
11 when true do { } goto S_COMPLETING;

Figure A.9. BIR Representation for Sequential Started Template

Figure A.10. Try Step Example

the Posting state (line 1-2). When Sub1 is completed, the next sub-step is posting

(line 4-5). Similarly, Sub3 is posting as soon as Sub2 is completed (line 7-8). And

the sequential step S goes into the Completing state when its last sub-step Sub3 is

completed (line 10-11). In this example, those sub-steps do not throw any exceptions.

If a sub-step may throw exceptions, BIR code must be inserted to check and handle

those exceptions. This is achieved by invoking the exception handling template.

Try Step Started Template

The Try Step Started Template is used to construct the behavior of a try step

after it has been started. When a try step is started, it tries to execute its sub-steps

one by one from left to right. The try step is successfully completed if any of its

sub-steps is successfully completed.
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1 loc S_STARTED:
2 when true do { } goto Sub1_POSTING;

3 ... // Sub1

4 loc Sub1_COMPLETED:
5 when true do { } goto S_COMPLETING;

6 ... // Sub1 cont.

7 loc Sub1_TERMINATED:
8 when true do { } goto S_handle_exceptions1;

9 loc S_handle_exceptions1:
10 when b_e do { b_e:= false; } goto Sub2_POSTING;

11 loc Sub2_POSTING:
12 ... // Sub2

13 loc Sub2_COMPLETED:
14 when true do { } goto S_COMPLETING;

Figure A.11. BIR Representation for Try Started Template

Figure A.10 shows a try step S that has two sub-steps Sub1 and Sub2. Sub1 may

throw exception e that is handled by an exception handler with the continue badge.

The BIR code produced by applying Try Step Started Template is given in the Fig-

ure A.11. When the try step S is started, the first sub-step Sub1 goes into the Posting

state (line 1-2). When Sub1 is completed, the parent step S is completing (line 4-5).

If Sub1 throws exception e, it is terminated and the corresponding exception handler

is executed. The exception handling code from line 9-10 is created by the Exception

Handling Template. Try Step Started Template sets the target for the transition at

line 10 to Sub2 POSTING. This means that after the exception e is handled, the next

sub-step Sub2 is posting because the exception handler has a continue badge. The

try step S goes into the Completing state when its last sub-step Sub2 is completed

(line 14-15).

Parallel Step Started Template

The Parallel Step Started Template is applied to construct the behavior of a paral-

lel step after it has been started. It is quite different from the Sequential Step Started

Template that we just discussed. When a parallel step is started, all its sub-steps will
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Figure A.12. Parallel Step Example

be posted at the same time. Then the sub-steps can be executed in any (possibly

interleaved) order. And the parallel step is only completed after all of its sub-steps

has successfully completed.

Figure A.12 shows a parallel step S that has three sub-steps: Sub1, Sub2, Sub3.

The corresponding BIR representation is given in the Figure A.13. Before the Started

Parallel Step Template is applied, the sub-steps of the parallel step have already been

translated into different BIR threads. In this example, thread T Sub1, T Sub2 and

T Sub3 are created for sub-step Sub1, Sub2, and Sub3 respectively. When the parallel

step S is started, three threads of its sub-steps are started by the start action (line

3-8). Then the parallel step waits until these thread to finish (line 9-20). Note that

each join action on a thread is followed by a threadTerminated test for that thread.

This is a constraint imposed by the BIR language specification.

Choice Step Started Template

The Choice Step Started Template is applied to construct the behavior of a choice

step after it has been started. Once started, a choice step allows the agent to select a

sub-step to execute among its sub-steps. A choice step is considered completed only

after one of its sub-steps have completed. Once a sub-step is selected to be executed,

the other sub-steps are retracted. Handlers with continue badge are used to execute

another sub-step if the selected sub-step fails. More specifically, when a handler with
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1 loc S_STARTED:
2 when true do { } goto S_fork_subs;

3 loc S_fork_subs:
4 when true do {
5 start(T_Sub1 );
6 start(T_Sub2 );
7 start(T_Sub3 );
8 } goto S_join_Sub1;

9 loc S_join_Sub1:
10 when true do { join(T_Sub1 ); } goto S_test_Sub1;

11 loc S_terminate_test_Sub1:
12 when threadTerminated(T_Sub1) do { } goto S_join_Sub2;

13 loc S_join_Sub2:
14 when true do { join(T_Sub2 ); } goto S_test_Sub2;

15 loc S_terminate_test_Sub2:
16 when threadTerminated(T_Sub2) do { } goto S_join_Sub3;

17 loc S_join_Sub3:
18 when true do { join(T_Sub3 ); } goto S_test_Sub3;

19 loc S_terminate_test_Sub3:
20 when threadTerminated(T_Sub3) do { } goto S_COMPLETED;

21 ...

Figure A.13. BIR Representation for the Parallel Started Template
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continue badge is executed, all the retracted sub-steps will be posted again and one

of them is selected to be performed.

In our approach, sub-steps of choice steps are translated into threads. This is not

so intuitive because the choice is supposed to choose only one sub-step to execute each

time. The problem is that the choice step does not restrict the order of its sub-steps.

In another word, sub-steps of a choice step may execute in any order though not in

parallel. One straight-forward translation option is to enumerate all possible such

orders in the BIR code. This could easily blow up the BIR code if the choice step

has many sub-steps. Instead, we decide to translate sub-steps of a choice step into

BIR thread and force them to run one after another. This is achieved by adding a

choice variable that indicates which sub-step is selected. In addition, each sub-step is

assigned one done variable that represents whether the sub-step is done or not. The

choice variable is randomly assigned to the index of a single sub-step at the beginning

of each iteration. Then all sub-step threads are started. The thread of a sub-step

first tests if it has been done. If so, the thread ends immediately. Otherwise the

thread proceeds to check the sub-step index against the choice variable. Only the

one whose index equals to the value of the choice variable will continue. And other

threads simply retract their corresponding sub-steps. The major advantage of this

approach is that it produces more compact BIR code, greatly relieving the burden of

the model construction for verification tools.

Figure A.14 shows a choice step S that has two sub-steps Sub1 and Sub2. Both

sub-steps could throw exception e which is handled by a hander with continue badge.

This allows the one sub-step to be executed if the other one fails. The BIR produced

by applying Choice Step Started Template is presented in Figure A.15. When the

choice step S is started, the done variables for both sub-steps are initialized to be

false (line 3-7). Then the choice variable of S is non-deterministically assigned to be

0 or 1 (line 8-10). If S choice is 0, Sub1 is selected to be executed. And if it is 1, Sub2
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Figure A.14. Choice Step Example

is selected. The next location (line 11-17) checks whether Sub1 is selected. If Sub1 is

not selected (S choice!=0), Sub2 should be checked. If Sub1 is selected and it is not

done yet ((S choice==0)&&!Sub1 done), the sub-step threads will be forked. In the

case when Sub1 is selected but it has already done ((S choice==0)&&Sub1 done),

it should not be executed again. Therefore, control flow goes back to choose the

choice variable of S. Line 18-24 checks Sub2 in a similar way. One may readily notice

that in line 25-38, both sub-step threads are forked. According to the semantic of

choice steps, however, only one sub-step that has not finished should be executed in

each iteration. This constraint is actually enforced in the individual sub-step thread.

Figure A.16 presents the sub-step thread for Sub1. Line 2-4 shows that Sub1 can be

posted only if it is not done yet. Otherwise, the whole sub-step thread ends. The code

that makes sure that Sub1 should be retracted if it is not selected is not shown here.

This piece of code is generated by Choice Sub-Step Retracted Template as discussed

above. In line 6-9, the done variable Sub1 done is set to true if Sub1 is completed

or terminated, indicating that Sub1 is done. If Sub1 is retracted, however, the done

variable is not set to true because it could be posted again by the exception handler

with continue badge. Although not shown in this example, the done variable should

also be set to true if the sub-step is opted-out.
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1 loc S_STARTED:
2 when true do { } goto S_init;

3 loc S_init:
4 when true do {
5 Sub1_done := false;
6 Sub2_done := false;
7 } goto S_choose;

8 loc S_choose:
9 when true do { S_choice := 0; } goto S_check_Sub1;

10 when true do { S_choice := 1; } goto S_check_Sub1;

11 loc S_check_Sub1:
12 when ( S_choice != 0 )
13 do { } goto S_check_Sub2;

14 when ( (S_choice == 0) && !Sub1_done)
15 do { } goto S_fork_subs;

16 when ( (S_choice == 0) && Sub1_done )
17 do { } goto S_choose;

18 loc S_check_Sub2:
19 when ( S_choice != 1 )
20 do { } goto S_fork_subs;

21 when ( (S_choice == 1) && !Sub2_done)
22 do { } goto S_fork_subs;

23 when ( (S_choice == 1) && Sub2_done )
24 do { } goto S_choose;

25 loc S_fork_subs:
26 when true do {
27 start(T_Sub1 );
28 start(T_Sub2 );
29 } goto S_join_Sub1;

30 loc S_join_Sub1:
31 when true do { join(T_Sub1 ); } goto S_test_Sub1;

32 loc S_terminate_test_Sub1:
33 when threadTerminated(T_Sub1) do { } goto S_join_Sub2;

34 loc S_join_Sub2:
35 when true do { join(T_Sub2 ); } goto S_test_Sub2;

36 loc S_terminate_test_Sub2:
37 when threadTerminated(T_Sub2)
38 do { } goto S_handle_exceptions;

Figure A.15. BIR Representation for the Choice Started Template

187



1 thread T_Sub1
2 loc Sub1_begin:
3 when !( Sub1_done) do { } goto Sub1_POSTING;

4 when Sub1_done do { } goto Sub1_end;

5 ... // Sub1

6 loc Sub1_COMPLETED:
7 when true do { Sub1_done := true; } goto Sub1_end;

8 loc Sub1_TERMINATED:
9 when true do { Sub1_done := true; } goto Sub1_end;

10 loc Sub1_RETRACTED:
11 when true do { } goto Sub1_end;

12 loc Sub1_end:
13 when true do { exit(T_Sub1 ); } goto Sub1_exit;

14 loc Sub1_exit:
15 end T_Sub1;

Figure A.16. BIR Representation for Sub-step of Choice Step

Leaf Step Started Template

In a Little-JIL process, leaf steps are performed by the assigned agents once they

are started. The behaviors of agents, however, are not modeled in the Little-JIL

process definition. The process definition only specifies the interfaces of a leaf step,

which declares the parameters used by the step as well as exceptions that might be

thrown by the step. Based on the interface, we translate the started behavior of a

leaf step into a BIR model that conservatively captures such behavior.

Supposed that there is a leaf step S that might throw exception e1 and e2. Fig-

ure A.17 shows the BIR code generated by Leaf Step Started Template for this step.

There are three transitions in this location. All of them have the condition true.

This means that when the execution reaches the location, one transition will be non-

deterministically selected to be executed. In the first transition (line 2), no exception

is thrown and the step S is completing. In the second transition (line 3), the excep-

tion e1 is thrown and the step S is terminated. In the third transition (line 4), the

exception e2 is thrown that also terminates S.
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1 loc S_STARTED:
2 when true do { } goto S_COMPLETING;

3 when true do { e1 := true; } goto S_TERMINATED;

4 when true do { e2 := true; } goto S_TERMINATED;

Figure A.17. BIR Representation for Leaf Step Started Template

To handle the rare situations where the precise model of the started behavior

of a leaf step is necessary, we support customized started behavior models. The

analyst provides the BIR model for a leaf step that defines how this step goes from

the STARTED state into the COMPLETING and TERMINATED states. When

applying Leaf Step Started Template for such a step, the customized model is returned.

For a leaf step without a customized model, the default model shown above will be

created.

Completing Template

This type of template translates the behaviors after a step is COMPLETING and

before it is COMPLETED. Such behaviors are the same for all steps, so only one

template is defined for this type.

After a step is COMPLETING and before it is COMPLETED, the step may pass

out parameters and put artifacts to channels. Similar to the posting template, the

completing template only translates the channel operations.

Operator Write is the only operator that can be used to put an artifact to a

channel. Suppose that there is a step S that puts an artifact to a channel channel

using the Write operator. The BIR code after applying the template is shown in

Figure A.18. Once in the COMPLETING state, the step proceeds to write an artifact

to the channel channel. Since the Operator never blocks the execution of a step, the

channel is simply set to be non-empty (channel := true).
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1 loc S_COMPLETING:
2 when true do { } goto S_channel_write;

3 loc S_channel_write:
4 when true do {
5 channel := true;
6 } goto S_COMPLETED;

Figure A.18. BIR Representation for Completing Template Example

Figure A.19. Exception Handling Example

Exception Handling Template

The Exception Handling Template is invoked by various Started Templates to

generate the code to handle exceptions thrown by the sub-steps. When a sub-step

throws an exception, the matching exception handler associated with the parent step

will be invoked to handle the exception. If the handler is associated with an exception

handler step, the handler step will be executed. The exception handler also has a

control-flow badge indicating how the step catching the exception executes after the

handler step finishes. Since this exception handling mechanism is the same for all

kinds of steps, only one Exception Handling Template is defined.

Figure A.19 shows an exception handling example. The sub-step Sub may throw

two exceptions: e1 and e2. The handler used to handle exception e1 has a handler

step Handler1 and a continue control flow badge. And the handler used to handle ex-

ception e2 has a handler step Handler2 and a rethrow control flow badge. Figure A.20

shows the BIR code that will be executed once Sub1 is terminated. In this code, b e1
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1 loc Parent_fork_T_Handler1:
2 when (b_e1==true) do {
3 start(T_Handler1 );
4 } goto Parent_fork_T_Handler2;

5 when (b_e1== false) do {
6 } goto Parent_fork_T_Handler2;

7 loc Parent_fork_T_Handler2:
8 when (b_e2==true) do {
9 start(T_Handler2 );

10 } goto Parent_fork_T_Handler2;

11 when (b_e2== false) do {
12 } goto Parent_join_T_Handler1;

13 loc Parent_join_T_Handler1:
14 when (b_e1==true) do {
15 join(T_Handler1 );
16 } goto Parent_terminate_test_T_Handler1;

17 when (b_e1== false) do {
18 } goto Parent_join_T_Handler2;

19 loc Parent_terminate_test_T_Handler1:
20 when threadTerminated(T_Handler1) do {
21 } goto Parent_control_rethrow;

22 loc Parent_join_T_Handler2:
23 when (b_e2==true) do {
24 join(T_Handler2 );
25 } goto Parent_terminate_test_T_Handler2;

26 when (b_e2== false) do {
27 } goto Parent_control_rethrow;

28 loc Parent_control_rethrow:
29 when (b_e2==true) do { } goto Parent_TERMINATED;

30 when (b_e2== false) do { } goto Parent_control_continue;

31 loc Parent_control_continue:
32 when (b_e1==true) do { b_e1:=false; } goto t;
33 when (b_e1== false) do { } goto t;

Figure A.20. BIR Representation for the Exception Handling Template
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and b e2 are Boolean variables used to encode exception e1 and e2 respectively. Since

exception handlers may be executed in parallel, the handler steps are translated into

BIR threads. T Handler1 and T Handler2 are BIR threads corresponding to handler

step Handler1 and Handler2. The first part of the code (line 1-12) tests whether

exceptions are thrown or not one by one. If an exception is thrown, the thread trans-

lated from the corresponding exception handler step is started. Otherwise, the next

exception is checked. The next part (13-27) joins the threads of exception handling

steps if they have been started. The last part (line 28-33) directs the flow of control

according to the control-flow badges of the exception handlers. In this example, ex-

ception e2 is tested first because its handler Handler2 has a rethrow badge, which

has a higher priority than the continue badge of Handler1. One might notice that

while exception variable b e1 is set to false (line 32), exception variable b e1 re-

mains to be true (line 29). This is because exception e2 is rethrown by its handler.

The exception variable should remain true until it is handled by a non-rethrown

handler associated with any ancestor of the parent step. Another thing needed to be

mentioned is that two targets of the last location are empty. The reason is that they

may go to different locations for different kinds of parent step. For instance, if the

parent step is a try step, the first transformation should go to the posted location

of the next sub-step, and the second one should go to the completed location of the

parent step. But if the parent step is a sequential step, both should go to the posted

location of the next sub-step. These targets, therefore, are left empty and will be

filled up by the Started Template that invokes the Exception Handling Template.
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APPENDIX B

FAULT TREE DERIVATION TEMPLATES

Table B.1. Fault Tree Derivation Templates

Event Type Template(s)
Event Type 1 All Inputs are Correct, But S Produces In-

correct Output o
None

Event Type 2 Artifact o is Wrong When S is Posted Template 1, 2
Event Type 3 Artifact o is Wrong When S is Started Template 3
Event Type 4 Artifact o is Wrong When S is Retracted Template 4
Event Type 5 Artifact o is Wrong When S is Opted-out Template 5
Event Type 6 Artifact o is Wrong When S is Completed Template 6, 7
Event Type 7 Artifact o is Wrong When S is Terminated

by Exception e
Template 8, 9

Event Type 8 Artifact o is Wrong When S is about to be
Completed

Template 10, 11

Event Type 9 Exception e is Thrown by S None
Event Type 10 Exception e is not Thrown by S Tempate 12
Event Type 11 Step S is Opted-out None
Event Type 12 Step S is not Opted-out Template 13
Event Type 13 Step S is Retracted None
Event Type 14 Step S is not Retracted Template 14

Templates for Artifact o is Wrong When S is Posted

Since the artifact o is already wrong when S is posted, the fault is not introduced

by step S. It must be propagated from the previous step. Depending on whether

step S is an exception handler or not, the flow of control goes to S is quite different.

To make the templates simpler, we use two separate templates to develop this type

of events.
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Figure B.1. Template 1

Template 1

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Posted, and

• Step S is an exception handler step

Partial Fault Tree:

The partial fault tree for this template is shown in Figure B.1. If S is an exception

handler step, it can only be posted if the corresponding exception is thrown. There-

fore, the event “Artifact o is Wrong When S is Posted” can only be caused by the

event “Artifact o’ is Wrong When S’ is Terminated by Exception e”, where

• e is the exception handled by S;

• S ′ may throw exception e;

• o′ is an output parameter of S ′ that will be passed to o (via parameter bindings).

If no such parameter exists, o′ = o.

It is possible that the step S ′ does not have an output parameter o′ that is passed

to o. o′ may be an output of another step S ′′ that is executed before S ′ and be

passed to the exception handler. It is tempting to look several steps back to identify

S ′′, create an event “Artifact o’ is Wrong When S” is Completed”, and connect this

event to the OR gate. This, however, violates an important rule in the practice of
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fault tree derivation: always look at the immediate causes each time [131]. Violating

this rule could result in overlooking some critical events between event “Artifact o’

is Wrong When S” is Completed” and “Artifact o is Wrong When S is Posted”. One

might argue that since we derive the fault tree automatically instead of manually, we

can avoid overlooking such critical events by considering all possible situations and

incorporating them into the templates. The problem is that this will greatly increase

the size of the templates and make the derivation algorithm much more complicated.

Therefore, we choose to apply Template 1 and create the temporary event “Artifact

o is Wrong When S’ is Terminated by Exception e” in this case. This event can be

interpreted as: although the artifact o is not visible to the step S ′, it is already wrong

and still alive at the point when S ′ is terminated by exception e. After the fault tree

is derived, most of the temporary events introduced in this way can be removed by

the fault tree optimization techniques discussed in Chapter 4.

Template 2

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Posted

• S is not an exception handler step

Partial Fault Tree:

The partial fault tree for this template is shown in Figure B.2. If S is the root

step, the incorrect artifact must be passed in as a parameter to the process. How

the parameter went wrong is out of the scope of the process. Therefore, the event is

treated as a basic event and does not need to be developed further.

If S is neither an exception handler nor the root step, it may be posted in two

cases: it may be posted after its parent step is started or it may be posted after

a sibling step is completed. The first case occurs if S is the first child step to be

executed, e.g. S is a pre-requisite step, or S is the first sub-step of a sequential step
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Figure B.2. Template 2

that does not have a pre-requisite step. Suppose S ′ is the parent step of S, S will be

posted as soon as S ′ is started. Since S ′ is a non-leaf step, it is not able to change the

artifact o. The artifact o must already be wrong at the point when the S ′ is started.

In other words, event “Artifact o is Wrong When S is Posted” could be caused by

event “Artifact o’ is Wrong When S’ is Started”, where:

• S ′ is the parent step of S, and S is the first child to be executed, and

• o′ is a parameter of S ′ that will be passed to o. If no such parameter exists,

o′ = o.

The second case occurs when S is not the first child step to be executed. In this

case, S can only be executed after one of its siblings is completed. For example, if S is

the second sub-step of a sequential step, it will be posted as soon as the first sub-step is

completed. If the first step may throw an exception and the corresponding exception

handler has a continue badge, S can also be posted after the exception handler step

is completed. Note that if this exception handler does have a handler step, S can

actually be posted when the first step is terminated. To simplify the template, a

dummy handler step is added to an exception handler if it is not associated with a

hander step. For steps in the second case, event “Artifact o is Wrong When S is

posted” may be caused by event “Artifact o’ is Wrong When S’ is Completed”, where:

• S ′ a sibling of S and if S ′ is completed, S will be executed, and
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Figure B.3. Template 3

• o′ is an output parameter of S ′ that will be passed to o. If no such parameter

exists, o′ = o.

Template for Artifact o is Wrong When S is Started

Template 3

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Started

Partial Fault Tree:

The partial fault tree for this template is shown in Figure B.3. In Little-JIL,

the only step state that may immediately precedes the state <S, Started> is <S,

Posted>. Since artifacts cannot be changed between these two states, event “Artifact

o is Wrong When S is Started” can occur only if the artifact o is already wrong when

the step S is posted. On the other hand, however, event “Artifact o is Wrong When S

is posted” does not always lead to “Artifact o is Wrong When S is Started”. The step

S may be a retractable step, e.g. S is a sub-step of a parallel step. S may go from

the posted state to the retracted state when another sub-step throws an exception.

When this occurs, the faulty o will not be propagated to the state <S, Started>.

The step S may also be an optional step. The agent responsible for S is allowed

to opt out of the posted step S. In this case, event “Artifact o is wrong when S is
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Figure B.4. Template 4

posted” will not lead to “Artifact o is Wrong When S is Started” as well. Therefore,

to allow the faulty o to be propagated from the posted state to the started state, S

should not be retracted or opted-out. Notice that the nodes for event “Step S is not

Opted out” and “Step S is not Retracted” are drawn using dash lines. This means that

these two events may or may not be present, depending on if the step S is optional or

retractable. “Step S is not Opted out” is present iff S is an optional step, and “Step

S is not Retracted” is present iff S is a retractable step.

Templates for Artifact o is Wrong When S is Retracted

Template 4

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Retracted

Partial Fault Tree:

The immediate predecessor of the step state <S, Retracted> is <S, Posted>.

Since retracted step can never make changes to its parameters, the artifact o must

have already been wrong when S is posted. Moreover, the control flow only goes from

<S, Posted> to <S, Retracted> if step S is retracted. This results in the template

shown in Figure B.4.
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Figure B.5. Template 5

Templates for Artifact o is Wrong When S is Opted-out

Template 5

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Opted-out

Partial Fault Tree:

The immediate predecessor of the step state <S, Opted-out> is also <S, Posted>.

Similar to the retracted step, opted-out step does not make changes to its parameters.

Therefore, the artifact o must already be wrong when S is posted. Moreover, the

control flow only goes from <S, Posted> to <S, Opted-out> if step S is retracted.

This results in the template shown in Figure B.5.

Templates for Artifact o is Wrong When S is Completed

Template 6

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Completed, and

• S is not a leaf step

Partial Fault Tree:
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Figure B.6. Template 6

If S is not a leaf step, S may be completed immediately after certain child step

is completed. For example, a sequential step is completed as soon as its last sub-step

is completed. Suppose this step has an exception handler with a complete badge, it

may also be completed when the exception handler step is completed. In this case,

event “Artifact o is Wrong When S is Completed” is caused by event “Artifact o’ is

Wrong When S’ is Completed”, where:

• S ′ is a child step of S and if it is completed, S will be completed, and

• o′ is a parameter of S ′ that will be passed to o. If no such parameter exists,

o′ = o.

There may be more than one child steps that are qualified. For each such child

step, an event “Artifact o’ is Wrong When S’ is Completed” needs to be created and

connected to the OR gate.

If step S has optional sub-steps, it could be completed after one of its optional

sub-step is opted-out. In this case, event “Artifact o is Wrong When S is Completed

is caused by event “Artifact o” is Wrong When S” is Opted-out”, where:

• S ′′ is an optional sub-step of S and if it is completed, S will be completed, and

• o′′ is a parameter of S ′′ that will be passed to o. If no such parameter exists,

o′′ = o.
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Figure B.7. Template 7

Figure B.6 shows the template that considers both cases.

Template 7

Requirement:

• The event e to be developed is Artifact o is Wrong When S is Completed, and

• S is a leaf step

Partial Fault Tree:

If S is a leaf step, event “Artifact o is wrong when S is completed” occurs if the

artifact o is already wrong when step S is about to be completed, and no exception is

thrown by S. If any exception is thrown, the faulty artifact o will not be propagated

to the state <S, Completed>. Figure B.7 shows the template.

S may throw more than one exception. For each exception e that could be thrown

by S, a new event “Exception e is not thrown by S” is created. If S does not throw

any exception, event “Exception e is not thrown by S” will not be created.

Templates for Artifact o is Wrong When S is Terminated by

Exception e

Template 8

Requirement:
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Figure B.8. Template 8

• The event e to be developed is Artifact o is Wrong When S is Terminated by

Exception e, and

• S is a leaf step

Partial Fault Tree:

Figure B.8 shows the partial fault tree for this template. According to the copy-

in-copy-out semantics of parameter passing in Little-JIL, if a leaf step is terminated,

the parameter that it changes will not be passed out. For the case that o is an OUT

parameter of S, o can be wrong only if S changes o incorrectly. This error, however,

well not be propagated out of S if S is terminated. Therefore “Artifact o is wrong

when S is terminated by exception e” should never occur. To handle this, we mark

the event as infeasible. The infeasible events will be pruned from the fault tree after

the whole fault tree is derived.

For the other cases (o is an IN/INOUT parameter of S, or o is not a parameter of

S), Event “Artifact o is wrong when S is terminated by exception e” can occur only

when the artifact o is already wrong when S is started and the exception e is thrown

by S.

Template 9

Requirement:
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Figure B.9. Template 9

• The event e to be developed is Artifact o is Wrong When S is Terminated by

Exception e, and

• S is a not leaf step

Partial Fault Tree:

Figure B.9 shows the partial fault tree for this template. If S is not a leaf step,

it is usually terminated by exception e when the exception s is propagated from a

child step. For example, a handler step throws exception e, or a sub-step throws e

that does not have a corresponding exception hander. For this case, event “Artifact

o is wrong when S is terminated by exception e” may be caused by event “Artifact o

is wrong when S’ is terminated by exception e” is created, where:

• S ′ is a child step of S and when it throws exception e, S is terminated;

• o′ is a parameter of S ′ that will be passed to o. If no such parameter exists,

o′ = o.

Suppose S has an exception handler with rethrow badge to handle e, S could be

terminated immediately after the exception handler step is completed. For this case,

event “Artifact o is wrong when S is terminated by exception e” may be caused by

event “Artifact o′′ is wrong when S′′ completed” is created, where:

• S ′′ is an exception handler step associated with rethrow exception handler that

handles exception e, and
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Figure B.10. Template 10

• o′′ is a parameter of S ′′ that will be passed to o. If no such parameter exists,

o′′ = o.

Templates for Artifact o is Wrong When S is about to be

Completed

Template 10

Requirement:

• The event e to be developed is Artifact o is Wrong When S is about to be

Completed, and

• o is an output parameter of S

Partial Fault Tree:

Note that step S in event “Artifact o is wrong when S is about to be Completed”

should always be a leaf step because this event can only be introduced by Template

7, which requires step S to be a leaf step.

If o is an output parameter of S, S may change o. We conservatively assume that

o depends on all inputs of S. Therefore, incorrect o may be caused by incorrect input,

or incorrect execution of S, as shown in Figure B.10. In event “Artifact i is Wrong

When S is Started”, S is the same step as the one in “Artifact o is Wrong When S
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Figure B.11. Template 11

is about to be Completed”, and i is an input of S. For each input i of S, one such

event needs to be created. In event “All Inputs are Correct, but S Produces Wrong

o”, artifact o and step S are the same step as the ones in “Artifact o is Wrong When

S is about to be Completed”.

Template 11

Requirement:

• The event e to be developed is Artifact o is Wrong When S is about to be

Completed, and

• o is not an output parameter of S

Partial Fault Tree:

Since o is not an output parameter of S, S cannot change o. Therefore, o is wrong

simply because it is already wrong before S is started, as shown in Figure B.11. The

artifact o and step S in the new event “Artifact o is Wrong When S is Started” are

the same as the ones in event “Artifact o is Wrong When S is about to be Completed”.

Templates for Exception e is not Thrown by S

Template 12

Requirement:
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Figure B.12. Template 12

Figure B.13. Template 13

• The event e to be developed is Exception e is not Thrown by S

Partial Fault Tree:

As shown in Figure B.12, this template is straight-forward. “Exception e is not

Thrown by S” simply means NOT “Exception e is Thrown by S”.

Templates for Step S is not Opted-out

Template 13

Requirement:

• The event e to be developed is Step S is not Opted-out

Partial Fault Tree:

As shown in Figure B.13, “Step S is not Opted-out” simply means NOT “Step S is

Opted-out”.
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Figure B.14. Template 14

Templates for Step S is not retracted

Template 14

Requirement:

• The event e to be developed is Step S is not Opted-out

Partial Fault Tree:

As shown in Figure B.14, “Step S is not retracted” simply means NOT “Step S is

retracted”.
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APPENDIX C

UNOPTIMIZED BIR PROGRAM FOR SIMPLIFIED
BLOOD TRANSFUSION PROCESS

1 process Process_Blood_Transfusion_Process ()

2 // Exception variable for PatientBloodTypeUnavailable

3 b_PatientBloodTypeUnavailable := false;
4 // Exception variable for WrongPatient

5 b_WrongPatient := false;
6 // Exception variable for BloodExpired

7 b_BloodExpired := false;
8 // Exception variable for WrongBlood

9 b_WrongBlood := false;
10

11 // Done variable for ’Check Expiration Date ’

12 b_CheckExpirationDateDone := false;
13 // Done variable for Check ’Product Info Match Patient Info ’

14 b_CheckProductInfoMatchPatientInfo := false;
15

16 main thread T_Blood_Transfusion_Process
17 loc Blood_Transfusion_Process_POSTED:
18 when true do { }
19 goto Blood_Transfusion_Process_STARTED;

20 loc Blood_Transfusion_Process_STARTED:
21 when true do { }
22 goto Obtain_Patients_Blood_Type_POSTED;

23 loc Obtain_Patients_Blood_Type_POSTED:
24 when true do { }
25 goto Obtain_Patients_Blood_Type_STARTED;

26 loc Obtain_Patients_Blood_Type_STARTED:
27 when true do { }
28 goto Check_Lab_for_Patients_Blood_Type_POSTED;

29 loc Check_Lab_for_Patients_Blood_Type_POSTED:
30 when true do { }
31 goto Check_Lab_for_Patients_Blood_Type_STARTED;

32 loc Check_Lab_for_Patients_Blood_Type_STARTED:
33 when true do { }
34 goto Check_Lab_for_Patients_Blood_Type_COMPLETED;

35 when true do { b_PatientBloodTypeUnavailable := true; }
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36 goto Check_Lab_for_Patients_Blood_Type_TERMINATED;

37 loc Check_Lab_for_Patients_Blood_Type_COMPLETED:
38 when true do { }
39 goto Obtain_Patients_Blood_Type_COMPLETED;

40 loc Check_Lab_for_Patients_Blood_Type_TERMINATED:
41 when true do { }
42 goto Obtain_Patients_Blood_Type_control_continue:

43 loc Obtain_Patients_Blood_Type_control_continue:
44 when ( b_PatientBloodTypeUnavailable == true )
45 do { b_PatientBloodTypeUnavailable := false; }
46 goto Test_Patients_Blood_Type_POSTED;

47 loc Test_Patients_Blood_Type_POSTED:
48 when true do { }
49 goto Test_Patients_Blood_Type_STARTED;

50 loc Test_Patients_Blood_Type_STARTED:
51 when true do { }
52 goto Test_Patients_Blood_Type_COMPLETED;

53 loc Test_Patients_Blood_Type_COMPLETED:
54 when true do { }
55 goto Obtain_Patients_Blood_Type_COMPLETED;

56 loc Obtain_Patients_Blood_Type_COMPLETED:
57 when true do { }
58 goto Pick_up_Blood_from_Blood_Bank_POSTED;

59 loc Pick_up_Blood_from_Blood_Bank_POSTED:
60 when true do { }
61 goto Pick_up_Blood_from_Blood_Bank_STARTED;

62 loc Pick_up_Blood_from_Blood_Bank_STARTED:
63 when true do { }
64 goto Pick_up_Blood_from_Blood_Bank_COMPLETED;

65 loc Pick_up_Blood_from_Blood_Bank_COMPLETED:
66 when true do { }
67 goto Perform_Bedside_Check_POSTED;

68 loc Perform_Bedside_Check_POSTED:
69 when true do { }
70 goto Perform_Bedside_Check_STARTED;

71 loc Perform_Bedside_Check_STARTED:
72 when true do { }
73 goto Identify_Patient_POSTED;

74 loc Identify_Patient_POSTED:
75 when true do { }
76 goto Identify_Patient_STARTED:

77 loc Identify_Patient_STARTED:
78 when true do { }
79 goto Identify_Patient_COMPLETED;

80 when true do { b_WrongPatient := true; }
81 goto Identify_Patien_TERMINATED;
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82 loc Identify_Patient_COMPLETED:
83 when true do { }
84 goto Check_Blood_Product_POSTED;

85 loc Identify_Patien_TERMINATED:
86 when true do { }
87 goto Perform_Bedside_Check_control_rethrow:

88 loc Perform_Bedside_Check_control_rethrow:
89 when ( b_WrongPatient == true ) do ()
90 goto Perform_Bedside_Check_TERMINATED;

91 loc Check_Blood_Product_POSTED:
92 when true do { }
93 goto Check_Blood_Product_STARTED;

94 loc Check_Blood_Product_STARTED:
95 when true do { }
96 goto Check_Blood_Product_fork_subs:

97 loc Check_Blood_Product_fork_subs:
98 when true do {
99 start(T_Check_Expiration_Date );

100 start(T_Check_Product_Info_Match_Patient_Info );
101 } goto Check_Blood_Product_join_Sub1;

102 loc Check_Blood_Product_join_Sub1:
103 when true do { join(T_Check_Expiration_Date ); }
104 goto Check_Blood_Product_terminate_test_Sub1;

105 loc Check_Blood_Product_terminate_test_Sub1:
106 when threadTerminated(T_Check_Expiration_Date) do { }
107 goto Check_Blood_Product_join_Sub2;

108 loc Check_Blood_Product_join_Sub2:
109 when true do {
110 join(T_Check_Product_Info_Match_Patient_Info );
111 } goto Check_Blood_Product_terminate_test_Sub2;

112 loc Check_Blood_Product_terminate_test_Sub2:
113 when
114 threadTerminated(
115 T_Check_Product_Info_Match_Patient_Info
116 )
117 do { } goto Check_Blood_Product_coontrol_rethrow;

118 loc Check_Blood_Product_coontrol_rethrow:
119 when ( b_BloodExpired != true &&
120 b_WrongBlood != true )
121 do { }
122 goto Check_Blood_Product_COMPLETED;

123 when ( b_BloodExpired == true ||
124 b_WrongBlood == true)
125 do { }
126 goto Perform_Bedside_Check_control_rethrow2;

127 loc Check_Blood_Product_COMPLETED:
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128 when true do { }
129 goto Perform_Bedside_Check_COMPLETED;

130 loc Perform_Bedside_Check_COMPLETED:
131 when true do { }
132 goto Infuse_Blood_POSTED;

133 loc Perform_Bedside_Check_control_rethrow2:
134 when ( b_BloodExpired == true ||
135 b_WrongBlood == true )
136 do { }
137 goto Perform_Bedside_Check_TERMINATED;

138 loc Perform_Bedside_Check_TERMINATED:
139 when true do { }
140 goto Blood_Transfusion_Process_control_rethrow:

141 loc Blood_Transfusion_Process_control_rethrow:
142 when ( b_WrongPatient == true ||
143 b_BloodExpired == true ||
144 b_WrongBlood == true )
145 do { }
146 goto Blood_Transfusion_Process_TERMINATED

147 loc Infuse_Blood_POSTED:
148 when true do { } goto Infuse_Blood_STARTED;

149 loc Infuse_Blood_STARTED:
150 when true do { } goto Infuse_Blood_COMPLETED;

151 loc Infuse_Blood_COMPLETED:
152 when true do { }
153 goto Blood_Transfusion_Process_COMPLETED;

154 loc Blood_Transfusion_Process_COMPLETED:
155 when true do { }
156 goto T_Blood_Transfusion_Process_exit;

157 loc Blood_Transfusion_Process_TERMINATED:
158 when true do { }
159 goto T_Blood_Transfusion_Process_exit;

160 loc T_Blood_Transfusion_Process_exit:
161 end T_Blood_Transfusion_Process;
162

163 thread T_Check_Expiration_Date
164 loc Check_Expiration_Date_test_retract:
165 when ( b_WrongBlood == true ) do { }
166 goto Check_Expiration_Date_RETRACTED;

167 when ( b_WrongBlood != true ) do { }
168 goto Check_Expiration_Date_POSTED:

169 loc Check_Expiration_Date_POSTED:
170 when true do { }
171 goto Check_Expiration_Date_STARTED;

172 loc Check_Expiration_Date_STARTED:
173 when true do { }
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174 goto Check_Expiration_Date_COMPLETED;

175 when true do { b_BloodExpired := true; }
176 goto Check_Expiration_Date_TERMINATED;

177 loc Check_Expiration_Date_COMPLETED:
178 when true do { } goto T_Check_Expiration_exit;

179 loc Check_Expiration_Date_TERMINATED:
180 when true do { } goto T_Check_Expiration_exit;

181 loc Check_Expiration_Date_RETRACTED:
182 when true do { } goto T_Check_Expiration_exit;

183 loc T_Check_Expiration_exit:
184 end T_Check_Expiration_Date;
185

186 thread T_Check_Product_Info_Match_Patient_Info
187 loc Check_Product_Info_Match_Patient_test_retract:
188 when ( b_BloodExpired == true ) do { }
189 goto Check_Product_Info_Match_Patient_RETRACTED;

190 when ( b_BloodExpired != true ) do { }
191 goto Check_Product_Info_Match_Patient_POSTED:

192 loc Check_Product_Info_Match_Patient_POSTED:
193 when true do { }
194 goto Check_Product_Info_Match_Patient_STARTED;

195 loc Check_Product_Info_Match_Patient_STARTED:
196 when true do { }
197 goto Check_Product_Info_Match_Patient_COMPLETED;

198 when true do { b_WrongBlood := true; }
199 goto Check_Product_Info_Match_Patient_TERMINATED;

200 loc Check_Product_Info_Match_Patient_COMPLETED:
201 when true do { }
202 goto T_Check_Product_Info_Match_Patient_Info_exit;

203 loc Check_Product_Info_Match_Patient_TERMINATED:
204 when true do { }
205 goto T_Check_Product_Info_Match_Patient_Info_exit;

206 loc Check_Product_Info_Match_Patient_RETRACTED:
207 when true do { }
208 goto T_Check_Product_Info_Match_Patient_Info_exit;

209 loc T_Check_Product_Info_Match_Patient_Info_exit:
210 end T_Check_Product_Info_Match_Patient_Info;
211

212 predicates
213 IdentifyPatient =
214 T_Blood_Transfusion_Process@Identify_Patient_COMPLETED;
215 InfuseBlood =
216 T_Blood_Transfusion_Process@Infuse_Blood_STARTED;
217 end Process_Blood_Transfusion_Process;
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APPENDIX D

IN-PATIENT BLOOD TRANSFUSION PROCESS
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Figure D.1. Diagram “perform in-patient blood transfusion”

Figure D.2. Diagram “check for existence of type and screen”

Figure D.3. Diagram “pick up blood from blood bank”
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Figure D.4. Diagram “perform pre-release checks”

Figure D.5. Diagram “perform transfusion”

Figure D.6. Diagram “administer a single unit of blood product”

215



Figure D.7. Diagram “perform pre-infusion work”

Figure D.8. Diagram “assess patient”

Figure D.9. Diagram “perform bedside checks”

216



Figure D.10. Diagram “verify blood product information”

Figure D.11. Diagram “confirm product tag matches patient ID band”

Figure D.12. Diagram “confirm product label matches product tag”
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Figure D.13. Diagram “handle failed product verification by replacement”

Figure D.14. Diagram “handle previously unrecognized patient problem”

Figure D.15. Diagram “handle suspected transfusion reaction”
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Figure D.16. Diagram “infuse unit of blood product”

Figure D.17. Diagram “perform post-infusion work”

Figure D.18. Diagram “perform Blood Specimen Obtaining process”
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Figure D.19. Diagram “order test(s)”

Figure D.20. Diagram “order test(s) on computer”

Figure D.21. Diagram “order test(s) on patient chart”
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Figure D.22. Diagram “collect labels”

Figure D.23. Diagram “walk to patient”

Figure D.24. Diagram “obtain and label specimen”
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Figure D.25. Diagram “apply label”

Figure D.26. Diagram “obtain blood specimen”

Figure D.27. Diagram “send blood specimen to lab”
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Figure D.28. Diagram “log specimen transport action”

Figure D.29. Diagram “verify the correct patient to get specimen”

Figure D.30. Diagram “verify patient ID to ID band”
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Figure D.31. Diagram “verify patient first and last names”

Figure D.32. Diagram “verify patient-DOB”

Figure D.33. Diagram “verify patient ID on artifact to artifact”
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APPENDIX E

BLOOD TRANSFUSION PROCESS VERIFICATION
REPORT

A Checks Done Before Obtaining Unit of Blood Product

A.1 If the blood bank doesn’t have a type & screen for the patient, obtain

a blood specimen

Iteration 1:

• Event Binding:

receive physician order for blood transfusion →

confirm physician order for blood transfusion COMPLETED

obtain blood specimen →

obtain blood specimen STARTED

discover blood bank doesn’t have type and screen →

contact lab for availability of type and screen

throws exception LabUnknown

• Result: violation found. The property requires that the scope event “receive

physician order for blood transfusion” must happen. However, if there is no phy-

cisian order, the exception NoPhycisianOrder will terminate “confirm physician

order for blood transfusion as well as the whole process. In this case, the event

“receive physician order for blood transfusion” will never occur. In fact, the prop-

erty is only required to hold as long as the event “receive physician order for blood

transfusion” occurs. The scope event “receive physician order for blood transfu-

sion” itself is not required to occur. The property specification is too strong.
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• Change: in the property specification, the answer to the question “is receive

physician order for blood transfusion required?” is changed to “No”. 1

Iteration 2:

• Event Binding: after Iteration 1, the step “obtain blood specimen” has been

replaced by a sub-process “perform Blood Specimen Obtaining process”. So the

event bindings are changed accordingly.

receive physician order for blood transfusion →

confirm physician order for blood transfusion COMPLETED

obtain blood specimen →

perform Blood Specimen Obtaining process STARTED

discover blood bank doesn’t have type and screen →

contact lab for availability of type and screen

throws exception “LabUnknown”

• Result: no violation found.

A.2 Assess the patient for appropriate I.V. access before picking up units

of blood product

Iteration 1:

• Event Binding:

pick up blood product →

pick up blood from blood bank STARTED

assess patient for appropriate I.V. access →

check IV access COMPLETED

provide IV access COMPLETED

1The Propel has changed the scope question tree after the verification. The question “is receive
physician order for blood transfusion required?” is no longer exist.
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• Result: no violation found.

B Administration of a Unit of Blood Product

B.1 Must locate the patient”s consent document before performing a

blood transfusion

Iteration 1:

• Event Binding:

perform transfusion →

perform transfusion STARTED

confirm presence of informed consent →

confirm patient consent COMPLETED

• Result: violation found. The property requires that the event “confirm presence

of informed consent” must happen at least once. However, if there is no patient

consent form, the exception NoPatientConsent will terminate the step “confirm pa-

tient consent” as well as whole process. So the event “confirm presence of informed

consent” will never occur. This violation indicates that an important exception

handling step to handle the exception NoPatientConsent is missing.

• Change: an exception handler “obtain patient consent” that handles the NoPa-

tientConsent exception is added.

Iteration 2:

• Event Binding:

perform transfusion →

perform transfusion STARTED

confirm presence of informed consent →
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confirm patient consent COMPLETED

obtain patient consent COMPLETED

• Result: no violation found.

B.2 Must review patient history before infusing each unit of blood prod-

uct

Iteration 1:

• Event Binding: could not find the binding for the event “review patient history”.

• Change: redefine the step “assess patient” by adding new substep “review

patient history” which occurs before “evaluate patient clinically”. Also, add ex-

ception handler “handle previously unrecognized patient problem” to handle the

exception ProblemFoundInPatientHistory thrown by the new substep.

Iteration 2:

• Event Binding:

Infuse a single unit of blood →

infuse unit of blood product STARTED

review patient history →

review patient history COMPLETED

• Result: no violation found.

B.3 If previously unrecognized patient problem found in history, ask

physician for instructions before infusing each unit of blood product

Iteration 1:

• Event Binding: could not identify the binding for the event “previously unrec-

ognized patient problem found in history”.

228



• Change: see change in B.2.

Iteration 2:

• Event Binding:

infuse a single unit of blood →

infuse unit of blood product STARTED

ask physician for instructions →

obtain physician order to continue or discontinue infusion STARTED

find previously unrecognized patient problem →

review patient history throws exception ProblemFoundInPatientHistory

• Result: no violation found.

B.4.1 Confirm presence of ID band before infusing each unit of blood

product

Iteration 1:

• Event Binding: in the process, the step “check patient’s ID bracelet” could

throw two exceptions: MissingArmband and NameMismatch, which mean that

this step actually consists of two tasks: “confirm the presence of an ID band”

and “verify ID band and patient’s stated name and birth date match”. Properties

in C section refer to two different events, which correspond to those two tasks

respectively. Therefore, the analyst suggested to add more details into “check

patient’s ID bracelet”.

• Change: the step “check patient’s ID bracelet” is replaced by a detailed patient

identification verification sub-process.

Iteration 2:
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• Event Binding:

infuse a unit of blood product →

infuse unit of blood product STARTED

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

• Result: no violation found.

B.4.2 Obtain patient’s stated name and birth date before infusing each

unit of blood product

Iteration 1:

• Event Binding:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

obtain patient name and birth date COMPLETED

• Result: violation found. In the process definition, the nurse only need to obtain

both the patient name and the birthday when the patient armband is missing or

does not match the stated name. The violation trace shows that if the patient’s

armband is present, the nurse only obtains the patient’s name. This indicates an

error in the process definition.

• Change: the step “check patient’s ID bracelet” is replaced by a detailed patient

identification verification sub-process that has steps that obtain the patient name

and birthday.

Iteration 2:
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Note: in the modified process, obtain patient’s stated name and birthday is done

by two different steps: “ask patient to spell first and last names” and “ask patient to

state DOB”. Therefore, two separate sets of binding are verified.

• Event Binding a:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

• Event Binding b:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to state DOB COMPLETED

• Result: violations found for both sets of bindings. The traces show that the

step “confirm patient is able to communicate” throws an exception PatientUnable-

ToCommunicate. The associated exception hander simply completes the parent

step “verify patient ID to ID band”. Therefore, “ask patient to spell first and last

names and “verify patient-DOB”, which follow step “confirm patient is able to

communicate”, are skipped and eventually the step “infuse unit of blood product”

is started. The violations indicate that property specification was not correctly

defined. It should only be require if the patient is able to communicate.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

Again, two separate sets of binding are verified.
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• Event Binding a:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

• Event Binding b:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to state DOB COMPLETED

• Result: no violation found for both sets of bindings.

B.4.3 Verify ID band matches patient’s stated name and birth date before

infusing each unit of blood product

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “verify ID

band matches patient’s stated name and birth date”.

• Changes: the step “check patient’s ID bracelet” is replaced by a detailed patient

identification verification sub-process that has steps that obtain the patient name

and birthday.
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Iteration 2:

Note: in the new process, verify ID band matches patient’s stated name and

birth date is done by three different steps: “confirm patient-stated-first-name matches

patient-first-name on ID band”, “confirm patient-stated-last-name matches patient-

last-name on ID band” and “confirm patient-stated-DOB matches patient-DOB on

ID band”. Therefore, three separate sets of binding are verified.

• Event Binding a:

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

• Event Binding b:

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

• Event Binding c:

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED
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• Result: Violation found. Similar to B.4.2.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

Again, three separate sets of binding are verified.

• Event Binding a:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

• Event Binding b:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

• Event Binding c:

234



patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

• Result: No violation found for all three sets of bindings.

B.4.4 Verify ID band matches physician order for blood transfusion be-

fore infusing each unit of blood product

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “verify ID

band matches physician order”. There is a step “verify physician order”. However,

it seems to only check the completeness of the physician order because it could

only throw the exception IncompletePhysicianOrder and the handler says “obtain

complete physician order”.

• Change: after consulting the professional, “verify physician order” is renamed

to “confirm complete physician order” because “verify physician order” here only

checks the completeness of the order. And in the Baystate Medical Center, the

physician order is printed onto the tag affixed to blood product. Therefore, the

step “confirm product tag matches patient ID band” can be considered to verify ID

band matches physician order as well.

Iteration 2:

• Event Binding:

235



verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: No violation found.

B.4.5a (B.4.1 → B.4.2) Confirm presence of ID before obtaining pa-

tient’s stated name and birth date (Before infusing each unit of blood

product)

Iteration 1:

• Event Binding:

confirm presence of ID band →

confirm the presence of an ID bracelet COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

request patient name COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

• Result: No violation found.

Iteration 2:

Note: the property needs to be re-verified because the related steps have been

changed. In the modified process, “obtain patient’s stated name and birth date”

correspond to two steps: “ask patient to state first and last names” and “ask patient

to state DOB”. Therefore, two sets of binding are verified.
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• Event Binding a:

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

• Event Binding b:

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to state DOB COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

• Result: No violation found for both sets of bindings.

B.4.5b (B.4.2 → B.4.3) Obtain patient’s stated name and birth date be-

fore verifying ID band matches patient’s stated name and birth date

(before infusing each unit of blood product)

Iteration 1:

• Event Binding:
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infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

obtain patient name and birth date COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

check patient’s ID bracelet STARTED

• Result: Violation found. The violation trace shows that if the patient is uncon-

scious, step “obtain patient name and birth date” will throw an exception Patien-

tUnconsious. The handler for this exception is a simple continue handler, which

means that the next step “check patient’s ID bracelet” will be executed even with-

out obtaining patient’s name and birthday. More details should be added to the

handler.

• Change: Major revision of patient id verification sub-process.

Iteration 2:

Note: “verify ID band and patient’s stated name and birth date match” correspond

to three steps: “confirm patient-stated-first-name matches patient-first-name on ID

band”, “confirm patient-stated-last-name matches patient-last-name on ID band”,

“confirm patient-stated-DOB matches patient-DOB on ID band”. Therefore, three

sets of binding are verified.

• Event Binding a:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →
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ask patient to spell first and last names COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

• Event Binding b:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

• Event Binding c:

infuse a unit of blood product →

infuse unit of blood product STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED
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• Result: no violation found for all three sets of bindings.

B.4.5c (B.4.3 → B.4.4) Verify ID band matches patient’s stated name

and birth date before verifying physician order for blood transfusion (Be-

fore infusing each unit of blood product)

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “verify

ID band matches physician order”. There is a step “verify physician order. This

step, however, seems to only check the completeness of the physician order because

it could only throw the exception IncompletePhysicianOrder and the handler says

“obtain complete physician order”.

• Change: after consulting the professional, “verify physician order” is renamed

to “confirm complete physician order” because “verify physician order” here only

checks the completeness of the order. And in the Baystate Medical Center, the

physician order is printed onto the tag affixed to blood product. Therefore, the

step “confirm product tag matches patient ID band” can be considered to verify ID

band matches physician order as well.

Iteration 2:

Note: “verify ID band and patient’s stated name and birth date match” correspond

to three steps: “confirm patient-stated-first-name matches patient-first-name on ID

band”, “confirm patient-stated-last-name matches patient-last-name on ID band”,

“confirm patient-stated-DOB matches patient-DOB on ID band”. Therefore, three

sets of binding are verified.

• Event Binding a:

infuse a unit of blood product →

infuse unit of blood product STARTED
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unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Event Binding b:

infuse a unit of blood product →

infuse unit of blood product STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Event Binding c:

infuse a unit of blood product →

infuse unit of blood product STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED
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verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Result: violations found for all three sets of bindings. Similar to B.4.2.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding a:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Event Binding b:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →
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infuse unit of blood product STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Event Binding c:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

infuse a unit of blood product →

infuse unit of blood product STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED

verify ID band and physician order for blood transfusion match →

confirm product tag matches patient ID band COMPLETED

• Result: no violation found for all three sets of bindings.

B.5.1 Verify ID band matches tag affixed to the unit of blood product

(Before infusing each unit of blood product)

Iteration 1:
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• Event Binding:

verify ID band and tag affixed to unit of blood product match →

verify product tag matches patient ID bracelet COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: violation found. The following figure shows the simplified version of

the process. The step “verify product tag matches patient ID bracelet” is a sub-

step of the parallel step “verify blood product information”. When another sub-step

“check product expiration date & time” is started before “verify product tag matches

patient ID bracelet” and throws an exception ProductExpired, “verify product tag

matches patient ID bracelet” will be retracted, and the handler “handle unit of blood

product expiration” will be executed. In “handle unit of blood product expiration”,

the expired blood unit is discarded, a replacement blood unit is obtained and

infused. The problem is that this handler has a continue badge. Therefore, the

next step “infuse unit of blood product” will be executed and “verify product tag

matches patient ID bracelet” is still retracted.

• Change: “verify blood product” is replaced by a detailed product verification

sub-process. In the sub-process, both Product Expired and Failed Product Check

exceptions are now the same, they’re handled identically, and handled inside “verify

blood product”, so when there’s an exception, new blood will be obtained from blood

bank, and all the verification process should be restarted.

Iteration 2:

• Event Binding: the same as iteration 1.

• Result: no violation found.
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B.5.2 Verify tag affixed to the unit of blood product (Before infusing

each unit of blood product)

Iteration 1:

• Event Binding:

verify tag affixed to unit of blood product and

unit of blood product match →

confirm product label matches product tag COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: no violation found.

B.5.3 Verify that unit of blood product has not expired (Before infusing

each unit of blood product)

Iteration 1:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: no violation found.

B.5.4a (B.5.1 → B.5.2) Verify ID band matches tag affixed to unit of

blood product before verifying tag matches unit of blood product (Before

infusing each unit of blood product)

Iteration 1:

245



• Event Binding:

verify ID band and tag affixed to unit of blood product match →

verify product tag matches patient ID bracelet COMPLETED

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: violation found. Since “verify product tag matches patient ID bracelet”

and “verify product tag matches product label” are sub-steps of the parallel step

“verify blood product information”, they could occur in any order. This property

is too strong.

• Change: this property is removed.

B.5.4b (B.5.2 → B.5.3) Verify tag matches unit of blood product before

verifying that unit of blood product has not expired (Before infusing each

unit of blood product)

Iteration 1:

• Event Binding:

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label COMPLETED

verify that unit of blood product has not expired →
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check product expiration date & time STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: violation found. Similar to B.5.4a, Since “verify product tag matches

patient ID bracelet” and “verify product tag matches product label” are sub-steps of

the parallel step “verify blood product information”, they could occur in any order.

This property is too strong.

• Change: this property is removed.

B.6 Assess patient’s baseline single-unit status (Before infusing each

unit of blood product)

Iteration 1:

• Event Binding:

assess patient’s baseline single unit status →

assess patient STARTED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Result: no violation found.

B.7a (B.4.4 → B.5.1) Verify ID band matches physician order for blood

transfusion before verifying ID band matches tag affixed to the unit of

blood product (Before infusing each unit of blood product)

Iteration 1:
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• Event Binding:

verify ID band and physician order for blood transfusion match →

verify physician order COMPLETED

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: violation found. This property has a scope between “unit of blood

product arrives” and “infuse a unit of blood product”. “verify physician order” is

done before “unit of blood product arrives”. But between “unit of blood product

arrives” and “infuse a unit of blood product”, only “verify ID band and physician

order for blood transfusion match” could occur.

• Change: major revision of patient and product verification sub-process.

Iteration 2:

Note: at Baystate, physician order is printed on product tag. Therefore, “verify ID

band matches physician order for blood transfusion” and “verifying ID band matches

tag affixed to the unit of blood product” are the same. Therefore, this property does

not need to be verified for this blood transfusion process.

B.7b (B.5.3 → B.6) Verify unit of blood product has not expired before

assessing patient’s baseline single-unit status (Before infusing each unit

of blood product)

Iteration 1:
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• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time COMPLETED

assess patient’s baseline single unit status →

assess patient STARTED

unit of blood product arrives →

pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: violation found. During “perform pre-infusion work, “access patient” is

done before “verify blood product information”, which is the parent step of “check

product expiration date & time”.

• Change: this property is removed because it is not necessary to require “verify

unit of blood product has not expired” must happen before “assessing patient’s

baseline single-unit status”.

B.8 If patient’s baseline single-unit assessment is problematic, ask physi-

cian for instructions before infusing unit of blood product (Before infus-

ing each unit of blood product)

Iteration 1:

• Event Binding:

find problematic patient assessment →

assess patient TERMINATED

ask physician for instructions →

confirm physician order to continue transfusion COMPLETED |
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confirm physician order to discontinue transfusion COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: no violation found.

B.9 Infusion of blood product must begin within 30 minutes after being

picked up from blood bank

• Discussion: this is a timing property that cannot be verified by our process

verification framework.

B.10 If a unit of blood product expires, it cannot be infused into a patient

Iteration 1:

• Event Binding:

expiration date on a unit of blood product is exceeded →

check product expiration date & time TERMINATED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: violation found. Note that the events in this property have certain

relationship among them: they are all related to the same unit of blood. However,

the current verifier cannot distinguish events related to different blood unit. The

violation trace shows that when one unit of blood is found to be expired, the nurse

go to pick up a new unit of blood and transfuse the new unit of blood. This is

obvious a false negative result. To eliminated this false violation, one can manually

do an artifact flow analysis. For this property, “infuse a unit of blood product” does

not have a binding because, according to the artifact flow analysis, after a unit of

blood is expired, it will be discarded.
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• Change: the professional suggested to change the property to “if a unit of blood

product expires, must pick up (new blood product) from blood bank”.

Iteration 2:

• Event Binding:

expiration date on a unit of blood product is exceeded →

check product expiration date & time TERMINATED

pick up a unit of blood product from blood bank →

pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: violation found. In the process, the step “check product expiration date

& time” appears in two places: one during “perform bedside checks” and the other

“handle suspected transfusion reaction”. The exception FailProductCheck from the

first one is handled by “handle failed product verification by replacement”, which

has a sub-step “pick up blood from blood bank”. For the second one, however, the

exception is handled by a continue handler without handling step.

• Change: attach the handler “handle failed product verification by replacement”

to the handler that handles the exception from the second one.

Iteration 3:

• Event Binding: the same as Iteration 2.

expiration date on a unit of blood product is exceeded →

check product expiration date & time TERMINATED

pick up a unit of blood product from blood bank →
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pick up blood from blood bank COMPLETED

infuse a unit of blood product →

infuse unit of blood product STARTED

• Results: no violation found.

B.11 Must assess patient’s 15-minute single-unit status after 15 minutes

of the infusion has passed

• Discussion: this is a timing property that cannot be verified by our process

verification framework.

B.12 Must assess patient’s post-single-unit status after the infusion is

completed

Iteration 1:

• Event Binding:

record infusion information →

record infusion info COMPLETED

discard transfusion materials →

discard infusion materials COMPLETED

assess patient’s post single unit status →

perform post-infusion work.assess patient STARTED

infuse a unit of blood product →

infuse unit of blood product COMPLETED

• Results: no violation found. Note that the event is bound to ‘assess patient’s

post single unit status” to step “assess patient”, which is a sub-step of “perform

post-infusion work” instead of all references to “assess patient”.
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B.14a If patient infusion exceeds the infusion time limit, must stop in-

fusion

• Discussion: in the process, there is no exception about the infusion exceeding

the time limit. More detail might need to be added to the process.

B.14b If patient infusion exceeds the infusion time limit, must ask blood

bank for further instructions

• Discussion: in the process, there is no exception about the infusion exceeding

the time limit. More detail might need to be added to the process.

B.15 If the blood bank or the physician instructs that the infusion be

discontinued, the infusion must be discontinued

Iteration 1:

• Event Binding:

receive blood bank OR physician instruction to discontinue

the infusion of a unit of blood product →

confirm physician order to discontinue transfusion COMPLETED

discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED

• Results: no violation found.

B.16 If an infusion has been stopped, it must either be resumed or be

discontinued

Iteration 1:

• Event Binding:
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resume or discontinue the infusion of a unit of blood product →

discontinue transfusion COMPLETED |

continue transfusion COMPLETED

stop the infusion of unit of blood product →

infuse unit of blood product STARTED

• Results: no violation found.

C. Handling a Suspected Transfusion Reaction

C.1 If patient has a suspected transfusion reaction, the infusion must be

stopped immediately

• Discussion: this property cannot be verified because it is a timing property.

C.2.1 If patient has a suspected transfusion reaction, must confirm the

presence of an ID band

Iteration 1:

• Event Binding:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

confirm the presence of an ID band →

confirm the presence of an ID band STARTED

• Results: no violation found.

C.2.2 If patient has a suspected transfusion reaction, must obtain pa-

tient’s stated name and birth date

Iteration 1:
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• Event Binding:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

obtain patient’s stated name and birth date →

obtain patient name and birth date STARTED

• Results: violation found. Similar to B.4.2, when the exception ReactionSus-

pected is thrown, the handler “handle suspected transfusion reaction” will reverify

the patient’ identification. Normally only the patient’s name will be obtained by

the step “request patient name”. The step “obtain patient name and birth date”

will be executed only if anything goes wrong during checking the patient’s name.

• Change: major revision of patient id verification sub-process:

Iteration 2:

Note: “obtain patient’s stated name and birth date” correspond to two steps: “ask

patient to state first and last names” and “ask patient to state DOB”. Therefore, two

sets of binding are verified.

• Event Binding a:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

obtain patient’s stated name and birth date →

ask patient to state first and last names STARTED

• Event Binding b:
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suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

obtain patient’s stated name and birth date →

ask patient to state DOB STARTED

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding a:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

obtain patient’s stated name and birth date →

ask patient to state first and last names STARTED

• Event Binding b:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product
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obtain patient’s stated name and birth date →

ask patient to state DOB STARTED

• Result: no violation found for both sets of bindings.

C.2.3 If patient has a suspected transfusion reaction, must verify ID

band matches patient’s stated name and birth date

Iteration 1:

• Event Binding:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

check patient’s ID bracelet STARTED

• Result: no violation found.

Iteration 2:

Note: “verify ID band and patient’s stated name and birth date match” correspond

to three steps: “confirm patient-stated-first-name matches patient-first-name on ID

band”, “confirm patient-stated-last-name matches patient-last-name on ID band”,

“confirm patient-stated-DOB matches patient-DOB on ID band”. Therefore, three

sets of binding are verified.

• Event Binding a:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

257



verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

• Event Binding b:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

• Event Binding c:

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED

• Result: violations found for all three sets of binding. The violations occur when

the patient is not able to communicate.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding a:
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patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

• Event Binding b:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

• Event Binding c:

patient unable to communicate →

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by
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infuse unit of blood product

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED

• Result: no violations found for all three sets of bindings.

C.2.4a (C.2.1 → C.2.2) Confirm presence of ID band before obtaining

patient’s stated name and birth date

Iteration 1:

• Event Binding:

obtain patient’s stated name and birth date →

obtain patient name and birth date STARTED

request patient name STARTED

confirm presence of ID band →

confirm the presence of an ID bracelet COMPLETED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

• Result: this property holds if two handlers in “reverify” are complete handlers

or continue handlers. Otherwise, there will be violations. See B.5.1 and B.16.

• Change: major revision of production verification sub-process.
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Iteration 2:

Note: “obtain patient’s stated name and birth date” correspond to two steps: “ask

patient to state first and last names” and “ask patient to state DOB”. Therefore, two

sets of binding are verified.

• Event Binding a:

obtain patient’s stated name and birth date →

ask patient to state first and last names STARTED

confirm presence of ID band →

confirm the presence of an ID bracelet COMPLETED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

• Event Binding b:

obtain patient’s stated name and birth date →

ask patient to state DOB STARTED

confirm presence of ID band →

confirm the presence of an ID bracelet COMPLETED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED
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• Result: no violation found. Note that “obtain patient’s stated name and birth

date” is bound to the STARTED state.

C.2.4b (C.2.2 → C.2.3) Obtain patient’s stated name and birth date be-

fore verifying ID band matches patient’s stated name and birth date

Iteration 1:

• Event Binding:

obtain patient’s stated name and birth date →

obtain patient name and birth date COMPLETED

request patient name COMPLETED

verify ID band and patient’s stated name and birth date match →

check patient’s ID bracelet STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

• Result: this property holds if two handlers in “reverify” are complete handlers

or continue handlers. Otherwise, there will be violations. See B.5.1 and B.16.

• Change: major revision of production verification sub-process.

Iteration 2:

Note “verify ID band and patient’s stated name and birth date match” correspond

to three steps: “confirm patient-stated-first-name matches patient-first-name on ID

band”, “confirm patient-stated-last-name matches patient-last-name on ID band”,
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“confirm patient-stated-DOB matches patient-DOB on ID band”. Therefore, three

sets of binding are verified.

• Event Binding a:

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

• Event Binding b:

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

• Event Binding c:

263



obtain patient’s stated name and birth date →

ask patient to state DOB COMPLETED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

• Results: no violation found for all three sets of binding.

C.3.1 If patient has a suspected transfusion reaction, must verify ID

band matches tag affixed to the unit of blood product

Iteration 1:

• Event Binding:

verify ID band and tag affixed to unit of blood product match →

verify product tag matches patient ID bracelet STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. To handle the exception ReactionSuspected, during

reverifying the blood unit, the step “check product expiration date & time” might

be executed before “verify product tag matches patient ID bracelet”. If “check

product expiration date & time” throws the exception FailedProductCheck, “verify

product tag matches patient ID bracelet” will not be executed.
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• Change: the property is changed to “If patient has a suspected transfusion

reaction, must verify ID band matches tag affixed to the unit of blood product unless

exception FailedProductCheck is thrown”.

Iteration 2:

• Event Binding:

verify ID band and tag affixed to unit of blood product match →

confirm product tag matches patient ID band STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

FailedProductCheck is thrown →

Exception FailedProductCheck is thrown by

check product expiration date & time |

Exception FailedProductCheck is thrown by

confirm product type on product tag matches that on patient record

• Result: no violation found.

C.3.2 If patient has a suspected transfusion reaction, must verify tag

affixed to the unit of blood product

Iteration 1:

• Event Binding:

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label STARTED

suspect patient is having a transfusion reaction →
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Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. Similar to C.3.1, to handle the exception ReactionSus-

pected, during reverifying the blood unit, the step “check product expiration date

& time” might be executed before “verify product tag matches product label”. If

“check product expiration date & time” throws the exception FailedProductCheck,

“verify product tag matches product label” will not be executed.

• Change: the property is changed to “If patient has a suspected transfusion re-

action, must verify tag affixed to the unit of blood product unless exception Failed-

ProductCheck is thrown”.

Iteration 2:

• Event Binding:

verify tag affixed to unit of blood product and

unit of blood product match →

confirm product label matches product tag STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

FailedProductCheck is thrown →

Exception FailedProductCheck is thrown by

confirm product tag matches patient ID band |

Exception FailedProductCheck is thrown by

check product expiration date & time |

Exception FailedProductCheck is thrown by

confirm product type on product tag matches that on patient record

• Result: no violation found.
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C.3.3 If patient has a suspected transfusion reaction, must verify that

unit of blood product has not expired

Iteration 1:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. Similar to C.3.1 and C.3.2, to handle the exception

ReactionSuspected, during reverifying the blood unit, the step “verify product tag

matches product label” might be executed before “check product expiration date &

time”. If “verify product tag matches product label” throws the exception Failed-

ProductCheck, “check product expiration date & time” will not be executed.

• Change: the property is changed to “If patient has a suspected transfusion

reaction, must verify that unit of blood product has not expired unless exception

FailedProductCheck is thrown”.

Iteration 2:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product
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FailedProductCheck is thrown →

Exception FailedProductCheck is thrown by

check blood product by 2 nurses |

Exception FailedProductCheck is thrown by

confirm product type on product tag matches that on patient record

• Result: no violation found.

C.3.4a (C.3.1 → C.3.2) Verify ID band matches tag affixed to the unit

of blood product before verifying tag matches the unit of blood product

Iteration 1:

• Event Binding:

verify ID band and tag affixed to unit of blood product match →

verify product tag matches patient ID bracelet COMPLETED

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label STARTED

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. Since “verify product tag matches patient ID bracelet”

and “verify product tag matches product label” are sub-steps of the parallel step

“verify blood product information”, they could occur in any order.

• Change: this property is removed.
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C.3.4b (C.3.2 → C.3.3) Verify tag matches the unit of blood product

before verifying that unit of blood product has not expired

Iteration 1:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time STARTED

verify tag affixed to unit of blood product and

unit of blood product match →

verify product tag matches product label COMPLETED

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. Similar to C.3.4a, since “check product expiration date

& time” and “verify product tag matches product label” are sub-steps of the parallel

step “verify blood product information”, they could occur in any order.

• Change: this property is removed.

C.4 If patient has a suspected transfusion reaction, ask physician and

blood bank for further instructions

Iteration 1:

• Event Binding:
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ask physician and blood bank for further instructions →

obtain blood bank evaluation STARTED |

obtain physician order for treatment plan STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: this property holds if two handlers in “reverify” are complete handlers

or continue handlers. Otherwise, there will be violations. See B.5.1 and B.16.

• Change: major revision of production verification sub-process.

Iteration 2:

Note: the event “ask physician and blood bank for further instructions” correspond

to two steps: “obtain physician order to continue or discontinue infusion” and “obtain

blood bank evaluation”. Therefore, two sets of binding are verified.

• Event Binding a:

ask physician and blood bank for further instructions →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Event Binding b:

ask physician and blood bank for further instructions →

obtain blood bank evaluation STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product
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• Result: no violation found.

C.5a (C.1 → C.2.1) Must stop the infusion before confirming the pres-

ence of an ID band

Iteration 1:

• Event Binding:

confirm presence of ID band →

confirm the presence of an ID bracelet STARTED

stop the infusion of a unit of blood product →

interrupt transfusion COMPLETED

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Results: this property holds if two handlers in “reverify” are complete handlers

or continue handlers. Otherwise, there will be violations. See B.5.1 and B.16.

• Change: major revision of production verification sub-process.

Iteration 2:

• Event Binding:

confirm presence of ID band →

confirm presence of exactly one ID band on patient STARTED

stop the infusion of a unit of blood product →
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interrupt transfusion COMPLETED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Results: no violation found.

C.5b (C.2.3 → C.3.1) Must verify ID band matches patient’s stated name

and birth date before verifying tag affixed to the unit of blood product

Iteration 1:

• Event Binding:

verify ID band and patient’s stated name and birth date match →

check patient’s ID bracelet COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED |

continue transfusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Results: no violation found.

Iteration 2:

Note: “verify ID band and patient’s stated name and birth date match” correspond

to three steps: “confirm patient-stated-first-name matches patient-first-name on ID
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band”, “confirm patient-stated-last-name matches patient-last-name on ID band”,

“confirm patient-stated-DOB matches patient-DOB on ID band”. Therefore, three

sets of binding are verified.

• Event Binding a:

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Event Binding b:

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product
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• Event Binding c:

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Results: violations found. They occur when the patient is not able to commu-

nicate.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding a:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →
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confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Event Binding b:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Event Binding c:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

verify ID band and patient’s stated name and birth date match →
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confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

verify ID band and tag affixed to the unit of blood product match →

confirm product tag matches patient ID band STARTED

resume or discontinue the infusion of a unit of blood product →

obtain physician order to continue or discontinue infusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Results: no violation found.

C.5c (C.3.3 → C.4) Must verify that unit of blood product has not expired

before asking physician and blood bank for further instructions

Iteration 1:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time COMPLETED

ask physician and blood bank for further instructions →

obtain physician order for treatment plan STARTED |

obtain blood bank evaluation STARTED

resume or discontinue the infusion of a unit of blood product →

discontinue transfusion STARTED

continue transfusion STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product
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• Results: this property holds if two handlers in “reverify” are complete handlers

or continue handlers. Otherwise, there will be violations. See B.5.1 and B.16.

Iteration 2:

• Event Binding:

verify that unit of blood product has not expired →

check product expiration date & time COMPLETED

ask physician and blood bank for further instructions →

ask physician and blood bank for further instructions STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

• Result: violation found. During the re-verification, the step “check product

expiration date & time” is a sub-step of a parallel step “verify blood product in-

formation”. When the other sub-step “verify blood product information” throws

exception FailedProductCheck, the step “check product expiration date & time” can

be retracted. Since the re-verification step has a continue exception handler for

FailedProductCheck, the “obtain physician order to continue or discontinue infu-

sion” will be executed.

• Change: the property is changed to “Must verify that unit of blood product has

not expired before asking physician and blood bank for further instructions unless

exception FailedProductCheck is thrown”.

Iteration 3:

• Event Binding:
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verify that unit of blood product has not expired →

check product expiration date & time COMPLETED

ask physician and blood bank for further instructions →

ask physician and blood bank for further instructions STARTED

suspect patient is having a transfusion reaction →

Exception ReactionSuspected is thrown by

infuse unit of blood product

FailedProductCheck is thrown →

Exception FailedProductCheck is thrown by

check blood product by 2 nurses |

Exception FailedProductCheck is thrown by

confirm product type on product tag matches that on patient record

• Result: no violation found.

C.6 If an infusion has been stopped due to a suspected transfusion reac-

tion, if the blood bank orders specimens, specimens must be obtained

• Discussion: there are no enough details about the blood bank ordering speci-

mens.

D. Checks That are Done Before Obtaining Specimen(s) from

a patient

D.1 Confirm presence of ID band before obtaining a specimem (before

obtaining a specimen)

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “receive

order to obtain a specimen”.
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• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

• Event Binding:

receive order to obtain a specimen →

order test(s) COMPLETED

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

obtain specimen →

obtain blood specimen STARTED

send specimen to blood bank →

send specimen to lab via tube system STARTED

• Result: no violation found.

D.2 Obtain patient’s stated name and birth date before obtaining a spec-

imen

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “receive

order to obtain a specimen”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

• Event Binding:
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send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: violation found. Similar to the property B.4.2, the step “confirm patient

is able to communicate” throws an exception PatientUnableToCommunicate. The

associated exception hander simply completes the parent step “verify patient ID

to ID band”. Therefore, “ask patient to spell first and last names” is skipped and

eventually the step “obtain blood specimen” is started.

• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain patient’s stated name and birth date →
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ask patient to spell first and last names COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: no violation found.

D.3 Verify ID band matches patient stated name and birth date before

obtaining a specimen

Iteration 1:

• Event Binding: could not find a step that can be bound to the event “receive

order to obtain a specimen”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

Note: “verify ID band and patient’s stated name and birth date match” actually

corresponds to three steps: “confirm patient-stated-DOB matches patient-DOB on ID

band”, “confirm patient-stated-first-name matches patient-first-name on ID band”,

and “confirm patient-stated-last-name matches patient-last-name on ID band”. So

three sets of binding need to be verified.

• Event Binding a:

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED
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verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

• Event Binding b:

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

• Event Binding c:

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

• Result: violation found. Similar to the property B.4.2.
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• Change: an exceptional event “patient unable to communicate” is added to the

property. If this event occur, the property is not required to be satisfied.

Iteration 3:

• Event Binding a:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

• Event Binding b:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →
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obtain blood specimen STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band COMPLETED

• Event Binding c:

patient unable to communicate→

confirm patient is able to communicate

throws exception PatientUnableToCommunicate

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band COMPLETED

• Result: no violation found.

D.4 Verify order to obtain a specimen before obtaining a specimen

Iteration 1:

• Event Binding: could not find a step related to the event “verify ID band and

order to obtain a specimen match”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.
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Iteration 2:

Note: In Baystate Medical Center, the order to obtain a specimen is print on

the blood specimen label. Therefore, “verify ID band and order to obtain a specimen

match” is the same as verifying patient ID band against the specimen label.

• Event Binding:

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and order to obtain a specimen match →

verify labels COMPLETED

• Result: no violation found.

D.5 Verify specimen container label before obtaining a specimen

Iteration 1:

• Event Binding: could not find a step related to the event “verify ID band and

specimen container label match”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

• Event Binding:
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send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

verify ID band and order to obtain a specimen match →

verify labels COMPLETED

• Result: no violation found.

D.6a (D.1 → D.2) Confirm presence of ID band before obtaining pa-

tient’s stated name and birth date (before obtaining a specimen)

Iteration 1:

• Event Binding:

confirm presence of ID band →

confirm the presence of an ID bracelet COMPLETED

obtain patient’s stated name and birth date →

request patient name STARTED |

obtain patient name and birth date STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: violation found. The violation trace shows that when “confirm the

presence of an ID bracelet” fails, it throws an exception MissingArmband. The

handler “provide new ID bracelet” will obtain patient’s stated name and birth
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date. In this case, one can obtain patient’s stated name and birth date without

completing the step “confirm the presence of an ID bracelet”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

Two sets of binding are verified.

• Event Binding a:

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

obtain patient’s stated name and birth date →

ask patient to spell first and last names STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Event Binding b:

confirm presence of ID band →

confirm presence of exactly one ID band on patient COMPLETED

obtain patient’s stated name and birth date →

ask patient to state DOB STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: no violation found.
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D.6b (D.2 → D.3) Obtain patient’s info before verifying ID band matches

patient’s stated name and birth date

Iteration 1:

• Event Binding:

verify ID band and patient’s stated name and birth date match →

check patient’s ID bracelet STARTED

obtain patient’s stated name and birth date →

request patient name COMPLETED |

obtain patient name and birth date COMPLETED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: violation found. Similar to the property D.2, the violation trace shows

that if the patient is unconscious, step “request patient name” will throw an ex-

ception PatientUnconsious. The handler for this exception is a simple continue

handler, which means that the event “verify ID band and patient’s stated name

and birth date match” will be occur even without obtaining patient’s name and

birthday.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

Three sets of binding are verified.

• Event Binding a:
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verify ID band and patient’s stated name and birth date match →

confirm patient-stated-first-name matches patient-first-name

on ID band STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Event Binding b:

verify ID band and patient’s stated name and birth date match →

confirm patient-stated-last-name matches patient-last-name

on ID band STARTED

obtain patient’s stated name and birth date →

ask patient to spell first and last names COMPLETED

receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Event Binding c:

confirm presence of ID band →

confirm patient-stated-DOB matches patient-DOB

on ID band COMPLETED

obtain patient’s stated name and birth date →

ask patient to state DOB STARTED
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receive order to obtain a specimen →

order test(s) COMPLETED

obtain specimen →

obtain blood specimen STARTED

• Result: no violation found.

D.6c (D.3 → D.4) Verify ID band matches patient’s stated name and

birth date before verifying order to obtain a specimen

Iteration 1:

• Event Binding: could not find a step related to event “verifying order to obtain

a specimen”.

D.6d (D.4 → D.5) Verify order to obtain a specimen before verifying

specimen container label

Iteration 1:

• Event Binding: could not find a step related to event “verifying order to obtain

a specimen”.

D.7 Verify order to obtain a specimen before applying a specimen con-

tainer label

Iteration 1:

• Event Binding: could not find a step related to the event “verify ID band and

order to obtain specimen match”.

D.8 Verify specimen container label before applying a specimen container

label

Iteration 1:
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• Event Binding: could not find a step related to the event “verify ID band and

specimen container label match”.

• Change: more detailed “perform Blood Specimen Obtaining process” sub-process

is elicited.

Iteration 2:

• Event Binding:

send specimen to blood bank →

send specimen to lab via tube system STARTED

receive order to obtain a specimen →

order test(s) COMPLETED

apply specimen container label →

apply label STARTED

verify ID band and order to obtain a specimen match →

verify labels COMPLETED

• Result: no violation found.

D.9 Verify ID band matches order to obtain a specimen before verifying

specimen container label (before applying a specimen container label)

Iteration 1:

• Event Binding: could not find a step related to the event “Verify ID band

matches order to obtain a specimen”.

D.10a Nothing can occur between obtaining a specimen and applying a

specimen container label

• Discussion: cannot verify this kind of property.
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D.10b Nothing can occur between applying a specimen container label

and obtaining a specimen

• Discussion: cannot verify this kind of property.

D.11 After obtaining a specimen, must apply specimen container label if

it hasn’t been done yet

Iteration 1:

• Event Binding: could not find a step related to the event “discover specimen

container is not yet labeled”.
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APPENDIX F

BLOOD TRANSFUSION PROCESS FAULT TREE
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Figure F.1. Blood Transfusion Process Fault Tree Part 1
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Figure F.2. Blood Transfusion Process Fault Tree Part 2
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Figure F.3. Blood Transfusion Process Fault Tree Part 3
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Figure F.4. Blood Transfusion Process Fault Tree Part 4
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Figure F.5. Blood Transfusion Process Fault Tree Part 5
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Figure F.6. Blood Transfusion Process Fault Tree Part 6
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Figure F.7. Blood Transfusion Process Fault Tree Part 7
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APPENDIX G

BLOOD TRANSFUSION PROCESS MCSS

Total Number of MCSs: 37

MCS 1 (8 events):

{

Step “aquire blood product” produces wrong “BloodUnit”,

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 2 (8 events):

{

Step “release blood from blood bank” produces wrong “BloodUnit”,

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step
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“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 3 (12 events):

{

Step “prepare documentation for blood pick-up” produces

wrong “BloodPickUpDoc”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),
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!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 4 (12 events):

{

Step “get validation of type and screen from lab” produces

wrong “BloodTypeAndScreen”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 5 (12 events):

{

Step “lab test blood type and screen” produces wrong “BloodTypeAndScreen”,
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!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 6 (12 events):

{

Step “ask a person to send specimen to lab” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),
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!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 7 (12 events):

{

Step “put labeled blood specimen container into biohazard bag and seal

it” produces wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform
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bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 8 (12 events):

{

Step “attach specimen label to the specimen container” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}
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MCS 9 (12 events):

{

Step “send transport container” produces wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 10 (12 events):

{

Step “enter destination where to send specimen to” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step
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“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 11 (12 events):

{

Step “ask a person to send specimen to lab” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),
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!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 12 (13 events):

{

Step “contact lab for availability of type and screen” produces

wrong “BloodTypeAndScreen”,

!(Exception “LabUnknown” is thrown by step “contact lab for availability

of type and screen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),
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!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 13 (13 events):

{

Step “draw blood specimen” produces wrong “SpecimenContainer”,

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 14 (13 events):

{
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Step “attach specimen label to the specimen container” produces

wrong “SpecimenContainer”,

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 15 (13 events):

{

Step “draw blood specimen” produces wrong “SpecimenContainer”,

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step
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“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 16 (13 events):

{

Step “place biohazard bag into transport container” produces

wrong “SpecimenContainer”,

!(Exception “TubeSystemDown” is thrown by step “place biohazard bag

into transport container”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),
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!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 17 (14 events):

{

Artifact “PhycisianOrder” is wrong when step “perform in-patient

blood transfusion” is posted,

!(Exception “NoPhysicianOrder” is thrown by step “confirm physician order

for blood transfusion”),

!(Exception “LabUnknown” is thrown by step “contact lab for availability

of type and screen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),
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!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 18 (17 events):

{

Step “gather equipment for specimen collection” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

314



!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 19 (17 events):

{

Step “gather equipment for specimen collection” produces

wrong “SpecimenContainer”,

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step
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“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 20 (18 events):

{

Step “collect labels from label printer” produces wrong “BloodSpecimenLabel”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),
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!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 21 (18 events):

{

Step “order test(s) on Downtime Requisition form” produces

wrong “DowntimeRequisitionForm”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the
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correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 22 (18 events):

{

Step “sign order sheet” produces wrong “PatientChart”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels
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from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}
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MCS 23 (18 events):

{

Step “tick on checkboxes of test(s) to order” produces wrong “PatientChart”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),
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!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 24 (18 events):

{

Step “put patient chart in order rack” produces wrong “BloodTestOrder”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),
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!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 25 (18 events):

{

Step “tick on checkboxes of test(s) to order” produces wrong “PatientChart”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform
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pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 26 (18 events):

{

Step “collect labels from label printer” produces wrong “BloodSpecimenLabel”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),
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!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 27 (18 events):

{

Step “go to the patient’s bed” produces wrong “Patient”,

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),
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!(Exception “PatientUnavailable” is thrown by step “go to the patient’s bed”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 28 (18 events):

{

Step “put patient chart in order rack” produces wrong “BloodTestOrder”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the
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correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 29 (18 events):

{

Step “go to the patient’s bed” produces wrong “Patient”,

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient
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to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “PatientUnavailable” is thrown by step “go to the patient’s bed”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}
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MCS 30 (18 events):

{

Step “sign order sheet” produces wrong “PatientChart”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),
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!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 31 (18 events):

{

Step “order test(s) on Downtime Requisition form” produces

wrong “DowntimeRequisitionForm”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

329



“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 32 (19 events):

{

Artifact “PhycisianOrder” is wrong when step “perform in-patient

blood transfusion” is posted,

!(Exception “NoPhysicianOrder” is thrown by step “confirm physician order

for blood transfusion”),

!(Exception “InfoNotMatch” is thrown by step “perform Blood

Specimen Obtaining process”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

Blood Specimen Obtaining process”),

!(Exception “InfoNotFound” is thrown by step “perform Blood

Specimen Obtaining process”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform Blood

Specimen Obtaining process”),

!(Exception “UnableToPerform” is thrown by step “perform Blood

Specimen Obtaining process”),

!(Exception “UnableToPerform” is thrown by step “perform Blood

Specimen Obtaining process”),
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!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 33 (19 events):

{

Exception “ComputerUnavailable” is thrown by step “log into computer”,

Step “determine the need for blood test” produces wrong “PatientName”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),
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!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 34 (19 events):

{

Exception “ComputerUnavailable” is thrown by step “log into computer”,

Step “determine the need for blood test” produces wrong “PatientName”,

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels
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from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}
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MCS 35 (19 events):

{

Artifact “PhycisianOrder” is wrong when step “perform in-patient

blood transfusion” is posted,

!(Exception “NoPhysicianOrder” is thrown by step “confirm physician order

for blood transfusion”),

!(Exception “InfoNotMatch” is thrown by step “check for existence of type

and screen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “check

for existence of type and screen”),

!(Exception “InfoNotFound” is thrown by step “check for existence of type

and screen”),

!(Exception “PatientHasNoIDBand” is thrown by step “check for existence

of type and screen”),

!(Exception “UnableToPerform” is thrown by step “check for existence of

type and screen”),

!(Exception “UnableToPerform” is thrown by step “check for existence of

type and screen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),
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!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 36 (20 events):

{

Exception “ComputerUnavailable” is thrown by step “log into computer”,

Artifact “PhycisianOrder” is wrong when step “perform in-patient

blood transfusion” is posted,

!(Exception “NoPhysicianOrder” is thrown by step “confirm physician order

for blood transfusion”),

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “obtain blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),
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!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}

MCS 37 (20 events):

{

Exception “ComputerUnavailable” is thrown by step “log into computer”,

Artifact “PhycisianOrder” is wrong when step “perform in-patient

blood transfusion” is posted,

!(Exception “NoPhysicianOrder” is thrown by step “confirm physician order

for blood transfusion”),

!(Exception “SpecimenLabelUnavailable” is thrown by step “collect labels

from label printer”),

!(Exception “InfoNotMatch” is thrown by step “verify the correct patient

to get specimen”),
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!(Exception “PatientHasMultipleIDBands” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “InfoNotFound” is thrown by step “verify the correct patient

to get specimen”),

!(Exception “PatientHasNoIDBand” is thrown by step “verify the

correct patient to get specimen”),

!(Exception “UnableToPerform” is thrown by step “draw blood specimen”),

!(Exception “InfoNotMatch” is thrown by step “perform pre-release checks”),

!(Exception “InfoNotFound” is thrown by step “perform pre-release checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step

“perform pre-release checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform

pre-release checks”),

!(Exception “ReactionSuspected” is thrown by step “assess patient”),

!(Exception “ProblemFoundInPatientHistory” is thrown by step

“assess patient”),

!(Exception “FailedProductCheck” is thrown by step “perform bedside checks”),

!(Exception “InfoNotMatch” is thrown by step “perform bedside checks”),

!(Exception “PatientHasMultipleIDBands” is thrown by step “perform

bedside checks”),

!(Exception “InfoNotFound” is thrown by step “perform bedside checks”),

!(Exception “PatientHasNoIDBand” is thrown by step “perform bedside checks”)

}
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APPENDIX H

CHEMOTHERAPY PROCESS
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Figure H.1. Diagram “chemotherapy process”

Figure H.2. Diagram “perform consultation and assessment”
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Figure H.3. Diagram “confirm all necessary information is present”

Figure H.4. Diagram “create treatment plan and orders”
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Figure H.5. Diagram “perform initial review of patient records”

Figure H.6. Diagram “perform Triage MA tasks before giving treatment plan to
Practice RN”
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Figure H.7. Diagram “perform Practice RN verifications”

Figure H.8. Diagram “confirm pretesting has been done”
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Figure H.9. Diagram “confirm existence and not staleness of height/weight data in
CIS”

Figure H.10. Exception Handlers Used in Diagram “perform Practice RN verifica-
tions”
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Figure H.11. Diagram “verify doses (practice RN)”

Figure H.12. Exception Handlers Used in Diagram “verify doses (practice RN)”
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Figure H.13. Diagram “perform Triage MA tasks after receiving treatment plan
from Practice RN”

Figure H.14. Diagram “perform pharmacy tasks after receiving treatment plan from
Triage MA”

345



Figure H.15. Exception Handlers Used in Diagram “perform pharmacy tasks after
receiving treatment plan from Triage MA”

Figure H.16. Diagram “obtain patient informed consent and install portacath”

Figure H.17. Diagram “perform final tasks on the day before the administration of
chemotherapy”
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Figure H.18. Diagram “perform pharmacy tasks on the day before administration
of chemotherapy”

Figure H.19. Diagram “process individual patient (anonymous)”
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Figure H.20. Exception Handlers Used in Diagram “process individual patient
(anonymous)”

Figure H.21. Diagram “perform verification tasks in MedManager”
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Figure H.22. Diagram “first day of chemo”

Figure H.23. Diagram “prepare for patient arrival”
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Figure H.24. Diagram “review patient paperwork(anonymous)”

Figure H.25. Diagram “verify treatment plan and orders”
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Figure H.26. Diagram “verify dosages”

Figure H.27. Diagram “handle MissingTreatmentPlanFromPatientChart”
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Figure H.28. Diagram “perform checks on patient before calling pharmacy”

Figure H.29. Diagram “handle low blood counts”
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Figure H.30. Diagram “perform pharmacy tasks and give pre-medications to pa-
tient”

Figure H.31. Diagram “perform first day of chemo pharmacy tasks”
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Figure H.32. Definitions of Steps Used in Diagram “perform first day of chemo
pharmacy tasks”

Figure H.33. Diagram “transcribe and place consult note in patient’s record”
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Figure H.34. Diagram “perform nurse tasks after picking drugs from pharmacy”
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APPENDIX I

CHEMOTHERAPY PROCESS VERIFICATION REPORT

A Patient Eligibility

A.1 Pathologist must review patient pathology before chemotherapy can

be administered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

pathologist reviews pathology→

verify pathology report COMPLETED

• Result: the property does not hold. The DNL of the property says “‘ad-

minister chemotherapy’ cannot occur unless ‘pathologist reviews pathology’ has al-

ready occurred. ‘pathologist reviews pathology’ is required to occur, but ‘adminis-

ter chemotherapy’ is not required to occur. ...”. So the property does not allow

chemotherapy to be administered without a review. However it also requires that

every execution include an occurrence of the event “pathologist reviews pathol-

ogy”. The counter example trace shows that an exception thrown by an earlier

step terminates the whole process. When this happens, the corresponding steps

for “pathologist reviews pathology” and “administer chemotherapy” will not be ex-

ecuted. In the real world process, this kind of executions should be allowed to

occur. Therefore the property is incorrect.
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• Change: in the property, the option for “is ‘pathologist reviews pathology’ re-

quired to occur at least once?” is changed to “No”. The DNL becomes “‘admin-

ister chemotherapy’ cannot occur unless ‘pathologist reviews pathology’ has already

occurred. ‘pathologist reviews pathology’ is not required to occur, and if it does

not occur, administer chemotherapy can never occur. Even if ‘pathologist reviews

pathology’ does occur, ‘administer chemotherapy’ is not require to occur”.

Iteration 2:

• Event Binding: the same as Iteration 1.

• Result: no violation found.

Note: in the process, there is not such a step as “pathologist reviews pathology”.

The pathology report is a parameter passed to the chemo process. The step “verify

pathology report” verifies that the pathology report is from Baystate. If the report

is not from Baystate, exception PathologyReportNotFromBaystate is thrown, and the

handler “send path report to baystate pathology for review” will be executed. The

handler has a restart continuation badge. Therefore when “send path report to baystate

pathology for review” completes, “verify pathology report” will be executed again. In

other words, the pathology report will be reviewed within the scope of the chemo

process only if it is not from the Baystate. Depending on which step the event

“pathologist reviews pathology” is bound to, the corrected property could either hold

or not hold. If the event is bound to “verify pathology report” COMPLETED, the

corrected property holds as shown in the Result section. If the event is bound to “send

path report to baystate pathology for review” COMPLETED. The verifier produced a

violation trace showing that if the pathology report is from Baystate, it will not be

reviewed before chemotherapy is administered.
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A.2 Patient must have consult with an Attending MD before chemother-

apy can be administered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

patient has a consult with an attending MD→

perform patient consultation COMPLETED

• Result: the property does not hold. Similar to A.1, this property requires

that every execution include an occurrence of the event “patient has a consult with

an attending MD”. However, the event does not have to happen if any exception

thrown earlier terminates the process.

• Change: in the property, the option for “is ‘patient has a consult with an

attending MD’ required to occur at least once?” is changed to “No”.

Iteration 2:

• Event Binding: the same as Iteration 1.

• Result: no violation found.

A.3 If the Attending MD decides no cancer diagnosis, chemotherapy

cannot be administered

Iteration 1:

• Event Binding:
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administer chemotherapy→

administer chemo drug STARTED

attending MD decides no cancer diagnosis→

verify diagnosis of cancer TERMINATED

• Result: no violation found.

Note: the elicitation of the sub-process containing “verify diagnosis of cancer”

is not completed yet. The interface of step “verify diagnosis of cancer” declares an

exception java.lang.Exception might be thrown by this step. This exception should

be given a more specific name later.

B Legal Constraints

B.1 Consult note must be put into patient record before chemotherapy

can be administered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

consult note is put into patient’s record→

file consult note in patient’s record COMPLETED

• Result: violation found. The property requires that every execution include an

occurrence of the event “consult note is put into that patient’s record”. However,

the violation trace shows that this event does not happen if any exception thrown

earlier terminates the process.

• Change: in the property, the option for “is ‘consult note is put into patient’s

record’ is required to occur?” to “No. ’consult note is put into that patient’s
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record’ is not required to occur, if it does not occur, ’administer chemo drug’ is

never allowed to occur”.

Iteration 2:

• Event Binding: the same as Iteration 1.

• Result: violation found. The step “file consult note in patient’s record” is

executed in parallel with the step “administer chemo drug”. Therefore, “file consult

note in patient’s record” can be executed after “administer chemo drug”. This is

an error in the real process.

B.2 Patient must sign consent form before chemotherapy can be admin-

istered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

patient signs consent form→

request written patient consent COMPLETED

• Result: no violation found.

B.3 Treatment plan must be present before chemotherapy can be admin-

istered

Iteration 1:

• Event Binding:
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administer chemotherapy→

administer chemo drug STARTED

treatment plan must is present→

confirm existence of treatment plan in patient chart COMPLETED

• Result: violation found. The step “confirm existence of treatment plan in pa-

tient chart” may throw exception Missing Treatment Plan From Patient Chart.

The exception is handle by step “handle Missing Treatment Plan From Patient

Chart”. This handler step will create a new treatment plan. Therefore, the event

“treatment plan must is present” should be considered to occur when either “con-

firm existence of treatment plan in patient chart” or “handle Missing Treatment

Plan From Patient Chart” is completed.

Iteration 2:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

treatment plan must is present→

confirm existence of treatment plan in patient chart COMPLETED |

handle Missing Treatment Plan ¿From Patient Chart COMPLETED

• Result: no violation found.

B.4 Before patient can sign consent form, patient must have consult with

an Attending MD

Iteration 1:

• Event Binding:
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patient has a consult with an attending MD→

perform patient consultation COMPLETED

patient signs consent form→

request written patient consent STARTED

• Result: no violation found.

B.5 Before patient can sign a new consent form, patient must have

chemotherapy teaching

Iteration 1:

• Event Binding:

patient has chemotherapy teaching→

perform chemo teaching with patient COMPLETED

patient signs consent form→

request written patient consent STARTED

• Result: violation found. Step “perform chemo teaching with patient” and “re-

quest written patient consent” are sub-steps of a parallel step. Therefore, they can

be executed in any order.

• Change: the parent step of “perform chemo teaching with patient” and “request

written patient consent” is changed to a sequential step.

Iteration 2:

• Event Binding: the same as Iteration 1.

• Result: no violation found.
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B.6 Patient must have consult with an Attending MD before patient can

have chemotherapy teaching

Iteration 1:

• Event Binding:

patient has chemotherapy teaching→

perform chemo teaching with patient STARTED

patient has a consult with an attending MD→

perform patient consultation COMPLETED

• Result: no violation found.

C Development of Treatment Plan and Chemotherapy Orders

C.1a Treatment plan must be approved by Clinic RN before chemother-

apy can be administered the first time

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

clinic RN approves treatment plan→

sign treatment plan COMPLETED

• Result: no violation found.

C.1b Treatment plan must be approved by Practice RN before chemother-

apy can be administered the first time

Iteration 1:
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• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

practice RN approves treatment plan→

sign treatment plan (Practice RN) COMPLETED

• Result: no violation found.

C.1c Treatment plan must be approved by Pharmacy before chemotherapy

can be administered the first time

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

pharmacist approves treatment plan→

sign and date treatment plan COMPLETED

• Result: no violation found.

C.2a Chemo order must be verified by Clinic RN before chemotherapy

can be administered for the first time

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

chemotherapy order is verified by clinic RN→

verify treatment plan and orders COMPLETED

• Result: no violation found.
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C.2b Chemo order must be verified by Practice RN before chemotherapy

can be administered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

chemotherapy order is verified by practice RN→

perform Practice RN verifications COMPLETED

• Result: no violation found.

C.2c Chemo order must be verified by Pharmacy before chemotherapy

can be administered

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

chemotherapy order is verified by pharmacy→

verify chemo orders COMPLETED

• Result: violation found. Before step “verify chemo orders”, There is a step

“confirm existence of orders for patient” that might throw exception Missing Or-

der For Patient. If this exception is thrown, “verify chemo orders” will not be

executed. The exception handler “hande Missing Order For Patient” will fix the

error. Therefore, we should also consider that the event “chemotherapy order is

verified by pharmacy” occurs if “hande Missing Order For Patient” is completed.
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Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

chemotherapy order is verified by pharmacy→

verify chemo orders COMPLETED |

hande Missing Order For Patient COMPLETED

• Result: no violation found.

C.6a Chemotherapy orders must be consistent with the treatment plan

before PracticeRN can approve the treatment plan

Iteration 1:

• Event Binding:

practice RN ensures that chemo order and treatment plan are consistent→

verify doses (practice RN) COMPLETED

practice RN approves the treatment plan→

sign treatment plan (Practice RN) STARTED

• Result: no violation found.

C.6b Chemotherapy orders must be consistent with the treatment plan

before Pharmacy can approve the treatment plan

Iteration 1:

• Event Binding:
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pharmacy ensures that chemo order and treatment plan are consistent→

confirm orders in CIS consistent with treatment plan COMPLETED

pharmacy approves the treatment plan→

sign and date treatment plan STARTED

• Result: no violation found.

C.6c Chemotherapy orders must be consistent with the treatment plan

before Clinic RN can approve the treatment plan

Iteration 1:

• Event Binding:

clinic RN ensures that chemo order and treatment plan are consistent→

verify dosages COMPLETED

clinic RN approves the treatment plan→

sign treatment plan STARTED

• Result: no violation found.

C.6d Chemotherapy orders must be consistent with the treatment plan

before Pharmacy can verify the chemotherapy orders

Iteration 1:

• Event Binding:

pharmacy ensures that chemo order and treatment plan are consistent→

confirm orders in CIS are consistent with

paper copy of treatment plan COMPLETED |

handle TreatmentPlanAndOrdersDontMatch COMPLETED

chemotherapy order is verified by pharmacy→

verify chemo orders STARTED
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• Result: no violation found.

C.6e Chemotherapy orders must be consistent with the treatment plan

before Clinic RN can verify the chemotherapy orders

• Event Binding: for the clinic RN, checking the consistency of chemo order

and treatment plan and verifying chemo order are performed at the step “verify

treatment plan and orders”. There are no different sub-steps that can be bind to

these two events.

C.6f Chemotherapy orders must be consistent with the treatment plan

before Practice RN can verify the chemotherapy orders

• Event Binding: for the practice RN, checking the consistency of chemo order

and treatment plan and verifying chemo order are performed at the step “perform

Practice RN verifications”. There are no different sub-steps that can be bind to

these two events.

C.7a Chemotherapy drugs must be consistent with cancer diagnosis be-

fore Practice RN can approve treatment plan

• Event Binding: no binding for event “practice RN ensures that chemo drugs

and cancer diagnosis are consistent”

C.7b Chemotherapy drugs must be consistent with cancer diagnosis be-

fore Pharmacy can approve treatment plan

Iteration 1:

• Event Binding:

pharmacist ensures that chemo drugs and cancer diagnosis are consistent→

confirm treatment plan consistent with diagnosis COMPLETED
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pharmacist approves treatment plan→

sign and date treatment plan STARTED

• Result: no violation found.

C.7c Chemotherapy drugs must be consistent with cancer diagnosis be-

fore Clinic RN can approve treatment plan

Iteration 1:

• Event Binding:

clinic RN ensures that chemo drugs and cancer diagnosis are consistent→

confirm drugs on treatment plan consistent

with diagnosis COMPLETED |

handle TreatmentPlanInconsistentWithDiagnosis COMPLETED

clinic RN approves treatment plan→

sign treatment plan STARTED

• Result: no violation found.

C.7d Chemotherapy drugs must be consistent with cancer diagnosis be-

fore Practice RN can verify chemotherapy orders

• Event Binding: no binding for event “practice RN ensures that chemo drugs

and cancer diagnosis are consistent”

C.7fe Chemotherapy drugs must be consistent with cancer diagnosis be-

fore Pharmacy can verify chemotherapy orders

Iteration 1:

• Event Binding:
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pharmacist ensures that chemo drugs and cancer diagnosis are consistent→

confirm treatment plan consistent with diagnosis COMPLETED

chemotherapy order is verified by pharmacy→

verify chemo orders STARTED

• Result: no violation found.

C.7f Chemotherapy drugs must be consistent with cancer diagnosis before

clinic RN can verify chemotherapy orders

• Event Binding: for the Clinic RN, checking the consistency of chemo order and

cancer diagnosis can be bind to step “confirm drugs on treatment plan consistent

with diagnosis” and verifying chemo order can be bind to step “verify treatment

plan and orders”. However, “confirm drugs on treatment plan consistent with di-

agnosis” is a sub-step of “verify treatment plan and orders”.

C.8a Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Practice RN can approve treatment plan

Iteration 1:

• Event Binding:

practice RN checks that chemo drugs are in doses→

verify doses (practice RN) COMPLETED

practiceRN approves treatment plan→

sign treatment plan (Practice RN) STARTED

• Result: no violation found.

C.8b Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Pharmacy can approve treatment plan

Iteration 1:
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• Event Binding:

pharmacy checks that chemo drugs are in doses→

confirm manually calculated dose closely

approximates one in CIS COMPLETED

pharmacist approves treatment plan→

sign and date treatment plan STARTED

• Result: no violation found.

C.8c Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Clinic RN can approve treatment plan

Iteration 1:

• Event Binding:

clinic RN checks that chemo drugs are in doses→

verify drug dosage COMPLETED

clinic RN approves treatment plan→

sign treatment plan STARTED

• Result: no violation found.

C.8d Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Practice RN can verify chemotherapy orders

• Event Binding: for the practice RN, checking chemo drugs in doses can be bind

to step “verify doses (practice RN)” and verifying chemo order can be bind to step

“perform Practice RN verifications”. However, “verify doses (practice RN)” is a

sub-step of “perform Practice RN verifications”.
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C.8e Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Pharmacy can verify chemotherapy orders

Iteration 1:

• Event Binding:

pharmacy checks that chemo drugs are in doses→

confirm manually calculated dose closely

approximates one in CIS COMPLETED

chemotherapy order is verified by pharmacy→

verify chemo orders STARTED

• Result: no violation found.

C.8f Chemotherapy drugs must be in doses that are consistent with pa-

tient data before Clinic RN can verify chemotherapy orders

• Event Binding: for the Clinic RN, checking chemo drugs in doses can be bind

to step “verify drug dosage” and verifying chemo order can be bind to step “verify

treatment plan and orders”. However, “verify drug dosage” is a sub-step of “verify

treatment plan and orders”.

C.9a Treatment plan cannot be approved by Practice RN if there is stale

or disparate data

Iteration 1:

• Event Binding:

practice RN checks that data is not stale→

confirm existence and not staleness of

height/weight data in CIS COMPLETED
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practice RN approves treatment plan→

sign treatment plan (Practice RN) STARTED

• Result: no violation found.

C.9b Treatment plan cannot be approved by Pharmacy if there is stale

or disparate data

Iteration 1:

• Event Binding:

pharmacy checks that data is not stale→

confirm height and weight are not stale COMPLETED |

confirm height/weight data are not stale COMPLETED

pharmacist approves treatment plan→

sign and date treatment plan STARTED

• Result: no violation found.

C.9c Treatment plan cannot be approved by Clinic RN if there is stale

or disparate data

• Event Binding: no binding for event “clinic RN checks that data is not stale”.

C.9d Chemotherapy orders cannot be verified by second RN if there is

stale or disparate data

• Event Binding: for the practice RN, checking data is not stale can be bind

to step “confirm existence and not staleness of height/weight data in CIS” and

verifying chemo order can be bind to step “perform Practice RN verifications”.

However, “confirm existence and not staleness of height/weight data in CIS” is a

sub-step of “perform Practice RN verifications”.
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C.9e Chemotherapy orders cannot be verified by Pharmacy if there is

stale or disparate data

Iteration 1:

• Event Binding:

pharmacy checks that data is not stale→

confirm height and weight are not stale COMPLETED |

confirm height/weight data are not stale COMPLETED

chemotherapy order is verified by pharmacy→

verify chemo orders STARTED

• Result: no violation found.

C.9f Chemotherapy orders cannot be verified by Clinic RN if there is

stale or disparate data

• Event Binding: no binding for event “clinic RN checks that data is not stale”.

D Activities Required Right before Chemotherapy is Admin-

istered

Part 1. Before chemotherapy can be administered to a patient

D.1 That patient must be correctly identified (before chemotherapy can

be administered to a patient)

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

374



correctly identify patient→

identify patient COMPLETED

clinic RN gets responsibility for patient→

first day of chemo POSTED

clinic RN ends responsibility for patient→

first day of chemo COMPLETED |

first day of chemo TERMINATED

• Result: the property does not hold. Similar to MP A.1, this property requires

that the event “correctly identify patient” must happen at least once. However, if

any exception is thrown by the step “prepare for patient arrival”, the whole process

will be terminated before “correctly identify patient” could happen.

• Change: in the property, the option for “is ‘correctly identify patient’ required

to occur at least once?” is changed to “No”.

Iteration 2:

• Event Binding: the same as Iteration 1.

• Result: no violation found.

Note: event “incorrectly identify patient”, “make sure that patient has appropriate

I.V. access” and “make sure that patient is well enough to receive chemotherapy” are in

the alphabet of this property. However, the property doesn’t restrict their occurrence

in any way. During the verification, I removed these events from the alphabet. I have

sent an email to Rachel about this problem.

D.2a That patient must be well enough to receive chemotherapy

Iteration 1:
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• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→

Exception VitalSignsNotWithinAcceptedPrameters is thrown by

perform review of systems

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED

• Result: no violation found.

Iteration 2:

In fact, a patient is consider to be well enough only if all vital signs are within

accepted parameters and the blood counts are sufficient. On the other hand, a patient

is consider not to be well enough if erither all vital signs are not within accepted

parameters or the blood counts are not sufficient. Therefore, two sets of bindings

need to be verified.

• Event Binding a:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→

Exception VitalSignsNotWithinAcceptedPrameters is thrown by

perform review of systems

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED
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• Event Binding b:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→

Exception LowBloodCounts is thrown by

check blood counts

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

check blood counts COMPLETED |

handle low blood count COMPLETED |

handle LowBloodCount COMPLETED

• Result: the property holds with both sets of bindings.

Note: the step “check blood counts” appears in two different places in the process:

one in the fragment “perform checks on patient before calling pharmacy” and the

other in the fragment “perform first day of chemo pharmacy tasks”. And it has two

different definitions and different handlers (“handle low blood count” and “handle

LowBloodCounts”) in those two places.

D.2b If that patient is not well enough, must wait until that patient is

well enough to receive chemotherapy

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→
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Exception VitalSignsNotWithinAcceptedPrameters is thrown by

perform review of systems

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED

• Result: the property does not hold. The property says that “make sure that

patient is well enough to receive chemotherapy” must occur between the scope:

after “find that patient is not well enough to receive chemotherapy” and before

“administer chemotherapy”. In the scope question tree, it requires that “find that

patient is not well enough to receive chemotherapy” is required to occur. However,

the event does not have to happen if any exception thrown earlier terminates the

process.

• Change: The option for “is ‘find that patient is not well enough to receive

chemotherapy’ required?” is changed to “No”. And the modified property holds as

expected.

Iteration 2:

Similar to D.2a, two sets of bindings need to be verified.

• Event Binding a:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→

Exception VitalSignsNotWithinAcceptedPrameters is thrown by

perform review of systems

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED
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• Event Binding b:

administer chemotherapy→

administer chemo drug STARTED

find that patient is not well enough to receive chemotherapy→

Exception LowBloodCounts is thrown by

check blood counts

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

check blood counts COMPLETED |

handle low blood count COMPLETED |

handle LowBloodCount COMPLETED

• Result: the property holds with both sets of bindings.

D.3a That patient must have appropriate I.V. access

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

make sure that patient has appropriate I.V. access→

check patient IV access COMPLETED

find that patient does not have appropriate I.V. access→

check patient IV access TERMINATED

• Result: no violation found.

Note: in the process, the step “check patient IV access” throws an exceptions.

But there is no exception handler for this exception. If this exception is thrown,
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the whole process will be terminated. If an exception handler step is added into the

process later on, the binding for the event “make sure that patient has appropriate

I.V. access” must be changed, and this property has to be verified again.

D.3b If that patient loses their appropriate I.V. access, new appropriate

I.V. access must be found

Iteration 1:

• Event Binding:

administer chemotherapy→

administer chemo drug STARTED

make sure that patient has appropriate I.V. access→

check patient IV access COMPLETED

find that patient does not have appropriate I.V. access→

check patient IV access TERMINATED

• Result: no violation found.

Note: similar to D.3a, if an exception handler step is added into the process

to handle the exception thrown by “check patient IV access”, the binding for the

event “make sure that patient has appropriate I.V. access” must be changed, and this

property has to be verified again.

D.4a (D.1 → D.2) That patient must be correctly identified before making

sure that patient is well enough to receive chemotherapy

Iteration 1:

• Event Binding:
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administer chemotherapy→

administer chemo drug STARTED

correctly identify patient→

identify patient COMPLETED

make sure that patient has appropriate I.V. access→

check patient IV access COMPLETED

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

check blood counts COMPLETED |

handle low blood count COMPLETED |

handle LowBloodCount COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED

patient arrives for administration of chemotherapy→

perform checks on patient before calling pharmacy STARTED

• Result: no violation found.

Note: unlike property MP D.2a and MP D.2b, only one set of bindings is created

for this property. This property requires that patient must be correctly identified

before making sure that patient is well enough to receive chemotherapy. Patient

identification must occur before any “make sure that patient is well enough to receive

chemotherapy” event. Therefore, one can simply associate the event “make sure that

patient is well enough to receive chemotherapy” with disjunctive bindings.

D.4b (D.2 → D.3) Patient must be well enough to receive chemotherapy

before making sure that patient has appropriate I.V. Access

Iteration 1:

• Event Binding:
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administer chemotherapy→

administer chemo drug STARTED

correctly identify patient→

identify patient COMPLETED

make sure that patient has appropriate I.V. access→

check patient IV access COMPLETED

make sure that patient is well enough to receive chemotherapy→

perform review of systems COMPLETED |

check blood counts COMPLETED |

handle low blood count COMPLETED |

handle LowBloodCount COMPLETED |

Handle VitalSignsNotWithinAcceptedPrameters COMPLETED

patient arrives for administration of chemotherapy→

perform checks on patient before calling pharmacy STARTED

• Result: no violation found.

Part 2. Checks required for the chemotherapy drugs

D.7a All chemotherapy drugs must be physically suitable for administra-

tion before chemotherapy can be administered

• Event Binding: no binding for event “make sure all chemotherapy drugs must

be physically suitable for administration”.

E Activities Required While Chemotherapy is being Admin-

istered

E.1 If a patient has an adverse reaction to an administration of chemo,

the administration must be stopped immediately

Iteration 1:
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• Event Binding:

attending MD or attending MD’s delegate decides patient disposition→

call doctor STARTED

patient has adverse reaction to administration of chemotherapy→

Exception AllergicReactionToChemoDrug is thrown

stabilize patient condition→

give emergency meds STARTED

stop administration of chemotherapy→

stop pump STARTED

• Result: no violation found.

E.2 If a patient has an adverse reaction to an administration of chemo,

that patient’s condition must be stabilized

Iteration 1:

• Event Binding:

attending MD or attending MD’s delegate decides patient disposition→

call doctor STARTED

patient has adverse reaction to administration of chemotherapy→

Exception AllergicReactionToChemoDrug is thrown

stabilize patient condition→

give emergency meds STARTED

• Result: violation found. The property requires that no other events are allowed

to occur after “patient has adverse reaction to administration of chemotherapy”

and before “stabilize patient condition”. In the process, the exception handler

“handle AllergicReactionToChemoDrug” is sequential step that has four sub-steps:

383



“stop pump”, “call doctor”, “give emergency meds”, and “send patient home”. It

is obvious that “Attending MD or Attending MD’s delegate decides patient dis-

position” will occur between “patient has adverse reaction to administration of

chemotherapy” and “stabilize patient condition”.

E.3 If a patient has an adverse reaction to an administration of chemo,

that patient’s disposition must be decided

Iteration 1:

• Event Binding:

attending MD or attending MD’s delegate decides patient disposition→

call doctor STARTED

patient has adverse reaction to administration of chemotherapy→

Exception AllergicReactionToChemoDrug is thrown

• Result: no violation found.

F Activities Required Right After Chemotherapy has been

Administered

F.1a A patient must be well enough to be discharged

Iteration 1:

• Event Binding:

discharge patient→

discharge patient STARTED

patient becomes too ill to be discharged→

Exception AllergicReactionToChemoDrug is thrown

patient becomes well enough to be discharged→
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check patient OK COMPLETED |

handle AllergicReactionToChemoDrug COMPLETED

• Result: no violation found.

F.1b If a patient becomes too ill to be discharged, they must become well

enough

Iteration 1:

• Event Binding:

discharge patient→

discharge patient STARTED

patient becomes too ill to be discharged→

Exception AllergicReactionToChemoDrug is thrown

patient becomes well enough to be discharged→

check patient OK COMPLETED |

handle AllergicReactionToChemoDrug COMPLETED

• Result: no violation found.

F.2 If a patient needs observation, they must be observed

• Event Binding: no binding for event “patient needs observation”.

F.3 After chemotherapy is administered, all prescriptions for necessary

post-chemotherapy supportive care medications must be given to patient

• Event Binding: no binding for event “give all necessary prescriptions for post-

chemotherapy supportive care medications to patient”.
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F.4 After chemotherapy is administered, all post-chemotherapy instruc-

tions must be given to patient

Iteration 1:

• Event Binding:

discharge patient→

discharge patient STARTED

administer chemotherapy→

administer chemo drug COMPLETED

give all post-chemotherapy instructions to patient→

provide discharge instructions COMPLETED

• Result: no violation found.

F.5 After chemotherapy is administered, a follow-up appointment must

be scheduled

Iteration 1:

• Event Binding:

discharge patient→

discharge patient STARTED

administer chemotherapy→

administer chemo drug COMPLETED

schedule follow-up appointment→

ensure presence of appointment COMPLETED

• Result: no violation found.
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F.6 After chemotherapy is administered, all laboratory results and chemo

administration data must be entered into that patient’s record

Iteration 1:

• Event Binding:

business day ends→

first day of chemo COMPLETED

administer chemotherapy→

administer chemo drug STARTED

enter all patient laboratory results and chemotherapy

administration data into patient record→

chart clinical summary COMPLETED

• Result: violation found. The violation trace shows that after the chemotherapy

is administered, an exception AllergicReactionToChemoDrug may be thrown from

the step “check patient OK”. This exception will be handled by a handler with the

step “handle AllergicReactionToChemoDrug”. The handler has a COMPLETE

badge, which means that the step “chart clinical summary” will not be executed.
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APPENDIX J

CHEMOTHERAPY PROCESS FAULT TREE
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Figure J.1. Chemotherapy Process Fault Tree Part 1
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Figure J.2. Chemotherapy Process Fault Tree Part 2
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Figure J.3. Chemotherapy Process Fault Tree Part 3
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Figure J.4. Chemotherapy Process Fault Tree Part 4

392



Figure J.5. Chemotherapy Process Fault Tree Part 5
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Figure J.6. Chemotherapy Process Fault Tree Part 6
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Figure J.7. Chemotherapy Process Fault Tree Part 7
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Figure J.8. Chemotherapy Process Fault Tree Part 8
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Figure J.9. Chemotherapy Process Fault Tree Part 9
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Figure J.10. Chemotherapy Process Fault Tree Part 10
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Figure J.11. Chemotherapy Process Fault Tree Part 11
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Figure J.12. Chemotherapy Process Fault Tree Part 12
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Figure J.13. Chemotherapy Process Fault Tree Part 13
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Figure J.14. Chemotherapy Process Fault Tree Part 14
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Figure J.15. Chemotherapy Process Fault Tree Part 15
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APPENDIX K

CHEMOTHERAPY PROCESS MCSS

Total Number of MCSs: 52

MCS 1 (1 events):

{

Step “handle LabelsAndOrdersDontMatch(call pharmacy)” produces

wrong “ChemoDrug”

}

MCS 2 (2 events):

{

Step “pick up chemo drugs” produces wrong “ChemoDrug”,

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 3 (2 events):

{

Step “put medications on window” produces wrong “ChemoDrug”,

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 4 (2 events):

{

Step “handle LabelsAndOrdersDontMatch” produces wrong “ChemoDrug”,

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 5 (2 events):

{

Step “handle LabelsAndOrdersDontMatch” produces wrong “ChemoOrder”,

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 6 (3 events):

{

Step “print chemo orders (pharmacist)” produces wrong “ChemoOrders”,

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 7 (4 events):

{
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Step “mix drugs” produces wrong “ChemoDrug”,

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 8 (4 events):

{

Step “handle LabelsAndOrdersDontMatch” produces wrong “ChemoDrug”,

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 9 (4 events):

{

Step “handle LabelsAndOrdersDontMatch” produces wrong “ChemoOrder”,

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),
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!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 10 (5 events):

{

Step “pull out box with medications” produces wrong “ChemoDrug”,

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 11 (6 events):

{

Step “submit verified order in MedManager” produces wrong “ChemoOrder”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 12 (6 events):

{

Step “fill in rest of the fields in MedManager” produces wrong “ChemoOrder”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 13 (6 events):

{

Step “access patient info using account number” produces wrong “ChemoOrder”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}
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MCS 14 (6 events):

{

Step “put sticker on armband” produces wrong “PatientArmband”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 15 (6 events):

{

Step “locate sticker with patient name and DOB that match the

obtained patient name and DOB” produces wrong “ArmbandSticker”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 16 (6 events):

{
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Step “obtain name and DOB from patient” produces wrong “PatientBirthday”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 17 (6 events):

{

Step “obtain name and DOB from patient” produces wrong “PatientName”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 18 (6 events):

{

Step “accept patient” produces wrong “Patient”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

410



!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 19 (7 events):

{

Step “cross off non-chemo patients from patient roster” produces

wrong “PatientRoster”,

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 20 (7 events):

{

Step “print out patient roster” produces wrong “PatientRoster”,

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),
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!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 21 (7 events):

{

Step “print roster” produces wrong “PatientRoster”,

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 22 (7 events):

{

Step “build roster based on location” produces wrong “PatientRoster”,

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence
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of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 23 (8 events):

{

Step “take bags with solutions” produces wrong “Solution”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}
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MCS 24 (8 events):

{

Step “put labels in the ”day folder“” produces wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 25 (8 events):

{

Step “attach labels to solutions” produces wrong “Soution”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info
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on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 26 (8 events):

{

Step “print labels” produces wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 27 (8 events):

{

Step “put solutions into a patient bin” produces wrong “PatientBin”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),
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!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 28 (8 events):

{

Step “prime solutions” produces wrong “Solution”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

416



MCS 29 (8 events):

{

Step “take labels from printer” produces wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 30 (8 events):

{

Step “take labels for next day” produces wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info
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on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 31 (8 events):

{

Step “bring labels over to medication counter” produces

wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 32 (8 events):

{

Step “calculate volume of chemo drug to be added to solution” produces

wrong “ChemoDrugLabel”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),
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!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 33 (8 events):

{

Step “arrange patient drug bins alphabetically by patient name”

produces wrong “PatientBin”,

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on chemo orders matches with info on drug labels”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on labels matches info on chemo orders”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 34 (13 events):

{

Step “leave stapled treatment plan package in Practice RN’s tray ”

produces wrong “ChemoOrder”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 35 (13 events):

{

Step “staple everything together” produces wrong “ChemoOrder”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 36 (13 events):

{

Step “put signatures box on treatment plan ” produces wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 37 (13 events):

{

Step “print chemo orders ” produces wrong “ChemoOrder”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 38 (13 events):

{

Step “print face sheet” produces wrong “FaceSheet”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 39 (13 events):

{

Step “write chemotherapy orders” produces wrong “ChemoOrder”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 40 (13 events):

{

Step “use a careset to generate treatment plan” produces

wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 41 (13 events):

{

Step “pick up newly printed treatment plan” produces wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 42 (13 events):

{

Step “staple everything together” produces wrong “FaceSheet”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 43 (13 events):

{

Step “leave stapled treatment plan package in Practice RN’s tray ”

produces wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 44 (13 events):

{

Step “write treatment plan from scratch” produces wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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}

MCS 45 (13 events):

{

Step “staple everything together” produces wrong “TreatmentPlan”,

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

431



}

MCS 46 (14 events):

{

Step “perform patient consultation” produces wrong “ConsultNote”,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

432



on drug labels matches info on chemo orders”)

}

MCS 47 (15 events):

{

Artifact “Tests” is wrong when step “chemotherapy process” is posted,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),
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!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 48 (15 events):

{

Artifact “Scans” is wrong when step “chemotherapy process” is posted,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),
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!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 49 (15 events):

{

Artifact “PathologyReport” is wrong when step “chemotherapy process”

is posted,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),
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!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 50 (15 events):

{

Artifact “Patient” is wrong when step “chemotherapy process” is posted,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice
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RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 51 (16 events):

{

Step “measure height/weight in standard fashion” produces

wrong “PatientWeight”,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “PatientUnableToStand” is thrown by step “measure

height/weight in standard fashion”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step
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“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)

}

MCS 52 (16 events):

{

Step “measure height/weight in standard fashion” produces

wrong “PatientHeight”,

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step
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“confirm all necessary information is present”),

!(Exception “PathologyReportDoesNotIndicateCancer” is thrown by step

“review pathology report (if haven’t done so yet)”),

!(Exception “PatientUnableToStand” is thrown by step “measure

height/weight in standard fashion”),

!(Exception “TreatmentPlanInconsistentWithOrders” is thrown by step

“perform Practice RN verifications”),

!(Exception “TreatmentPlanNeedsToBeReentered” is thrown by step

“perform Practice RN verifications”),

!(Exception “HeightWeightDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “DosagesDontMatch” is thrown by step “perform Practice

RN verifications”),

!(Exception “StickyNotesTasksNotCompleted” is thrown by step

“perform Practice RN verifications”),

!(Exception “Exception” is thrown by step “obtain patient informed

consent and install portacath ”),

!(Exception “MissingOrdersForPatient” is thrown by step “confirm existence

of orders for patient”),

!(Exception “BSAMismatch” is thrown by step “evaluate blood counts”),

!(Exception “PatientDeferred” is thrown by step “evaluate blood counts”),

!(Exception “PatientNotInRoster” is thrown by step “check patient in roster”),

!(Exception “DosagesDontMatch” is thrown by step “confirm

manually-calculated drug volume matches the added volume by tech”),

!(Exception “LabelsAndOrdersDontMatch” is thrown by step “confirm info

on drug labels matches info on chemo orders”)
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[51] Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos. Apply-
ing model checking to bpel4ws business collaborations. In SAC ’05: Proceedings
of the 2005 ACM Symposium on Applied Computing, pages 826–830. 2005.

[52] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Ltsa-ws: A
tool for model-based verification of web service compositions and choreogra-
phy. In ICSE ’06: Proceeding of the 28th International Conference on Software
Engineering, pages 771–774. 2006.

[53] Michael A. Friedman. Automated software fault-tree analysis of pascal pro-
grams. In Reliability and Maintainability Symposium, pages 458–461. Atlanta,
GA, January 1993.

[54] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting BPEL web
services. In 3th International World Wide Web Conference (WWW). May 2004.

[55] Xiang Fu, Tevfik Bultan, and Jianwen Su. Model checking XML manipulat-
ing software. In International Symposium on Software Testing and Analysis
(ISSTA). 2004.

[56] Xiang Fu, Tevfik Bultan, and Jianwen Su. WSAT: A tool for formal analysis of
web services. In 16th International Conference on Computer Aided Verification.
July 2004.

[57] Henry L. Gantt. Work, Wages, and Profits. Engineering Magazine Co., New
York, 1916. Reprinted by Hive Publishing Company, Easton, Maryland, 1973.

[58] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A unified high-level petri
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