
Expressiveness and Succinctness of First-Order Logic on
Finite Words

A Dissertation Presented

by

Philipp Weis

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

May 2011

Computer Science



c© Copyright by Philipp Weis 2011.

Some Rights Reserved.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

For a copy of this license, visit http://creativecommons.org/licenses/by/3.0/,

or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco CA

94105, USA.

http://creativecommons.org/licenses/by/3.0/


Expressiveness and Succinctness of First-Order Logic on
Finite Words

A Dissertation Presented

by

Philipp Weis

Approved as to style and content by:

Neil Immerman, Chair

David A. Mix Barrington, Member

Rajesh Bhatt, Member

Gerome Miklau, Member

Howard Straubing, Member

Andrew G. Barto, Department Chair
Computer Science



To all my teachers.



Acknowledgments

Numerous people have been instrumental to the development of this dissertation.

Above all, I am grateful for the sustained support and encouragement from my ad-

visor Neil Immerman. He allowed me to develop and explore my own interests, pro-

vided consistently helpful and insightful advice, and always had an open ear for my

latest ideas or questions. I am particularly fond of him for encouraging me to pick

hard problems with unclear outcome and almost guaranteed frustration over more

approachable ones of lesser importance.

I want to thank the members of my committee, David A. Mix Barrington, Rajesh

Bhatt, Neil Immerman, Gerome Miklau, and Howard Straubing. They asked all the

right questions, provided helpful advice, and pushed me further than I would have

thought possible.

Additional gratitude is due to Thomas Wilke for bringing to my attention the

implications of the structure result for FO2 on the complexity of the satisfiability for

this logic, Michael Benedikt for asking a crucial question on the difference between

finite words and finite power words that led to the development of the second chapter

of this dissertation, and Qiqi Yan for bringing to my attention a result by Andreas

Potthoff on the power of transitive closure logic.

Last but not least, this work would not have been possible without the contin-

ued financial support from the NSF through regular grants CCF 0514621 and CCF

0830174.

v



Abstract

Expressiveness and Succinctness of First-Order Logic on
Finite Words

May 2011

Philipp Weis

M.Sc., University of Massachusetts Amherst

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Neil Immerman

Expressiveness, and more recently, succinctness, are two central concerns of finite

model theory and descriptive complexity theory. Succinctness is particularly interest-

ing because it is closely related to the complexity-theoretic trade-off between parallel

time and the amount of hardware. We develop new bounds on the expressiveness and

succinctness of first-order logic with two variables on finite words, present a related

result about the complexity of the satisfiability problem for this logic, and explore a

new approach to the generalized star-height problem from the perspective of logical

expressiveness.

We give a complete characterization of the expressive power of first-order logic

with two variables on finite words. Our main tool for this investigation is the clas-

sical Ehrenfeucht-Fräıssé game. Using our new characterization, we prove that the

quantifier alternation hierarchy for this logic is strict, settling the main remaining

open question about the expressiveness of this logic.

vi



A second important question about first-order logic with two variables on finite

words is about the complexity of the satisfiability problem for this logic. Previously it

was only known that this problem is NP-hard and in NEXP. We prove a polynomial-

size small-model property for this logic, leading to an NP algorithm and thus proving

that the satisfiability problem for this logic is NP-complete.

Finally, we investigate one of the most baffling open problems in formal language

theory: the generalized star-height problem. As of today, we do not even know

whether there exists a regular language that has generalized star-height larger than

1. This problem can be phrased as an expressiveness question for first-order logic

with a restricted transitive closure operator, and thus allows us to use established

tools from finite model theory to attack the generalized star-height problem. Besides

our contribution to formalize this problem in a purely logical form, we have developed

several example languages as candidates for languages of generalized star-height at

least 2. While some of them still stand as promising candidates, for others we present

new results that prove that they only have generalized star-height 1.

vii



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Structure Theorem for FO2 on Finite Words . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Structure Theorem for FO2[<] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Alternation Hierarchy for FO2[<] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Extension to FO2[<, Suc] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2. Satisfiability of FO2 on Finite Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Small Model Property for FO2[<] on Finite Words . . . . . . . . . . . . . . . . . . . 42
2.2 Satisfiability of FO2 on Finite Words and Finite Power Words . . . . . . . . . 52

3. Succinctness of FOk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Succinctness and Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Succinctness Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 A Simple Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Towards Settling Our First Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4. Generalized Star-Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Known Results on Restricted Star-Height . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Eggan’s Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



4.1.2 McNaughton’s Graph-Theoretic Proof . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Known Results on Generalized Star-Height . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 First-Order Logic with Transitive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Regular Formulas and Forward Transitive Closure . . . . . . . . . . . . 105

4.3.1.1 Game Characterizations of FO[FTC] and
rFO+[FTC] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Transitive Closure with Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Three Candidate Languages and Short Tile Machines . . . . . . . . . . . . . . . . 114
4.5 Modular Counting of Substrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.6 Word Problems for Symmetric Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ix



List of Tables

Table Page

2.1 Complexity of the Satisfiability Problem for FO2 on Finite Words and
Finite Power Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

x



List of Figures

Figure Page

1.1 Proof of Lemma 1.1.5: rn−1(w) < r(w). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Proof of Lemma 1.1.5: r(w) < rn−1(w). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Proof of Lemma 1.1.6: ri(w′) is undefined. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Proof of Theorem 1.1.9: Two n-rankers appear in different order and
r′ ends with .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Proof of Theorem 1.1.9: Two n-rankers appear in different order and
r′ ends with /. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Proof of Theorem 1.1.9: A letter a occurs between n-rankers r, r′ in w
but not in w′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Proof of Theorem 1.1.9: x and y are in the same section. . . . . . . . . . . . . . . 19

1.8 Proof of Theorem 1.2.6: r and r′ appear in different order. . . . . . . . . . . . . 26

1.9 Proof of Theorem 1.2.6: A letter occurs between rankers r, r′ in w
but not in w′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.10 Proof of Theorem 1.2.6: Ranker positions, case (4). . . . . . . . . . . . . . . . . . . 28

3.1 Iterated quantifier block logics and complexity classes. . . . . . . . . . . . . . . . . 64

3.2 Moves in the Adler-Immerman Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Proof of Proposition 3.3.7: Samson makes progress by placing x on A
in between yB and yA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Proof of Proposition 3.3.7: Samson places x too far to the left of y,
and thus he makes no progress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Proof of Lemma 3.3.8: Four structures in the case where `′ < ` and
r′ < r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



3.6 Proof of Lemma 3.3.8: Four structures in the case where `′ ≥ ` and
r′ < r − 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Homomorphisms in the proof of Theorem 4.2.6. . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Finite automaton for the language L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Finite automaton for the language L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Finite automaton for the language L3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Short tile machines A1, A2 and A3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Maps for the construction of an isomorphism from M(L1) to
M(L2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Finite semiautomaton for the language L. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



Introduction

One of the central concerns of finite model theory is the characterization of the ex-

pressiveness of restrictions and extensions of first-order logic on finite structures.

Expressiveness is a crucial characteristic of any logic, but expressibility of a given

property alone is usually not all that is required – typically we also want to know

that the properties of interest can be expressed succinctly. The concept of succinct-

ness has attracted increased attention over the last couple of years, and our interest

in it particularly stems from its close connections to complexity theory. For example,

the trade-off between the number of variables and formula size in first-order logic

corresponds exactly to the trade-off between the number of processors and parallel

time.

We develop new bounds on the expressiveness and succinctness of first-order logic

with two variables on finite words, present a related result about the complexity of

the satisfiability problem for this logic, and explore a new approach to the generalized

star-height problem from the perspective of logical expressiveness.

In Chapter 1, we give a complete characterization of the expressive power of first-

order logic with two variables on finite words. Our main tool for this investigation

is the classical Ehrenfeucht-Fräıssé game. Using this new characterization, we prove

that the quantifier alternation hierarchy for this logic is strict, settling the main

remaining open question about the expressiveness of this logic [9, 10].

A second important open question about first-order logic with two variables on

finite words, which we settle in Chapter 2, is about the complexity of the satisfiability

problem for this logic. Previously it was only known that this problem is NP-hard

1



and in NEXP [9, 10]. We prove a polynomial-size small-model property for this logic,

leading to an NP algorithm and thus proving that the satisfiability problem for this

logic is NP-complete.

Chapter 3 surveys known results and techniques for succinctness of first-order

logics. We adapt an established lower bound technique to give a more precise size

lower bound for a simple first-order property, and we hope that this approach will

prove to be applicable to other first-order properties as well.

Finally, in Chapter 4 we investigate one of the most baffling open problems in

formal language theory: the generalized star-height problem [30,43,46]. As of today,

we do not even know whether there exists a regular language that has generalized

star-height larger than 1. This problem can be phrased as an expressiveness question

for first-order logic with a restricted transitive closure operator, and thus allows us

to use established tools from finite model theory to attack the generalized star-height

problem. Besides our contribution to formalize this problem in a purely logical form,

we have developed several example languages as candidates for languages of general-

ized star-height at least 2. While some of them still stand as promising candidates,

for others we present new results that prove they only have generalized star-height 1.

I.1 Definitions and Notation

First-order logic is defined in the usual way with boolean connectives ¬ and ∨, vari-

ables x, y, . . ., relation symbols P,Q, . . ., and existential quantification ∃x, but not

including any function symbols. ϕ∧ ψ is an abbreviation for ¬(¬ϕ∨¬ψ), ∀xϕ is an

abbreviation for ¬∃x¬ϕ, > is an abbreviation for ∃x x = x (always true), and ⊥ is

an abbreviation for ¬> (always false). Free(ϕ) is the set of variables that occur freely

in ϕ, i.e. they are not bound by any quantifier. The size of a first-order formula ϕ,

denoted by |ϕ|, is the number of nodes in its parse tree.

2



We also use ∃x.ϕψ as an abbreviation for ∃x (ϕ ∧ ψ), and ∀x.ϕψ as an abbre-

viation for ∀x (ϕ → ψ). This notation, together with the usual superscript notation

for repetitions, allows us to efficiently represent certain formulas. For example, the

formula

∃y.Suc(x, y) [∃x.(Suc(y, x)∃y.(Suc(x, y)]5 P (x) ,

where Suc is the successor relation and the part in square brackets is literally repeated

five times, says that P holds 11 positions to right of x.

We often indicate the free variables of a formula in parenthesis, as in ϕ(x) or

ψ(x, y). If ϕ(x) is a formula with x as the only free variable, then ϕ(y) is the same

formula with all free occurrences of x replaced by y, and any bound variables renamed

as necessary to retain the original meaning of ϕ. For example, if ϕ(x) = ∃y y > x,

then ϕ(y) = ∃z z > y.

The linear order of size ` is the logical structure LO` with universe {1, . . . , `} and

a linear order <. Depending upon context, LO` may also interpret a binary successor

relation Suc.

Σ will always denote a finite alphabet, and Σk with k ∈ N+ is a finite alphabet

with k distinct letters. The empty string is denoted by ε. For a finite word w ∈ Σ`

and i ∈ [1, `], wi is the letter at position i of w, and for [i, j] a subinterval of [1, `],

w[i,j] is the substring wi . . . wj. Slightly abusing notation, we identify a finite word

w ∈ Σ`, ` > 0 with the logical structure w = ({1, . . . , `}, <w, Qw
a : a ∈ Σ, xw, yw, . . .).

Here Qa are all unary relation symbols, and x, y, . . . are variables. For all a ∈ Σ,

we have Qw
a = {1 ≤ i ≤ ` | wi = a}. Again, depending upon context, w may also

interpret a binary successor relation Suc. Thus every finite word is an extension of

the underlying linear order.

A structure is monadic if all its relations are monadic, not counting numeric

relations < and Suc.

3



For a structure w, we write |w| for the universe of w, and ||w|| for the size of the

universe of w.

The default interpretation for all variables is 1, the initial position of the word.

For a structure w, a variable x and i, j ∈ ||w||, (w, i/x) is the structure w with x

interpreted as i. We use (w, i) as an abbreviation for (w, i/x), and (w, i, j) as an

abbreviation for (w, i/x, j/y).

Whenever convenient, we use constants min and max pointing to the first and

last position of a linear order or finite word. Any formula using these constants can

easily be converted into a formula that does not use them, at the cost of increasing

the quantifier depth by at most 2: We replace Qa(min) with ∃x (∀y y ≥ x ∧ Qa(x)),

we replace x > min by ∃y y < x, and we replace x = min by ¬∃y y < x. Similar

replacements are performed for the constant max.

We use FO[] to denote first-order logic without any numeric predicates, FO[<]

to denote first-order logic with a binary linear order predicate <, and FO[<, Suc]

for first-order logic with a binary linear order predicate and an additional binary

successor predicate. FOk is the restriction of first-order logic that uses at most k

distinct variables, FOn refers to the restriction to quantifier depth n, and FOm,n is

the further restriction to formulas such that any path in their parse tree has at most

m blocks of alternating quantifiers. Additionally, we set FO–ALT[m] = ⋃
n≥m FOm,n.

For a class of finite structures C and a logical formula ϕ, we write ModC(ϕ) for the

set of all C-structures that satisfy ϕ. As usual, when C is clear from the context, we

identify L with the set of properties expressible in L on C, i.e. L = {ModC(ϕ) | ϕ ∈ L}.

For two structures w and w′ and a logic L, w and w′ are L-equivalent, w ≡′L w′, if

w and w′ agree on all L-formulas. For more convenient notation, we write w ≡kn w′

when w and w′ agree on all formulas from FOk
n, and w ≡km,n w′ if they agree on FOk

m,n.

Two formulas ϕ, ψ ∈ L are C-equivalent, ϕ ≡C ψ, if they agree on all C-structures,

4



i.e. ModC(ϕ) = ModC(ψ). When C is understood from the context, we simply write

ϕ ≡ ψ.

The language FO2[<, Suc] is more expressive than FO2[<] because it allows us

to talk about consecutive strings of symbols. With three variables we can express

Suc(x, y) using the ordering: x < y ∧ ∀z (z ≤ x ∨ y ≤ z). Thus for any k > 2,

FOk[<, Suc] = FOk[<].

I.2 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé games are one of our main tools. They are two-player games

played on two logical structures, where one player (Samson, the spoiler) tries to point

out a difference in the two structures by placing a pebble on an element of one of

the two structures, and the other player (Delilah, the duplicator) replies by placing

a corresponding pebble on an element of the other structure with the goal of making

the two structures look the same.

For some structures w and w′, and k ∈ N+ and n ∈ N, FOk
n(w,w′) is the k-pebble

n-move game on w and w′. Each one of the players has k colored or named pebbles.

In every move of the game, Samson places one of his pebbles on a position in one

of the two words, and Delilah answers by placing her pebble of the same color on a

position of the other word. Samson wins if after some move, the map from the chosen

points in w to those in w′ is not an isomorphism of the induced substructures; and

Delilah wins otherwise. The fundamental theorem of Ehrenfeucht-Fräıssé games is

the following:

Theorem I.2.1. [21] Let w,w′ ∈ Σ?, k ∈ N+ and n ∈ N. Delilah has a winning

strategy for the game FOk
n(w,w′) iff w ≡kn w′.

Ehrenfeucht-Fräıssé games are determined, meaning that in any game exactly

one of the two players has a winning strategy. Since there are only finitely many

5



inequivalent formulas in FOk
m [21], Theorem I.2.1 provides a complete characterization

of first-order expressiveness. Furthermore, in the case where Samson has a winning

strategy, the game tree for his strategy corresponds exactly to the distinguishing

formula. For more details on Ehrenfeucht-Fräıssé games, we refer the reader to [21].

The game FOk
m,n(w,w′) is the restriction of the game FOk

n(w,w′) in which Samson

may change which word he plays on at most m− 1 times.

Theorem I.2.2. [21] Let w,w′ ∈ Σ? and let k ∈ N+, m,n ∈ N with m ≤ n. Delilah

has a winning strategy for the game FO2
m,n(w,w′) iff w ≡2

m,n w
′.

We end this section with a simple lemma that will be useful whenever we want to

prove that there is a formula expressing a property of strings. With this lemma, it

suffices to show that for any pair of strings, one with the property in question and one

without, there is a formula that distinguishes between these two particular strings.

Lemma I.2.3. Let P ⊆ Σ? and let L be a logic closed under boolean operations with

only finitely many inequivalent formulas. If for every w ∈ P and every w′ ∈ P there

is a formula ϕw,w′ ∈ L such that w |= ϕw,w′ and w′ 6|= ϕw,w′ , then there is a formula

ϕ ∈ L such that for all w ∈ Σ?, w |= ϕ iff w ∈ P .

Proof. Let Γ := {ϕw,w′ | w ∈ P,w′ ∈ P}, and let Γ′ be a maximal subset of Γ

containing only inequivalent formulas. Since L contains only finitely many inequiv-

alent formulas, Γ′ is finite. For every w ∈ P , we define the finite sets of formulas

Γ′w := {ϕ ∈ Γ′ | w |= ϕ}. Since all these sets are subsets of the finite set Γ′, there

can only be finitely many of them. Thus there is a finite set P ′ ⊆ P such that

{Γ′w | w ∈ P} = {Γ′w | w ∈ P ′}. Now we set

ϕ :=
∨
w∈P ′

∧
ϕ∈Γ′w

ϕ .

We have ϕ ∈ L and for every w ∈ Σ?, w ∈ P iff w |= ϕ as required.

6



It is well-known that for any k ∈ N+ and m,n ∈ N, the logics FOk
n and FOk

m,n,

both with and without the successor predicate, have only finitely many inequivalent

formulas [21]. Thus the above lemma applies to these logics.

7



Chapter 1

Structure Theorem for FO2 on Finite Words

It is well-known that every first-order property on words is expressible using at most

three variables [23,24]. The subclass of properties expressible with only two variables

is also quite interesting and well-studied (Theorem 1.0.4).

We prove precise structure theorems that characterize the exact expressive power

of first-order logic with two variables on finite words. Our results apply to FO2[<]

and FO2[<, Suc]. For both languages, our structure theorems show exactly what

is expressible using a given quantifier depth, n, and using m blocks of alternating

quantifiers, for any m ≤ n. Using these characterizations, we prove that there is a

strict hierarchy of alternating quantifiers for both languages. The question whether

there was such a hierarchy had been completely open since it was asked in [9, 10].

Our characterization of FO2[<] and FO2[<, Suc] on finite words is based on the

very natural notion of n-ranker (Definition 1.1.2). Informally, a ranker is the position

of a certain combination of letters in a finite word. For example, .a and /b are 1-

rankers where .a(w) is the position of the first a in w (from the left) and /b(w) is the

position of the first b in w from the right. Similarly, the 2-ranker r2 = .a.c denotes

the position of the first c to the right of the first a, and the 3-ranker, r3 = .a .c /b

denotes the position of the first b to the left of r2. If there is no such letter then the

ranker is undefined. For example, r3(cababcba) = 5 and r3(acbbca) is undefined.

Our first structure theorem (Theorem 1.1.8) says that the properties expressible

in FO2
n[<], i.e. first-order logic with two variables and quantifier depth n, are exactly

boolean combinations of statements of the form, “r is defined”, and “r is to the left

8



(right) of r′” for k-rankers, r, and k′-rankers, r′, with k ≤ n and k′ < n. A non-

quantitative version of this theorem in terms of “turtle languages” was previously

known [34]. Furthermore, a quantitative version in terms of iterated block products

of the variety of semi-lattices is presented in [40], based on work by Straubing and

Thérien [37].

For FO2[<, Suc], a straightforward generalization of n-ranker to n-successor-ranker

allows us to prove exact analogs of Theorems 1.1.8 and 1.2.5. We use the latter to

prove that there is also a strict alternation hierarchy for FO2
n[<, Suc] (Theorem 1.3.6).

Since in the presence of successor we can encode an arbitrary alphabet in binary, no

analog of Theorem 1.2.7 holds for FO2[<, Suc].

Surprisingly, Theorem 1.1.8 can be generalized in almost exactly the same form

to characterize FO2
m,n[<] where there are at most m blocks of alternating quantifiers,

m ≤ n. This second structure theorem (Theorem 1.2.5) uses the notion of (m,n)-

ranker where there are m blocks of .’s or /’s, that is, changing direction in rankers

corresponds exactly to alternation of quantifiers. Using Theorem 1.2.5 we prove that

there is a strict alternation hierarchy for FO2
n[<] (Theorem 1.2.11) but that exactly

at most |Σ|+1 alternations are useful, where |Σ| is the size of the alphabet (Theorem

1.2.7).

Many beautiful results on FO2 on finite words were already known. The main

significant outstanding question was whether there was an alternation hierarchy. The

following is a summary of the main previously known characterizations of FO2[<]

on finite words. For a detailed treatment of all these characterizations, we refer the

reader to [39].

Theorem 1.0.4. [9, 10, 31, 33, 34, 42] Let R ⊆ Σ?. The following statements are

equivalent:

(1) R ∈ FO2[<].

9



(2) R is expressible in unary temporal logic.

(3) R ∈ Σ2 ∩ Π2[<].

(4) R is an unambiguous regular language.

(5) The syntactic semi-group of R is a member of DA.

(6) R is recognizable by a partially-ordered 2-way automaton.

(7) R is a boolean combination of “turtle languages”.

The proofs of our structure theorems are self-contained applications of Ehren-

feucht-Fräıssé games. All of the above characterizations follow from these results.

Furthermore, we have now exactly connected quantifier and alternation depth to the

picture, thus adding tight bounds and further insight to the above results.

For example, one can best understand item 4 above – that FO2[<] on finite words

corresponds to the unambiguous regular languages – via Theorem 1.1.12 which states

that any FO2
n[<] formula with one free variable that is always true of at most one

position in any string, necessarily denotes an n-ranker.

In the conclusion of [34], the authors define the subclasses of rankers with one and

two blocks of alternation. They write that,

“[...] turtle languages might turn out to be a helpful tool for further
studies in algebraic language theory.”

We feel that the results in this chapter fully justify that prediction. Turtle languages

— aka rankers — do provide an exceptionally clear and precise understanding of the

expressive power of FO2 on finite words, with and without successor.

In summary, our structure theorems provide a complete classification of the ex-

pressive power of FO2 on finite words in terms of both quantifier depth and alterna-

tion. They also tighten several previous characterizations and lead to the alternation

hierarchy results.

10



In Section 1.1 we formally define rankers and present our structure theorem for

FO2
n[<]. The structure theorem for FO2

m,n[<] is covered in Section 1.2, including our

alternation hierarchy result that follows from it. Section 1.3 extends our structure

theorems and the alternation hierarchy result to FO2[<, Suc].

1.1 Structure Theorem for FO2[<]

We define boundary positions that point to the first or last occurrences of a letter in a

word, and define an n-ranker as a sequence of n boundary positions. In terms of [34],

boundary positions are turtle instructions and n-rankers are turtle programs of length

n. The following three lemmas show that basic properties about the definedness and

position of these rankers can be expressed in FO2[<], and we use these results to

prove our structure theorem.

Definition 1.1.1. A boundary position denotes the first or last occurrence of a letter

in a given word. Boundary positions are of the form da where d ∈ {., /} and a ∈ Σ.

The interpretation of a boundary position da on a word w = w1 . . . w||w|| ∈ Σ? is

defined as follows.

da(w) :=


min{i ∈ |w| | wi = a} if d = .

max{i ∈ |w| | wi = a} if d = /

Here we set min{} and max{} to be undefined, thus da(w) is undefined if a does

not occur in w. A boundary position can also be specified with respect to a position

q ∈ |w|.

da(w, q) :=


min{i ∈ [q + 1, ||w||] | wi = a} if d = .

max{i ∈ [1, q − 1] | wi = a} if d = /

11



Definition 1.1.2. Let n be a positive integer. An n-ranker r is a sequence of n

boundary positions. The interpretation of an n-ranker r = (p1, . . . , pn) on a word w

is defined as follows.

r(w) :=


p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

Instead of writing n-rankers as a formal sequence (p1, . . . , pn), we often use the

simpler notation p1 . . . pn. We denote the set of all n-rankers by Rn, and the set

of all n-rankers that are defined over a word w by Rn(w). Furthermore, we set

R?
n := ⋃

i∈[1,n] Ri and R?
n(w) := ⋃

i∈[1,n] Ri(w).

Definition 1.1.3. Let r be an n-ranker. As defined above, we have r = (p1, . . . , pn)

for boundary positions pi. The k-prefix ranker of r for k ∈ [1, n] is rk := (p1, . . . , pk).

Definition 1.1.4. Let i, j ∈ N. The order type of i and j is defined as

ord(i, j) :=


< if i < j

= if i = j

> if i > j

.

Lemma 1.1.5 (distinguishing points on opposite sides of a ranker). Let n be a

positive integer, let w,w′ ∈ Σ? and let r ∈ Rn(w) ∩ Rn(w′). Samson wins the game

FO2
n(w,w′) where initially ord(xw, r(w)) 6= ord(xw′ , r(w′)).

Proof. We only look at the case where xw ≥ r(w) and xw
′
< r(w′) since all other

cases are symmetric to this one. For n = 1 Samson has a winning strategy: If r is the

first occurrence of a letter, then Samson places y on r(w) and Delilah cannot reply.

If r marks the last occurrence of a letter in the whole word, then Samson places y on

r(w′). Again, Delilah cannot reply with any position and thus loses.

12



For n > 1, we look at the prefix ranker rn−1 of r. If rn−1(w) < r(w), as shown

in Figure 1.1, then Samson places pebble y on r(w). Delilah has to reply with a

position that is to the left of xw′ . She cannot choose a position in the interval

(rn−1(w′), r(w′)), because this section does not contain the letter wr(w). Thus she

has to choose a position left of or equal to rn−1(w′). By induction Samson wins the

remaining game.

w

w′
rrn−1

x

x

S : y

D : y

Figure 1.1. Proof of Lemma 1.1.5: rn−1(w) < r(w).

Otherwise we have r(w) < rn−1(w), as shown in Figure 1.2. Samson places y on

r(w′), and Delilah has to reply with a position to the right of xw and thus to the right

of r(w). She cannot choose any position in (r(w), rn−1(w)), because this interval does

not contain the letter w′r(w′), thus Delilah has to choose a position to the right of or

equal to rn−1(w). By induction Samson wins the remaining game.

w

w′
r rn−1

x

x S : y

D : y

Figure 1.2. Proof of Lemma 1.1.5: r(w) < rn−1(w).

Lemma 1.1.6 (expressing the definedness of a ranker). Let n be a positive integer,

and let r ∈ Rn. There is a formula ϕr ∈ FO2
n[<] such that for all w ∈ Σ?, w |= ϕr iff

r ∈ Rn(w).

13



Proof. Using Lemma I.2.3 it suffices to consider arbitrary w,w′ ∈ Σ? with r ∈ Rn(w)

and r /∈ Rn(w′), and using Theorem I.2.1, it suffices to show that Samson wins the

game FO2
n(w,w′). If r1, the shortest prefix ranker of r, is not defined over w′, the

letter referred to by r1 occurs in w but does not occur in w′. Thus Samson easily

wins in one move.

Otherwise we let ri = (p1, . . . , pi) be the shortest prefix ranker of r that is un-

defined over w′. Thus ri−1 is defined over both words. Without loss of generality

we assume that pi = /a. This situation is illustrated in Figure 1.3. Notice that w′

does not contain any a’s to the left of ri−1(w′), otherwise ri would be defined over

w′. Samson places x in w on ri(w), and Delilah has to reply with a position right

of or equal to ri−1(w′). Now Lemma 1.1.5 applies and Samson wins in i − 1 more

moves.

w

w′
ri ri−1

S : x

D : x

Figure 1.3. Proof of Lemma 1.1.6: ri(w′) is undefined.

Lemma 1.1.7 (position of a ranker). Let n be a positive integer and let r ∈ Rn.

There is a formula ψr ∈ FO2
n[<] such that for all w ∈ Σ? and for all i ∈ |w|, (w, i) |= ψr

iff i = r(w).

Proof. As in the proof of Lemma 1.1.6, it suffices to show that for arbitrary w,w′ ∈ Σ?,

Samson wins the game FO2
n(w,w′) where initially xw = r(w) and xw′ 6= r(w′). If r(w′)

is defined over w′, then we can apply Lemma 1.1.5 immediately to get the desired

strategy for Samson. Otherwise we use the strategy from Lemma 1.1.6.

14



Theorem 1.1.8 (structure of FO2
n[<]). Let w and w′ be finite words, and let n ∈ N.

The following two conditions are equivalent.

(i) (a) Rn(w) = Rn(w′), and,

(b) for all r ∈ R?
n(w) and r′ ∈ R?

n−1(w), ord(r(w), r′(w)) = ord(r(w′), r′(w′))

(ii) w ≡2
n w

′

Notice that condition (i)(a) is equivalent to R?
n(w) = R?

n(w′). Instead of proving

Theorem 1.1.8 directly, we prove the following more general version on words with

two interpreted variables.

Theorem 1.1.9. Let w and w′ be finite words, let i1, i2 ∈ |w|, let j1, j2 ∈ |w′|, and

let n ∈ N. The following two conditions are equivalent.

(i) (a) Rn(w) = Rn(w′), and,

(b) for all r ∈ R?
n(w) and r′ ∈ R?

n−1(w), ord(r(w), r′(w)) = ord(r(w′), r′(w′)),

and,

(c) (w, i1, i2) ≡2
0 (w′, j1, j2), and,

(d) for all r ∈ R?
n(w), we have ord(i1, r(w)) = ord(j1, r(w′)) and ord(i2, r(w)) =

ord(j2, r(w′))

(ii) (w, i1, i2) ≡2
n (w′, j1, j2)

Proof. For n = 0, (i)(a), (i)(b) and (i)(d) are vacuous, and (i)(c) is equivalent to (ii).

For n ≥ 1, we prove the two implications individually using induction on n.

We first show “¬(i)⇒ ¬(ii)”. Assuming that (i) holds for n ∈ N but fails for n+1,

we show that (w, i1, i2) 6≡2
n+1 (w′, j1, j2) by giving a winning strategy for Samson in

the FO2
n+1 game on the two structures. If (i)(c) does not hold, then Samson wins

immediately. If (i)(d) does not hold for n+ 1, then Samson wins by Lemma 1.1.5. If

(i)(a) or (i)(b) do not hold for n+ 1, then one of the following three cases applies.

15



(1) There is an (n+ 1)-ranker that is defined over one word but not over the other.

(2) There are two n-rankers that do not agree on their ordering in w and w′.

(3) There is an (n + 1)-ranker that does not appear in the same order on both

structures with respect to a k-ranker where k ≤ n.

We first look at case (2) where there are two rankers r, r′ ∈ R?
n(w) that disagree on

their ordering in w and w′. Without loss of generality we assume that r(w) ≤ r′(w)

and r(w′) > r′(w′), and present a winning strategy for Samson in the FO2
n+1 game.

In the first move he places x on r(w) in w. Delilah has to reply with r(w′) in w′,

otherwise she would lose the remaining n-move game as shown in Lemma 1.1.5. Let

r′n−1 be the (n − 1)-prefix-ranker of r′. We look at two different cases depending on

the ordering of r′n−1 and r′.

For r′n−1(w) < r′(w), the situation is illustrated in Figure 1.4. In his second move,

Samson places y on r′(w′). Delilah has to reply with a position to the left of xw, but

she cannot choose any position from the interval (r′n−1(w), r′(w)) because it does not

contain the letter w′
yw′

. So she has to reply with a position left of or equal to r′n−1(w),

and Samson wins the remaining FO2
n−1 game as shown in Lemma 1.1.5.

w

w′
r′n−1 r r′ r

S : x

D : xS : y

D : y

Figure 1.4. Proof of Theorem 1.1.9: Two n-rankers appear in different order and
r′ ends with ..

For r′n−1(w) > r′(w), the situation is illustrated in Figure 1.5. In his second move,

Samson places pebble y on r′(w), and Delilah has to reply with a position to the right

of xw′ , but she cannot choose anything from the interval (r′(w′), r′n−1(w′)) because

16



this section does not contain the letter wyw . Thus she has to reply with a position

right of or equal to r′n−1(w′), and Samson wins the remaining FO2
n−1 game as shown

in Lemma 1.1.5.

w

w′
r′n−1r r′ r

S : x

D : x

S : y

D : y

Figure 1.5. Proof of Theorem 1.1.9: Two n-rankers appear in different order and
r′ ends with /.

Now we look at cases (1) and (3), assuming that case (2) does not apply. We know

that condition (i) from the statement of the theorem fails, but still all n-rankers agree

on their ordering. In both case (1) and case (3), there are two consecutive n-rankers

r, r′ ∈ Rn(w) with r(w) < r′(w) and a letter a ∈ Σ such that without loss of generality

a occurs in the segment w((r(w),r′(w)) but not in the segment w′(r(w′),r′(w′)). We describe

a winning strategy for Samson in the game FO2
n+1(w,w′). He places x on an a in

the segment (r(w), r′(w)) of w, as shown in Figure 1.6. Delilah cannot reply with

anything in the interval (r(w′), r′(w′)). If she replies with a position left of or equal

to r(w′), then x is on different sides of the n-ranker r in the two words. Thus Lemma

1.1.5 applies and Samson wins the remaining n-move game. If Delilah replies with

a position right of or equal to r′(w′), then we can apply Lemma 1.1.5 to r′ and

get a winning strategy for the remaining game as well. This concludes the proof of

“¬(i)⇒ ¬(ii)”.

To show “(i) ⇒ (ii)”, we assume (i) for n+ 1, and present a winning strategy for

Delilah in the FO2
n+1 game on the two structures. In his first move Samson picks up

one of the two pebbles, and places it on a new position. Without loss of generality

we assume that Samson picks up x and places it on w in his first move. If xw = r(w)

17



w

w′
r r′

S : x

a

Figure 1.6. Proof of Theorem 1.1.9: A letter a occurs between n-rankers r, r′ in w
but not in w′.

for any ranker r ∈ R?
n+1(w), then Delilah replies with xw

′ = r(w′). This establishes

(i)(c) and (i)(d) for n, and thus Delilah has a winning strategy for the remaining FO2
n

game by induction.

If Samson does not place xw on any ranker from R?
n+1(w), then we look at the

closest rankers fromR?
n(w) to the left and right of xw, denoted by λ and ρ, respectively.

Let a := wxw and define the (n+1)-ranker s := (λ, .a). On w we have λ(w) < s(w) <

ρ(w). Because of (i)(a) s is defined on w′ as well, and because of (i)(b), we have

λ(w′) < s(w′) < ρ(w′). If yw is not contained in the interval (λ(w), ρ(w)), then

Delilah places x on s(w′), which establishes (i)(c) and (i)(d) for n. Thus by induction

Delilah has a winning strategy for the remaining FO2
n game.

If both pebbles xw and yw occur in the interval (λ(w), ρ(w)), then we need to

be more careful. Without loss of generality we assume yw < xw as illustrated in

Figure 1.7. Thus Delilah has to place x in the interval (yw′ , ρ(w′)) and at a position

with letter a := wxw . We define the n+1-ranker s := (ρ, /a). From (i)(d) we know that

s appears on the same side of y in both structures, thus we have yw′ < s(w′) < ρ(w′).

Delilah places her pebble x on s(w′), and thus establishes (i)(c) and (i)(d) for n. By

induction, Delilah has a winning strategy for the remaining FO2
n game.

A fundamental property of an n-ranker is that it uniquely describes a position in a

given word. Now we show that the converse holds as well: Any position in a word that

can be uniquely described with an FO2[<] formula can also be described by a ranker

18



w

w′
λ s ρ

y

y

S : x

Figure 1.7. Proof of Theorem 1.1.9: x and y are in the same section.

(Lemma 1.1.11). Furthermore, any FO2[<] formula that describes a unique position

in any given word is equivalent to a boolean combination of rankers (Theorem 1.1.12).

Definition 1.1.10. A formula ϕ(x) ∈ FO2[<] is a unique position formula if for all

w ∈ Σ? there is at most one i ∈ |w| such that (w, i) |= ϕ(x).

Lemma 1.1.11. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position

formula. Let w ∈ Σ? and let i ∈ |w| such that (w, i) |= ϕ. Then i = r(w) for some

ranker r ∈ R?
n.

Proof. Suppose for the sake of a contradiction that there is no ranker r ∈ R?
n such

that (w, i) |= ϕr. Because the first and last positions in w are described by 1-rankers,

we know that i /∈ |w|. We construct a new word w′ by doubling the symbol at position

i in w, w′ := w1 . . . wi−1wiwiwi+1 . . . w||w||. By assumption, there is no n-ranker that

describes position i in w. A brief argument by contradiction shows that there are

also no n-rankers that describe positions i or i + 1 in w′: Assuming that such a

ranker exists, let r be the shortest such ranker. Thus none of the prefix rankers

of r point to either positions i or i + 1 in w′. This means that all prefix rankers

of r are interpreted in exactly the same way on both w and w′, and irrespective of

whether r(w′) points to i or i + 1, we have have r(w) = i, a contradiction. Hence

all n-rankers are insensitive to the doubling of wi, and the two words w and w′ agree

on the definedness of all n-rankers and on their ordering. By Theorem 1.1.9, we thus

19



have (w, i) ≡2
n (w′, i) ≡2

n (w′, i + 1), which contradicts the fact that ϕ is a unique

position formula.

Theorem 1.1.12. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position

formula. There is a k ∈ N, and there are mutually exclusive formulas αi ∈ FO2
n[<]

and rankers ri ∈ R?
n such that

ϕ ≡
∨

i∈[1,k]
(αi ∧ ϕri) ,

where ϕri ∈ FO2
n[<] is the formula from Lemma 1.1.7 that uniquely describes the

ranker ri.

Proof. Let T be the set of all FO2
n[<] types of words over Σ with one interpreted

variable. Because there are only finitely many inequivalent formulas in FO2
n[<], T is

finite. Let T ′ ⊆ T be the set of all types that satisfy ϕ. We set T ′ := {T1, . . . , Tk}

and let αi ∈ FO2
n[<] be a description of type Ti. Thus ϕ ≡ ∨i∈[1,k] αi.

Now suppose that (w, j) |= ϕ. Thus (w, j) |= αi for some i. By Lemma 1.1.11

(w, j) |= ϕri for some ri ∈ R?
n. Thus αi → ϕri since ϕri ∈ FO2

n and αi is a complete

FO2
n formula. Thus αi ≡ αi ∧ ϕri so ϕ is in the desired form.

1.2 Alternation Hierarchy for FO2[<]

We define alternation rankers and prove our structure theorem (Theorem 1.2.5) for

FO2
m,n[<]. Surprisingly the number of alternating blocks of / and . in the rankers

corresponds exactly to the number of alternating quantifier blocks. The main ideas

from our proof of Theorem 1.1.8 still apply here, but keeping track of the number of

alternations does add complications.

20



Definition 1.2.1. Let m,n ∈ N with m ≤ n. An m-alternation n-ranker, or (m,n)-

ranker, is an n-ranker with exactly m blocks of boundary positions that alternate

between . and /.

We use the following notation for alternation rankers.

Rm,n(w) := {r | r is an m-alternation n-ranker and defined over the word w}

Rm.,n(w) := {r ∈ Rm,n(w) | r ends with .}

R?
m,n(w) :=

⋃
i∈[1,m],j∈[1,n]

Ri,j(w)

R?
m.,n(w) := R?

m−1,n(w) ∪
⋃

i∈[1,n]
Rm.,i(w)

Lemma 1.2.2. Let m,n ∈ N+ with m ≤ n, let w,w′ ∈ Σ? be finite words, and let

r ∈ Rm,n(w)∩Rm,n(w′). Samson wins the game FO2
m,n(w,w′) where initially we have

ord(r(w), xw) 6= ord(r(w′), xw′).

Furthermore, Samson can start the game with a move on w if r ends with .,

r(w) ≤ xw and r(w′) ≥ xw
′ , or if r ends with /, r(w) ≥ xw and r(w′) ≤ xw

′ . He can

start the game with a move on w′ if r ends with ., r(w) ≥ xw and r(w′) ≤ xw
′ , or if

r ends with /, r(w) ≤ xw and r(w′) ≥ xw
′ .

Proof. If m = n = 1, then we can immediately apply the base case from the proof of

Lemma 1.1.5. Samson wins in one move, placing his pebble on w or w′ as specified.

For the remaining cases, we assume without loss of generality that r ends with .

and that xw ≥ r(w) and xw′ ≤ r(w′). Let rn−1 be the (n− 1)-prefix ranker of r. This

situation is illustrated in Figure 1.1 of Lemma 1.1.5. Samson places y on r(w), and

creates a situation where yw > rn−1(w) and yw′ ≤ rn−1(w′). If rn−1 ends with /, then

by induction Samson wins the remaining FO2
m−1,n−1 game and thus he has a winning

strategy for the FO2
m,n game. If rn−1 ends with ., then by induction Samson wins

the remaining FO2
m,n−1 game starting with a move on w, and thus he has a winning

strategy for the FO2
m,n game.

21



Lemma 1.2.3. Let m,n ∈ N+ with m ≤ n, and let r ∈ Rm,n. There is a formula

ϕr ∈ FO2
m,n[<] such that for all w ∈ Σ?, w |= ϕr iff r ∈ Rm,n(w).

Proof. Using Lemma I.2.3 it suffices to consider arbitrary w,w′ ∈ Σ? with r ∈

Rm,n(w) and r /∈ Rm,n(w′), and using Theorem I.2.1, it suffices to show that Samson

wins the game FO2
m,n(w,w′). Let ri = (p1, . . . , pi) be the shortest prefix ranker of r

that is undefined over w′, and we assume without loss of generality that this ranker

ends with the boundary position pi = /a for some a ∈ Σ. This situation is illustrated

in Figure 1.3 for Lemma 1.1.7. In his first move Samson places x on ri(w) and thus

forces a situation where xw < ri−1(w) and xw
′ ≥ ri−1(w′). If ri−1 ends with /, then

according to Lemma 1.2.2, Samson wins the remaining FO2
m,n−1 game starting with

a move on w. Otherwise ri−1 ends with ., and thus by Lemma 1.2.2 Samson wins the

remaining FO2
m−1,n−1 game starting with a move on w′.

Lemma 1.2.4. Let m,n ∈ N+ with m ≤ n, and let r ∈ Rm,n. There is a formula

ψr ∈ FO2
m,n[<] such that for all w ∈ Σ? and for all i ∈ |w|, (w, i) |= ψr iff i = r(w).

Proof. As in the proof of Lemma 1.2.3, it suffices to show that Samson wins the game

FO2
m,n(w,w′) where initially xw = r(w) and xw

′ 6= r(w′). Depending on whether r is

defined over w′, we use the strategies from Lemma 1.2.2 or Lemma 1.2.3.

Theorem 1.2.5 (structure of FO2
m,n[<]). Let w and w′ be finite words, and let

m,n ∈ N with m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(w) = Rm,n(w′), and,

(b) for all r ∈ R?
m,n(w) and for all r′ ∈ R?

m−1,n−1(w), we have

ord(r(w), r′(w)) = ord(r(w′), r′(w′)), and,

(c) for all r ∈ R?
m,n(w) and r′ ∈ R?

m,n−1(w) such that r and r′ end with different

directions, ord(r(w), r′(w)) = ord(r(w′), r′(w′))

(ii) w ≡2
m,n w

′

22



Just as before with Theorem 1.1.8, instead of proving Theorem 1.2.5 directly, we

prove a more general version that applies to words with two interpreted variables. The

statement of the general version is asymmetric with respect to the roles of the two

structures w and w′. This is necessary because of the correspondence between quanti-

fier alternations (i.e. alternations between w and w′ in the game) and alternations of

directions in the rankers. This asymmetry already affected the statement of Lemma

1.2.2, where Samson’s winning strategy starts with a move on the specified structure.

In fact, as the proof of the following theorem shows, he does not have a winning

strategy that starts with a move on the other structure. We remark that conditions

(i)(a) through (i)(e) of the general theorem are completely symmetric with respect to

the roles of w and w′, and only conditions (i)(f) and (ii) are asymmetric. Theorem

1.2.5 follows directly from the general theorem, since here i1 = i2 = j1 = j2 = 1, thus

conditions (i)(e) and (i)(f) are trivially true, and the equivalence holds with the roles

of w and w′ reversed as well.

Theorem 1.2.6. Let w and w′ be finite words, let i1, i2 ∈ |w|, let j1, j2 ∈ |w′|, and

let m,n ∈ N with m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(w) = Rm,n(w′), and,

(b) for all r ∈ R?
m,n(w) and for all r′ ∈ R?

m−1,n−1(w), we have

ord(r(w), r′(w)) = ord(r(w′), r′(w′)), and,

(c) for all r ∈ R?
m,n(w) and r′ ∈ R?

m,n−1(w) such that r and r′ end with different

directions, ord(r(w), r′(w)) = ord(r(w′), r′(w′))

(d) (w, i1, i2) ≡2
0 (w′, j1, j2), and,

(e) for all r ∈ R?
m−1,n(w), ord(r(w), i1) = ord(r(w′), j1) and ord(r(w), i2) =

ord(r(w′), j2), and,

(f) for all r ∈ R?
m,n(w), and (i, j) ∈ {(i1, j1), (i2, j2)},

(f1) if r ends on . and r(w) = i, then r(w′) ≤ j

23



(f2) if r ends on . and r(w) < i, then r(w′) < j

(f3) if r ends on / and r(w) = i, then r(w′) ≥ j

(f4) if r ends on / and r(w) > i, then r(w′) > j

(ii) Delilah wins the game FO2
m,n[<]((w, i1, i2), (w′, j1, j2)) if Samson starts with a

move on (w, i1, i2).

Proof. As in the proof of Theorem 1.1.8, we use induction on n. For n = 0, condition

(i)(d) just by itself is equivalent to (ii), and all other conditions of (i) are vacuous.

For n ≥ 1, we we first show “¬ (i) ⇒ ¬ (ii)”.

Suppose that (i) holds for (m,n), but fails for (m,n + 1). If (i)(d) does not hold

then Samson wins immediately. If (i)(e) does not hold for (m,n+ 1), then by Lemma

1.2.2, Samson wins the (m,n+ 1)-game on (w,w′), starting with a move on either w

or w′. If Samson can start with a move on w, we have established that (ii) is false.

Otherwise, we reverse the roles of w and w′, and observe that condition (i)(e) still

remains the same. Thus, even if Samson needs to start with a move on w′, he still

has a winning strategy, and (ii) does not hold for (m,n + 1). If (i)(f) does not hold

for (m,n + 1), then again by using Lemma 1.2.2, Samson wins the (m,n + 1)-game

on (w,w′) starting with a move on w.

If one of (i)(a), (i)(b) or (i)(c) fail, then we show that Samson has a winning

strategy for the game FO2
m,n+1(w,w′). We observe that it does not matter what

structure Samson chooses for his first move, since all of (i)(a), (i)(b) and (i)(c) are

completely symmetric with respect to the roles of w and w′. Thus if Samson’s winning

strategy starts with a move on w′, we can reverse the roles of w and w′ and get a

winning strategy starting with move on w. One of the following cases applies.

(1) There is a ranker r ∈ Rm,n+1 that is defined over one structure but not over the

other.

24



This first case applies if (a) fails for (m,n + 1). If condition (2) fails for (m,n + 1),

then there are two n-rankers for which it fails, or an (n+ 1)-ranker and an n-ranker.

This leads to the following two cases.

(2) There are two rankers r ∈ Rm,n(w) and r′ ∈ Rm−1,n(w) that disagree on their

order, i.e. ord(r(w), r′(w)) 6= ord(r(w′), r′(w′)).

(3) There are two rankers r ∈ Rm,n+1(w) and r′ ∈ Rm−1,n(w) that disagree on their

order.

In a similar fashion, we obtain the remaining two cases if condition (3) fails for

(m,n+ 1).

(4) There are rankers r, r′ ∈ Rm,n(w) that end on different directions and disagree

on their order.

(5) There are rankers r ∈ Rm,n+1(w) and r′ ∈ Rm,n(w) that end on different directions

and disagree on their order.

We look at the cases (2) and (4) first, then deal with case (1) assuming that cases

(2) and (4) do not apply, and finally look at cases (3) and (5).

For case (2), we assume that r(w) ≤ r′(w), as illustrated in Figure 1.8. The

situation for r(w) ≥ r′(w) is completely symmetric. Depending on the last boundary

position of r, one of the following two subcases applies.

If r ends with ., then Samson places x on r(w) in his first move. If Delilah replies

with a position to the left of r′(w′) or equal to r′(w′), then xw
′
< r(w′). Thus we

can apply Lemma 1.2.2 to get a winning strategy for Samson in the remaining FO2
m,n

game that starts with a move on w. If Delilah replies with a position to the right

of r′(w′), Samson has a winning strategy for the remaining FO2
m−1,n game. Thus we

have a winning strategy for Samson in the FO2
m,n+1 game.

If on the other hand r ends with /, then Samson places x on r(w′) in his first

move. If Delilah replies with a position to the right of r′(w), or equal to r′(w), then

25



w

w′
r r′ r

Figure 1.8. Proof of Theorem 1.2.6: r and r′ appear in different order.

as above we get a winning strategy for Samson in the remaining FO2
m,n game that

starts with a move on w′. Otherwise we get a winning strategy for Samson with only

m− 1 alternations for the remaining game. Thus again he has a winning strategy for

the FO2
m,n+1 game.

For case (4), Samson’s winning strategy is very similar to the previous case. If

r(w) ≤ r′(w) and r ends with ., then Samson places x on r(w) in his first move. If

Delilah replies with a position to the right of r(w), then Samson’s winning strategy is

as above. Otherwise x is on different sides of r′ and Samson has a winning strategy

for the remaining FO2
m,n game that starts with a move on w. All together, he has a

winning strategy for the FO2
m,n+1 game. The remaining three cases (ordering of r(w)

and r′(w) and ending direction of r) work in the same way.

Similar to what we did in the proof of Theorem 1.1.8, we can reduce the remaining

cases to an easier situation where a certain segment contains a certain letter in one

structure, but not in the other structure, and then apply Lemma 1.2.2 to obtain a

winning strategy for Samson.

To deal with case (1), we assume that the previous two cases, (2) and (4), do not

apply. Without loss of generality, say that the (m,n + 1)-ranker r is defined over w

but not over w′. Let a := wr(w) be the letter in w at position r(w). We define the

following sets of rankers.

R` := {s ∈ R?
m.,n(w) | s(w) < r(w)}

Rr := {s ∈ R?
m/,n(w) | s(w) > r(w)}

26



Notice that all rankers from R` appear to the left of all rankers from Rr in w. From

the inductive hypothesis, and from the fact that both cases (2) and (4) do not apply,

it follows that over w′, all rankers from R` appear to the left of all rankers from Rr as

well. However, the rankers from R` and Rr by themselves do not necessarily appear

in the same order in both structures. We look at the ordering of these rankers in w′,

and let λ be the rightmost ranker from R` and ρ be the leftmost ranker from Rr. By

construction, we have λ(w) < r(w) < ρ(w), so the segment (λ, ρ) in w contains the

letter a. Let rn be the n-prefix-ranker of r, and observe that rn is defined on both

structures and that rn is contained in either R` or Rr. Because r is not defined on

w′, the letter a does not occur in w′ either to the right of rn if rn ∈ R`, or to the left

of rn if rn ∈ Rr. Thus the segment (λ, ρ) does not contain the letter a in w′.

Now we know that a occurs in the segment (λ, ρ) in w but not in w′, and thus we

have established the situation illustrated in Figure 1.9. Samson places his first pebble

on an a within this section of w, and Delilah has to reply with a position outside

of this section. No matter what side of the segment she chooses, with Lemma 1.2.2

Samson has a winning strategy for the remaining game and thus wins the FO2
m,n+1

game. In cases (3) and (5), we again assume that cases (2) and (4) do not apply,

w

w′
λ ρ

S : x

a

Figure 1.9. Proof of Theorem 1.2.6: A letter occurs between rankers r, r′ in w but
not in w′.

and we look at the same sets of rankers, R` and Rr, and at rn, the n-prefix-ranker

of r. We assume that r(w) ≤ r′(w) and that r ends with ., all three other cases are

completely symmetric. Notice that rn is an (m−1, n)-ranker, or an (m,n)-ranker that

ends with .. Thus both structures agree on the ordering of rn and r′. The relative

27



positions of all these rankers are illustrated in Figure 1.10. As above, let λ be the

rightmost ranker from R` and let ρ be the leftmost ranker from Rr, with respect to

the ordering of these rankers on w′. Again we know that λ(w) < r(w) < ρ(w) and

therefore the segment (λ, ρ) of w contains an a. Notice that rn ∈ R` and r′ ∈ Rr,

thus rn(w′) ≤ λ(w′) < ρ(w′) ≤ r′(w′). Thus the segment (λ, ρ) does not contain the

letter a in w′, providing Samson with a winning strategy as argued above.

w

w′
r r′ rrn

Figure 1.10. Proof of Theorem 1.2.6: Ranker positions, case (4).

To prove “(i)⇒ (ii)”, we assume that the theorem holds for n, and that (i) holds for

(m,n+ 1), and we present a winning strategy for Delilah in the game FO2
m,n+1(w,w′)

where Samson starts with a move on w.

If Samson places x on a ranker r ∈ R?
m−1,n(w), then Delilah replies by placing x

on the same ranker on w′. Since (i)(b) holds for (m,n+ 1), this establishes (i)(e) and

(i)(f) for (m,n). It also establishes (i)(e) and (i)(f) for (m− 1, n) with reversed roles

of w and w′. Thus we can apply the inductive hypothesis to get a winning strategy

for Delilah in the remaining game.

If xw = yw after Samson’s first move, then Delilah replies with xw
′ = yw

′ . We

use the inductive hypothesis to argue that Delilah wins the remaining n-move game,

no matter what structure Samson chooses for his next move. If he chooses to play

on w, then the remaining game is an (m,n)-game. Since in the first move Delilah

set xw′ = yw
′ , we have (i)(e) and (i)(f) for (m,n), and thus the inductive hypothesis

applies and Delilah wins the remaining game. On the other hand, if Samson chooses

to play on w′ for the next move, the remaining game is an (m− 1, n)-game, since he

started with a move on w. Because Delilah set xw′ = yw
′ in the first move, (i)(e) for

(m,n+ 1) implies both (i)(e) and (i)(f) for (m−1, n) with reversed roles of w and w′.

28



Thus we can again use the inductive hypothesis to get a winning strategy for Delilah

in the remaining game.

Otherwise we assume that xw < yw after Samson’s first move, the case for xw > yw

is completely symmetric. We look at the following two sets of rankers.

R` := {r ∈ R?
m.,n(w) | r(w) < xw}

Rr := {r ∈ R?
m/,n(w) | r(w) > xw}

On w, all rankers from R` occur to the left of all rankers from Rr. Since (i)(c) holds

for (m,n + 1), this is also true for the positions of these rankers on w′. Let a be

the letter Samson places his pebble on. To establish both (i)(e) and (i)(f) for (m,n),

Delilah needs to find an a in w′ that is to the right of all rankers from R` and to the

left of all rankers from Rr. We define

R0
` := {r ∈ R?

m.,n(w)−R?
m−1,n(w) | r(w) = xw}

R0
r := {r ∈ R?

m/,n(w)−R?
m−1,n(w) | r(w) = xw}

R′` := {r.a | r ∈ R`} ∪R0
` ,

and have Delilah place her pebble xw′ on the rightmost ranker from R′` on w′. This

position of course is labeled with an a. Since on w all rankers from R′` occur to the

left of or at xw, all of them occur strictly to the left of yw. Since all rankers in R′` are

from R?
m−1,n+1(w) or R?

m.,n+1(w), we can apply (i)(e) and (i)(f2), and we see that all

of these rankers also appear to the left of yw′ . Therefore we have xw′ < yw
′ , which

makes sure that Delilah does not lose in this move, and also establishes (i)(d).

To complete the inductive step, we need to argue that Delilah’s move also estab-

lishes (i)(e) and (i)(f), both for (m,n), and for (m − 1, n) with reversed roles of w

and w′. Then, using the inductive hypothesis, Delilah has a winning strategy for the

remaining game, no matter what side Samson chooses for his next move.

29



We observe that all rankers from R′` appear to the right of the rankers from Rr.

This is true by definition on w, and holds for w′ because (i)(b) and (i)(c) hold for

(m,n + 1). Since Delilah placed xw
′ on a ranker from R′`, we have (i)(e), (i)(f2) and

(i)(f4) for (m,n) for all all rankers from Rr. And since Delilah placed xw
′ on the

rightmost of the rankers from R′`, we know that all rankers from R` appear to the left

of xw′ , just as they do on w. Thus we have (i)(e), (i)(f2) and (i)(f4) for the rankers

from R` as well, and therefore for all rankers mentioned in those conditions.

All rankers from R?
m.,n that appear at xw are in R0

` , since we already dealt with

the case where xw does appear at a ranker from R?
m−1,n. Since Delilah chose xw′ as

the rightmost ranker from R′`, all of these rankers appear to the left of or at xw′ , and

we have established (i)(f1) for (m,n). For condition (i)(f3), we need to argue about

R0
r . From (i)(b) and (i)(c) for (m,n + 1), we know that all rankers from R0

r appear

to the right of or at the same position as the rankers from R′` on w′, just as they do

on w. Thus (i)(f3) holds as well.

Now that we have established (i) for (m,n), we use the inductive hypothesis to

get a winning strategy for Delilah for the remaining game if Samson’s next move

is on w. For the case where his next move is on w′, we only need to establish (i)

for (m − 1, n), but with reversed roles of w and w′. Reversing the roles of the two

structures only affects condition (i)(f), and (i)(f) for (m − 1, n) follows immediately

from (i)(e) for (m,n). Thus Delilah also wins the remaining game if Samson’s next

move is on w′.

Using Theorem 1.2.5, we show that for any fixed alphabet Σ, at most |Σ| + 1

alternations are useful. Intuitively, each boundary position in a ranker says that a

certain letter does not occur in some part of a word. Alternations are only useful if

they visit one of these previous parts again. Once we visited one part of a word |Σ|

times, this part cannot contain any more letters and thus is empty.

30



Theorem 1.2.7. Let Σ be a finite alphabet, let w,w′ ∈ Σ? and n ∈ N. If w ≡2
|Σ|+1,n

w′, then w ≡2
n w

′.

Proof. Suppose for the sake of a contradiction that w ≡2
|Σ|+1,n w

′ and w 6≡2
n w

′. Thus,

using Theorem 1.2.5, w and w′ agree on the definedness of all (|Σ|+1, n)-rankers, and

on their order with respect to all (|Σ|, n−1)-rankers and some (|Σ|+1, n−1)-rankers.

But since w 6≡2
n w

′, w and w′ need to disagree on the properties of some other ranker.

Let r := (p1, . . . , pt) with t ∈ N be the shortest such ranker. We know that r has

more than |Σ| blocks of alternating directions, say r is an m-alternation ranker for

some m > |Σ|. Let 1 ≤ k1, . . . , km ≤ t be the indices of the boundary positions at

the end of each block, i.e. where pki , 1 ≤ i < m points to a different direction than

pki+1. For the last of those indices we have km = t.

We look at the prefix rankers of r up to the end of each alternating block, rki :=

(p1, . . . , pki), and the intervals defined by these prefix rankers. We set I0(w) := |w|,

r0(w) := 0 if p1 points to the right, and r0(w) := ||w||+ 1 if p1 points to the left. For

all i ∈ [1,m], let

Ii(w) :=


[rki−1(w) + 1, rki(w)− 1] if pki points to the right

[rki(w) + 1, rki−1(w)− 1] if pki points to the left
.

Notice that by definition the letter mentioned in pki does not occur in the interval Ii.

Suppose that for all i ∈ [1,m] we have rki(w) ∈ Ii−1(w). Then the letter men-

tioned in pki has to occur in the interval Ii−1(w) of w, but the interval I|Σ|(w) of w

cannot contain any of the |Σ| distinct letters. Therefore rk|Σ|+1 /∈ I|Σ| and we have a

contradiction.

Otherwise there is an i ∈ [1,m] such that rki(w) /∈ Ii−1(w). We will construct a

ranker r′ that is shorter than r, does not have more alternations than r and occurs at

exactly the same position as r in both w and w′. The main idea for this construction

is that if rki(w) /∈ Ii−1(w), then it is not useful to enter this interval at all. By our

31



assumption, w and w′ disagree on some property of the ranker r, and thus on some

property of the shorter ranker r′. This contradicts our assumption that r was the

shortest such ranker.

Now we show how to construct a shorter ranker r′ that occurs at the same position

as r. We assume without loss of generality that pki points to the left. In this case

we have rki(w) /∈ Ii−1(w) = [rki−1−1(w) + 1, rki−1(w) − 1]. We look at the relative

positions of the rankers rki−1+1, . . . , rki with respect to the ranker rki−1−1. We know

that rki(w) ≤ rki−1−1(w), and we are interested in the right-most of the rankers

rki−1+1, . . . , rki that is still outside of the interval Ii−1(w). Let rj be this ranker. Thus

we have

rki(w) < . . . < rj(w) ≤ rki−1−1(w) < rj−1(w) < . . . < rki−1+1(w) < rki−1(w) .

We know that w ≡2
|Σ|+1,n w

′, thus by Theorem 1.2.5, these rankers occur in exactly

the same order in w′. Now we set s := (rki−1−1, pj, . . . , pki). Because w and w′ agree

on the ordering of the relevant rankers, we have s(w) = rki(w) and s(w′) = rki(w′).

Therefore we have reduced the size of a prefix of r without increasing the number of

alternations, and thus have a shorter ranker r′ that occurs at the same position as r

in both structures.

In order to prove that the alternation hierarchy for FO2 is strict, we define example

languages that can be separated by a formula of a given alternation depth m, but that

cannot be separated by any formula of lower alternation depth. As Theorem 1.2.7

shows, we need to increase the size of the alphabet with increasing alternation depth.

We inductively define the example words wm,n and w′m,n and the example languages

Km and Lm over finite alphabets Σm = {a0, . . . , am−1}. Here i, m and n are positive

integers.

32



w1,n := a0 w′1,n := ε

w2,n := a0(a1a0)2n w′2,n := (a1a0)2n

w2i+1,n := (a0 . . . a2i)n w2i,n w′2i+1,n := (a0 . . . a2i)n w′2i,n

w2i+2,n := w2i+1,n (a2i+1 . . . a0)n w′2i+2,n := w′2i+1,n (a2i+1 . . . a0)n

Notice that wm,n and w′m,n are almost identical – if we delete only one a0 from wm,n,

we get w′m,n. Finally, we set Km := ⋃
n≥1{wm,n} and Lm := ⋃

n≥1{w′m,n}.

Definition 1.2.8. A formula ϕ separates two languages K,L ⊆ Σ? if for all w ∈ K

we have w |= ϕ and for all w ∈ L we have w 6|= ϕ or vice versa.

Lemma 1.2.9. For all m ∈ N, there is a formula ϕm ∈ FO2[<]–ALT [m] that sepa-

rates Km and Lm.

Proof. For m = 1, we can easily separate K1 = {a0} and L1 = {ε} with the formula

∃x (x = x). For all larger m, we show that the two languages Km and Lm differ on

the ordering of two (m− 1)-alternation rankers. Then by Theorem 1.2.5 there is an

FO2
m,m[<] formula that separates Km and Lm. We inductively define the rankers

r2 := .a0 s2 := .a1

r2i+1 := /a2ir2i s2i+1 := /a2is2i

r2i+2 := .a2i+1r2i+1 s2i+2 := .a2i+1s2i+1 .

For m = 2, it is easy to see that r2(w2,n) < s2(w2,n), but r2(w′2,n) > s2(w′2,n). For

m > 2, these rankers disagree on their order as well. To prove this, we prove the

following two equalities.

r2i+2(w2i+2,n) = r2i+1(w2i+1,n) = (2i+ 1)n+ r2i(w2i,n)

33



To prove this, we first use the definitions above and write

r2i+2(w2i+2,n) = (.a2i+1r2i+1)(w2i+1,n (a2i+1 . . . a0)n) .

The letter a2i+1 does not occur in the word w2i+1,n, and thus .a2i+1(w2i+2,n) points to

the first position in w2i+2,n right after the copy of w2i+1,n. We observe that r2i+1 starts

with /, and that r2i+1 is defined on w2i+1,n. Thus the evaluation of the remainder of

r2i+2 on w2i+2,n never leaves the copy of w2i+1,n, and we have

r2i+2(w2i+2,n) = r2i+1(w2i+1,n) .

For the second part of the equality, we have

r2i+1(w2i+1,n) = (/a2ir2i)((a0 . . . a2i)n w2i,n) .

As above, the letter a2i does not occur in the word w2i,n, and thus /a2i(w2i+1,n) points

to the position in w2i+1,n right before the copy of w2i,n. The ranker r2i starts with .,

and r2i is defined on w2i,n. Thus, just as above, the evaluation of the remainder of

r2i+1 on w2i+1,n never leaves the copy of w2i,n, and we have

r2i+1(w2i+1,n) = (2i+ 1)n+ r2i(w2i,n) .

Exactly the same holds for the other rankers (s2, . . .) and words (w′2,n, . . .). We have

r2i+2(w2i+2,n) = r2i+1(w2i+1,n) = (2i+ 1)n+ r2i(w2i,n)

s2i+2(w2i+2,n) = s2i+1(w2i+1,n) = (2i+ 1)n+ s2i(w2i,n)

r2i+2(w′2i+2,n) = r2i+1(w′2i+1,n) = (2i+ 1)n+ r2i(w′2i,n)

s2i+2(w′2i+2,n) = s2i+1(w′2i+1,n) = (2i+ 1)n+ s2i(w′2i,n) .

34



Now an easy inductive argument, based on the two equalities we just proved, shows

that the rankers disagree on their order. Therefore condition (i)(b) of Theorem 1.2.5

fails for any pair of words, and there is a formula in FO2
m,m[<] that separates Km and

Lm.

Lemma 1.2.10. For m ∈ N, m ≥ 1, and all n ∈ N, we have wm,n ≡2
m−1,n w

′
m,n.

Proof. Because we do not have constants, there are no quantifier-free sentences. Thus

FO2
0,n[<] does not contain any formulas and the statement holds trivially for m = 1.

For m ≥ 2 and any n ≥ m, we claim that exactly the same (m− 1, n)-rankers are

defined over wm,n and w′m,n, and that all (m− 1, n)-rankers appear in the same order

with respect to all (m− 2, n− 1)-rankers and all (m− 1, n− 1)-rankers that end on

a different direction. Once we established this claim, the lemma follows immediately

from Theorem 1.2.5. We already observed that wm,n and w′m,n are almost identical.

The only difference between the two words is that wm,n contains the letter a0 in

the middle whereas w′m,n does not. Thus we only have to consider rankers that are

affected by this middle a0.

We claim that any ranker that points to the middle a0 of wm,n requires at least

m− 1 alternations. Furthermore, we claim that any such ranker needs to start with

. for even m and with / for odd m. We prove this by induction on m.

For m = 2 we have w2,n = a0(a1a0)n. Any n-ranker that starts with / cannot

reach the first a0, thus we need a ranker that starts with ..

For odd m > 2 we have wm,n = (a0 . . . am−1)nwm−1,n. Any n-ranker that starts

with . cannot leave the first block of n ·m symbols of this word and thus not reach

the middle a0. Therefore we need to start with /, and in fact use /am−1 at some point,

because we would not be able to leave the last section of wm−1,n otherwise. But with

/am−1 we move past all of wm−1,n, and we need one alternation to turn around again.

35



By induction, we need at least m − 2 alternations within wm−1,n, and thus m − 1

alternations total.

The argument for even m is completely symmetric. Thus we showed that we need

at least m− 1 alternation blocks to point to the middle a0. Furthermore, we showed

that if we have exactly m − 1 alternation blocks, then the last of these blocks uses

.. Therefore we only need to consider (m− 1)-alternation rankers that end on . and

pass through the middle a0. It is easy to see that all of these rankers agree on their

ordering with respect to all other (m− 2)-alternation rankers, and with respect to all

(m− 1)-alternation rankers that end on /.

To summarize, we showed that wm,n and w′m,n satisfy condition (i) from Theorem

1.2.5 for m− 1 alternations. Thus these two words agree on all FO2
m−1,n[<] formulas.

Theorem 1.2.11 (alternation hierarchy for FO2[<]). For any positive integer m,

there is a ϕm ∈ FO2–ALT [m] [<] and there are two languages Km, Lm such that ϕm

separates Km and Lm, but no ψ ∈ FO2–ALT [m− 1] [<] separates Km and Lm.

Proof. The theorem immediately follows from Lemma 1.2.9 and Lemma 1.2.10.

1.3 Extension to FO2[<, Suc]

We extend our definitions of boundary positions and rankers from Section 1.1 to

include the substrings of a given length that occur immediately before and after the

position of the ranker.

Definition 1.3.1. A (k, `)-neighborhood boundary position denotes the first or last

occurrence of a substring in a word. More precisely, a (k, `)-neighborhood boundary

position is of the form d(s,a,t) with d ∈ {., /}, s ∈ Σk, a ∈ Σ and t ∈ Σ`. The

36



interpretation of a (k, `)-neighborhood boundary position p = d(s,a,t) on a word w =

w1 . . . w||w|| is defined as follows.

p(w) :=


min{i ∈ [k + 1, ||w|| − `] | wi−k . . . wi+` = s a t} if d = .

max{i ∈ [k + 1, ||w|| − `] | wi−k . . . wi+` = s a t} if d = /

Notice that p(w) is undefined if the sequence sat does not occur in w. A (k, `)-

neighborhood boundary position can also be specified with respect to a position q ∈

|w|.

p(w, q) :=


min{i ∈ [max{q + 1, k + 1}, ||w|| − `] | wi−k . . . wi+` = s a t} if d = .

max{i ∈ [k + 1,min{q − 1, ||w|| − `}] | wi−k . . . wi+` = s a t} if d = /

Observe that (0, 0)-neighborhood boundary positions are identical to the bound-

ary positions from Definition 1.1.1. As before in the case without successor, we build

rankers out of these boundary positions. The size of the boundary position neighbor-

hoods grows linearly from the first boundary position to the last one, reflecting the

remaining quantifier depth for successor moves at those positions.

Definition 1.3.2. An n-successor-ranker r is a sequence of n neighborhood boundary

positions, r = (p1, . . . , pn), where pi is a (ki, `i)-neighborhood boundary position and

ki, `i ∈ [0, i−1]. The interpretation of an n-successor-ranker r on a word w is defined

as follows.

r(w) :=


p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

We denote the set of all n-successor-rankers that are defined over a word w by SRn(w),

and set SR?
n(w) := ⋃

i∈[1,n] SRi(w).

37



Because we now have the additional atomic relation Suc, we need to extend our

definition of order type as well.

Definition 1.3.3. Let i, j ∈ N. The successor order type of i and j is defined as

ordS(i, j) :=



� if i < j − 1

−1 if i = j − 1

= if i = j

+1 if i = j + 1

� if i > j + 1

.

With this new definition of n-successor-rankers, our proofs for Lemmas 1.1.5,

1.1.6, 1.1.7 and Theorem 1.1.8 go through with only minor modifications. Instead of

working through all the details again, we simply point out the differences.

First we notice that 1-successor-rankers are simply 1-rankers, so the base case of

all inductions remains unchanged. In the proofs of Lemmas 1.1.5, 1.1.6 and 1.1.7,

and in the proof of “(ii) ⇒ (i)” from Theorem 1.1.8, we argued that Delilah cannot

reply with a position in a given section because it does not contain a certain ranker

and therefore it does not contain the symbol used to define this ranker. Now we

need to know more – we need to show that Delilah cannot reply with a certain letter

in a given section that is surrounded by a specified neighborhood, given that this

section does not contain the corresponding successor-ranker. Whenever Samson’s

winning strategy depends on the fact that an n-successor-ranker does not occur in a

given section, he has n − 1 additional moves left. So if Delilah does not reply with

a position with the same letter and the same neighborhood, Samson can point out a

difference in the neighborhood with at most (n− 1) additional moves.

For the other direction of Theorem 1.1.8, we need to make sure that Delilah can

reply with a position that is contained in the correct interval, has the same symbol

and is surrounded by the same neighborhood. Where we previously defined the n-

38



ranker s := (λ, .a) or s := (ρ, /a), we now include the (n − 1)-neighborhood of the

respective positions chosen by Samson. Thus we make sure that Samson cannot point

out a difference in the two words, and Delilah still has a winning strategy. Thus we

have the following three theorems for FO2[<, Suc].

Theorem 1.3.4 (structure of FO2
n[<, Suc]). Let w and w′ be finite words, and let

n ∈ N. The following two conditions are equivalent.

(i) (a) SRn(w) = SRn(w′), and,

(b) for all r ∈ SR?
n(w) and for all r′ ∈ SR?

n−1(w),

ordS(r(w), r′(w)) = ordS(r(w′), r′(w′))

(ii) w ≡2
n w

′

Theorem 1.3.5 (structure of FO2
m,n[<, Suc]). Let w and w′ be finite words, and let

m,n ∈ N with m ≤ n. The following two conditions are equivalent.

(i) (a) SRm,n(w) = SRm,n(w′), and,

(b) for all r ∈ SR?
m,n(w) and for all r′ ∈ SR?

m−1,n−1(w),

ordS(r(w), r′(w)) = ordS(r(w′), r′(w′)), and,

(c) for all r ∈ SR?
m,n(w) and r′ ∈ SR?

m,n−1(w) such that r and r′ end with

different directions, ordS(r(w), r′(w)) = ordS(r(w′), r′(w′))

(ii) w ≡2
m,n w

′

Theorem 1.3.6 (alternation hierarchy for FO2[<, Suc]). Let m be a positive integer.

There is a ϕm ∈ FO2–ALT [m] [<, Suc] and there are two languages Km, Lm ⊆ Σ?

such that ϕm separates Km and Lm, but there is no ψ ∈ FO2–ALT [m− 1] [<, Suc]

that separates Km and Lm.

Proof. We use the same ideas as before in Theorem 1.2.11. We define example lan-

guages that now include an extra letter b to ensure that the successor predicate is of

39



no use. As before, we inductively construct the words wm,n and w′m,n and use them

to define the languages Km and Lm.

w1,n := b2na0b2n w′1,n := b2n

w2,n := w1,n (a1b2na0b2n)2n w′2,n := w′1,n (a1b2na0b2n)2n

w2i+1,n := (b2na0b2n . . . b2na2i)n w2i,n w′2i+1,n := (b2na0b2n . . . b2na2i)n w′2i,n

w2i+2,n := w2i+1,n (a2i+1b2n . . . a0b2n)n w′2i+2,n := w′2i+1,n (a2i+1b2n . . . a0b2n)n

Finally we set Km := ⋃
n≥1{wm,n} and Lm := ⋃

n≥1{w′m,n}. Notice that the bs are not

necessary to distinguish between the two languages Km and Lm, and thus the proof of

Lemma 1.2.9 goes through unchanged and we have a formula ϕm ∈ FO2–ALT [m] [<

, Suc] that separates Km and Lm. To see that no FO2–ALT [m− 1] [<, Suc] formula

can separate Km and Lm, we observe that any (n − 1)-neighborhood in the words

wm,n and w′m,n contains all bs except for at most one letter ai for some i ∈ [0,m− 1].

Thus the proof of Lemma 1.2.10 goes through here as well.

40



Chapter 2

Satisfiability of FO2 on Finite Words

We investigate the complexity of the satisfiability problem for FO2 on finite words.

While there is a straightforward reduction from boolean satisfiability that shows that

satisfiability for FO2[<] on finite words is NP-hard, this problem was previously only

known to be in NEXP [10], and in NP for the special case where the size of the alphabet

is fixed [47]. In this chapter we present a general NP algorithm which, similar to the

previously known NEXP algorithm, is based on a small model property.

As defined earlier, finite words are represented as logical structures where the

elements of the universe correspond to the positions in the word, and we have unary

predicates for each letter in the alphabet. Thus exactly one unary predicate holds

at any given position. In a slightly more general model, which we choose to call

finite power words, any number of unary predicates can hold at any position. In

many contexts, this distinction does not matter much, as finite words are finite power

words, and we can convert finite power words to finite words by replacing the original

alphabet Σ with the new alphabet P(Σ). For example, using this translation, FO2 on

finite words has the same expressive power as FO2 on finite power words. However,

while the satisfiability problem for FO2 on finite power words is NEXP-complete [10],

this result does not hold for finite words.

We present the small model property for FO2[<] that our NP satisfiability algo-

rithm is based on in Section 2.1, and conclude this chapter with a complete picture of

the complexity of the satisfiability problem for FO2 on finite words and finite power

words in Section 2.2.

41



2.1 Small Model Property for FO2[<] on Finite Words

Theorem 2.1.1. Let ϕ ∈ FO2[<] over the alphabet Σ. If ϕ is satisfiable, then ϕ has

a model of size O(|Σ| · |ϕ|3).

Before we prove Theorem 2.1.1, we introduce some definitions that will be helpful

in case distinctions based on the relative ordering of the interpretations of the two

variables x and y in a formula or its subformulas.

Definition 2.1.2. Let w ∈ Σ?, a ∈ Σ and S ⊆ |w|. Then Sa := {i ∈ S | wi = a}.

Definition 2.1.3. An order formula is one of the three formulas x < y, x = y and

x > y.

Definition 2.1.4. A formula ϕ ∈ FO[<] is in existential negation normal form

(ENNF) if it does not contain any universal quantifiers, and negations only appear

in front of unary predicates or existential quantifiers. Negations in front of order

formulas are not allowed.

Proposition 2.1.5. Any formula ϕ ∈ FO[<] is equivalent to a formula in ENNF of

size at most 2|ϕ|.

Proof. We push all negations inside in the usual way, but not past any existential

quantifiers. Negated order formulas are converted to a positive boolean combination

of order formulas.

We use induction on the structure of ϕ to construct an equivalent formula ϕ′ in

ENNF. If ϕ = Qa(x) for some a ∈ Σ, or ϕ is an order formula, then we set ϕ′ = ϕ.

If ϕ = ψ ∨ ξ, then ϕ′ = ψ′ ∨ ξ′. If ϕ = ∃xψ, then ϕ′ = ∃xψ′. Finally if ϕ = ¬ψ, we

need to look at the structure of ψ:

• If ψ = Qa(x) for some a ∈ Σ, we set ϕ′ = ϕ.

• If ψ is of the form x < y, then ϕ′ is x = y ∨ x > y.

42



• If ψ is of the form x = y, then ϕ′ is x < y ∨ x > y.

• If ψ = ¬ξ, then ϕ′ = ξ′.

• If ψ = ξ ∨ ζ, then ϕ′ = (¬ξ)′ ∧ (¬ζ)′.

• If ψ = ∃xψ, then ϕ′ = ¬∃xψ′.

The inductively constructed formula ϕ′ is in ENNF, and it is easy to verify that in

each step of the induction ϕ ≡ ϕ′.

Proposition 2.1.6. Let ϕ ∈ FO2[<] in ENNF. Then there are s ∈ N, a positive

boolean formula β in the propositional variables Z<, Z=, Z>, X1, . . . , Xs, and formulas

ϕ1, . . . , ϕs ∈ FO2[<] in ENNF, each with at most one free variable, such that

ϕ = β(x < y, x = y, x > y, ϕ1, . . . , ϕs) .

Proof. We use induction on the structure of ϕ. The claim is obvious for a formula

Qa(x) with a ∈ Σ, for its negation, and for the formulas x < y, x = y and x > y. For

boolean combinations we only need to apply the inductive hypothesis to the parts of

the boolean combination. Finally, formulas of the form ∃xψ or ¬∃xψ have at most

one free variable.

Definition 2.1.7. Let ϕ ∈ FO2[<] in ENNF and let χ be an order formula. Let β

and ϕ1, . . . , ϕs as in Proposition 2.1.6. The order restriction ϕ �χ is the formula

ϕ �χ:=


β(>,⊥,⊥, ϕ1, . . . , ϕs) if χ is x < y

β(⊥,>,⊥, ϕ1, . . . , ϕs) if χ is x = y

β(⊥,⊥,>, ϕ1, . . . , ϕs) if χ is x > y

.

While this definition is purely syntactic, the following proposition states that

order restrictions work as intended: An order restriction is the semantic restriction

of a formula to a specific ordering of the variables x and y.

43



Proposition 2.1.8. Let ϕ ∈ FO2[<] in ENNF. Then

ϕ ≡ (x < y ∧ ϕ �x<y) ∨ (x = y ∧ ϕ �x=y) ∨ (x > y ∧ ϕ �x>y) .

Proof. Let β and ϕ1, . . . , ϕs be as in Proposition 2.1.6. Suppose that (w, i, j) |= ϕ,

thus (w, i, j) |= β(x < y, x = y, x > y, ϕ1, . . . , ϕs). Since the formulas ϕ1, . . . , ϕs

have at most one free variable each, their truth value does not depend on the relative

ordering of x and y as interpreted by (w, i, j). Thus, if x < y, then (w, i, j) |=

β(>,⊥,⊥, ϕ1, . . . , ϕs) and (w, i, j) |= ϕ �x<y. The two other cases x = y and x > y

are symmetric.

For the other direction, suppose that

(w, i, j) |= (x < y ∧ ϕ �x<y) ∨ (x = y ∧ ϕ �x=y) ∨ (x > y ∧ ϕ �x>y) .

If (w, i, j) |= x < y ∧ ϕ �x<y, then i < j and (w, i, j) |= β(>,⊥,⊥, ϕ1, . . . , ϕs). As

above, since the truth values of ϕ1, . . . , ϕs do not depend on the relative ordering of

x and y, we have (w, i, j) |= β(x < y, x = y, x > y, ϕ1, . . . , ϕs) and thus (w, i, j) |= ϕ.

The two other cases are symmetric.

For the following lemma, we set max{} := −∞ and min{} :=∞.

Lemma 2.1.9. Let ζ1(y), . . . , ζt(y) ∈ FO2[<] over the alphabet Σ with y as the only

free variable and in ENNF, and let w ∈ Σ+ be a finite word. Let β be a positive

boolean formula in the variables Z<, Z=, Z>, Y1, . . . , Yt, let

ψ(x, y) = β(x < y, x = y, x > y, ζ1(y), . . . , ζt(y)) ,

and let ϕ(x) = ∃y ψ(x, y). Let

44



p := max{j ∈ |w| | (w, j/y) |= ψ(x, y) �x<y}

q := min{j ∈ |w| | (w, j/y) |= ψ(x, y) �x>y} .

Then for all i ∈ |w|, (w, i) |= ϕ(x) iff i < p or i > q or (w, i/y) |= ψ(x, y) �x=y.

Proof. If (w, i) |= ϕ(x), then there is a j ∈ |w| such that (w, i, j) |= ψ(x, y). If

i < j, then (w, j/y) |= ψ(x, y) �x<y and j ≤ p, thus i < p. Similarly, if i > j, then

(w, j/y) |= ψ(x, y) �x>y and j ≥ q, thus i > q. Finally, if i = j, then (w, j/y) =

(w, i/y) and (w, i/y) |= ψ(x, y) �x=y.

Arguing in the other direction, if i < p, then (w, i, p) |= ψ(x, y) since (w, p/y) |=

ψ(x, y) �x<y, and thus (w, i) |= ϕ(x). Similarly, if i > q, then (w, i, q) |= ψ(x, y) since

(w, q/y) |= ψ(x, y) �x>y, and thus (w, i) |= ϕ(x). If (w, i/y) |= ψ(x, y) �x=y, then

(w, i, i/y) |= ψ(x, y) and thus (w, i) |= ϕ(x).

Lemma 2.1.10. Let ϕ ∈ FO2[<] over the alphabet Σ in ENNF and with one free

variable, let w ∈ Σ? be a word, and let a ∈ Σ. There is a set S ⊆ |w| which is the

union of at most |ϕ|2 intervals such that for every i ∈ |w|a, (w, i) |= ϕ(x) iff i ∈ S.

Proof. We use induction on the structure of ϕ. If ϕ(x) is of the form Qb(x) for some

b ∈ Σ, then we choose S = |w| if b = a and S = ∅ otherwise. If ϕ(x) = ψ1(x)∨ψ2(x),

then let S1 and S2 be the sets for ψ1(x) and ψ2(x), respectively, using the inductive

hypothesis. We choose S = S1 ∪ S2, which can be constructed as the union of at

most as many intervals as were used for the sets S1 and S2. Similarly, if ϕ(x) =

ψ1(x) ∧ ψ2(x), we choose S = S1 ∩ S2, which as before does not introduce any new

interval boundaries. If ϕ(x) = ¬ψ1(x), we complement the set S1, which adds at most

one additional interval.

The interesting case is where ϕ(x) = ∃y ψ(x, y). Using Proposition 2.1.6, there is a

positive boolean formula β in the variables Z<, Z=, Z>, X1, . . . , Xs, Y1, . . . , Yt that uses

45



each of the variables X1, . . . , Xs at most once, and there are formulas in x ξ1, . . . , ξs,

and formulas in y ζ1, . . . , ζt, such that

ψ(x, y) = β(x < y, x = y, x > y, ξ1(x), . . . , ξs(x), ζ1(y), . . . , ζt(y)) .

Applying the inductive hypothesis to the formulas ξσ, σ ∈ [1, s], let Sσ be the set as

described in the statement of this lemma, and let I(σ,1), . . . , I(σ,kσ) be intervals such

that kσ ≤ |ξσ|2 and Sσ = ⋃kσ
`=1 I(σ,`). To make it easier to deal with the left and right

boundaries of all these intervals, without loss of generality all intervals will be of the

form [f, g), i.e. including the left boundary f , but excluding the right boundary g.

Let Fσ be the set of all left interval boundaries from the intervals I(σ,1), . . . , I(σ,kσ),

and let Gσ be the set of all right boundaries from these intervals. We also define sets

F and G of all left and right interval boundaries, respectively: F := ⋃
σ∈[1,s] Fσ and

G := ⋃
σ∈[1,s] Gσ. Because the first and last position of w are not necessarily part of

F ∪ G already but might be necessary as boundaries for the following construction,

we define the set H := F ∪G ∪ {1, ||w||+ 1}.

Looking at each interval I defined by two consecutive positions from H, the truth

values of the formulas ξ1, . . . , ξs remain constant among all points from Ia. Let

ξ?1 , . . . , ξ
?
s be these respective truth values. Thus, on all positions from Ia, ϕ(x) is

equivalent to ∃y β(x < y, x = y, x > y, ξ?1 , . . . , ξ
?
s , ζ1(y), . . . , ζt(y)). This formula sat-

isfies the requirements of Lemma 2.1.9, so that with p and q as in the lemma, the

truth of ϕ(x) over Ia is determined by the relative position of x with respect to p

and q and by the truth of the formulas ζ1(x), . . . , ζt(x) for the positions in between

p and q. Putting this all together, we can construct the set S of all positions from

|w|a where ϕ(x) is true as the union of intervals built from new interval endpoints,

where a new interval endpoint is either an old interval endpoint from H, an interval

endpoint that results from this lemma applied to the formulas ζ1(x), . . . , ζt(x), or a

point p (as a new right interval boundary) or q + 1 (as a new left interval boundary)

46



from the application of Lemma 2.1.9 for each interval I. Thus the number of new

interval boundaries is at most

3|H|+ 2
∑
τ∈[1,t]

|ζt|2 ≤ 3
2

∑
σ∈[1,s]

|ξσ|2 + 2
+ 2

∑
τ∈[1,t]

|ζτ |2 ,

which means that S is the union of at most 3 + 3∑σ∈[1,s] |ξσ|2 +∑
τ∈[1,t] |ζt|2 intervals.

Unfortunately, this is not necessarily bounded above by |ϕ|2, e.g. when |ξ1| ≥ 1√
3 |ϕ|.

We now develop a better upper bound on the number of new interval boundaries

excluding the boundaries from the formulas ζ1, . . . , ζt. Let C be the set of all new

interval boundaries that are positions from H or points p or q+ 1 from Lemma 2.1.9.

We account for these points p and q+ 1 at the interval boundaries of their respective

enclosing intervals: Considering each interval I = [c, d) defined by two consecutive

interval boundaries c and d from H, we assign the cost of a point p (if it lies inside

this interval) to the left interval boundary c, and the cost of point q + 1 (if it lies

inside this interval) to the right interval boundary d. From now on, we refer to these

two points as p(c) and q(d), respectively. (q(d) is the point q + 1 to the left of d.)

Thus any point i ∈ H can contribute at most three new interval boundaries: the

point itself, a point p(i) if p(i) is inside the interval that starts at i, and a point q(i)

if q(i) is inside the interval that ends at i. Let C(i) be the set of all new interval

boundaries contributed by i, and define

P (i) := {p(i) | p(i) ∈ C and p(i) < min{j ∈ H | j > i}}

Q(i) := {q(i) | q(i) ∈ C and q(i) < max{j ∈ H | j < i}} .

Thus P (i) contains the point p(i) only if it lies inside of the relevant interval and only

if it is used as a new interval boundary, and we have C(i) ⊆ {i} ∪ P (i) ∪Q(i). With

47



Ĉ(i) :=


P (i) ∪Q(i) if P (i) 6= ∅ and Q(i) 6= ∅

{i} ∪ P (i) ∪Q(i) otherwise

we have C(i) ⊆ Ĉ(i), since if both P (i) 6= ∅ and Q(i) 6= ∅, then q(i) is within the

interval that ends at i and p(i) is in the interval that starts at i. Thus ϕ(x) is true

on all points from [q(i), p(i))a, and i itself is not a new interval boundary.

We now split up the contributions of new interval boundaries C to left and right

interval boundaries F and G. For every σ ∈ [1, s], and all i ∈ Fσ, we define the set

ĈF (σ, i) :=


{i} ∪ P (i) if i ∈ G

C(i) otherwise
.

Similarly, for all i ∈ Gσ, we define the set

ĈG(σ, i) :=


{i} ∪Q(i) if i ∈ F

C(i) otherwise
.

We claim that

C ⊆ {1, ||w||+ 1} ∪ P (1) ∪Q(||w||+ 1) ∪
⋃

σ∈[1,s]

 ⋃
i∈Fσ

ĈF (σ, i) ∪
⋃
i∈Gσ

ĈG(σ, i)
 .

To see this, we argue that for every i ∈ H, C(i) is contained in the set on the right.

For i = 1, we have C(i) ⊆ {i}∪P (i) and for i = ||w||+ 1, we have C(i) ⊆ {||w||+ 1}∪

Q(||w||+1). For i ∈ F−G and i ∈ G−F the inclusion holds by the definition of ĈF (σ, i)

and ĈG(τ, i). Finally, for i ∈ F ∩G we have ĈF (σ, i) ∪ ĈG(τ, i) = {i} ∪ P (i) ∪Q(i).

To bound the size of the sets ĈF (σ, i) and ĈG(τ, i), we define the sets of in-

terval boundaries from all other subformulas in x: Fσ = ⋃
τ∈[1,s,]τ 6=σ Fτ , and Gσ =⋃

τ∈[1,s],τ 6=σ Gτ . Fixing any two consecutive left interval boundaries c and d from Fσ,

we make the following two observations about the contributions ĈF (σ, i) of the points

i ∈ Fσ ∩ [c, d).

48



• There is at most one i ∈ Fσ∩[c, d) with P (i) 6= ∅. To see this, suppose that there

are i ∈ Fσ∩ [c, d) with P (i) 6= ∅ and j ∈ Fσ∩ [c, d) with j < i. Since the interval

[c, d) contains no left interval boundaries besides the ones from Fσ, all formulas

from ξ1(x), . . . , ξs(x) that are true over the interval starting at i are also true

over the interval starting at j. Since β is a positive in X1, . . . , Xs, for all ` from

the interval that starts with j with w` = a we have (w, `, p(i)) |= ψ(x, y), and

thus P (j) = ∅.

• For any i ∈ Fσ ∩ [c, d) with Q(i) 6= ∅ and Q(i) ⊆ ĈF (σ, i), i /∈ ĈF (σ, i). To see

this, let i ∈ Fσ∩[c, d) with Q(i) 6= ∅ and Q(i) ⊆ ĈF (σ, i). Thus, by the definition

of ĈF (σ, i), i /∈ G, i.e. i is not a right interval boundary. Therefore all formulas

from ξ1(x), . . . , ξs(x) that are true over the interval that ends at i are also true

over the interval starting at i. Thus, since β is positive in X1, . . . , Xs, for all `

from the interval that starts with i with w` = a we have (w, `, q(i)) |= ψ(x, y).

Thus i is not a new interval boundary, and since ĈF (σ, i) = C(i), i /∈ ĈF (σ, i).

Thus among all points i ∈ Fσ ∩ [c, d), ĈF (σ, i) contains at most one element, except

for at most one i where ĈF (σ, i) contains at most two elements. Therefore the set⋃
i∈Fσ∩[c,d) ĈF (σ, i) has at most |Fσ ∩ [c, d)| + 1 elements. Thus for any σ ∈ [1, s], we

have

∑
i∈Fσ
|ĈF (σ, i)| ≤

∑
c∈Fσ

(|Fσ ∩ [c, d)|+ 1) = |Fσ|+
∑
c∈Fσ

|Fσ ∩ [c, d)| = |Fσ|+ |Fσ| .

Combining this with the observation that any set ĈF (σ, i) contains at most two ele-

ments, we have

49



∑
i∈Fσ
|ĈF (σ, i)| ≤ min

{
2|Fσ|, |Fσ|+ |Fσ|

}
= |Fσ|+ min

{
|Fσ|, |Fσ|

}
≤ |ξσ|2 + min

|ξσ|2, ∑
τ∈[1,s,]τ 6=σ

|ξτ |2


≤ |ξσ|2 + min

|ξσ|2,
 ∑
τ∈[1,s],τ 6=σ

|ξτ |

2


≤ |ξσ|2 + |ξσ|
∑

τ∈[1,s],τ 6=σ
|ξτ | = |ξσ|

∑
τ∈[1,s]

|ξτ | .

By a symmetric argument, we have

∑
i∈Gσ
|ĈG(σ, i)| = |ξσ|

∑
τ∈[1,s]

|ξτ | .

Thus

|C| ≤ 4 +

∣∣∣∣∣∣
⋃

σ∈[1,s]

 ⋃
i∈Fσ

ĈF (σ, i) ∪
⋃
i∈Gσ

ĈG(σ, i)
∣∣∣∣∣∣

≤ 4 +
∑

σ∈[1,s]

∑
i∈Fσ
|ĈF (σ, i)|+

∑
i∈Gσ
|ĈG(σ, i)|


≤ 4 +

∑
σ∈[1,s]

2|ξσ|
∑

τ∈[1,s]
|ξτ |

 = 4 + 2
 ∑
σ∈[1,s]

|ξσ|

2

.

Therefore the total number of new interval boundaries is at most

|C|+
∑
τ∈[1,t]

2|ζτ |2 ≤ 4 + 2
 ∑
σ∈[1,s]

|ξσ|

2

+ 2
∑
τ∈[1,t]

|ζτ |2

≤ 2

2 +
 ∑
σ∈[1,s]

|ξσ|

2

+
 ∑
τ∈[1,t]

|ζτ |

2


≤ 2
2 +

∑
σ∈[1,s]

|ξσ|+
∑
τ∈[1,t]

|ζτ |

2

≤ 2 · |ϕ|2 .

Thus we have at most |ϕ|2 intervals.

50



While we suspect that this quadratic bound on the number of intervals is not

optimal, we do have an explicit construction of a formula that requires a super-linear

number of intervals.

Proof of Theorem 2.1.1. We assume that ϕ is in ENNF, otherwise we can easily con-

vert it into ENNF while at most doubling its size. Let w be a model of ϕ, and let

ϕ1, . . . , ϕk be the subformulas of ϕ of the form ∃xψ for some variable x and some

formula ψ. For every κ ∈ [1, k], we use Proposition 2.1.6 to find a positive boolean for-

mula β in the variables Z<, Z=, Z>, X1, . . . , Xs, Y1, . . . , Yt, and formulas in x ξ1, . . . , ξs,

and formulas in y ζ1, . . . , ζt, such that ϕκ(x) = ∃y ψκ(x, y), where

ψκ(x, y) := β(x < y, x = y, x > y, ξ1(x), . . . , ξs(x), ζ1(y), . . . , ζt(y)) .

We will use Lemma 2.1.10 to bound the number of possible combinations of truth

values for the formulas ξ1(x), . . . , ξs(x), and construct a set Wκ of witnesses (inter-

pretations of y) to satisfy the formula ψ(x, y) for every fixed combination of truth

values for the formulas ξ1(x), . . . , ξs(x). We will see that for any of these combina-

tions of truth values, we only need at most two witnesses. Then we will show that

the structure w restricted to all witnesses is still a model of ϕ.

For every a ∈ Σ and every σ ∈ [1, s], let Saσ be a set as in Lemma 2.1.10 applied

to the formula ξσ(x) and a, where Saσ is the union of at most |ξσ|2 intervals. Thus

there is a set Iaκ of at most 2+∑σ∈[1,s] |ξσ|2 intervals such that for any interval I ∈ Iaκ,

there are ξI1 , . . . , ξ
I
s ∈ {>,⊥} such that ⋃I∈Iaκ = |w| and for all i ∈ Ia, we have

(w, i) |= ξσ(x) iff ξIσ = >. For each I ∈ Iaκ, we apply Lemma 2.1.9 to the formula

ϕIκ(x) = ∃y ψIκ(x, y), where

ψIκ(x, y) := β(x < y, x = y, x > y, ξI1 , . . . , ξ
I
s , ζ1(y), . . . , ζt(y)) ,

51



and let pI , qI be as in that lemma. Let W a
κ := ⋃

I∈Iaκ{pI , qI}, let W := ⋃
κ∈[1,k],a∈Σ W

a
κ ,

and let wW be the restriction of w to the positions from W such that |w| = W . We

claim that wW |= ϕ. To see this, we show that for every subformula η of ϕ and all

i, j ∈ W , (w, i, j) |= η iff (wW , i, j) |= η.

• If η is atomic formula the claim is obvious.

• If η is a boolean combination of α and β, then the claim follows immediately

by applying the inductive hypothesis to α and β.

• If η starts with an existential quantifier, then η = ϕκ(x) for some κ ∈ [1, k],

using the enumeration of these subformulas from above.

Suppose that i ∈ W and (w, i) |= η(x). Then there is a j ∈ |w| such that

(w, i, j) |= ψκ(x, y). Let a = wi and let I ∈ Iaκ such that i ∈ I. We find ĵ ∈ W

such that (w, i, ĵ) |= ψ(x, y) as follows: If j < i then ĵ = qI , if j > i then

ĵ = pI , and if j = i then ĵ = i. Applying the inductive hypothesis, we see that

(wW , i, ĵ) |= ψ(x, y), and thus (wW , i) |= η(x).

Suppose that i ∈ W and (wW , i) 6|= η(x). Then there is a j ∈ W such that

(wW , i, j) |= ψκ(x, y). Using the inductive hypothesis, we have (w, i, j) |=

ψκ(x, y) and thus (w, i) |= η(x).

So because w |= ϕ, we have wW |= ϕ. The size of W is at most 2∑κ∈[1,k],a∈Σ Iaκ,

where k ≤ |ϕ| and |Iaκ| ≤ 2 + |ϕκ|2 ≤ 2 + |ϕ|2. Thus |W | = O(|Σ| · |ϕ|3).

2.2 Satisfiability of FO2 on Finite Words and Finite Power

Words

In this section we first present known results on the complexity of the satisfiability

problem for FO2[] on monadic structures, and FO2[<] and FO2[<, Suc] on both finite

52



words and finite power words. We conclude with our main result, an NP algorithm

for satisfiability of FO2[<] on finite words.

A proof sketch of Theorem 2.2.1 is presented in [10], building on [11,26], and using

a reduction from a tiling problem. We present an alternative, although essentially

equivalent, full proof that directly encodes the computation of a nondeterministic

Turing Machine. We also present an explicit and full proof for Theorem 2.2.3, which

has been stated in [10]. Theorem 2.2.6, which also appears here with a more detailed

proof, is from [47].

The language FO2[] does not contain any numeric predicates. On monadic struc-

tures, all we have is equality and the monadic predicates. Thus our structures are

collections of points which satisfy some of the monadic predicates. Since FO2[] is con-

tained in both FO2[<] and FO2[<, Suc], the following theorem implies NEXP-hardness

for these more expressive languages.

Theorem 2.2.1. [10, 11, 26] Satisfiability for FO2[] on monadic structures is NEXP-

hard.

Proof. Let M = (Q,Σ, δ, q0, F ) be a nondeterministic Turing Machine that runs in

time 2nk for some k ∈ N on all inputs of length n. Here Q is the set of states, Σ is the

input alphabet, Γ := Σ ∪̇ {.,t} is the tape alphabet, δ : Q×Γ→ P(Q×Γ×{−1, 0, 1})

is the nondeterministic state transition function, q0 is the initial state, and F is a set

of accepting states. We describe a function f that maps inputs for M to FO2 formulas

such that for every input w ∈ Σ?, f(w) is satisfiable iff w is accepted by M .

An element of the universe of any model satisfying the formula f(w) represents

a single tape cell at a single time step in the computation of M . The formula f(w)

uses the following unary predicates: T1, . . . , Tnk for a binary encoding of each time

step; P1, . . . , Pnk for a binary encoding of each tape cell; Ca, a ∈ Γ for the symbols in

the tape alphabet; Sq, q ∈ Q for the states of M .

53



To encode the computation of M , we need to be able to say “at the next time

step”, “on the previous tape cell” and “on the next tape cell”. Because we do not

have numeric predicates, we use the following boolean formula to say that the number

encoded by the boolean variables X1, . . . , Xk in binary is one smaller than the number

encoded by Y1, . . . , Yk.

NEXT (X1, . . . , Xk, Y1, . . . , Yk)

=
∨

i∈[1,k]

 ∧
j∈[1,i)

(Xj ↔ Yj) ∧ ¬Xi ∧ Yi ∧
∧

j∈(i,k]
(Xj ∧ ¬Yj)



We also use a boolean formula to check for equality of two sequences of boolean

variables.

EQUALS (X1, . . . , Xk, Y1, . . . , Yk) =
∧

i∈[1,k]
Xi ↔ Yi

We construct the formula f(w) as the conjunction of all the following formulas. We

use T (x) as a shorthand for T1(x), . . . , T2nk (x), and also use P (x), ⊥ and > in a

similar way. The binary representation of a number i ∈ N as a sequence of > and ⊥

is denoted as 〈i〉.

• The universe contains elements for every part of the computation, i.e. there is

an element for time step 0 and tape position 0, every tape cell has a successor

in time except at the end of the computation, and every tape cell has another

tape cell to its right, except if it is the right-most tape cell.

∃x
(
EQUALS

(
T (x), 〈0〉

)
∧ EQUALS

(
P (x), 〈0〉

))

∀x.¬EQUALS
(
T (x), 1

)
∃y

(
NEXT

(
T (x), T (y)

)
∧ EQUALS

(
P (x), P (y)

))
∀x.¬EQUALS

(
P (x), 1

)
∃y

(
EQUALS

(
T (x), T (y)

)
∧ NEXT

(
P (x), P (y)

))

54



• Every tape cell contains at most one tape symbol.

∀x

 ∧
a6=b∈Γ

¬(Ca(x) ∧ Cb(x))


• At every time step, at most one tape cell has a state marker.

∀x∀y.
(
EQUALS

(
T (x), T (y)

)
∧ ¬EQUALS

(
P (x), P (y)

))
∧

q,p∈Q
¬(Sq(x) ∧ Sp(y))

• At the initial time step, the tape contains the input followed by blank symbols,

the head points to the first symbol of the input, and M is in the initial state.

∀x.EQUALS
(
T (x), 〈0〉

) (EQUALS
(
P (x), 〈0〉

)
→ C.(x)

)

∧
∧

i∈[1,n]

(
EQUALS

(
P (x), 〈i〉

)
→ Cwi(x)

)

∧

 ∧
i∈[0,n)

¬EQUALS
(
P (x), 〈i〉

)→ Ct(x)


∧
(
EQUALS

(
P (x), 〈1〉

)
→ Sq0(x)

)

• The contents of any tape cell not at the current head position remains un-

changed.

∀x.

∧
q∈Q
¬Sq(x)

 ∀y. (NEXT
(
T (x), T (y)

)
∧ EQUALS

(
P (y), P (x)

))
∧
a∈Γ

(Ca(x)↔ Ca(y))

55



• The tape contents at the head position together with the current state determine

the tape contents of the same cell and the head position at the next time step.

∀x
∧

a∈Γ,q∈Q

 (Ca(x) ∧ Sq(x))→

∀y.
(
NEXT

(
T (x), T (y)

)
∧ EQUALS

(
P (y), P (x)

))
∨

(a′,q′,d)∈δ(a,q)
(Ca′(y) ∧ ϕd,q′(y))



where

ϕd,q′(y) :=


∀x.

(
τ(x, y) ∧ NEXT

(
P (x), P (y)

))
Sq′(x) if d = −1

Sq′(y) if d = 0

∀x.
(
τ(x, y) ∧ NEXT

(
P (y), P (x)

))
Sq′(x) if d = 1

and τ(x, y) := EQUALS
(
T (x), T (y)

)
• The final state of the computation is accepting.

∃x

EQUALS
(
T (x), 1

)
∧
∨
q∈F

Sq(x)


We observe that if w is accepted by M , then the corresponding computation can be

converted into a model of the formula f(w). If f(w) has a model, then this model

encodes an accepting computation of M , and thus w is accepted by M .

Corollary 2.2.2. Satisfiability for FO2[<] and FO2[<, Suc] on finite power words is

NEXP-hard.

A similar corollary for finite words does not follow directly from Theorem 2.2.1,

because for finite words we have the restrictions that no two unary predicates can

hold at the same position. However, in the presence of a successor relation, we can

easily work around this semantic restriction.

56



Theorem 2.2.3. [10] Satisfiability for FO2[Suc] on structures with only one unary

predicate is NEXP-hard.

Proof. We present a reduction to the satisfiability problem for FO2[] on monadic

structures. NEXP-hardness then follows from Theorem 2.2.1.

We convert a given FO2 formula ϕ that uses only the unary predicates X1, . . . , Xk

into a FO2[Suc] formula f(ϕ) using only one unary predicate X such that ϕ is satisfi-

able iff f(ϕ) is satisfiable. The main idea is to distribute the information about which

ones of the k predicates hold for a given element of the universe onto a sequence of

2k + 2 new elements, where, as a marker, X does not hold for the first two elements

of the sequence, X holds at all other odd positions, and the remaining even positions

indicate whether Xi holds or not. For example, if k = 3 and for some structure A we

have a ∈ XA
1 , a ∈ XA

2 and a /∈ XA
3 , we translate this into a structure B with only one

unary relation XB and elements a1, . . . , a8, occurring in this order with respect to the

successor relation. We put only a3, . . . , a7 into XB, so that a binary representation

of this sequence is 00111110 when writing 0 for the positions where X does not hold

and 1 for the positions where it holds.

We will describe this translation in more detail after defining the following two

helper formulas. ϕmark(x) says that the string 001 starts at x, marking the beginning

of an encoding sequence corresponding to one element from the original structure.

The formula ϕi(x) says that 2i + 1 steps to the left of x, X holds. Assuming that x

is the beginning of an encoding sequence, this is the position that encodes the truth

value of Xi(x).

ϕmark := ¬X(x) ∧ ∃y (Suc(x, y) ∧ ¬X(y)) ∧ ∃x (Suc(y, x) ∧X(x))

ϕi := ∃y.Suc(x, y) [∃x.Suc(y, x)∃y.Suc(x, y)]i X(y)

We recursively construct the formula f(ϕ) as follows.

57



• If ϕ = Xi(x), then f(ϕ) = ϕi(x).

• If ϕ is the formula x = y, then f(ϕ) = ϕ.

• If ϕ = ψ ∨ ξ, then f(ϕ) = f(ψ) ∨ f(ξ).

• If ϕ = ¬ψ, then f(ϕ) = ¬f(ψ).

• If ϕ = ∃xψ, then f(ϕ) = ∃x (ϕmark(x) ∧ f(ψ)).

We claim that ϕ is satisfiable iff f(ϕ) is satisfiable.

If ϕ is satisfiable, then let A be a model of ϕ. We construct a model B of f(ϕ).

For every element a ∈ |A|, the universe of B contains the elements a1, . . . , a2k+2. |B|

contains no other elements. For all a ∈ |A|, we set a1, a2 /∈ XB, and for all i ∈ [1, k],

a2i+1 /∈ XB and a2i+2 ∈ XB iff a ∈ XA
i . We require that for all a ∈ |A|, the sequence

a1, . . . , a2k+2 is consistent with the successor relation of B, and choose an arbitrary

ordering of the elements of |A| and thus for the ordering of these sequences.

By induction on the structure of ϕ, we prove that for all a, b ∈ |A|, if (A, a, b) |= ϕ

then (B, a1, b1) |= f(ϕ).

• If ϕ = Xi(x), then a ∈ XA
i . By the definition of XB, we thus have a2i+2 ∈ XB,

hence (B, a1) |= ϕi(x) and thus (B, a1, b1) |= f(ϕ).

• If ϕ is the formula x = y, then a = b, thus a1 = b1 and (B, a1, b1) |= f(ϕ).

• If ϕ = ¬ψ or ϕ = ψ ∨ ξ, then we only need to apply the inductive hypothesis

to ψ and ξ.

• If ϕ = ∃xψ, then there is a c ∈ |A| such that (A, c, b) |= ψ. Using the inductive

hypothesis, we thus have (B, c1, b1) |= f(ψ). Since by definition c1 /∈ XB, c2 /∈

XB, and c3 ∈ XB, we also have (B, c1, b1) |= ϕmark(x), and thus (B, a1, b1) |=

f(ϕ).

58



Thus B |= f(ϕ), and f(ϕ) is satisfiable.

If f(ϕ) is satisfiable, then let B be a model of f(ϕ). We construct a model A of

ϕ. The universe of A is |A| := {a ∈ B | (B, a) |= ϕmark(x)}, and the relations are

defined as XA
i = {a ∈ |A| | (B, a) |= ϕi(x)}.

By induction on the structure of ϕ, we prove that for all a, b ∈ |A|, if (B, a, b) |=

f(ϕ), then (A, a, b) |= ϕ.

• If ϕ = Xi(x), then (B, a, b) |= ϕi(x), thus a ∈ XA
i and (A, a, b) |= ϕ.

• If ϕ is the formula x = y, then a1 = b1, thus a = b and (A, a, b) |= ϕ.

• If ϕ = ¬ψ or ϕ = ψ ∨ ξ, then it suffices to apply the inductive hypothesis to ψ

and ξ.

• If ϕ = ∃xψ, then (B, a, b) |= ∃x (ϕmark(x)∧ f(ψ)). Thus there is a c ∈ |B| such

that (B, c, b) |= ϕmark(x) and (B, c, b) |= f(ψ). Because (B, c) |= ϕmark(x), we

have c ∈ |A|, thus the inductive hypothesis applies to ψ, hence (A, c, b) |= f(ψ),

and (A, a, b) |= ϕ.

Thus A |= ϕ, and ϕ is satisfiable.

Corollary 2.2.4. Satisfiability for FO2[<, Suc] on finite words is NEXP-hard.

For the proof of the following theorem we refer the reader to [10], where this result

is stated for infinite words. The proof is based on a small model property similar to

our result from the previous section, but allowing for models of size that is exponential

in the quantifier depth of the given formula.

Theorem 2.2.5. [10] Satisfiability for FO2[<, Suc] (and thus for FO2[<]) on finite

power words is in NEXP.

Theorem 2.2.6. Satisfiability for FO2[<] on finite words is NP-hard.

59



Proof. We present a reduction from SAT. Let α be a boolean formula over the vari-

ables X1, . . . , Xn. We construct a FO2[<] formula f(α) over a binary alphabet {0, 1}

such that α is satisfiable if f(α) has a finite word model.

We need the following helper formulas to identify the positions in a finite word

of length n: DISTmin,i(x) to say that the distance between the first position in the

word and position x is i, DISTmax,i(x) to say that the distance between x and the

last position in the word is i, and POSi(x) to say that x points to position i.

DIST-GEmin,i(x) :=


[∃y.(y < x)∃x.(x < y)](i−1)/2 (x = min) if i odd

[∃y.(y < x)∃x.(x < y)](i−2)/2 ∃y.(y < x) (y = min) if i even

DISTmin,i(x) := DIST-GEmin,i(x) ∧ ¬DIST-GEmin,i+1(x)

DIST-GEmax,i(x) :=


[∃y.(y > x)∃x.(x > y)](i−1)/2 (x = max) if i odd

[∃y.(y > x)∃x.(x > y)](i−2)/2 ∃y.(y > x) (y = max) if i even

DISTmax,i(x) := DIST-GEmax,i(x) ∧ ¬DIST-GEmax,i+1(x)

POSi(x) := DISTmin,i−1(x) ∧DISTmax,n−i−1(x)

Now we inductively define the formula f(α).

• If α = Xi, then f(α) = ∃x (POSi(x) ∧Q1(x)).

• If α = β ∨ γ, then f(α) = f(β) ∨ f(γ), similarly for α = β ∧ γ and α = ¬β.

If α is satisfiable, then let a : {X1, . . . , Xn} → {0, 1} be a satisfying assignment to

the boolean variables of α. We observe that the finite word a(X1) . . . a(Xn) satisfies

f(α).

If f(α) is satisfiable, then let w be a finite word such that w |= f(α). If the length

of w is different from n, then we claim that the assignment a : X1 7→ 0, . . . , Xn 7→ 0

satisfies α since POSi(x) does not for any i and any position of w. Otherwise the

assignment a with a(Xi) = wi satisfies α.

60



Theorem 2.2.7. Satisfiability for FO2[<] on finite words is in NP.

Proof. Theorem 2.1.1 implies that for any ϕ ∈ FO2[<] over an alphabet Σ, it suffices

to guess a model of size O(|Σ| · |ϕ|3) and verify that this model satisfies ϕ.

To summarize, we now have a complete picture of the complexity of the satisfia-

bility problem for FO2 on finite words and finite power words, as illustrated in Table

2.1

FO2[<] FO2[<, Suc]
finite words NP-complete NEXP-complete

finite power words NEXP-complete NEXP-complete

Table 2.1. Complexity of the Satisfiability Problem for FO2 on Finite Words and
Finite Power Words

61



Chapter 3

Succinctness of FOk

Succinctness is a measure to compare different logics based on the size of their formu-

las. Intuitively, we say that a logic L1 is more succinct than a logic L2 if the formulas

in L1 are shorter than the equivalent formulas in L2. If L1 and L2 do not have the

same expressive power, then of course this comparison only makes sense if we restrict

our attention to the properties expressible in both logics. For the following definition,

we think of O(f), Ω(f), etc. as function classes.

Definition 3.0.8. Let F be a class of functions with signature N → N, and let L1

and L2 be logics on a class of structures C. The succinctness of L1 in L2 on C is F if

(i) there is a function f ∈ F such that for every sentence ϕ ∈ L1 there is a sentence

in L2 of length at most f(|ϕ|) that is equivalent to ϕ on all structures from C,

and

(ii) there is a function f ∈ F such that there is a sentence ϕ ∈ L1 that is expressible

in L2 on C-structures such that any L2 sentence equivalent to ϕ has length at

least f(|ϕ|).

We observe that succinctness is only defined if every property of structures from

C expressible in L1 is also expressible in L2. To compare logics of different expressive

power, we restrict one of the two logics semantically to the properties expressible in

the other logic.

Our definition of succinctness encompasses both an upper bound and a lower

bound, allowing us to state succinctness results more naturally than with the original

62



definition from [15]. Similar notions of succinctness have been implicitly used before

[1, 24, 35, 48]. With our definition, using function classes O(·) and o(·) only invokes

the upper bound from condition (i), Ω(·) and ω(·) only invokes the lower bound from

condition (ii), and Θ(·) invokes both conditions. It should also be noted that even

though for some logics succinctness might be well defined, a function f : N→ N such

that the succinctness is Θ(f) does not necessarily exist.

The earliest investigations on succinctness include a result on the non-elementary

succinctness of first-order logic in the temporal logic LTL on finite words [24, 35].

More recent work considered the succinctness of the temporal logic CTL+ in CTL.

Wilke proved a lower bound of 2Ω(n)[48], which was later improved to Θ(n!) [1]). The

succinctness of monadic second-order logic and similar logics on finite trees [14] has

also been investigated, inspired by an interest in XML query languages.

After exploring connections between the succinctness of first-order formulas and

complexity theory in Section 3.1, we survey known results and techniques for proving

bounds on succinctness in Section 3.2, and conclude this chapter with Section 3.3 in

which we present a new succinctness bound on a simple first-order property .

3.1 Succinctness and Complexity Theory

Besides a genuine model-theoretic interest in the succinctness of first-order languages,

our investigation is driven by our desire to understand the complexity-theoretic trade-

off between parallel time and the number of processors. We recall the following

descriptive complexity definition of formulas built from iterated quantifier blocks.

Definition 3.1.1. For any function t : N → N, FO[t(n)] is the set of all first-

order formulas of the form [QB]t(n)M0, i.e. t(n) identical copies of QB followed by

M0, where QB = Q1x1.M1 . . . Qkxk.Mk, Q1, . . . , Qk are quantifiers, and M0, . . . ,Mk

are quantifier-free formulas. Furthermore, FOk[t(n)] is the fragment of FO[t(n)] of

63



formulas using at most k variables, and FO and FOk are the corresponding sets

of formulas for arbitrary t. We define the set of second-order formulas SO[t(n)]

analogously.

Theorem 3.1.2. [20, 22] For all k > 1, FOk = DSPACE[nk−1].

This early theorem on the expressive power of iterated quantifier block formulas

started a more detailed investigation of the complexity theoretic meaning of these

classes, summarized in Figure 3.1.

FO[1] = AC0

⊇ ⊇
FO[ logn

log logn ] ⊇ NC1

⊇
L

⊇

⊇ NL

⊇

sAC1

⊇

FO[log n] = AC1

⊇ ⊇

FO[nO(1)] = P

⊇ ⊇

FO[2nO(1) ] = PSPACE = SO[nO(1)]

Figure 3.1. Iterated quantifier block logics and complexity classes.

3.2 Succinctness Bounds

To prove lower bounds on the size of formulas, we need a more refined version of

Ehrenfeucht-Fräıssé games to take into account the size of the game tree instead of

just its depth. Adler-Immerman games were introduced in [1] for exactly this purpose.

Definition 3.2.1 (Adler-Immerman Game). [1] The Adler-Immerman game on two

sets of structures A and B is a game with two players Samson and Delilah. During

64



the course of the game, a tree is constructed where each node is labeled with a pair of

sets of structures. Samson moves first, and Delilah can respond to some of Samson’s

moves.

• Initially, the tree consists only of a root node with label (A,B).

• Samson can close a leaf node of his choice in one move if there is an atomic

formula that is satisfied by all structures from the left set of the pair, but not

satisfied by any structure from the right set. After closing the leaf node, no

further moves on it are possible.

• Samson can play one of the following moves on an open leaf node with label

(A0,B0).

– In a NOT move, he adds a new child node with label (B0,A0).

– In an OR move, he picks two sets A1,A2 ⊆ A0 such that A1 ∪ A2 = A0,

and attaches two child nodes to the current node with labels (A1,B0) and

(A2,B0).

– In an existential move on a variable x, Samson picks one designated element

s(A) for every structure A ∈ A0. Delilah responds by picking a set of

elements D(B) for every structure B ∈ B0. A new child node with label

({(A, s(A)) | A ∈ A0} , {(B, i) | B ∈ B0, i ∈ D(B)})

is attached to the current node.

• Samson wins the game if he can close all leaves, otherwise Delilah wins.

When restricted to boolean moves only, the Adler-Immerman game is exactly the

Karchmer-Wigderson communication complexity game [25]. If we restrict the game to

only NOT and existential moves, and also require that |D(B)| = 1 and |A| = |B| = 1,

65



then this game is just a standard Ehrenfeucht-Fräıssé game. We note that Delilah

has an obvious optimal strategy in every Adler-Immerman game: Pick D(B) = B

in every existential move. Extensions of this game for temporal logics and transitive

closure operators are relatively straightforward to define.

¬
(A0,B0)

(B0,A0)

∨
(A0,B0)

(A1,B0) (A2,B0)

∃x
(A0,B0)

(A′0,B′0)

Figure 3.2. Moves in the Adler-Immerman Game.

Theorem 3.2.2 (Fundamental Theorem of Adler-Immerman Games). [1] Samson has

a winning strategy for the m-move k-variable Adler-Immerman game on a pair of sets

of structures (A,B) if and only if there is a FOSIZEk[m] formula that distinguishes

between every structure in A and every structure in B.

After their introduction in [1], Adler-Immerman games have been used successfully

to prove interesting bounds on the succinctness of the finite-variable fragments of first-

order logic on linear orders [15]: The succinctness of FO3 in FO2 is O(n4), and the

succinctness of both FO and FO4 in FO3 is 2Θ(n). Linear orders are about the weakest

class of structures one could think of, but all lower bounds translate directly to more

complicated classes of structures like finite words and graphs, as long as an ordering

relation is present. Upper bounds generally do not translate as easily.

Two interesting questions left open, the first one of which we feel confident enough

about to formulate as a conjecture, are the following.

Conjecture 3.2.3. The succinctness of FO3 in FO2 on linear orders is Θ(n2).

66



Open Problem 3.2.4. For any k ≥ 4, determine the succinctness of FOk+1 in FOk

on linear orders.

To prove lower bounds with Adler-Immerman games, the following two techniques

have been established.

• Incompatible Pairs Technique [1]: Two pairs of structures (A1, B1) and (A2, B2)

are incompatible if they need to appear separately on at least one leaf. In

other words, Samson cannot win the game on just ({A1, A2}, {B1, B2}) without

completely separating either A1 from A2 or B1 from B2 on at least one branch

of the tree. The number of mutually incompatible pairs yields a lower bound

on the number of leaves, and thus on the size of the tree.

• Weight Function Technique [15]: Define a function w : P(A) × P(B) → R,

argue bottom-up about the maximum increase of w in each move, and bound

w(A,B).

The weight function technique is used in [15] to prove bounds for expressing prop-

erties of linear orders. Of particular interest are the following two properties.

LENGTHn := {LOi | i ≤ n}

EVEN–LENGTHn := {LOi | i ≤ n and i is even}

Definition 3.2.5. [15] A separator for two sets of structures A and B is a function

δ : P2({min, x, y, z,max})→ N

such that for all A ∈ A, B ∈ B, there are u, v ∈ {min, x, y, z,max} with

• ord(uA, vA) 6= ord(uB, vB) and δ({u, v}) > 0, or

67



• dist(uA, vA) 6= dist(uB, vB) and δ({u, v}) ≥ min{dist(uA, ŷA), dist(uB, vB)} .

Intuitively, a separator gives a bound on the distance required to walk on two

structures in order to distinguish them. Based on separators, a weight function is

defined depending on a minimal separator for (A,B), involving summing up several

distances and taking square roots. Using this weight function in an elaborate case-

distinction, it is then proved in [15] that any winning strategy for Samson in the three-

variable Adler-Immerman game on ({LENGTHn}, {LENGTHn+1}) requires a tree size

of Ω(
√
n), and thus that LENGTHn /∈ FOSIZE3[o(

√
n)]. Their succinctness bounds

are an immediate consequence of this lower bound. We conjecture that this lower

bound is in fact linear and matches the trivial upper bound.

Conjecture 3.2.6. LENGTHn /∈ FOSIZE3[o(n)].

An immediate consequence of this conjecture would be that the succinctness of

FO3 in FO2 is O(n2), a first step towards proving Conjecture 3.2.3. The follow-

ing proposition summarizes our current knowledge on upper bounds for expressing

LENGTHn in first-order logic.

Proposition 3.2.7. LENGTHn ∈ FOSIZE2[O(n)] ∩ FO3
O(logn) ∩ FOSIZE4[O(log n)].

Proof. For expressing LENGTHn with two variables, we can simply walk over the

structure from left to right with the following recursively defined formula. This places

LENGTHn in FO2[n] and thus FOSIZE2[O(n)].

length2
≥n(x) := ∃y.(y > x) length2

≥n−1(y)

length2
≥1(x) := x ≤ max

With three variables, we can reduce the quantifier depth, but we do not know if the

size of the formula can be reduced.

68



length3
≥n(x, y) := ∃z

(
length3

≥dn/2e(x, z) ∧ length3
≥bn/2c(z, y)

)
length3

≥1(x, y) := x < y

With four variables we can place LENGTHn in FO4[log n] and thus FOSIZE4[O(log n)]

if n is a power of two. For other numbers, the size bound still holds, but the quantifier

blocks differ according to the bit at the corresponding position of the binary expansion

of n. Here, we only present the version with uniform quantifier blocks. The universal

quantifier on the fourth variable is only used to unify the variable names for the

recursion.

length4
≥n(x, y) := ∃z.(x < z < y ∨ x > z > y)∀v.(v = x ∨ v = y) length4

≥n/2(v, z)

length4
≥1(x, y) = x 6= y

It should be noted that the four-variable bound is optimal since a standard Ehren-

feucht-Fräıssé game argument shows that LENGTHn /∈ FOo(logn). For further progress

on Conjecture 3.2.3, we believe that the properties EVEN–LENGTHn will be crucial.

As before, we first state some known upper bounds.

Proposition 3.2.8. EVEN–LENGTHn ∈ FOSIZE2[O(n2)] ∩ FOSIZE3[O(n)].

Proof. For the first bound, we take the disjunction over all linear orders of even length

up to n.

even2
n := ∨

i≤n and i even length2
=i

length2
=n := length2

≥n ∧ ¬length2
≥n+1

For the three-variable bound, we use that fact that any even number can be

written as the sum of two even numbers that are close to half of the original number.

69



Without loss of generality we assume that n is even.

even3
n(x, y) := ∃z.(x < z < y)

(
even3

2dn/4e(x, z) ∧ even3
2bn/4c(z, y)

)
even3

2(x, y) := ∃z (Suc(x, z) ∧ Suc(z, y)) ∨ x = y

In order to completely settle Conjecture 3.2.3, all that is needed is to prove a lower

bound that matches the stated upper bound on EVEN–LENGTHn for FO2.

3.3 A Simple Lower Bound

We present a new lower bound on formula size using the separator technique. While

this lower bound does not settle Conjecture 3.2.3, we hope that an extension of our

construction will succeed in that goal.

Proposition 3.3.1. Any FO2[<] formula that distinguishes between LOn and LOn+1

has quantifier depth at least dn/2e+ 1.

Proof. We use our results on the structure of FO2, in particular Theorem 1.1.8. LOn

and LOn+1 agree on the ordering of all dn/2e-rankers with respect to all bn/2c-rankers.

Thus any formula that distinguishes between the two structures has quantifier depth

greater than dn/2e.

This bound is the best we can hope for using our structure theorem, since the two

linear orders disagree on the ordering of the two rankers

r = .dn/2e+1 and s = /dn/2e .

A tighter lower bound can be attained using the separator method.

Proposition 3.3.2. Any FO2 formula that distinguishes between LOn and LOn+1

has size at least n− 1.

70



Definition 3.3.3. Let A and B be linear orders, and let z ∈ {x, y} and m ∈

{min,max}. The (z,m)-separation distance of A and B is

σz,m(A,B) :=


0 if A and B disagree on z = m

∞ if distA(z,m) = distB(z,m)

min{distA(z,m), distB(z,m)} otherwise

We also define

σz(A,B) := min{σz,min(A,B), σz,max(A,B)}

σm(A,B) := min{σx,m(A,B), σy,m(A,B)}

σ(A,B) := min{σx(A,B), σy(A,B)} .

Definition 3.3.4. Let A and B be two sets of structures. A 2-variable line separator

for A and B is a mapping

δ : {{min, x}, {min, y}, {x,max}, {y,max}} → N

such that for every pair of structures A ∈ A and B ∈ B, at least one of the following

conditions holds.

(a) A and B disagree on an atomic predicate.

(b) For some v ∈ {x, y} and some m ∈ {min,max}, distA(v,m) 6= distB(v,m) and

min{distA(v,m), distB(v,m)} ≤ δ({v,m}).

For simplicity we write δ(v,m) instead of δ({v,m}), and we generally order the

arguments as they occur on the structures.

71



Definition 3.3.5. Let A and B be two sets of structures. The cost of a 2-variable

line separator δ is

cost(δ) := δ(min, x) + δ(min, y) + δ(x,max) + δ(y,max) .

The 2-variable line separation cost of A and B is

ρ(A,B) := min{cost(δ) | δ is a line separator for A and B} .

For the rest of this section, we will refer to 2-variable line separators simply as

line separators.

To prove Proposition 3.3.2, we argue that the line separation cost after the first

quantifier move is n, and we show that quantifier moves decrease the line separation

cost by at most one. In the following sequence of lemmas, we look at what happens

to the line separation cost throughout the Adler-Immerman game played on the two

structures.

Lemma 3.3.6 (OR move). Let A and B be sets of linear orders, and suppose that

A = A′ ∪ A′′. Then ρ(A,B) ≤ ρ(A′,B) + ρ(A′′,B).

Proof. Let δ1 and δ2 be line separators of minimal separation cost for (A1,B) and

(A2,B), respectively. We define the line separator δ for (A,B) as the point-wise

maximum of δ1 and δ2. Obviously δ is a line separator for (A,B), and we have

cost(δ) = max{δ1(min, x), δ2(min, x)}+ max{δ1(min, y), δ2(min, y)}

+ max{δ1(x,max), δ2(x,max)}+ max{δ1(y,max), δ2(y,max)}

≤ δ1(min, x) + δ2(min, x) + δ1(min, y) + δ2(min, y)

+ δ1(x,max) + δ2(x,max) + δ1(y,max) + δ2(y,max)

= cost(δ1) + cost(δ2)

72



The separation cost is not affected by NOT moves since ρ(A,B) = ρ(B,A).

The following lemma is a crucial part of our analysis of existential moves. While

the lemma is formulated for an existential move on the variable x, an analogous

version holds for existential moves on the variable y.

Lemma 3.3.7 (Existential move on x on a pair of linear orders). Let A and B be

linear orders of different size that agree on all atomic formulas, let f(A) ∈ |A|, and

set

A′ := {A′} where A′ := (A, f(A)) and B′ := {(B, b) | b ∈ |B|} .

Then one of the following three statements holds.

(a) distB(min, y) ≤ distA′(min, x) < distA(min, y) and there is a structure B′ ∈ B′

such that σx,min(A′, B′) = σy,min(A,B)− 1 and

σx,max(A′, B′) > min{distA(y,max), distB(y,max)} .

(b) distB(y,max) ≤ distA′(x,max) < distA(y,max) and there is a structure B′ ∈ B′

such that σx,max(A′, B′) = σy,max(A,B)− 1 and

σx,min(A′, B′) > min{distA(min, y), distB(min, y)} .

(c) There is B′ ∈ B′ such that σx,min(A′, B′) ≥ min{distA(y,min), distB(y,min)} and

σx,max(A′, B′) ≥ min{distA(y,max), distB(y,max)}.

Samson is only making progress at separating the two structures if (a) or (b)

apply.

73



Proof. If Samson places x at the position of y, i.e. f(A) = yA, then we choose

B′ := (B, yB), and (c) holds. Otherwise we have f(A) < yA or f(A) > yA. Since

both of these cases are symmetric (with statements (a) and (b) interchanged), we

only consider the case where f(A) < yA, and thus distA′(min, x) < distA(min, y). We

observe that since yA > 1 and A and B agree on all atomic formulas, it must also be

the case that yB > 1.

We start with the case where distB(min, y) ≤ distA′(min, x) < distA(min, y). This

situation is illustrated in Figure 3.3. We choose B′ = (B, yB − 1). If yB − 1 = minB,

A′ . . .

x y
distA′(min, x)

(B, yB − 1) . . .

yx

distB(min, y)

Figure 3.3. Proof of Proposition 3.3.7: Samson makes progress by placing x on A
in between yB and yA.

then A′ and B′ disagree on an atomic formula and σx,min(A′, B′) = 0. However, in

this case we also have σy,min(A′, B′) ≤ 1, and thus (a) holds. Otherwise A′ and B′

agree on all atomic formulas. Since distA′(min, x) > distB′(min, x), we have

σx,min(A′, B′) = distB′(min, x) = distB(min, y)− 1 = σy,min(A,B)− 1 .

Furthermore,

σx,max(A′, B′) ≥ min{distA′(x,max), dist(B,yB−1)(x,max)}

> min{distA(y,max), distB(y,max)} .

Thus (a) holds.

74



Otherwise we have distA′(min, x) < distB(min, y), and we choose B′ = (B, f(A)),

as illustrated in Figure 3.4. The pair (A′, B′) agrees atomically, and distA′(min, x) =

A′ . . .

x y
distA′(min, x)

(B, f(A)) . . .

x y

distB(min, y)

Figure 3.4. Proof of Proposition 3.3.7: Samson places x too far to the left of y, and
thus he makes no progress.

distB′(min, x). Thus σx,min(A′, B′) =∞, and

σx,max(A′, B′) = min{distA′(x,max), distB′(x,max)}

> min{distA(y,max), distB(y,max)} .

This establishes (c).

As with the previous lemma, we formulate the following lemma for an existential

move on the variable x, but an analogous version holds for existential moves on the

variable y.

Lemma 3.3.8 (Existential move on x). Let A and B be sets of linear orders, let n

be the minimum size of all structures in A and B, and let f be a function that maps

any linear order A ∈ A to an element of |A|. We define the two sets of structures

A′ := {(A, f(A)) | A ∈ A} and B′ := {(B, b) | B ∈ B, b ∈ |B|} .

If ρ(A,B) ≥ 1 then ρ(A′,B′) ≥ min{ρ(A,B)− 1, n− 3}.

75



Proof. Let δ be a line separator for (A,B) of minimal cost, under the constraint that

δ(min, x) = δ(x,max) = 0. We have cost(δ) ≥ ρ(A,B). We use the minimality of

δ to identify pairs of linear orders that are hard to separate, and then argue that

separating these linear orders is still hard after the quantifier move.

Let ` := δ(min, y) and let r := δ(y,max). We always have ` + r > 0 since

ρ(A,B) ≥ 1. To argue that ρ(A′,B′) ≥ min{ρ(A,B) − 1, n − 3}, we let δ′ be an

arbitrary line separator for (A′,B′), and let `′ := δ′(min, x) and r′ := δ′(x,max).

The outline for the remainder of this proof is as follows: We first consider the case

where ` = 0. The case for r = 0 is completely symmetric

For the sake of a contradiction, suppose that δ′ is a line separator for (A′,B′)

with cost(δ′) < min{` + r − 1, n − 3}. We set `′ := max{δ′(min, x), δ′(min, y)} and

r′ := max{δ′(x,max), δ′(y,max)}, thus `′+ r′ ≤ cost(δ′) < min{`+ r− 1, n− 3}, and

`′ + r′ < ` + r − 1. We first consider the case where both `′ < ` and r′ < r, and

then the case where `′ ≥ ` and r′ < r − 1. The case where r′ ≥ r and `′ < ` − 1 is

completely symmetric.

In the case where `′ < ` and r′ < r, we use the minimality of δ to find linear

orders C,E ∈ A and D,F ∈ B such that separating the pair (C,D) requires walking

` steps to the left and separating (E,F ) requires walking r steps to the right. More

formally, C,D,E and F satisfy all of the following conditions.

• C and D agree on all atomic formulas.

• min{distC(min, y), distD(min, y)} = ` and distC(min, y) 6= distD(min, y).

• min{distC(y,max), distD(y,max)} > r or distC(y,max) = distD(y,max).

• E and F agree on all atomic formulas.

• min{distE(y,max), distF (y,max)} = r and distE(y,max) 6= distF (y,max).

• min{distE(min, y), distF (min, y)} > ` or distE(min, y) = distF (min, y).

76



Using the notation from Lemma 3.3.7, let C ′ and D′ be the sets of structures after

the existential move on (C,D), and let E ′ and F ′ be the sets of structures after the

existential move on (E,F ). The pair (C ′,D′) cannot be separated by δ′ on y. We

apply Lemma 3.3.7 to the pair (C,D), and see that if statements (b) or (c) from that

lemma apply, then δ′ cannot separate (C ′,D′). Thus part (a) has to apply, and we

have δ′(min, x) ≥ ` − 1. Similarly, the pair (E ′,F ′) cannot be separated by δ′ on

y. We apply Lemma 3.3.7 to the pair (E,F ), and see that if statements (a) or (c)

from that lemma apply, then δ′ cannot separate (E ′,F ′). Thus part (b) has to apply,

and we have δ′(x,max) ≥ r − 1. All together, the situation illustrated in Figure 3.5

applies.

C ′ . . .

x y
distC(y,max)

D . . .

y

`

E ′ . . .

xy

F . . .

y

distF (min, y) r

Figure 3.5. Proof of Lemma 3.3.8: Four structures in the case where `′ < ` and
r′ < r.

But δ′ also needs to separate the pair (C ′, F ′yF−1), and this separation, as above,

cannot be on y. To show that this pair also cannot be separated on (min, x) nor

on (x,max), we consider whether distC(y,max) = distD(y,max) or distE(min, y) =

distF (min, y). There are four cases.

77



Case 1: distC(y,max) 6= distD(y,max) and distE(min, y) 6= distF (min, y). We

have distC(y,max) > r and distF (min, y) > `. If δ′ separates this pair on (min, x),

then δ′(min, x) ≥ `, and if δ′ separates on (x,max) then δ′(x,max) > r. Thus δ′

cannot be a separator for (C ′, F ′yF−1).

Case 2: distC(y,max) = distD(y,max) and distE(min, y) 6= distF (min, y). We

have distF (min, y) > `. If δ′ separates (C ′, F ′yF−1) on (min, x), then δ′(min, x) ≥ `, a

contradiction. If δ′ separates on (x,max), then

δ′(x,max) ≥ min{distC′(x,max), distF ′
yF−1

(x,max)} ≥ min{distC′(x,max), r + 1} .

But since δ′(x,max) < r, it must be the case that δ′(x,max) ≥ distC′(x,max). Then

cost(δ′) ≥ δ′(min, x) + δ′(x,max) ≥ `− 1 + distC′(x,max)

≥ `− 1 + distC(y,max) + 1

= distD(min, y) + distD(y,max)

= ||D|| − 1 ≥ n− 1 .

Case 3: distC(y,max) 6= distD(y,max) and distE(min, y) = distF (min, y). This is

completely symmetric to the previous case on the pair of structures (E,D).

Case 4: distC(y,max) = distD(y,max) and distE(min, y) = distF (min, y). If δ′

separates the pair (C ′, F ′yF−1) on (x,max), we use the second part of the argument

from case 2 to see that cost(δ′) ≥ n− 1. Otherwise the pair is separated on (min, x),

and

δ′(min, x) ≥ min{distC′(min, x), distF ′
yF−1

(min, x)} ≥ min{`, distF ′
yF−1

(min, x)} .

But since δ′(min, x) < `, it must be the case that δ′(min, x) ≥ distF ′
yF−1

(min, x).

Then

78



cost(δ′) ≥ δ′(min, x) + δ′(min, x) ≥ distF ′
yF−1

(min, x) + r − 1

= distF (min, y)− 1 + distF (y,max)− 1

= ||F || − 3 ≥ n− 3 .

Now we consider the case where `′ ≥ ` and r′ < r − 1. Since δ is minimal and

cost(δ) = ` + r > `′ + r′ + 1, there are structures C ∈ A and D ∈ B such that all of

the following three statements hold.

• C and D agree on all atomic formulas.

• min{distC(min, y), distD(min, y)} > `′ or distC(min, y) = distD(min, y).

• min{distC(y,max), distD(y,max)} > r′ + 1 or distC(y,max) = distD(y,max).

Furthermore, since δ separates (C,D) on y, it needs to separate (C,D) on (y,max) and

thus distC(y,max) 6= distD(y,max), therefore min{distC(y,max), distD(y,max)} >

r′ + 1.

Similarly, there are structures E ∈ A and F ∈ B such that all of the following

three statements hold.

• E and F agree on all atomic formulas.

• min{distE(min, y), distF (min, y)} > `′ + 1 or distE(min, y) = distF (min, y).

• min{distE(y,max), distF (y,max)} > r′ or distE(y,max) = distF (y,max).

Furthermore, since δ separates (E,F ) on y, it needs to separate on (min, y) and thus

distE(min, y) 6= distF (min, y), therefore min{distE(min, y), distF (min, y)} > `′ + 1.

Applying Lemma 3.3.7 to (C,D), we see that if conditions (b) or (c) apply, then

δ′ cannot separate (C ′,D′). Thus (c) has to be true for this pair. Applying the same

lemma to (E,F ), we see that δ′ cannot separate (E ′,F ′) if statements (b) or (c) hold,

thus (a) has to be true. Hence the situation illustrated in Figure 3.6 applies.

79



C ′ . . .

x y
distC(y,max) > r′ + 1

D . . .

y

distD(min, y) > `′

E ′ . . .

xy

F . . .

y

distF (y,max) > r′distF (min, y) > `′ + 1

Figure 3.6. Proof of Lemma 3.3.8: Four structures in the case where `′ ≥ ` and
r′ < r − 1.

The pair (C ′, F ′yF−1) cannot be separated by δ′ on either y nor x, a contradiction.

Proof of Proposition 3.3.2. We consider the situation after the first quantifier move

in the game on LOn and LOn+1. If Samson placed his first pebble on LOn at position

i, then Delilah’s reply includes the structures (LOn+1, i) and (LOn+1, i+ 1). Thus the

line separation cost for this pair of sets of structures is at least (n+ 1)− i+ i = n+ 1.

If Samson placed his first pebble on LOn+1 at position i, then Delilah’s reply includes

the structures (LOn, i) and (LOn, i − 1), leading to a line separation cost of at least

n− i+ i− 2 = n− 2.

Looking at the game tree of any FO2 formula that separates these two linear

orders, we notice that all the children have separators of weight 0 since they disagree

on atomic formulas. The weight of minimal separators increases from bottom to top

as stated in Lemma 3.3.6 for OR moves and Lemma 3.3.8 for existential moves. Thus

80



to have a separator of weight n− 2 at the top we need at least n− 2 quantifier nodes

in the tree.

Including the first quantifier move, the total number of quantifier moves is at least

n− 1.

3.4 Towards Settling Our First Conjecture

To settle Conjecture 3.2.6, we propose to bound the formula size required to separate

the following two sets of linear orders.

An := {LOi | n ≤ i ≤ 2n, i even} Bn := {LOi | n ≤ i ≤ 2n, i odd}

After the first pair of pebbles is placed in the initial move, there are about n

different distances to walk towards the left or the right, and it does not seem possible

for Samson to make concurrent and sustained progress on more than one of these

distances at a time. Thus we conjecture that a quadratic number of moves is required.

Conjecture 3.4.1. Any FO2[<] formula that distinguishes between An and Bn has

size Ω(n2).

To prove this conjecture, we need more refined separators, since our earlier separa-

tors (Definition 3.3.4) can separate An and Bn with cost 2n. The following definition

takes into account that when Samson decides to walk to the left on one set of struc-

tures, he can only make progress on the structures where to distance he needs to walk

is larger than the corresponding distances in the other set of structures.

Definition 3.4.2. Let A and B be sets of linear orders, and let d ∈ N, z ∈ {x, y},

m ∈ {min,max}. The pair (A,B) is (d, z,m)-separated if there is ∼ ∈ {<,>} such

that for all A ∈ A and all B ∈ B,

distA(z,m) ∼ distB(z,m) and σz,m(A,B) ≤ d.

81



When not all three elements of the tuple (d, z,m) are specified, existential quantifi-

cation is implied. For example, (A,B) is d-separated if there are z and m such that

(A,B) is (d, z,m)-separated.

Definition 3.4.3. The multiset δ = {d1, . . . , dk} with k ∈ N and di ∈ N for 1 ≤ i ≤ k

separates the pair of sets of structures (A,B) if there are sets A1, . . . ,Ak ⊆ A and

B1, . . . ,Bk ⊆ B such that ⋃ki=1(Ai ×Bi) = A×B and for all 1 ≤ i ≤ k, (Ai,Bi) is di-

separated. The cost of the multiset δ is cost(δ) := ∑k
i=1 di. The minimum separation

cost of (A,B), ρ(A,B), is the minimum cost of a multiset that separates (A,B).

As above, the analysis for OR moves is simple, but proving a meaningful lemma

for existential moves is a challenge.

82



Chapter 4

Generalized Star-Height

Generalized regular expressions are the natural extension of common regular expres-

sions with a complementation operator. To avoid confusion, we generally refer to the

standard notion of regular expressions without a complement operator as restricted

regular expressions. Since regular languages are closed under complementation, gen-

eralized regular expressions have exactly the same expressive power as restricted reg-

ular expressions. However, many languages can be represented more succinctly with

generalized regular expressions.

Definition 4.0.4. (Restricted) regular expressions over a finite alphabet Σ are defined

recursively. ∅ and a for any a ∈ Σ are regular expressions, and for regular expressions

r and s, rs, r ∪ s and r? are regular expressions. For a regular expression r over Σ,

we define the language L(r) ⊆ Σ? described by r as follows.

• L(∅) := ∅

• L(a) := {a}, a ∈ Σ

• L(rs) := L(r)L(s) = {ww′ | w ∈ L(r), w′ ∈ L(s)}

• L(r ∪ s) := L(r) ∪ L(s)

• L(r?) := L(r)? = {w1 . . . wn | n ∈ N, w1, . . . , wn ∈ L(r)}

Definition 4.0.5. Generalized regular expressions over a finite alphabet Σ are defined

recursively. ∅ and a for any a ∈ Σ are generalized regular expressions, and for

83



generalized regular expressions r and s, rs, r ∪ s, r? and r are generalized regular

expressions. The definition of L(r) for a generalized regular expression r is as for

restricted regular expressions, with one additional case.

• L(r) := L(r) = Σ? − L(r)

Natural measures for the complexity of regular expressions include the size of

the expression, the nesting depth of concatenation operators, and the nesting depth

of Kleene star operators. The nesting depth of concatenation operators is commonly

referred to as dot-depth, and the nesting depth of Kleene star operators as star-height.

Both of these operator nesting measures have received considerable attention in the

literature [4, 8, 27,30,38,43,44]. The main questions to ask here are the following.

• Does an increase in the allowable nesting depth of (generalized) regular expres-

sions lead to an increase in the number of languages that can be described? Is

there a limit beyond which a further increase does not allow us to describe more

languages?

• Given a language, can we decide what nesting depth is required to describe it?

If so, is there an efficient algorithm?

For dot-depth, it has been shown that there is a strict hierarchy [4,44], meaning that

for any k ∈ N+ there is a regular language of dot-depth k that cannot be described by

any regular expression of dot-depth less than k. This result applies to both restricted

and generalized regular expressions. While there has been some progress on the

decidability of the dot-depth hierarchy [12, 38], the question is still open. For the

star-height of restricted regular expressions, both questions have been answered: The

restricted star-height hierarchy is strict [8, 27] and decidable [17, 18]. On the other

hand, our knowledge about generalized star-height is extremely limited – we do not

even know whether there is a regular language that cannot be expressed without

nested stars.

84



Definition 4.0.6. The (restricted) star-height of a regular expression r, rsh(r), is

defined recursively as follows.

• rsh(∅) := rsh(a) = 0, a ∈ Σ

• rsh(rs) := rsh(r ∪ s) = max{rsh(r), rsh(s)}

• rsh(r?) := rsh(r) + 1

The (restricted) star-height of a regular language L ⊆ Σ?, rsh(L), is the minimum

restricted star-height over all regular expressions that describe L.

rsh(L) := min{rsh(r) | L(r) = L}

Definition 4.0.7. The generalized star-height of a generalized regular expression r,

gsh(r), is defined recursively with the same cases as the restricted star-height, where

all occurrences of rsh are replaced by gsh, and with one additional case.

• gsh(r) := gsh(r)

The generalized star-height of a regular language L ⊆ Σ?, gsh(L), is the minimum

generalized star-height over all generalized regular expressions that describe L.

gsh(L) := min{gsh(r) | L(r) = L}

The languages of generalized star-height 0 are commonly referred to as the star-

free languages. The following classical theorem gives an exact characterization of the

star-free languages.

Theorem 4.0.8 (McNaughton and Papert). [28] Let L ⊆ Σ+. Then L ∈ FO iff L is

regular and gsh(L) = 0.

85



Are there similar characterizations for the languages of generalized star height k

for k ≥ 1? We do not know. We do not even know whether there is a language of

generalized star-height 2.

After reviewing known results on restricted star-height and generalized star height

in the following two sections, we investigate the relationship between generalized star-

height and first-order logic with transitive closure. The main result of that section is

an exact characterization of generalized star-height in terms of first-order logic with a

transitive closure operator. While this result does not allow us to solve the generalized

star-height problem, we feel that it increases our understanding of generalized star-

height, and it makes available a new array of tools from finite model theory to attack

the problem, e.g. Ehrenfeucht-Fräıssé games augmented with a transitive closure

move. In the remaining three sections of this chapter, we present some of our attempts

to construct a language of generalized star height 2.

4.1 Known Results on Restricted Star-Height

The restricted star-height hierarchy is known to be strict [8]. For historic context, we

present two alternative proofs here. Both proofs rely on the graph-theoretic notion

of cycle rank. The first one is based on constructing hard languages using homomor-

phisms, while the second one is more graph-theoretic in nature.

For ease of notation, we identify a digraph G with its vertices, and write v ∈ G

when we mean that v is a vertex from G. Additionally, G − v is the subgraph of G

induced by the vertex set G− v.

Definition 4.1.1. A digraph G is strongly connected if for all nodes u, v ∈ G there

is a (possibly empty) path from u to v. A strongly connected component (SCC) of G

is a maximal strongly connected induced subgraph, and it is called non-trivial if it

contains at least one edge.

86



Definition 4.1.2. [8] The cycle rank of a digraph G, crk(G), is inductively defined

as

crk(G) :=



0 if G is acyclic
1 + min{crk(G− v) | v ∈ G} if G is strongly connected

and non-trivial

max{crk(C) | C an SCC of G} otherwise

.

There is a nice characterization of cycle rank in terms of a cops and robber game

[16].

Theorem 4.1.3. [8] If the transition graph of a finite automaton A has cycle rank k,

then there is a regular expression e of restricted star-height k such that L(A) = L(e).

Proof. We use induction to prove the slightly stronger claim that for any transition

graph G of cycle rank k, and any two nodes x, y ∈ G, there is a regular expression of

restricted star-height k for all paths from x to y. For k = 0, the transition graph G

does not contain any cycles, thus the corresponding language is finite and therefore

of restricted star-height 0.

For the inductive case, suppose our claim holds for all graphs of cycle rank at

most k, and let G be transition graph of cycle rank k+ 1. If G is strongly connected,

then we choose z ∈ G such that crk(G − z) = k. Let p1, . . . , ps be all nodes with

outgoing edges to z, and let q1, . . . , qt be all nodes with incoming edges from z. Using

the inductive hypothesis, we have a regular expression α′(x, y) of star-height k for all

paths from x to y in the graph G− z. We write Ex,y for the union over all edge labels

of directed edges from x to y.

α(z, z) =
 s⋃
i=1

t⋃
j=1

Ez,qjα
′(qj, pi)Epi,z

?

α(x, y) = α′(x, y) ∪
s⋃
i=1

t⋃
j=1

α′(x, pi)Epi,zα(z, z)Ez,qjα′(qj, y)

87



If G is not strongly connected, then any path from x to y is of the form

c1w1c2w2 . . . cn−1wn−1cn

where each ci is a path within an SCC of G, and each wi is a path from one component

to another without intersecting any intermediate components. Since the number of

SCCs is finite, the number of direct paths from one component to another is finite,

and from the previous argument we have regular expressions of star-height at most

k+1 for all paths within SCCs. Thus there is a regular expression of star height k+1

for all paths in G from x to y.

Theorem 4.1.4. [8] If a regular language L has restricted star-height k, then there

is a non-deterministic finite automaton N whose transition graph has cycle rank at

most k such that L = L(N).

Proof. We use the standard construction of a non-deterministic finite automaton

equivalent to a regular expression. Every time a star is encountered in the con-

struction, the cycle rank of the corresponding automaton increases by at most 1. All

other operations leave the cycle rank unchanged.

Corollary 4.1.5 (Eggan). [8] The smallest cycle rank of the transition graphs of all

finite automata that recognize a regular language L is equal to rsh(L).

4.1.1 Eggan’s Proof

Definition 4.1.6. The homomorphism ↑ki : Σ?
k → Σ?

k+i is defined by ↑ki (aj) := aj+i.

Similarly we define the homomorphism ↓ki : Σ?
k → Σ?

k−i+1

↓ki (aj) :=


aj−i if j > i

ak−i+1 otherwise
.

We omit the superscript k when possible.

88



Definition 4.1.7. Based on the alphabets Σk, we define the alphabets

Γk := Σ2k−1 = {a1, . . . , a2k−1} and Λk :=↑2k−1 (Γk) = {a2k , . . . , a2k+1−2} .

We observe that Γk = Γk−1 ∪ Λk−1 ∪ {a2k−1}.

Definition 4.1.8. We say that w is a (1, n)-word if w contains the subword an1 .

Moreover, w is a (k, n)-word if it contains a subword of the form (xuyva2k−1)n, where

u ∈ Γ?k−1 is a (k − 1, n)-word, v ∈ Λ?
k−1 is such that ↓2k−1−1 (v) is a (k − 1, n)-word,

and x and y are arbitrary.

We note that this definition is slightly more general than necessary – all proofs go

through without the arbitrary strings x and y.

Lemma 4.1.9. [8] If L is a regular language such that

(i) L contains (k, n)-words for arbitrarily large n, and

(ii) L does not contain any subwords of the form ab where a ∈ Γi and b ∈ Λi for

i < k,

then rsh(L) ≥ k.

Proof. We proceed by induction on k. For k = 1, we only need to observe that

L is infinite and thus rsh(L) ≥ 1. Now suppose the lemma holds for k, and let

L ⊆ Γ?k+1 such that conditions (i) and (ii) hold, but such that rsh(L) ≤ k. Let γ be

a regular expression or restricted star-height at most k such that L(γ) = L. Since

concatenation distributes over union, we may assume that

γ = γ1 ∪ γ2 ∪ . . . ∪ γm where γi = xi,1 α
?
i,1 xi,2, α

?
i,2, . . . xi,si α

?
i,si
xi,si+1

for some m, s1, . . . , sm ∈ N, xi,j ∈ Γ?k+1 and rsh(αi,j) < k. We observe that there is

some i ∈ [1,m] such that L(γi) already satisfies the conditions of the lemma. Slightly

89



less obvious is the fact that there also is a j ∈ [1, si] such that L(α?i,j) satisfies the

conditions of the lemma. Thus L(α?i,j) contains (k + 1, n)-words for arbitrarily large

n.

Now we argue that L0 := L(αi,j) contains at least one word over Γk. Since L0 has

restricted star-height at most k − 1, it follows from the inductive hypothesis that L0

cannot contain (k, n)-words for sufficiently large n. Thus L2
0 does not contain (k, 2n)-

words. For the sake of a contradiction we assume that L0 does not contain any words

over Γk. Then any (k, n)-word in L2
0 needs to be of the form xuvy with xu, vy ∈ L0

and x, y /∈ Γ?k and uv itself being a (k, n)-word. Thus L3
0 does not contain any (k, 2n)-

words, and by induction L?0 = L(α?i,j) contains no (k, 2n)-words, a contradiction. A

similar argument shows that L0 contains at least one word over Λk. But this violates

condition (ii), a contradiction.

Theorem 4.1.10. [8] For every k, there is a regular language Lk such that rsh(Lk) =

k.

Proof. We inductively define regular expressions to describe the languages Lk. Let

β1 = a1 and βi = βi−1
? (↑2i−1−1 (βi−1))? a2i−1 .

Thus we have (just as examples)

β2 = a?1a
?
2a3 , β3 = (a?1a?2a3)?(a?4a?5a6)?a7 .

Finally we let Lk := L(β?k). We observe that rsh(Lk) ≤ k. Since Lk satisfies the

conditions of Lemma 4.1.9, we have rsh(Lk) = k.

4.1.2 McNaughton’s Graph-Theoretic Proof

Lemma 4.1.11. [27] If H is an induced subgraph of a digraph G, then crk(H) ≤

crk(G).

90



Proof. We use induction on the size of G. For |G| = 1 the claim is obvious. For

|G| > 1, let H ′ be an SCC of H with crk(H ′) = crk(H), and let G′ be the SCC of G

containing H ′. Then we have

crk(G) ≥ crk(G′) = 1 + min{crk(G′ − v) | v ∈ G′}

≥ 1 + min{crk(H ′ − v) | v ∈ H ′} = crk(H ′) = crk(H) .

Lemma 4.1.12. [27] Let G be a digraph, and suppose that one of G’s SCCs contains

two disjoint strongly connected induced subgraphs G1 and G2. If crk(G1) ≥ k and

crk(G2) ≥ k, then crk(G) ≥ k + 1.

Proof. Let G′ be the SCC of G containing both G1 and G2. We recall that crk(G′) =

1 + min{crk(G′ − v) | v ∈ G′}. Regardless of the choice of v ∈ G′, G′ − v contains

either G1 or G2 as a strongly connected induced subgraph, and thus by the previous

lemma crk(G′ − v) ≥ k.

Lemma 4.1.13. [27] Let L be a regular language of restricted star-height k, and let

G be the transition graph of an automaton accepting L. Then there is a word wG ∈ L

such that every accepting path in G spelling out wG intersects an SCC of G of cycle

rank at least k.

Proof. Suppose for the sake of a contradiction that there is no such word wG. Thus

the transition graph consisting of only those SCCs of G with cycle rank less than k

would still accept L, and therefore rsh(L) < k, a contradiction.

Theorem 4.1.14. [27] Let Σ1 and Σ2 be disjoint alphabets, let a and b be letters

not in Σ1 ∪ Σ2, and let L1 ⊆ Σ?
1 and L2 ⊆ Σ?

2 be languages of restricted star-height

k. The language L := (aL1bL2)? has star height k + 1.

Proof. The upper bound is obvious. For the lower bound, letG be the transition graph

of a minimal finite automaton that accepts L. To isolate the part of G responsible

91



for L1, let G1 be the subgraph of G induced by all nodes with incoming or outgoing

edges labeled with letters from Σ1. We notice that in G, all incoming edges to nodes

in G1 from outside of G1 must be labeled with a, and all outgoing edges to nodes

outside of G1 must be labeled with b. Thus all of G1’s edges are labeled with letters

from Σ1. Making all nodes of G1 with incoming a edges initial nodes, and all nodes

of G1 with outgoing b edges finial nodes, we get a transition graph for L1. Thus G1

has cycle rank at least k. Similarly, we define the subgraph G2 for L2, of cycle rank

at least k. It is easy to see that G1 and G2 are disjoint.

Now let w1 and w2 be words for G1 and G2, respectively, as stated in Lemma

4.1.13. With n := max{|G1|, |G2|}, we define the word w := (aw1bw2)n+1. We look

at any accepting path of w. Since every portion of this path which corresponds to

w1 must intersect at least one SCC of G1 of cycle rank at least k, there is at least

one such SCC that is intersected twice. Thus we have a path from an SCC of cycle

rank at least k in G1 to an SCC of cycle rank at least k in G2 and back. By Lemma

4.1.12, G thus has cycle rank at least k + 1.

The construction from the previous theorem uses an alphabet of unbounded size.

There is a homomorphism h : {a1, . . . , an} → {0, 1} with h(ai) := 10i10n−i+11 which

maintains restricted star-height [27]. Thus a binary alphabet is sufficient.

This graph-theoretic approach does not seem to be applicable to the generalized

star-height problem. Given languages L1 and L2 of generalized star-height k ≥ 1,

the language L = (aL1bL2)? has generalized star-height at most k, since it is the

complement of the language

(aΣ?
1bΣ?

2)? ∪ (Σ?a(L1 ∩ Σ?
1)bΣ?) ∪ (Σ?b(L2 ∩ Σ?

2)(aΣ? ∪ ε) .

92



4.2 Known Results on Generalized Star-Height

We review some of the main results on the generalized star-height problem from the

literature. The underlying motivation to all these results is to identify a language

of generalized star-height 2, and to give a characterization of all the languages of

generalized star-height 1. The Kleene star operator in regular expressions allows us

to do modular counting, as for example in the expression (aa)?. This counting ability

thus distinguishes languages of generalized star-height at least 1 from the star-free

languages. Thus it seems natural to look at languages that require a staged or two-

level counting process as candidates for languages of generalized star-height at least 2.

We first review a historic result by Thomas [43], who presents a family of languages

that appear to require two-level counting, but actually do have generalized star-height

1.

We look at languages over the alphabet Σ2 = {a, b} where all words are concate-

nations of segments of the form aib for arbitrary i ∈ N. This is equivalent to requiring

that all words either end with b or are the empty word. Now we define the languages

W (h, k, r,m) where the number of occurrences of segments aib with i ≡ r (mod m)

is congruent to h modulo k.

Theorem 4.2.1 (Thomas). [43] For any h, k, r,m ∈ N, the language W (h, k, r,m)

has generalized star-height at most 1.

A large part of the known results on the generalized star-height problem are based

on algebraic language theory. Here we give a brief summary of the main definitions

and tools, and refer the reader to the books by Straubing [36] and Pin [29] for more

details.

Definition 4.2.2. A monoid is a set M together with an associative binary operation

M ×M → M and an identity element 1 ∈ M . We typically write x · y or simply xy

93



for the product of two monoid elements x, y ∈M , and we also use M to refer to the

monoid itself when the operation is understood from the context.

If a monoid contains all inverses with respect to its operation, then it is group.

Definition 4.2.3. A monoid M recognizes a language L ⊆ Σ? if there is a homomor-

phism ϕ : Σ? →M and a set X ⊆M such that ϕ−1(X) = L.

Definition 4.2.4. Let L ⊆ Σ? be a language. We define the syntactic congruence

∼L of L by saying that x ∼L y if for all u, v ∈ Σ?, uxv ∈ L iff uyv ∈ L. The syntactic

monoid M(L) of L is the set L/∼L with the concatenation operation. The syntactic

morphism of L is the homomorphism ϕL : L→M(L) with ϕL(w) = [w]L.

Definition 4.2.5. A monoid M1 divides a monoid M2, M1 � M2, if M1 is the

homomorphic image of a submonoid of M2.

Theorem 4.2.6. A monoid M recognizes a language L ⊆ Σ? iff M(L) �M .

Proof. Suppose that M recognizes L. Then there is a homomorphism ϕ : Σ? → M

and a set X ⊆ M such that ϕ−1(X) = L. We have ϕ(Σ?) ≤ M , since for every

x, y ∈ ϕ(Σ?), there are u, v ∈ Σ? such that ϕ(u) = x and ϕ(v) = y, and thus

xy = ϕ(u)ϕ(v) = ϕ(uv) ∈ ϕ(Σ?). We define the map ψ : ϕ(Σ?) → M(L) where

ψ(x) = ϕL(w) for any w ∈ Σ? with ϕ(w) = x. To see that ψ is well-defined, suppose

that x = ϕ(w) = ϕ(w′). Thus for all u, v ∈ Σ?, ϕ(uwv) = ϕ(u)ϕ(w)ϕ(v) = ϕ(uw′v),

and uwv ∈ L iff uw′v ∈ L. Therefore w ∼L w′ and ϕL(w) = ϕL(w′). To see that

ψ is a homomorphism, let x = ϕ(u) and y = ϕ(v). Since ϕ is a homomorphism, we

have xy = ϕ(u)ϕ(v), and thus ψ(xy) = ϕL(uv) = ϕL(u)ϕL(v) = ψ(x)ψ(y). Finally,

we observe that ψ is surjective, since for every x ∈ M(L), there is a w ∈ Σ? with

ϕL(w) = x and thus ψ(ϕ(w)) = x.

For the other direction suppose that M(L) � M . Thus there are a submonoid

M ′ ≤M and a surjective homomorphism ψ : M ′ →M(L). We define the homomor-

phism ϕ : Σ? → M ′ by setting ϕ(ε) to the identity of M ′, for every a ∈ Σ, ϕ(a) = x

94



Σ?

M(L) ϕ(Σ?) ≤M

ϕL
ϕ

ψ

Figure 4.1. Homomorphisms in the proof of Theorem 4.2.6.

for some fixed x ∈ M ′ where ψ(x) = ϕL(a), and inductively for w ∈ Σ?, ϕ(wa) =

ϕ(w)ϕ(a). We let X = ψ−1(ϕL(L)). For every w ∈ Σ? we have ψ(ϕ(w)) = ϕL(w),

and thus

ϕ(w) ∈ X iff ψ(ϕ(w)) ∈ ϕL(L) iff ϕL(w) ∈ ϕL(L) iff w ∈ L .

Several classes of monoids (more precisely, pseudo-varieties of monoids) have been

identified to be of particular importance, and to correspond to well-known classes of

languages.

Theorem 4.2.7 (Myhill, Nerode). A language is regular iff its syntactic monoid is

finite.

Theorem 4.2.8 (Schützenberger). [33] A language is star-free iff its syntactic monoid

is aperiodic, i.e. there is no nontrivial group that divides it.

Definition 4.2.9. A group G is nilpotent of class n ∈ N+ if the sequence G1 = G,

Gi+1 = [Gi, G] reaches Gn+1 = {1} and Gn 6= {1}. Here [G,H] = {g−1h−1gh | g ∈

G, h ∈ H} is the commutator group of G and H.

We contrast this definition with the notion of solvability for groups.

Definition 4.2.10. A group G is solvable if the sequence G1 = G, Gi+1 = [Gi, Gi]

reaches Gn = {1} for some n ∈ N+.

95



Thus every nilpotent group is solvable, but solvable groups need not be nilpotent.

Theorem 4.2.11 (Thérien). [41] The syntactic monoid of a language L ⊆ Σ? is a

nilpotent group of class n iff L it is a boolean combination of languages that count

the number of occurrences of subsequences of length at most n modulo some integer.

Theorem 4.2.12 (Pin, Straubing, Thérien). [30] If the syntactic monoid of a lan-

guage is nilpotent of class 2, then it has generalized star-height at most 1.

Pin, Straubing and Thérien [30] prove an even stronger version of this theorem,

showing that any language that is a boolean combination of languages that count

occurrences of subsequences of length at most 3 modulo a square-free integer has

generalized star-height at most 1.

While a common theme of previous theorems is to understand generalized star

height in terms of syntactic monoids, the following theorem suggests that the syntactic

monoid alone is unlikely to help with the classification of languages of restricted star-

height greater than 1. In particular, it says that any regular language is recognized

by a monoid that is the syntactic monoid of a language of restricted star-height at

most 1. Even so, we still believe that syntactic monoids might play a crucial role in

solving the generalized star-height problem.

Theorem 4.2.13. [30] For every regular language L ⊆ Σ?, there is a language K ⊆ Γ?

and a homomorphism ϕ : Σ? → Γ? such that K has restricted star-height at most 1

and L = ϕ−1(K).

Proof. Let D = (Q,Σ, δ, q0, F ) with Q = {q0, . . . , qn−1} be a DFA that accepts L, and

let Γ = Σ ∪ {#} where # /∈ Σ. We define the following regular languages.

P := {#ia#n−δ(qi,a) | 0 ≤ i < n, a ∈ Σ}

S := {#i | qi ∈ F}

K := P ?S

96



We observe that both P and S are finite, and thus K has restricted star-height at

most 1. We define the homomorphism ϕ : Σ? → Γ? with ϕ(a) = a#n for a ∈ Σ, and

see that L = ϕ−1(K).

4.3 First-Order Logic with Transitive Closure

There is a natural correspondence between regular expressions and first-order logic

with a transitive closure operator. This connection allows us to use Ehrenfeucht-

Fräıssé games, extended with a transitive closure move, to prove that some regular

languages cannot be described with regular expressions of a given complexity.

Definition 4.3.1. [19, 21] FO[TC] is the extension of FO with a monadic reflexive

transitive closure operator. FO[TC] contains all formulas (TCu,v ϕ)(x, y) where ϕ ∈

FO[TC], and is closed under all first-order operators. The transitive closure operator

TC binds the free occurrences of u and v in ϕ. FO[TCk] is the subset of FO[TC] of

formulas with at most k nested transitive closure operators.

To define the semantics of the transitive closure operator on finite words, let w

be a finite word structure that interprets the free variables of (TCu,v ϕ)(x, y). Then

w |= (TCu,v ϕ)(x, y) iff there are n ∈ N and `0, . . . , `n ∈ |w| where `0 = xw and

`n = yw such that for all i ∈ [0, n), (w, `i/u, `i+1/v) |= ϕ. We call the positions

`0, . . . , `n the path points of this transitive closure application.

Since TC is a reflexive transitive closure operator, for any word w, any formula

ϕ, and any i ∈ |w|, we have (w, i, i) |= (TCu,v ϕ)(x, y). We also note that the two

variables u and v do not necessarily have to be distinct from x and y, but we usually

choose different variable names for the sake of clarity.

Using this transitive closure operator, we can translate generalized regular ex-

pressions into first-order formulas, where the generalized star-height of the regular

expression corresponds exactly to the nesting depth of transitive closure operators in

97



the first-order formula. One technical complication here is that there is no logical

structure corresponding to the empty string ε.

Lemma 4.3.2. Let e be a generalized regular expression of generalized star height

at most k. Then there is a formula ϕ(x, y) ∈ FO[TCk] such that for all w ∈ Σ+, and

for all `,m ∈ [1, ||w||] with ` ≤ m, w[`,m) ∈ L(e) iff (w, `,m) |= ϕ(x, y).

Proof. We use structural induction on e. For the inductive cases, let ψ(x, y) and

ξ(x, y) be the formulas corresponding to the expressions f and g, respectively.

• If e = ∅, then we choose ϕ = ⊥.

• If e = a for some a ∈ Σ, then we choose ϕ(x, y) = Qa(x) ∧ Suc(x, y). Suppose

that w[`,m) ∈ L(e). Then m = ` + 1 and w` = a, thus (w, `,m) |= ϕ(x, y). On

the other hand, if (w, `,m) |= ϕ(x, y), then m = `+ 1 and thus w[`,m) = w` = a.

• If e = f ∪ g, then we choose ϕ(x, y) = ψ(x, y) ∨ ξ(x, y).

• If e = g, then ϕ(x, y) = ¬ψ(x, y).

• If e = fg, we choose

ϕ = ∃z (x ≤ z ≤ y ∧ ψ(x, z) ∧ ξ(z, y)) .

Suppose that w[`,m) ∈ L(e). Then there is a p ∈ [`,m] such that w[`,p) ∈ L(f)

and w[p,m) ∈ L(g). Using the inductive hypothesis, we have both (w, `, p) |=

ψ(x, y) and (w, p,m) |= ξ(x, y). Thus

(w, `,m, p) |= x ≤ z ≤ y ∧ ψ(x, z) ∧ ξ(z, y)

and (w, `,m) |= ϕ.

98



For the other direction, suppose that (w, `,m) |= ϕ. Then there is a p ∈

[`,m] such that (w, `, p) |= ψ(x, y) and (w, p,m) |= ξ(x, y). By the inductive

hypothesis, we have w[`,p) ∈ L(f) and w[p,m) ∈ L(g), hence w[`,m) ∈ L(e).

• If e = f ?, then we choose ϕ(x, y) = (TCu,v u < v ∧ ψ(u, v))(x, y). Suppose

that w[`,m) ∈ L(e). Then there are n ∈ N and p0, . . . , pn such that p0 = `,

pn = m, p0 < . . . < pn, and for all i ∈ [0, n), w[pi,pi+1) ∈ L(f). Using the

inductive hypothesis, we have (w, pi, pi+1) |= ψ(x, y) for all i ∈ [0, n), and thus

(w, `,m) |= ϕ(x, y).

For the other direction, suppose that (w, `,m) |= ϕ(x, y). Then there are n ∈ N

and p0, . . . , pn ∈ |w| such that p0 = `, pn = m, and for all i ∈ [0, n), pi < pi+1 and

(w, pi, pi+1) |= ψ(x, y). Using the inductive hypothesis, we have w[pi,pi+1) ∈ L(f)

for all i ∈ [0, n), and thus w[`,m) ∈ L(e).

This lemma only applies to substrings of finite words that do not include the last

letter of the word, and not to full finite words. To formulate the lemma for finite

words, one solution would be to modify our notion of word structure so that every

word includes an extra marker at the end. Because we want to stay more in line with

the other results of this chapter, in particular with Potthoff’s Theorem (Theorem

4.3.5), we instead choose to isolate the last letter and handle it separately.

Lemma 4.3.3. Let L ⊆ Σ+ be a regular language of generalized star height at most

k. Then there are regular expressions ea of generalized star height at most k for every

a ∈ Σ such that

L = L
⋃
a∈Σ

eaa

 .

Proof. Let e be a generalized regular expression of generalized star-height at most k

such that L(e) = L. We construct the expressions ea by induction on the structure

of e.

99



• If e = ∅, e = ε, or e ∈ Σ− {a}, then ea = ∅.

• If e = a, then ea = ε.

• If e = f ∪ g, then ea = fa ∪ ga.

• If e = f , then ea = fa.

• If e = fg, we need to consider whether ε ∈ L(g). If this is the case, then

ea = fga ∪ fa, otherwise ea = fga.

• If e = f ?, then ea = f ?fa.

We claim that L(ea) = {w | wa ∈ L(e)}. The base cases and the case for unions

obviously hold. In the case for complementation, we have

L(fa) = L(fa) = {w | wa ∈ L(f)} = {w | wa 6∈ L(f)} = {w | wa ∈ L(f)} .

For concatenation, we have

L(fga) = {ww′ | w ∈ L(f), w′ ∈ L(ga)} = {ww′ | w ∈ L(f), w′a ∈ L(g)} .

If ε /∈ L(g), then

L(fga) = {ww′ | w ∈ L(f), w′a ∈ L(g)} = {w | wa ∈ L(fg)} .

Otherwise

L(fga ∪ fa) = {ww′ | w ∈ L(f), w′a ∈ L(g)}} ∪ {w | wa ∈ L(f)}

= {w | wa ∈ L(fg)} .

100



Finally, for Kleene star, we have

L(f ?fa) = {ww′ | w ∈ L(f ?), w′ ∈ L(fa)} = {ww′ | w ∈ L(f ?), w′a ∈ L(f)}

= {w | wa ∈ L(f ?f)}

= {w | wa ∈ L(f ?)} .

The last equality holds because wa 6= ε.

Lemma 4.3.4. Let L ⊆ Σ+ be a regular language with gsh(L) = k. Then L ∈

FO[TCk].

Proof. Let e be a generalized regular expression of generalized star-height at most k

such that L(e) = L. We apply Lemma 4.3.3 to convert e into an equivalent generalized

regular expression of the same generalized star-height of the form ⋃
a∈Σ eaa. Using

Lemma 4.3.2, we find formulas ϕa(x, y) for every a ∈ Σ such that for all w ∈ Σ+,

w[1,||w||) ∈ L(ea) iff (w, 1, ||w||) |= ϕa(x, y). We define the FO[TCk] sentence

ϕ :=
∨
a∈Σ

(ϕa(min,max) ∧Qa(max)) ,

and argue that L = L(ϕ). For one direction, suppose that w ∈ L. Let a = w||w|| be

the last letter of w. Thus w[1,||w||) ∈ L(ea). Hence we have (w, 1, ||w||) |= ϕa(x, y), thus

w |= ϕa(min,max) and w |= Qa(max). Therefore w |= ϕ. For the other direction,

suppose that w |= ϕ. Then there is an a ∈ Σ such that w |= ϕa(min,max) and

w |= Qa(max). Hence (w, 1, ||w||) |= ϕa(x, y), thus w[1,||w||) ∈ L(ea) and w||w|| = a.

Therefore w ∈ L(eaa) and w ∈ L.

This theorem allows us to translate generalized regular expressions into FO[TC]

formulas while maintaining a correspondence between generalized star height and the

nesting depth of transitive closure operators. The following theorem shows that this

101



translation is possible with transitive closure nesting depth of only 2, and thus the

logic FO[TC] does not give us an exact characterization of generalized star height,

unless the generalized star height hierarchy collapses to the second level.

Theorem 4.3.5 (Potthoff). [32] Let L ⊆ Σ+ be a regular language. Then L ∈

FO[TC2].

Proof. Let A = (Σ, Q, δ, q0, F ) be a deterministic finite automaton such that L(A) =

L. To simplify notation, we assume that q0 = 0 and Q = [0, |Q|). We write a formula

that processes the input in chunks of |Q| symbols at a time. To find the initial position

of each chunk, we define the formula

γ(x) :=
(
TCu,v DIST|Q|(u, v)

)
(min, x) ,

where the formula DISTi(x, y) says that y is exactly i positions to the right of x.

Thus (w, i) |= γ(x) iff i ≡ 1 (mod |Q|). To process one chunk of |Q| symbols, we

define the formula

ϕ0(x, y) :=
∨

q,q′∈Q,s∈Σ|Q|:δ?(q,s)=q′
∃u (γ(u) ∧DISTq(u, x) ∧ ∃v (γ(v) ∧DISTq′(v, y)

∧ READs(u, v))) ,

where (w, i, j) |= READs(x, y) iff w[i,j) = s. The formulas DIST and READ are easily

constructed using existential quantifiers and the successor relation.

We use a transitive closure operator to process all full chunks of |Q| letters,

and handle the remaining symbols separately. Let k ∈ [0, |Q|) such that ||w|| ≡ k

(mod |Q|), and let

ϕ :=
∨

s∈L:||s||<|Q|
READ′s(min,max) ∨ ∃x ((TCu,v ϕ0(u, v)) (min, x) ∧ ϕ1(x)) ,

102



where

ϕ1(x) :=
∨

q∈Q,s∈Σ|Q|+k:δ?(q,s)∈F
∃u (γ(u) ∧DISTq(u, x) ∧ READ′s(u,max))

and READ′s(x, y) is just like READs(x, y), except that it also reads the letter at the

position of y, i.e. (w, i, j) |= READ′s(x, y) iff w[i,j] = s.

We claim that L = L(ϕ). For the first direction, suppose that w ∈ L. If ||w|| < |Q|,

then w |= READ′w(min,max) and thus w |= ϕ. Otherwise let ` ∈ N and k ∈ [0, |Q|)

such that ||w|| = (` + 1) · |Q| + k. For all i ∈ [0, `], let qi be the state of the

automaton after reading the first i · |Q| letters of w. Thus, for all i ∈ [0, `), we have

δ?(qi, w(i·|Q|,(i+1)·|Q|]) = qi+1, and therefore

(w, i · |Q|+ 1 + qi, (i+ 1) · |Q|+ 1 + qi+1) |= ϕ0(x, y) .

Hence (w, 1, ` · |Q|+1+ q`) |= (TCu,v ϕ0(u, v)) (x, y). Additionally, δ?(q`, w(`·|Q|,||w||]) ∈

F , and thus

(w, ` · |Q|+ 1 + q`, ||w||) |= ϕ1(x) .

Therefore w |= ϕ.

For the other direction, suppose that w |= ϕ. If w |= READ′s(min,max) for some

s ∈ L with ||s|| < |Q|, then w = s and w ∈ L. Otherwise there is an j ∈ ||w|| such

that

(w, j) |= (TCu,v ϕ0(u, v)) (min, x) ∧ ϕ1(x) .

Thus there are ` ∈ N and p0, . . . , p` ∈ ||w|| such that p0 = 1, p` = j, p0 < . . . < p`,

and for all i ∈ [0, `), (w, pi, pi+1) |= ϕ0(x, y). Hence there are qi, q′i ∈ Q, si ∈ Σ|Q|

with δ(qi, si) = q′i, and ui, vi ∈ ||w|| such that

(w, pi, pi+1, ui/u, vi/v) |= γ(u) ∧DISTq(u, x) ∧ γ(v) ∧DISTq′(v, y) ∧ READs(u, v) .

103



Thus ui, vi ≡ 1 (mod |Q|), vi − ui = |Q|, and w[ui,vi) = si. Therefore the automaton

transitions from state qi to state q′i reading w[ui,vi). Because ui and vi are uniquely

determined by their distance to pi and pi+1, respectively, we have qi+1 = q′i and

ui+1 = vi. Therefore

δ?(q0, w[1,v`−1)) = δ?(. . . δ?(q0, w[u0,v0)), . . . , w[u`−1,v`−1)) = q′`−1 = q` .

For the final step, since (w, j) |= ϕi(x), there are q ∈ Q and s ∈ Σ|Q|+k with δ?(q, s) ∈

F , and there is a t ∈ ||w|| such that

(w, j, t/u) |= γ(u) ∧DISTq(u, x) ∧ READ′s(u,max) .

Hence t = v`−1, q = q` and s = w[v`−1,||w||], therefore δ?(q0, w) ∈ F , and w ∈ L(A) =

L.

Corollary 4.3.6. If every regular language from FO[TC2] has generalized star-height

at most k, then every regular language has generalized star-height at most k, i.e. the

generalized star-height hierarchy collapses to level k.

Open Problem 4.3.7. What can we say about the generalized star-height of the

languages from FO[TC1] and FO[TC2]? Is there a language in FO[TC2]− FO[TC1]?

Building on another classical result, we at least know that every FO[TCk] for-

mula describes a regular language, and thus corresponds to some generalized regular

expression.

Theorem 4.3.8 (Büchi, Elgot, Trakhtenbrot). [5,6,45] Let L ⊆ Σ?. Then L ∈ MSO

iff L is regular.

Theorem 4.3.9. FO[TC] on finite words captures exactly the regular languages.

104



Proof. We first observe that the transitive closure operator can be easily translated

into monadic second order logic.

w |= (TCx,y ϕ)(x, y)

iff w |= ∀X ((X(x) ∧ ∀x∀y ((X(x) ∧ ϕ(x, y))→ X(y)))→ X(y))

Thus every FO[TC] formula is equivalent to a monadic second order formula. Using

Theorem 4.3.8, this implies the formula describes a regular language. The other

direction follows from both Lemma 4.3.4 and Theorem 4.3.5.

4.3.1 Regular Formulas and Forward Transitive Closure

To provide an exact correspondence between transitive closure depth and generalized

star height, we consider a restricted version of FO[TC].

Definition 4.3.10. We define the forward transitive closure operator FTC by

(FTCu,v ϕ)(x, y) := (TCu,v u < v ∧ ϕ)(x, y) .

As usual, we write FO[FTC] to refer to first-order logic with FTC, and FO[FTCk] for

FO[FTC] formulas of transitive closure nesting depth at most k.

Theorem 4.3.11 (Potthoff). [32] Let L ⊆ Σ+ be a regular language. Then L ∈

FO[FTC2].

Proof. We observe that all TC operators in the proof of Theorem 4.3.5 are FTC

operators.

Definition 4.3.12. Regular first-order logic with FTC, rFO[FTC], is the closure

under boolean combinations of all formulas ϕ(x, y) of the following forms.

• x = y, x < y, and Suc(x, y)

105



• Qa(x) ∧ x < y

• ∃z (x ≤ z ≤ y ∧ ψ(x, z) ∧ ξ(z, y)), where ψ, ξ ∈ rFO[FTC]

• (FTCu,v u < v ∧ ψ(u, v)) (x, y), where ψ ∈ rFO[FTC]

Intuitively, any rFO[FTC] formula with exactly two free variables x and y is

interpreted only over the positions in between x and y. The letter at position y, and

all letters to the left of x or to the right of y are irrelevant to this formula.

Every formula in rFO[FTC] has at least two free variables, and only if it is a

boolean combination can it have more than two free variables. Whenever we refer to

a formula as ϕ(x, y), this notation implies that x and y are the only free variables of

ϕ.

Lemma 4.3.13. Let ϕ(x, y) ∈ rFO[FTCk]. Then there is a generalized regular

expression e such that gsh(e) = k and for all w ∈ Σ+, and all m,n ∈ |w| with m ≤ n,

we have wm . . . wn−1 ∈ L(e) iff (w,m, n) |= ϕ(x, y).

Proof. We construct e by induction on the structure of ϕ. For ϕ = x = y, e = ε. For

ϕ = x < y, e = Σ+. For ϕ = Suc(x, y), e = Σ. For ϕ = Qa(x) ∧ x < y, we choose

e = aΣ?. The cases for boolean combinations are trivial.

In the case where ϕ(x, y) = ∃z (x ≤ z ≤ y ∧ ψ(x, z) ∧ ξ(z, y)), we apply the

inductive hypothesis to both ψ(x, z) and ξ(z, y), and have corresponding general-

ized regular expressions f and g. We choose e = fg. In the case where ϕ(x, y) =

(FTCu,v u < v ∧ ψ(u, v)) (x, y), we set e = f ?, where f is the generalized regular

expression corresponding to ψ(u, v).

For an exact correspondence between regular FTC formulas and generalized reg-

ular expressions, we extend rFO[FTC] to allow us to describe the letter at the last

position of a word.

106



Definition 4.3.14. The logic rFO+[FTC] is the boolean closure of all sentences

ϕ(min,max) where ϕ(x, y) ∈ rFO[FTC], and the sentences Qa(max) where a ∈ Σ.

Theorem 4.3.15. Let L ⊆ Σ+ be a regular language. Then gsh(L) = k iff L ∈

rFO+[FTCk].

Proof. The only TC operators in the proof of Lemma 4.3.4 are applied to formulas

ϕ(u, v) that imply u < v. Thus they are FTC operators, and the formula constructed

in that lemma is in rFO+[FTCk].

For the other direction, if ϕ = ψ(min,max) for some ψ(x, y) ∈ rFO[FTCk], then

let e be the corresponding generalized regular expression as in 4.3.13. Thus for all w ∈

Σ+, w1 . . . w||w||−1 ∈ L(e) iff (w, 1, ||w||) |= ϕ(x, y). The latter condition is equivalent

to w |= ϕ(min,max). Thus we satisfy all requirements with the expression eΣ.

If ϕ = Qa(max) for some a ∈ Σ, we simply choose the expression Σ?a. Finally, for

boolean combinations we only need to apply the inductive hypothesis to the parts of

the boolean combination.

Using the last theorem, we are now able to express the generalized star height

problem in terms of first-order logic with forward transitive closure.

Open Problem 4.3.16. Is there a k ∈ N such that rFO+[FTCk+1] = rFO+[FTCk],

and thus FO[TC2] ⊆ rFO+[FTCk]?

Open Problem 4.3.17. Is there a language in rFO+[FTC2]− rFO+[FTC1]?

4.3.1.1 Game Characterizations of FO[FTC] and rFO+[FTC]

We define two variations on the classical Ehrenfeucht-Fräıssé game that character-

ize FO[FTCk] and rFO+[FTCk]. Similar games for logics with an unrestricted TC

operator were introduced in [13] and [7].

Definition 4.3.18. Let n, k ∈ N, and let w,w′ ∈ Σ?. The FOn[FTCk](w,w′) game is

the extension of the FOn(w,w′) game with the FTC move. In this move, Samson picks

107



one of the two structures, say w, and he chooses two pebbles that are already placed

on the board, call them x and y. He then temporarily marks an arbitrary number

of positions in between x and y on w, and he also marks the positions with the

pebbles x and y on both structures. Delilah replies by marking a (possibly different)

number of positions in between x and y on w′. Now Samson again picks two pebbles

r and s (not necessarily different from x and y), and places them on two consecutive

marked positions on w′. Delilah replies by putting her corresponding pebbles on two

consecutive marked positions on w. At the end of the move, all marks are cleared.

The game FOn[FTCk](w,w′) has at most n existential moves and at most k FTC

moves.

Definition 4.3.19. Let Var be the set of all variables. A game configuration on

the pair of structures (w,w′) is determined by the positions of the pebbles on the

board, i.e. by two partial maps, α : Var → |w| and β : Var → |w′|. For ` ∈ N, an

`-configuration is a pair of maps that assign positions to exactly ` variables.

Theorem 4.3.20. Let w and w′ be finite words, and let k, n ∈ N. Delilah has a

winning strategy in the game FOn[FTCk](w,w′) iff w and w′ agree on all FOn[FTCk]

sentences.

Proof. We use induction to prove the stronger statement that also captures config-

urations during the course of the game. Every existential move introduces at most

one new pebble, and every FTC move introduces at most two new pebbles. In cor-

respondence to this, every existential quantifier introduces at most one new variable,

and every FTC operator introduces at most two new variables.

We claim that for all (n+2k)-configurations (α, β), Delilah has a winning strategy

for the game FOn[FTCk](w,w′) in configuration (α, β) iff (w, α) and (w′, β) agree on

all FOn[FTCk] formulas whose free variables are a subset of the domains of α and β.

Suppose that there is a formula ϕ ∈ FOn[FTCk] with all free variables from the

domains of α and β such that (w, α) |= ϕ and (w′, β) 6|= ϕ. If ϕ is atomic, then Delilah

108



just lost the game. If ϕ is ¬ψ then apply our claim with the roles of w and w′ reversed.

If ϕ = ψ∨ξ, then we can apply our claim to one of ψ or ξ. If ϕ = ∃xψ, we have Samson

place his pebble x on a position i ∈ |w| such that (w, α, i/x) |= ψ. Regardless of

Delilah’s reply j ∈ |w′|, we have (w′, β, j/x) 6|= ψ. Applying the inductive hypothesis,

we see that Delilah does not have a winning strategy for the remaining game.

Finally, if ϕ = (FTCp,q;ψ) (x, y), then we let Samson mark a valid sequence of

path points in between x and y. Because (w′, β) 6|= ϕ, no matter how Delilah replies,

there are two consecutive marked positions j1, j2 ∈ |w′| such that (w′, β, j1/p, j2/q) 6|=

ψ. Samson places p and q on those two positions, and no matter which two con-

secutive marked positions in i1, i2 ∈ |w| Delilah chooses to reply with, we have

(w, α, i1/p, i2/q) |= ψ. Thus we can apply the inductive hypothesis, and see that

Delilah does not have a winning strategy for the remaining game.

For the other direction, suppose that (w, α) and (w′, β) agree on all FOn[FTCk]

formulas whose free variables are a subset of the domains of α and β. If Samson’s first

move in the game on (w,w′) in configuration (α, β) is an existential move, placing

pebble x on position i ∈ |w|, then we let Φ be the conjunction of all finitely many

inequivalent FOn−1[FTCk] formulas satisfied by (w, α, i/x). Thus (w, α) |= ∃xΦ, and

by our assumption (w′, β) |= ∃xΦ. We have Delilah place her pebble x at j ∈ |w′|

such that (w′, β, j/x) |= Φ. Since Φ is a complete description of all the formulas

satisfied by (w, α, i/x), the inductive hypothesis applies and Delilah has a winning

strategy for the remainder of the game.

Otherwise Samson’s first move is an FTC move. Suppose he marks positions

`0, . . . , `r ∈ |w|. For every i ∈ [0, r), let Φi be the conjunction of all finitely many

inequivalent FOn[FTCk−1] formulas satisfied by (w, α, `i/p, `i+1/q). Thus (w, α) |=(
FTCp,q

∨
i∈[0,r) Φi

)
(x, y), and by assumption (w′, β) |=

(
FTCp,q

∨
i∈[0,r) Φi

)
(x, y).

Therefore there are m0, . . . ,ms ∈ |w′| such that all of

109



(w′, β,m0/p,m1/q), . . . , (w′, β,ms−1/p,ms/q)

satisfy ∨
i∈[0,r) Φi. We have Delilah mark exactly these positions. In response to

this, Samson picks j ∈ [0, s) and places p on position mj of w′ and q on position

mj+1 of w′. Since (w′, β,mj/p,mj+1/q) |=
∨
i∈[0,r) Φi, there is an i ∈ [0, r) such that

(w′, β,mj/p,mj+1/q) |= Φi, and hence (w, a, `i/p, `i+1/q) |= Φi. We have Delilah

place her pebbles p and q on positions `i and `i+1 of w, respectively. Since Φi is

a complete description of all formulas satisfied by (w, a, `i/p, `i+1/q), the inductive

hypothesis applies and Delilah has a winning strategy for the remaining game.

Definition 4.3.21. Let n ∈ N, k ∈ N, and let w and w′ be finite words. The game

rFOn[FTCk](w,w′) is a variation of the FOn[FTCk](w,w′) game with the following

restrictions.

• Initially, one pebble pair is placed on the first positions of the structures, and

another pebble pair is placed on the last positions of the structures.

• There are exactly three pairs of pebbles.

• In the existential move on x, that pebble is only allowed to be placed at a

position in between the pebbles y and z.

• In the FTC move, after Samson chooses x and y, he removes the other pebble

pair z from the board.

• After the FTC move, only the two pebble pairs placed in that move remain on

the board.

Theorem 4.3.22. Let w and w′ be finite words that end with the same letter, and let

k, n ∈ N. Delilah has a winning strategy in the rFOn[FTCk](w,w′) game iff (w, 1, ||w||)

and (w′, 1, ||w′||) agree on all rFOn[FTCk] formulas with free variables x and y.

110



Proof. As in the proof of Theorem 4.3.20, we use induction to prove a stronger claim

that implies this theorem.

We claim that for all 2-configurations (α, β), Delilah has a winning strategy for

the rFOn[FTCk](w,w′) game in configuration (α, β) iff (w, α) and (w′, β) agree on all

rFOn[FTCk] formulas in exactly the free variables from the domains of α and β.

Suppose that there is a formula ϕ(x, y) ∈ rFOn[FTCk] with x and y from the

domains of α and β such that (w, α) |= ϕ(x, y) and (w′, β) 6|= ϕ(x, y). If ϕ(x, y) is

atomic, ¬ψ(x, y), or ψ(x, y)∨ξ(x, y), then we argue as in the proof of Theorem 4.3.20.

If ϕ = ∃z (x ≤ z ≤ y ∧ ψ(x, z) ∧ ξ(z, y)), we have Samson place his pebble z on a

position i ∈ [α(x), α(y)] on w such that (w, α, i/z) |= ψ(x, z) ∧ ξ(z, y). Regardless

of Delilah’s reply j ∈ [β(x), β(y)], we have (w′, β, j/z) 6|= ψ(x, z) ∧ ξ(z, y). Thus we

have either (w′, β, j/z) 6|= ψ(x, z) or (w′, β, j/z) 6|= ξ(z, y). We apply the inductive

hypothesis to see that Delilah does not have a winning strategy for the remaining

game. Finally, if ϕ = (FTCu,v ψ(u, v))(x, y), the same argument as in the proof of

4.3.20 applies because ψ(u, v)) has only two free variables.

For the other direction, suppose that (w, α) and (w′, β) agree on all rFOn[FTCk]

formulas whose free variables are from the domains of α and β. If Samson’s first

move in the game on (w,w′) in configuration (α, β) is an existential move, placing

pebble x on position i ∈ [α(x), α(y)] on |w|, then we let Φ be the conjunction of

all finitely many inequivalent rFOn−1[FTCk] formulas satisfied by (w, α, i/x). Thus

(w, α) |= ∃xΦ, and by our assumption (w′, β) |= ∃xΦ. We have Delilah place her

pebble x at j ∈ |w′| such that (w′, β, j/x) |= Φ. Since Φ is a complete description of

all the formulas satisfied by (w, α, i/x), the inductive hypothesis applies and Delilah

has a winning strategy for the remainder of the game.

If Samson’s first move is an FTC move. We argue as in the proof of Theorem

4.3.20.

111



4.3.2 Transitive Closure with Booleans

Instead of using nested transitive closure operators to simulate the Kleene star opera-

tors from the regular expression, it is possible to use just one single transitive closure

operator if we allow boolean variables.

Definition 4.3.23. FO[TC, bool] is the extension of FO[TC] with boolean variables

in the transitive closure operators. These transitive closure formulas are of the form

(TCu,d,v,e ϕ(d, e))(x, b, y, c) where d and e are vectors of boolean variables, and b and

c are vectors of boolean values, all of the same finite length.

For semantics, let w ∈ Σ+. Then

w |= (TCu,d,v,e ϕ(d, e))(x, b, y, c)

iff there are n ∈ N and `0, . . . , `n ∈ |w| and vectors of boolean values b0, . . . , bn where

`0 = xw, b0 = b, `n = yw and bn = c such that for all i ∈ [0, n), (w, `i/u, `i+1/v) |=

ϕ(bi, bi+1).

Theorem 4.3.24. FO[TC1, bool] on finite words captures exactly the regular lan-

guages. Moreover, if n is the number of states of an automaton (possibly nondeter-

ministic) that accepts the language, then at most dlog ne booleans are necessary.

Proof. Let L be a regular language, and A = (Q,Σ, q0, δ, F ) a finite automaton such

that L(A) = L. We write 〈q〉 for a fixed binary encoding of state q into dlog |Q|e

boolean variables. We construct a formula ψA(x, b, y, c) that walks through the au-

tomaton for just one step, where the automaton transitions from state 〈b〉 to state 〈c〉

when reading the symbol at position x. The variable y is used to force the transitive

112



closure operator to process one symbol at a time, except for the last position, where

there is no next position to move to.

ψA(x, b, y, c) = (Suc(x, y) ∨ x = y = max) ∧
∨

δ(q,a)=q′

(
b = 〈q〉 ∧Qa(x) ∧ c = 〈q′〉

)

ϕA =
∨
qf∈F

(
TCx,b,y,c ψA(x, b, y, c)

)
(min, 〈q0〉,max, 〈qf〉)

It is easy to see that w ∈ L(A) iff w |= ϕA. For the other direction, we show

how to express the TC operator with a sequence of universal monadic second-order

quantifiers, one for each possible setting of the boolean variables.

w |=
(
TCx,b,y,c ϕ

)
(x, b, y, c)

iff

w |= ∀X0 . . . ∀X1

Xb(x) ∧ ∀x∀y
∧
b,c

((Xb(x) ∧ ϕ(x, b, y, c))→ Xc(y))
→ Xc(y)

Using Theorem 4.3.8, it follows that the language described by the transitive closure

formula is regular.

Open Problem 4.3.25. What is the minimum number of boolean variables required

for a FO[TC1, bool] formula to express a given regular language? Can we do better

than the number-of-states upper bound from the previous theorem?

Any lower bound on the number of booleans would imply that the language is not

in FO[TC1], thus showing that there is a language of generalized star-height at least

2.

Open Problem 4.3.26. Investigate the trade-off between the number of booleans

and TC depth.

113



4.4 Three Candidate Languages and Short Tile Machines

We present a sequence of candidates for languages of generalized star-height 2. While

still relatively simple, our first candidate language requires a form of staged counting

that is different from the counting used in the languages W (h, k, r,m) that Thomas

proved to have generalized star-height at most 1 [43]. Let Σ2 = {a, b}, and consider

the language L1 of all strings with an even number of b’s that occur after an even

number of a’s.

L1 := L ((ab?a ∪ b(ab?a)?b)?)

0 123
a

a

b

b

a

a
bb

Figure 4.2. Finite automaton for the language L1.

Unfortunately, the syntactic monoid of L1 is nilpotent of class 2, and thus the

techniques from [30] apply. For illustrative purposes, we explicitly construct a regular

expression R of generalized star-height 1 for L1, not unlike the construction from

Thomas [43].

T := b ∪ ab?a

E := (b ∪ (ab?a)b?(ab?a))?

O := b?(ab?a)E

R := ((TT )? ∩ E) ∪ (T (TT )? ∩O)

The expression T matches the two critical patterns b and ab?a in the string. We

can count the number of occurrences of these patterns with the expressions (TT )? for

an even number and T (TT )? for an odd number. The expression E checks whether the

pattern ab?a occurs an even number of times (or equivalently, whether the number

114



of a’s is a multiple of 4). Similarly, O checks whether this pattern occurs an odd

number of times, which is equivalent to checking that the number of a’s is congruent

2 modulo 4.

Our second candidate language L2 has been proposed in [30], and it is very similar

to our first candidate L1 – we only replace the pattern b with (ba?b).

L2 := L((ab?a ∪ ba?b(ab?a)?ba?b)?)

0 1

2

34

5

bb

b b

a

a

a

a
b

a

b

a

Figure 4.3. Finite automaton for the language L2.

The syntactic monoid of this language is a group with 48 elements that is not

nilpotent, and we do not know whether it has generalized star-height 2. In our

attempts to prove that L2 has generalized star-height 2, we initially focused on only

those strings from Σ2 where all b’s are “far apart”, meaning that in between any

two b’s there are at least four a’s. Since aa in M(L2) is the identity, it appeared

to us that the counting problem that is inherent to L2 should not be easier to solve

on this subset than on all of Σ?
2. However, we discovered that L2 on this restricted

subset has generalized star-height 1. In the following construction, we use regular

expressions T to count the total number of the two patterns (ab?a) and (ba?b), and

expressions O and E that determine the parity of the number of (ab?a) patterns. A

115



regular expression R for L2 is then easily constructed as a boolean combination of

the former expressions.

T := ab?a ∪ ba?b

E := (aaaa ∪ aaba?baa ∪ ba?b ∪ abaaa ∪ aaaba)?

O := E(aba ∪ aa(ba?b)?)

R := ((TT )? ∩ E) ∪ ((TT )?T ∩O)

As an alternative candidate language we developed L3, which features a different

kind of staged counting process. As in L1, we count the number of certain b’s, but

for L3 whether a b counts not only depends on the number of a’s seen since the last

relevant b, but the counting modulus also flips back and forth between 2 and 3.

L3 = L((ab?a ∪ b(ab?ab?a)?b)?)

0 12

3

4

a

a

b

b

a

a

a

b

b

b

Figure 4.4. Finite automaton for the language L3.

The syntactic monoid of L3 is S5, the symmetric group of degree five, and thus

neither nilpotent nor solvable. Similar to what we observed for L2, a6 in M(L3) is

equal to the identity, but again restricting the alphabet to for example all strings

with at least six a’s in between b’s allows us to decide L3 in generalized star-height 1.

While initially we hoped to prove that the restricted version of L3 still has generalized

116



star-height 2, proving that this is not the case has been a cumbersome process, and

we feel that we gained some valuable insights along the way.

In particular, we developed the notion of short tile machines. These machines

are inspired by the kind of pattern construction that was used to decide L2 on the

restricted set of strings. A short tile machine is an automaton where the states are

arranged in a circle formed by a-transitions, and b-transitions are allowed among

arbitrary pairs of states. The machines A1, A2 and A3 in Figure 4.5 are examples of

short tile machines for inputs where in between any b’s there are at least five a’s.

0

1

2 3

4

a

a

a

a

a
b

b b

b

A1

b 0

1

2 3

4

a

a

a

a

a
b

b b

b

A2
b

0

1

2 3

4

a

a

a

a

a
b

b

b

A3

b

b

Figure 4.5. Short tile machines A1, A2 and A3.

While all three of these short tile machines are deterministic, there is no reason

to require this in general. In order to better understand the power of these machines,

we proved that A3 cannot be accepted by any boolean combination of A1 and A2.

We tried to extend these ideas and prove that our restricted candidate language L3

117



cannot be accepted by any boolean combination of 6-cycle short tile machines, but

after several unsuccessful attempts we decided to try to prove the opposite. We

wrote a simulation environment for boolean combinations of short tile machines, and

discovered that there is a boolean combination of four 6-cycle short tile machines that

accepts L3 on restricted inputs. Since enumerating all possible boolean combinations

of 6-cycle short tile machines is a daunting if not infeasible task, we used the following

lemma to significantly reduce the number of machines that we need to look at.

We conjecture that M(L3) is not a homomorphic image of any boolean combi-

nation of automata with syntactic monoid M(L1) and M(L2), and thus L3 cannot

be recognized by a boolean combination of automata that recognize the first two

languages.

Before we investigate this conjecture, we observe that M(L1) and M(L2) are

isomorphic, and thus any boolean combination of these automata has a syntactic

monoid that is isomorphic to M(L1). We define the homomorphism ϕ : Σ? → Σ?

with ϕ(a) := aa and ϕ(b) = b, and we observe that L2 = ϕ−1(L1), or equivalently for

every w ∈ Σ?, w ∈ L1 iff ϕ(w) ∈ L2. Even more so, the following lemma holds.

Claim 4.4.1. For every q ∈ Q1, let 〈q〉 ∈ Q2 such that 〈q〉 ≡ 2q (mod 5). For every

w ∈ Σ? and every q ∈ Q1, δ?2(〈q〉, ϕ(w)) ≡ 〈δ?1(q, w)〉.

Proof. We use induction on the string w. For w = ε, we have

δ?2(〈q〉, ϕ(ε)) = δ?2(〈q〉, ε) = 〈q〉 = 〈δ?1(q, ε)〉 .

For w = ux where u ∈ Σ? and x ∈ Σ, we have ϕ(x) ∈ {aa, b} and thus

δ?2(〈q〉, ϕ(ux)) = δ?2(〈q〉, ϕ(u)ϕ(x))) = δ?2(δ?2(〈q〉, ϕ(u)), ϕ(x))

= δ?2(〈δ?1(q, u)〉, ϕ(x))

= 〈δ?1(δ?1(q, u), x)〉 = 〈δ?1(q, ux)〉 .

118



We define the map ψ : M(L1) → M(L2) with ψ([w]L1) = [ϕ(w)]L2 for w ∈ Σ?,

and claim that it is well-defined and an isomorphism. Before we prove that ψ is well-

defined, we argue that every word from Σ? is L2-equivalent to a word from ϕ(Σ?). To

this end we define the map τ : Σ? → ϕ(Σ?) with τ(ε) = ε, and for w ∈ Σ? and i ∈ N,

τ(wbai) :=


τ(w)bai if i is even

τ(w)bai+5 if i is odd
.

With this definition, every block of a’s in τ(w) has even length and thus is in the

image of ϕ. To see that w ∼L2 τ(w), we only need to observe that a5 acts as the

identity in M(L2).

Σ? Σ?

M(L1) M(L2)

ϕ

ϕL1 ϕL2

ψ

Figure 4.6. Maps for the construction of an isomorphism from M(L1) to M(L2).

For the well-definedness of ψ, let x, y ∈ Σ? with x ∼L1 y. Using the above lemma,

we have that for all w,w′ ∈ Σ?,

wϕ(x)w′ ∈ L2 ⇔ τ(w)ϕ(x)τ(w′) ∈ L2 ⇔ ϕ−1(τ(w)ϕ(x)τ(w′)) ∈ L1

⇔ ϕ−1(τ(w)) x ϕ−1(τ(w′)) ∈ L1

⇔ ϕ−1(τ(w)) y ϕ−1(τ(w′)) ∈ L1

⇔ ϕ−1(τ(w)ϕ(y)τ(w′)) ∈ L1

⇔ τ(w)ϕ(y)τ(w′) ∈ L2 ⇔ wϕ(y)w′ ∈ L2 .

Thus ϕ(x) ∼L2 ϕ(y), [(ϕ(x)]L2 = [ϕ(y)]L2 .

119



To see that ψ is a homomorphism, we observe that for arbitrary x, y ∈ Σ?,

ψ([x]L1)ψ([y]L1) = [ϕ(x)]L2 [ϕ(y)]L2 = [ϕ(x)ϕ(y)]L2 = [ϕ(xy)]L2 = ψ([xy]L1)

= ψ([x]L1 [y]L2) .

To see that ψ is a bijection, suppose that ψ([x]L1) = ψ([y]L1) for some x, y ∈ Σ?.

Thus [ϕ(x)]L2 = [ϕ(y)]L2 , and for every w,w′ ∈ Σ? we have

wxw′ ∈ L1 ⇔ ϕ(wxw′) ∈ L2 ⇔ ϕ(w)ϕ(x)ϕ(w′) ∈ L2

⇔ ϕ(w)ϕ(y)ϕ(w′) ∈ L2

⇔ ϕ(wyw′) ∈ L2 ⇔ wyw′ ∈ L1 .

Definition 4.4.2. A finite semiautomaton is a tuple (Σ, Q, δ), where Σ is a finite

alphabet, Q is a finite set of states, and δ : (Q × Σ) → Q is a transition function.

An instantiation of a semiautomaton A = (Σ, Q, δ) is a finite automaton A[q0, F ] =

(Σ, Q, δ, q0, F ) where q0 ∈ Q and F ⊆ Q.

Definition 4.4.3. Let A, B and C be monoids, and let ϕ : A → B and ψ : A → C

be homomorphisms. We say that ψ factors through ϕ if for all x, y ∈ A, ϕ(x) = ϕ(y)

implies ψ(x) = ψ(y).

Lemma 4.4.4. Let A be a semiautomaton over Σ, and let L ⊆ Σ?. The language L is

recognized by a boolean combination of instantiations of A iff the syntactic morphism

ϕL of L factors through the transition morphism ϕA of A.

Proof. For the forward direction, we first observe that the transition monoid of any

boolean combination of instantiations of A is still M(A). Invoking basic results from

algebraic language theory, we know that M(L) divides M(A), i.e. there is a subset

M ⊆ M(A) and a homomorphism ψ : M → M(L) such that ϕL = ψ ◦ ϕA. Thus ϕL

factors through ϕA.

120



For the backward direction, let M(L) be the syntactic monoid of L. Using basic

results from algebraic language theory, we have a set F ⊆ M(L) such that L =

ϕ−1
L (F ). Using the relationship between ϕA and ϕL, we observe that we can also

express L in terms of the transition monoid of A, namely L = ϕ−1
A (F ′) where F ′ =

ϕA(L). To see that this is true, let w ∈ L. Then ϕA(w) ∈ ϕA(L) = F ′ and thus

w ∈ ϕ−1
A (F ′). Conversely, suppose w ∈ ϕ−1

A (F ′). Then ϕA(w) ∈ F ′ ∈ ϕA(L). Thus

there is a u ∈ L such that ϕA(w) = ϕA(u), hence ϕL(w) = ϕL(u) and w ∈ L. Now

that we have L = ϕ−1
A (L), we construct a boolean combination of instantiations of A

to recognize L as follows.

AL :=
∨
x∈F ′

∧
q∈Q(A)

A[q, qx]

4.5 Modular Counting of Substrings

Definition 4.5.1. Let p ∈ Σ+ and w ∈ Σ?. The number of occurrences of p as a

substring of w is #p(w) := |{1 ≤ i ≤ ||w|| − ||p||+ 1 | wi . . . wi+||p||−1 = p}|.

Definition 4.5.2. Let p ∈ Σ+. A strict suffix s of p is a repeating suffix of p if p is a

suffix of ps.

For example, the string abaabaab has exactly two repeating suffixes: aab and

aabaab. The string babbab also has exactly two repeating suffixes: bab and abbab.

The string bbbbbabbbbb has exactly five repeating suffixes.

Proposition 4.5.3. Let p ∈ Σ+, let k,m ∈ N, k < m, and define the language

Lk,mp := {w ∈ Σ? | #p(w) ≡ k (mod m)} .

The generalized star-height of Lk,mp is 1.

121



Proof. If the pattern p does not have any repeating suffixes, then we construct a

regular expression E of generalized star-height 1 as follows.

E := T ((pT )m)? (pT )k

T := Σ?pΣ?

Every occurrence of p can only be matched by the subexpression p in E, and every

such match corresponds to a unique occurrence of p, thus L(E) = Lk,mp .

We extend this construction to patterns with repeating suffixes. Let Sp be the

set of all repeating suffixes of p that do not have another repeating suffix as their

prefix. For example, Sabaabaab only contains aab and not aabaab, since aab is a prefix

of aabaab.

In the following expressions, we write S for the union over all strings from Sp.

E :=


U ((S ∪ V )m)? (S ∪ V )k−1 W if k > 0

U ((S ∪ V )m)? (S ∪ V )m−1 W ∪ Σ?pΣ? if k = 0

U := Σ?pΣ+ ∩ Σ?p

V := SΣ? ∩ Σ?pΣ+ ∩ Σ?p

W := SΣ? ∩ Σ?pΣ?

The expressions S, U , V and W all have generalized star-height 0, and the expres-

sion E has generalized star-height 1. Expression U matches all strings that end with

p but do not contain p anywhere else, expression V matches all strings that end with

p, do not contain p anywhere else, and also do not start with any repeating suffix.

Expression W matches all strings that do not contain p and do not start with any

repeating suffix.

We claim that L(E) = Lk,mp . To see that L(E) ⊆ Lk,mp for k > 0, we observe

that the initial U matches exactly one occurrence of p. Every substring matched by

122



S ∪ V increases the number of occurrences of p by exactly one, either generating a

new occurrence with a repeating suffix, or not starting with a generating suffix and

ending with p. The part of the string matched so far, including the expression S ∪V ,

also always ends with p. Finally, W does not contribute any additional occurrences

of p. To argue Lk,mp ⊆ L(E), we note that the first occurrence of p is matched by

U , and any following occurrence is matched by S ∪ V . For k = 0, this argument

remains unchanged, except that we also need to consider the case where there are

no occurrences of p at all. The strings without any occurrences of p are matched by

Σ?pΣ?.

4.6 Word Problems for Symmetric Groups

Consider the language L accepted by the automaton in Figure 4.7, with state 0 as

the initial and final state. All expressions in this section can be easily modified to

work for any choice of initial and final states.

0

1 2

a

b

c

b

Figure 4.7. Finite semiautomaton for the language L.

This language is motivated by a version of the word problem of S3. The variant

with loops on states 1 and 2 appears to be more complicated, and we currently do

not have an expression of generalized star-height 1 to match that language even with

just two loops.

We can easily write an expression of generalized star-height 2 for L as follows.

123



(b ∪ a(bb)?a ∪ ab(bb)?c ∪ c(bb)?c ∪ cb(bb)?a)?

Before we present an expression of generalized star-height 1, we make two obser-

vations about this language.

Claim 4.6.1. In any string that transitions from state 0 to state 0, the number of

a’s plus the number of c’s is even. In any string that transitions from state 0 to state

1 or 2, this number is odd.

Proof. To transition from state 0 to state 0 without using state 0 as an intermediate

state, a string has to be equal to b, or start and end with a or c but not contain any

other a’s or c’s.

We can easily write a regular expression E for all strings where the total number

of a’s and c’s is even.

E := b?((a ∪ c)b?(a ∪ c)b?)?

Claim 4.6.2. A string w transitions from state 0 to the dead state without using the

dead state as an intermediate state iff it is of the form uv, where u ∈ L(E), v ∈ L(X),

and

X := a(bb)?c ∪ ab(bb)?a ∪ c(bb)?a ∪ cb(bb)?c .

Proof. Let w be a string that transitions from state 0 to the dead state without any

intermediate use of the dead state. Let u be a (possibly empty) prefix of w up to the

last occurrence of state 0 in the corresponding state transition sequence, and let v be

the remainder of w. By the previous claim, u is in L(E). To transition away from

state 0, v has to start with a or c. For each of these two cases, there are exactly two

ways to transition to the dead state without using state 0, as listed in the expression

X.

It is straightforward to verify that every string from L(EX) transitions from state

0 to the dead state.

124



Combining these two claims, we can now write a regular expression R of general-

ized star-height 1 for all of L.

R := E ∩ EXΣ?

Proposition 4.6.3. L(R) = L.

Proof. Let w ∈ L, i.e. w transitions from state 0 to state 0. By Claim 4.6.1 we have

w ∈ L(E), and by claim 4.6.2, w cannot have any string from L(EX) as a prefix,

thus w /∈ L(EXΣ?).

Conversely, suppose that w ∈ L(R). Since w /∈ L(EXΣ?), w does not have a

prefix from L(EX), and thus by Claim 4.6.2 we know that starting at state 0, w does

not transition to the dead state. Since w ∈ L(E), the second part of Claim 4.6.1

implies that w cannot transition to states 1 or 2. Thus w has to transition back to

state 0, and w ∈ L.

Very similar ideas can be used to construct expressions of generalized star-height

1 for more restricted versions of the language L, but we currently do not know how

to write such an expression for the variant of L with a second loop.

125



Conclusion

In the first half of this dissertation, we presented a series of new results on first-

order logic with two variables on finite words. We provided a new and complete

characterization of the properties expressible in FO2 on finite words, proved that the

quantifier alternation hierarchy for this logic is strict, and settled the main remaining

question about the complexity of the satisfiability problem for this logic. We feel

that these results complete our understanding of the expressiveness of FO2 on finite

words. Nevertheless, interesting questions remain for FO2 on more general structures

such as infinite words [10] and trees [2,3]. We restricted our attention to finite words,

but suspect that many of our results from the first two chapters generalize to infinite

words.

The second half of this dissertation is more exploratory in nature. We gained new

insights into both the succinctness of first-order logic and the generalized star-height

hierarchy, and developed promising techniques that we hope will advance our under-

standing of both problems. Many questions remain open. Our grasp of succinctness

is still very basic, and while we believe that the techniques developed here will lead

to new and improved lower bounds on succinctness for certain special cases, we feel

that further progress depends on the development of fundamentally new approaches

and methods that currently are beyond our reach. Many of these questions on suc-

cinctness are closely related to some of the main open problems in computational

complexity, most importantly the trade-off between parallel time and hardware. For

the generalized star-height hierarchy, we are more optimistic and believe that our new

logical approach might lead to further progress in the near future.

126



Bibliography

[1] Adler, Micah, and Immerman, Neil. An n! lower bound on formula size. ACM
Transactions on Computational Logic 4, 3 (2003), 296–314.

[2] Bojańczyk, Miko laj. Two-way unary temporal logic over trees. In IEEE Sympo-
sium on Logic in Computer Science (2007), pp. 121–130.

[3] Bojańczyk, Miko laj, and Segufin, Luc. Tree languages defined in first-order logic
with one quantifier alternation. Logical Methods in Computer Science 6, 4:1
(2010).

[4] Brzozowski, Janusz A., and Knast, Robert. The dot-depth hierarchy of star-free
languages is infinite. Journal of Computer and System Science 16 (1978), 37–55.

[5] Büchi, J. Richard. Weak second-order arithmetic and finite automata. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik 6 (1960), 66–92.

[6] Büchi, J. Richard, and Elgot, Calvin C. Decision problems of weak second order
arithmetics and automata, part I. Notices of the American Mathematical Society
5 (1958), 834.

[7] Calo, Ariel, and Makowsky, Johann A. The Ehrenfeucht-Fräıssé games for tran-
sitive closure. In International Symposium on Logical Foundations of Computer
Science (1992), pp. 57–68.

[8] Eggan, Lawrence C. Transition graphs and the star-height of regular events.
Michigan Mathematical Journal 10, 4 (1963), 385–397.

[9] Etessami, Kousha, Vardi, Moshe Y., and Wilke, Thomas. First-order logic with
two variables and unary temporal logic. In IEEE Symposium on Logic in Com-
puter Science (1997), pp. 228–235.

[10] Etessami, Kousha, Vardi, Moshe Y., and Wilke, Thomas. First-order logic with
two variables and unary temporal logic. Information and Computation 179, 2
(2002), 279–295.

[11] Fürer, Martin. The computational complexity of the unconstrained limited
domino problem (with implications for logical decision problems). In Logic and
Machines (1984), Egon Börger, Gisbert Hasenjaeger, and Dieter Rödding, Eds.,
vol. 171 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 312–
319.

127



[12] Glasser, Christian, Schmitz, Heinz, and Selivanov, Victor L. Efficient algorithms
for membership in boolean hierarchies of regular languages. In Symposium on
Theoretical Spects of Computer Science (2008), pp. 337–348.

[13] Grädel, Erich. On transitive closure logic. In Computer Science Logic (1991),
pp. 149–163.

[14] Grohe, Martin, and Schweikardt, Nicole. Comparing the succinctness of monadic
query languages over finite trees. RAIRO Theoretical Informatics and Applica-
tions 51, 1 (2004), 74–113.

[15] Grohe, Martin, and Schweikardt, Nicole. The succinctness of first-order logic on
linear orders. Logical Methods in Computer Science 1, 1:6 (2005).

[16] Gruber, Hermann, and Holzer, Markus. Finite automata, digraph connectivity,
and regular expression size. In International Colloquium on Automata, Language
and Programming (2008), pp. 39–50.

[17] Hashiguchi, Kosaburo. Representation theorems on regular languages. Journal
of Computer and System Sciences 27, 1 (1983), 101–115.

[18] Hashiguchi, Kosaburo. Algorithms for determining relative star height and star
height. Information and Computation 78, 2 (1988), 124–169.

[19] Immerman, Neil. Languages that capture complexity classes. SIAM Journal of
Computing 16, 4 (1987), 760–778.

[20] Immerman, Neil. DSPACE[nk] = VAR[k+ 1]. In IEEE Structure in Complexity
Theory Symposium (1991).

[21] Immerman, Neil. Descriptive Complexity. Springer-Verlag, New York, NY, 1999.

[22] Immerman, Neil, Buss, Jonathan F., and Barrington, David A. Mix. Number of
variables is equivalent to space. Journal of Symbolic Logic 66, 3 (2001), 1217–
1230.

[23] Immerman, Neil, and Kozen, Dexter. Definability with bounded number of
bound variables. Information and Computation 83, 2 (1989), 121–139.

[24] Kamp, Johan A.W. Tense logic and the theory of linear order. PhD thesis,
University of California, Los Angeles, 1968.

[25] Karchmer, Mauricio, and Wigderson, Avi. Monotone circuits for connectivity
require super-logarithmic depth. SIAM Journal of Discrete Mathematics 3, 2
(1990), 255–265.

[26] Lewis, Harry R. Complexity results for classes of quantificational formulas. Jour-
nal of Computer and System Sciences 21 (1980), 317–353.

128



[27] McNaughton, Robert. The loop complexity of regular events. Information Sci-
ences 1 (1969), 305–328.

[28] McNaughton, Robert, and Papert, Seymour A. Counter-free Automata. MIT
Press, Cambridge, MA, 1971.

[29] Pin, Jean-Eric. Varieties of Formal Languages. North Oxford Academic, London
and Plenum, New York, NY, 1986.

[30] Pin, Jean-Eric, Straubing, Howard, and Thérien, Denis. Some results on the
generalized star-height problem. Information and Computation 101, 2 (1992),
219–250.

[31] Pin, Jean-Eric, and Weil, Pascal. Polynomial closure and unambiguous product.
Theory of Computing Systems 30 (1997), 1–39.

[32] Potthoff, Andreas. Logische Klassifizierung regulärer Baumsprachen. PhD thesis,
Institut für Informatik und Praktische Mathematik, Universität Kiel, 1994.

[33] Schützenberger, Marcel P. Sur le produit de concatenation non ambigu. Semi-
group Forum 13 (1976), 47–75.

[34] Schwentick, Thomas, Thérien, Denis, and Vollmer, Heribert. Partially-ordered
two-way automata: a new characterization of DA. In Developments in Language
Theory (2001), pp. 239–250.

[35] Stockmeyer, Larry J. The complexity of decision problems in automata theory.
PhD thesis, MIT, 1974.

[36] Straubing, Howard. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, MA, 1994.

[37] Straubing, Howard, and Thérien, Denis. Weakly iterated block products. In
Latin American Theoretical Informatics Conference (2002), pp. 91–104.

[38] Straubing, Howard, and Weil, Pascal. On a conjecture concerning dot-depth two
languages. Theoretical Computer Science 104 (1992), 161–183.

[39] Tesson, Pascal, and Thérien, Denis. Diamonds are forever: the variety DA. In
Semigroups, Algorithms, Automata and Languages (Coimbra, Portugal, 2001),
World Scientific, pp. 475–500.

[40] Tesson, Pascal, and Thérien, Denis. Algebra meets logic: the case of regular
languages. Logical Methods in Computer Science 3, 1:4 (2007).

[41] Thérien, Denis. Subword counting and nilpotent groups. In Combinatorics on
Words: Progress and Perspectives, L. J. Cummings, Ed. Academic Press, Or-
lando, FL, 1983, pp. 297–305.

129



[42] Thérien, Denis, and Wilke, Thomas. Over words, two variables are as powerful as
one quantifier alternation. In ACM Symposium on Theory of Computing (1998),
pp. 234–240.

[43] Thomas, Wolfgang. Remark on the star-height-problem. Theoretical Computer
Science 13 (1981), 231–237.

[44] Thomas, Wolfgang. An application of the Ehrenfeucht-Fräıssé game in formal
language theory. Mémoires de la S.M.F. 16 (1984), 11–21.

[45] Trakhtenbrot, Boris A. Finite automata and the logic of monadic predicates.
Doklady Akademii Nauk SSSR 140 (1961), 326–329.

[46] Trakhtenbrot, Boris A., and Barzdin, Janis M. Finite Automata. North-Holland,
Amsterdam, 1973.

[47] Weis, Philipp, and Immerman, Neil. Structure theorem and strict alternation
hierarchy for FO2 on words. Logical Methods in Computer Science 5, 3:4 (2009).

[48] Wilke, Thomas. CTL+ is exponentially more succinct than CTL. In Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(1999), pp. 110–121.

130


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Structure Theorem for FO2 on Finite Words
	Structure Theorem for FO2[<]
	Alternation Hierarchy for FO2[<]
	Extension to FO2[<,Suc]

	Satisfiability of FO2 on Finite Words
	Small Model Property for FO2[<] on Finite Words
	Satisfiability of FO2 on Finite Words and Finite Power Words

	Succinctness of FOk
	Succinctness and Complexity Theory
	Succinctness Bounds
	A Simple Lower Bound
	Towards Settling Our First Conjecture

	Generalized Star-Height
	Known Results on Restricted Star-Height
	Eggan's Proof
	McNaughton's Graph-Theoretic Proof

	Known Results on Generalized Star-Height
	First-Order Logic with Transitive Closure
	Regular Formulas and Forward Transitive Closure
	Game Characterizations of FO[FTC] and rFO+[FTC]

	Transitive Closure with Booleans

	Three Candidate Languages and Short Tile Machines
	Modular Counting of Substrings
	Word Problems for Symmetric Groups

	Conclusion
	Bibliography

