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ABSTRACT
Several major Internet service providers today also offer con-
tent distribution services. The emergence of such “network-
CDNs” (NCDNs) is driven both by market forces as well as
the cost of carrying ever-increasing volumes of traffic across
their backbones. An NCDN has the flexibility to determine
both where content is placed and how traffic is routed within
the network. However NCDNs today continue to treat traffic
engineering independently from content placement and re-
quest redirection decisions. In this paper, we investigate the
interplay between content distribution strategies and traffic
engineering and ask whether or how an NCDN should ad-
dress these concerns in a joint manner. Our experimental
analysis, based on traces from a large content distribution
network and real ISP topologies, shows that realistic (i.e.,
history-based) joint optimization strategies offer little bene-
fit (and often significantly underperform) compared to sim-
ple and “unplanned” strategies for routing and placement
such as InverseCap and LRU. We also find that the simpler
strategies suffice to achieve network cost close to those of a
joint-optimal strategy with future knowledge.

1. INTRODUCTION
Content delivery networks (CDNs) today provide a core

service that enterprises use to deliver web content, down-
loads, streaming media, and IP-based applications to a global
audience of their end-users. The traditional and somewhat
simplified, tripartite view of content delivery involves three
sets of entities as shown in Figure 1. The content providers
(e.g., media companies, news channels, e-commerce providers,
software distributors, enterprise portals, etc.) produce the
content and wish to provide a high-quality experience to
end-users accessing their content over the Internet. The net-
works (e.g., telcos such as AT&T, MSOs such as Comcast,
and traditional ISPs) own the underlying network infras-
tructure and are responsible for provisioning capacity and
managing traffic flowing through their networks. Finally,
the CDNs (e.g., Akamai, Limelight) are responsible for opti-
mizing content delivery to end-users on behalf of the content
providers, residing as a global, distributed overlay service on
top of the networks.

Recent powerful trends are reshaping the simplified tripar-
tite view of content delivery. A primary driver is the torrid
growth of video [17, 6] and downloads traffic on the Inter-
net. For example, a single, popular TV show with 50 million
viewers, each viewer watching an HD-quality stream of 10
Mbps, generates 500 Tbps of network traffic! The increasing
migration of traditional media content to the Internet and
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Figure 1: A tripartite view of content delivery.

the consequent challenges of scaling the network backbone
to accommodate that traffic has necessitated the evolution of
network CDNs (or NCDNs)1 that vertically integrate CDN
functionality such as content caching and redirection with
traditional network operations (refer Figure 1). A second
economic driver of NCDNs is the desire of networks to fur-
ther monetize the “bits” that flow on their infrastructure by
contracting directly with content providers. Finally, NCDNs
also enable better performance for their own end-user sub-
scribers and open up avenues for new, differentiated services
(e.g., Verizon’s recent offering that delivers HBO’s content
to FIOS subscribers [22].

The evolution of NCDNs significantly changes traditional
engineering concerns as NCDNs must make decisions about
content placement and request redirection in addition to the
underlying network routing. As NCDNs own both the con-
tent distribution and network infrastructure, they are in a
powerful position to place content in a manner that “shapes”
the traffic demand to their advantage, potentially enabling
traffic engineering to achieve a significantly lower cost. How-
ever, NCDNs today treat content distribution and traffic
engineering concerns separately, perhaps because it is easier
to continue doing things as they were being done. This dis-
parity raises several research questions such as: (1) How do
content demand patterns and placement strategies impact
traffic engineering objectives? (2) How should an NCDN
jointly determine placement and routing decisions so as op-
timize network cost? (3) How do demand-aware strategies
(i.e., using knowledge of recently observed demand patterns
or hints about anticipated future demands) for placement
and routing compare with demand-oblivious strategies?

1NCDNs are sometimes referred to as Telco CDNs, or Car-
rier CDNs. Further, they are referred to as a Licensed CDN
when a pure-play CDN such as Edgecast[5] licenses the CDN
software to a network to create an NCDN.
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Figure 2: NCDN Architecture

Our primary contribution is to empirically analyze the
above questions for realistic content demand workloads and
ISP topologies. To this end, we collect content request
traces from Akamai, the world’s largest CDN today. We
focus specifically on on-demand video and large-file down-
loads traffic as they are two categories that dominate over-
all CDN traffic and are significantly influenced by content
placement strategies. Our combined traces consist of a total
of 28.2 million requests from 7.79 million unique users who
downloaded a total of 1455 Terabytes of content across the
US over multiple days. Our trace-driven experiments using
these logs and realistic ISP topologies reveal the following
somewhat surprising conclusions:

• Simple demand-oblivous schemes for placement and
routing (such as Least Recently Used and InverseCap)
significantly outperform (by 2.2× to 17×) a joint-optimal
placement and routing strategy with knowledge of the
previous day’s demand2.

• Traffic demand can be “shaped” by effective content
placement so that traffic engineering, i.e., optimizing
routes with knowledge of recent traffic matrices, yields
little improvement in cost compared to demand-oblivious
routing (InverseCap) in conjunction with any reason-
able placement.

• A demand-oblivious placement and routing is at most
4% sub-optimal compared to a joint-optimal place-
ment and routing with perfect knowledge of the next
day’s demand at higher storage ratios (≈ 4) with sim-
ple optimizations such as content chunking and link-
utilization-aware redirection.

In the rest of this paper, we first provide an overview of
the NCDN architecture highlighting why it changes tradi-
tional traffic engineering concerns (§2). Next, we formu-
late algorithms that jointly or individually optimize content
placement and routing as optimization problems (§3). We
then describe how we collected real CDN traces (§4) and
then evaluate our algorithms using these traces and real ISP
topologies (§5). Finally, we present related work (§6) and
conclusions (§7).

2. BACKGROUND AND MOTIVATION
A typical NCDN architecture, as shown in Figure 2, re-

sembles the architecture of a global CDN but with some im-
portant differences. First, the content servers are deployed
2We use the term “optimal” because placement and routing
is calculated by solving an optimization problem.

CONTENT DISTRIBUTION
(CDN)

TRAFFIC ENGINEERING
(Network)

Content Demand 
Matrix

Storage 
Capacities

Tra�c Demand 
Matrix

Link 
Capacities

RoutesContent
Placement

Request
Redirection
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Figure 4: Our new formulation of content-aware
traffic engineering for NCDNs as a joint optimiza-
tion.

at points-of-presence (PoPs) within the network rather than
globally across the Internet as the NCDN is primarily inter-
ested in optimizing content delivery for its own customers
and end-users. Second, and more importantly, a NCDN
owns and manages the content servers as well as the un-
derlying network. Content providers that purchase content
delivery service from the NCDN publish all of their content
to origin servers that they maintain external to the NCDN
itself.

Each PoP is associated with a distinct set of downstream
end-users who request content such as web, video, down-
loads etc. An end-user’s request is first routed to the content
servers deployed at the PoP to which the end-user is con-
nected. If a content server at that PoP has the requested
content in their cache, it serves that to the end-user. Oth-
erwise, if the requested content is cached at other PoPs in
the network, the content is downloaded from a nearby PoP
and served to the end-user. If the content is not present in
any content server in the network, it is downloaded directly
from the content provider’s origin servers.

2.1 Why Do NCDNs Change the Game?
Managing content distribution as well as the underlying

network infrastructure makes the costs and objectives of in-
terest to an NCDN different from that of a traditional CDN
or a traditional ISP. The traditional model of content distri-
bution and traffic engineering as performed by a traditional
CDN and a traditional ISP is shown in Figure 3. However,
as we elaborate below, we propose a new model appropriate
for NCDNs that jointly optimizes content distribution and
traffic engineering as shown in Figure 4.

2.1.1 Content Distribution
A traditional CDN has two key decision components—

content placement and request redirection—that seek to op-
timize the response time perceived by end-users and balance
the load across its content servers (see Figure 3). Content
placement decides which objects should be cached at which
nodes. Note that any particular object may be replicated at
multiple nodes in the network or not stored in the network



at all and be served from the origin server instead. Request
redirection determines which server storing a replica of the
requested object is best positioned to serve the request.

Content placement schemes can be classified as demand-
aware or demand-oblivious. A demand-aware scheme takes
as input a content matrix, i.e., information about the vol-
ume of demand for each content at each content server loca-
tion, and optimizes the placement accordingly. The content
matrix is typically learned by monitoring a recent history
of system-wide requests potentially in conjunction with any
available hints from content providers about anticipated de-
mand for some objects. A demand-aware placement scheme
uses a recent content matrix to decide on a placement peri-
odically (say, once a day) but does not alter its placement in
between. In contrast, a demand-oblivious placement scheme
can continually alter its placement potentially even after ev-
ery single request. A simple example of a demand-oblivious
placement scheme is least-recently-used (LRU), where each
node serves the requested object and adds it to its cache
evicting previously stored objects if necessary in LRU order
in order to make room for the requested object.

2.1.2 Traffic Engineering
A key component of ISP network operations is traffic en-

gineering, which seeks to route the traffic demands through
the backbone network so as to balance the load and miti-
gate hotspots. A common view of traffic engineering is as a
routing problem that takes as input a traffic matrix, i.e., the
aggregate flow demand between every pair of PoPs observed
over a recent history, and computes routes so as to minimize
a network-wide cost objective (see Figure 3). The cost seeks
to capture the severity of load imbalance in the network
and common objective functions include the maximum link
utilization (MLU) or a convex function (so as to penalize
higher utilization more) of the link utilization aggregated
across all links in the network [10]. Networks commonly
achieve the computed routing either by using shortest-path
routing (e.g., the widely deployed OSPF protocol [10]) or
by explicitly establishing virtual circuits (e.g., using MPLS
[9]). The former requires additionally engineering a set of
link weights such that using shortest paths achieves the de-
sired routing, while the latter is more flexible and can in
principle achieve any desired routing including those that
split traffic between a given pair of PoPs across many paths
in arbitrary ratios.

Routing can also be classified as demand-aware or demand-
oblivious similar in spirit to content placement. Traffic en-
gineering schemes as explained above (as well as online traf-
fic engineering schemes [16] that are rarely deployed today)
are implicitly demand-aware as they optimize routing for
recently observed demand. In contrast, demand-oblivious
routing schemes rely upon statically configured routes, e.g.,
Inverse Cap that is a shortest-path routing scheme that sim-
ply uses the inverse of capacity as link weights and is a
common default scheme in commercial routers. More so-
phisticated demand-oblivious routing schemes [3, 4] seek to
compute a static flow-splitting strategy that works reason-
ably well for all possible traffic demands (though it may be
sub-optimal for most or all of them).

2.1.3 Content-aware Traffic Engineering
An NCDN can perform content-aware traffic engineering

by leveraging content distribution to achieve traffic engi-
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Figure 5: A Simple NCDN Example

neering goals such as network cost minimization. Unlike
traditional ISPs, an NCDN can place content and redirect
requests in a manner that “shapes” the traffic demands to
its advantage and thereby achieve significantly lower net-
work cost.

A central thesis of this paper is that intelligent content
placement and request redirection achieve significant cost
reduction for NCDNs and thereby marginalize the role of
traditional traffic engineering. To appreciate this point, con-
sider the simple, illustrative example in Figure 5. Node C
has an object in its cache that is requested by end-users at
nodes A and D. Suppose that one unit of traffic needs to be
routed from C to A and 0.5 units from C to D to satisfy the
demand for that object. The routing that achieves the min-
imum MLU of 0.5 to serve the demanded object is shown in
the figure. Note that the routing that achieves the MLU of
0.5 is not possible with a simple, demand-oblivious protocol
like InvCap as that would route all the traffic demand from
C to A via B, resulting in an MLU of 1. Thus, a (demand-
aware) traffic engineering scheme is necessary to achieve an
MLU of 0.5.

On the other hand, content-aware traffic engineering can
shape the traffic demand matrix by using a judicious place-
ment and redirection strategy. Suppose that there is some
space left in the content server’s cache at node B to ac-
commodate an additional copy of the demanded object. By
creating an additional copy of the object at B, the traffic
demand of A can be satisfied from B and the demand of D
from C achieving the an MLU of 0.125. In this case, judi-
cious content placement decreased the MLU by a factor of
4. Even more interestingly, this best MLU can be achieved
using a simple routing scheme like InvCap. Although this
is clearly a “toy” example, it illustrates the sophisticated
interaction between content placement and traffic engineer-
ing and potential opportunities for NCDNs to both reduce
cost and simplify traffic engineering by doing it in a content-
aware manner.

3. CONTENT-AWARE TRAFFIC ENGINEER-
ING STRATEGIES

In this section, we formalize the NCDN model and the
problem of determining the optimal content placement and
routing strategy as a mixed integer program (MIP). We also
present two variants of this formulation: (1) a MIP that de-
termines the optimal placement strategy for a given routing
scheme; and (2) a linear program that optimizes routing for
a given placement strategy. All of these formulations take
as input a content matrix, i.e., the demand for each piece of
content at each network point-of-presence (PoP), and seek
to compute a placement and/or a routing strategy that min-
imizes the maximum link utilization (MLU) while respecting



Input variables and descriptions

V Set of nodes where each node represents a PoP
E Set of edges where each link represents a communica-

tion link
o Virtual origin node that hosts all the content in K
X Set of exit nodes in V
Di Disk capacity at node i ∈ V (in bytes)
Ce Capacity of link e ∈ E (in bits/sec)
K the set of all content accessed by end-users
Sk Size of content k ∈ K.
Tik Demand (in bits/sec) at node i ∈ V for content k ∈ K

Decision variables and descriptions

α MLU of the network
zk Binary variable indicating whether one or more copies

of content k is placed in the network
xjk Binary variable indicating whether content k is placed

at node j ∈ V ∪ {o}
fij Total traffic from node j to node i
fije Traffic from node j to node i crossing link e.
tijk Traffic demand at node i ∈ V for content k ∈ K served

from node j ∈ V ∪ {o}

Table 1: List of input and decision variables for the
NCDN problem formulation.

link capacity and storage constraints.

3.1 NCDN Model
Table 3 lists all the input parameters and variables used

in this model. An NCDN consists of a set of nodes V where
each node represents a PoP in the network. The nodes are
connected by a set of directed edges E that represent the
communication links provisioned between PoPs in the net-
work backbone. The set of content requested by end-users is
represented by the set K. For instance, content k ∈ K could
represent either an on-demand video that can be viewed or
a file that can be downloaded by the end-user. The pri-
mary resource constraints are the link capacities Ce, e ∈ E,
and the amount of storage Di, i ∈ V , available at the nodes.
We implicitly assume that the content servers at the PoPs in
the NCDN have adequate compute resources to serve locally
stored content.

A content matrix specifies the demand for each content
at each node. An entry in this matrix, Tik, i ∈ V, k ∈ K,
denotes the demand (in bits/second) for content k at node i.
The content matrix is assumed to be measured by the NCDN
a priori over a coarse-grained interval, e.g., the previous day,
by monitoring the request rate for content at the PoPs and
combining them with the known content sizes Sk, k ∈ K.
The infrastructure required for this measurement is com-
parable to what ISPs have in place for monitoring traffic
matrices today.

All content is published by content providers of the NCDN
service and initially stored at a set of origin servers owned
and maintained by the content providers. We assume that
origin servers are hosted external to the NCDN. These origin
servers are typically mirrored across different data centers
and multihomed across different networks. For simplicity,
we model a single virtual origin node o external to the NCDN
that can be reached from any node i ∈ V by routing to the
closest exit node x ∈ X, where X ⊂ V is the set of all
exit nodes in the NCDN (See Figure 2). Since we are not
concerned with traffic engineering links outside the NCDN,
we model the edges (x, o), for all x ∈ X, as having infinite
capacity. The virtual origin node o always maintains a copy
of all the requested content. Nodes in the network may

additionally store local copies of some of the content. A
request for a content is served from the virtual origin node
only if no copy of the content is stored at any node in V of
the NCDN. In this case, the request is assumed to be routed
to the virtual origin via the exit node closest to the node
where the request was made (in keeping with the commonly
practiced early-exit or hot potato routing policy).

ISP networks carry transit traffic in addition to NCDN
traffic, which can be represented as a transit traffic matrix
(TTM). Each entry in the TTM contains the volume of tran-
sit traffic between two PoPs in the network.

3.2 Optimal Strategy as a MIP
The content-aware traffic engineering problem for NCDNs

(NCDN problem, for short) seeks to compute a placement
and routing strategy that minimizes the MLU and satis-
fies the demands specified by the content matrix while re-
specting link capacity constraints and storage constraints at
the nodes. This optimization goal can be formulated as a
mixed integer program (MIP). Unlike the traditional traf-
fic engineering problem that can be formulated as a multi-
commodity flow problem and solved using a linear program,
the NCDN problem needs to make binary placement deci-
sions, i.e., whether or not to place a content at a PoP, and
then route the demand accordingly. These placement deci-
sion variables (denoted xjk, j ∈ V, k ∈ K) as well as other
decision variables required for the MIP are listed in Table 3.
The MIP to minimize the MLU α is as follows:

min α (1)

s. t.
∑
j∈V

tijk + tiok = Tik, ∀k ∈ K, i ∈ V (2)∑
k∈K

tijk = fij , ∀j ∈ V −X, i ∈ V (3)

∑
k∈K

tijk +
∑
k∈K

δijtiok = fij , ∀j ∈ X, i ∈ V (4)

where δij is 1 if j is the closest exit node to i and 0 otherwise.
Note that δij is not a variable but a constant that is deter-
mined by the topology of the network, and hence constraint
(4) is linear.

∑
p∈P (l)

fijp −
∑

q∈Q(l)

fijq =


fij if l = i,

−fij if l = j,

0 otherwise,

∀i, j, l ∈ V (5)

where P (l) and Q(l) respectively denote the set of outgoing
and incoming links at node l.∑

i∈V,j∈V

fije ≤ α× Ce, ∀e ∈ E (6)

∑
k∈K

xikSk ≤ Di, ∀i ∈ V (7)

xok = 1, ∀k ∈ K (8)∑
i∈V

xik ≥ zk, ∀k ∈ K (9)

xik ≤ zk, ∀k ∈ K, i ∈ V (10)

tijk ≤ xjkTik, ∀k ∈ K, i ∈ V, j ∈ V ∪ {o} (11)

tiok ≤ Tik(1− zk), ∀k ∈ K (12)



xjk, zk ∈ {0, 1}, ∀j ∈ V, k ∈ K
fije, tijk, tiok ≥ 0, ∀i, j ∈ V, e ∈ E, k ∈ K

The constraints have the following rationale. Constraint
(2) specifies that the total traffic demand at each node for
each content must be satisfied. Constraints (3) and (4) spec-
ify that the total traffic from source j to sink i is the sum
over all content k of the traffic from j to i for k. Constraint
(5) specifies that the volume of a flow coming in must equal
that going out at each node other than the source or the
sink. Constraint (6) specifies that the total flow on a link is
at most α times capacity. Constraint (7) specifies that the
total size of all content stored at a node must be less than
its disk capacity. Constraint (8) specifies that all content is
placed at the virtual origin node o. Constraints (9) and (10)
specify that at least one copy of content k is placed within
the network if zk = 1, otherwise zk = 0 and no copies of k
are placed at any node. Constraint (11) specifies that the
flow from a source to a sink for some content should be zero
if the content is not placed at the source (i.e., when xjk = 0),
and the flow should be at most the demand if the content
is placed at the source (i.e., when xjk = 1). Constraint (12)
specifies that if some content is placed within the network,
the traffic from the origin for that content must be zero.
Updating the content placement itself generate traffic and
impacts the MLU in the network. A formal description of
the corresponding constraints is deferred to the Appendix.

Finally, a simple extension to this MIP presented in the
Appendix jointly optimizes routing given a TTM as well a
CM. We have presented a CM-only formulation here as our
findings (in §5) show that a joint optimization of the CM
and TTM is not useful for NCDNs.

3.2.1 Computational hardness
Opt-NCDN is the decision version of the NCDN-problem.

The proofs for these theorems are included in Appendix A.
Theorem 1 Opt-NCDN is NP-Complete even in the spe-

cial case where all objects have unit size, all demands have
binary values, and link and storage capacities have binary
values.

Theorem 2 Opt-NCDN is inapproximable within a factor
β for any β > 1 unless P = NP.

3.3 Partial Optimization Strategies
As one of our goals is to analyze the relative importance of

optimizing placement and routing, we introduce two heuris-
tic variants of the optimization formulation above. The first
variant optimizes content placement for any given (possibly
suboptimal) strategy for routing between nodes of the net-
work (e.g., Inverse Cap [11]). The second variant optimizes
routing for any given placement strategy.
Optimal Content Placement with Fixed Routing: This prob-
lem can be solved with a straightforward modifications to
the MIP introduced above. Assume that the given (fixed)
routing strategy is specified in terms of the variables rije, 0 ≤
rije ≤ 1, for i, j ∈ V and e ∈ E, that represents the fraction
of flow fij that flows on the link e ∈ E. Assuming that the
specified routing is valid, constraint (5) of the MIP that en-
forces the conservation of flow is no longer needed and can
be removed. Further, all variables fije can be replaced in
the MIP with by rijefij , resulting in a reformulation of the
LHS of constraint (6) of the MIP.
Optimal Routing with Fixed Content Placement: If the place-

ment is fixed, then a linear program (LP) suffices to compute
the optimal routing instead of the MIP above. This is be-
cause the integer variables xjk are no longer necessary. Since
the placement is known, we know the values of the variables,
xjk and by consequence zk. Substituting these values and
removing constraints (7)–(10) from the MIP results in the
corresponding LP.

Note that for a demand-oblivious placement strategy such
as, LRU, we model route optimization as a multi-commodity
flow problem (also an LP) identical to the traditional traf-
fic engineering problem [10]. We assume that the NCDN
measures the traffic matrix over the immediately preced-
ing monitoring interval and computes routes that optimize
the MLU for that matrix. The matrix incorporates the ef-
fect of the demand-oblivous placement strategy and the im-
plicit assumption is that the content demand and demand-
oblivous placement strategy result in a traffic matrix that
does not change dramatically from one monitoring interval
to the next—an assumption that also underlies traffic engi-
neering as practiced by ISPs today.

3.4 Approximation Techniques
As solving the MIP for very large problem scenarios is

computationally infeasible, we use two approximation tech-
niques to tackle such scenarios.

The first is a two-step local search technique. In the first
step, we “relax” the MIP by allowing the integral variables
xjk and zk to take fractional values between 0 and 1. This
converts a MIP into an LP that is more easily solvable. Note
also that the optimal solution of the relaxed LP is a lower
bound on the optimal solution of the MIP. However, the LP
solution may contain fractional placement of some of the
content with the corresponding xjk variables set to fractional
values between 0 and 1. However, in our experiments only
about 20% of the variables in the optimal LP solution were
set to fractional values between 0 or 1, and the rest took
integral values of 0 or 1. In the second step, we search for
a valid solution for the MIP in the local vicinity of the LP
solution by substituting the values for variables that were
set to 0 or 1 in the LP solution, and re-solving the MIP
for the remaining variables. Since the number of variables
in the second MIP is much smaller, it can be solved more
efficiently than the original MIP.

The second approximation technique is to reduce the num-
ber of unique content in the optimization problem in order
to make it tractable. To this end, we use two strategies.
First, we discard the tail of unpopular content prior to opti-
mization. While the discarded portion accounts for only 1%
of all requests, this simple technique reduces the number of
content by 50% or more in our traces. Second, we sample
content from the trace and, in our experiments, select trace
entries corresponding only to the sampled content. These
approximations reduce the number of content from tens of
thousands to less than 5000. An MIP of this size can be
solved using local search within an hour by a standard LP
solver [13] for the ISP topologies in our experiments.

4. DATA COLLECTION
To conduct a realistic simulation of end-users accessing

content on an NCDN, we collected extensive traces for dif-
ferent traffic types from one of the world’s largest CDNs as
described in §4.1. Then, we used the topologies for two ISP
networks as described in §4.2.
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Figure 6: News and entertainment traces have a significant fraction of requests for new content on all days.
Downloads trace has a small fraction of requests for new content on all days except one day.

4.1 Akamai CDN Traces
We collected traces for the two major sources of CDN

traffic that we describe in turn.
Video Traces. Videos are the primary source of traffic

on a CDN and is growing at a rapid rate. In addition, many
NCDNs are likely to be disproportionately focused on video
due to the attractive business model of Telcos delivering on-
demand video to their subscribers [22]. Our video trace con-
sists of actual end-users accessing on-demand videos on the
Akamai network over multiple days. To make the traces as
representative as possible, we chose content providers with a
whole range of business models, including major television
networks, news outlets, and movie portals. The videos in
our traces include a range of video types from short-duration
video (less than 10 mins) such as new clips to longer dura-
tion (30 min to 120 min) entertainment videos representing
TV shows and movies. In all, our traces represent a nontriv-
ial fraction of the overall traffic on Akamai’s media network
and accounted for a total of 27 million playbacks of over
85000 videos, 738 TBytes of traffic, served to 6.59 million
unique end-users around the US2.

The data collection was done at two different time periods.
First we collected data from a news outlet for an 11-day
period in Sept 2011. The videos in this data set consists
mostly of news video clips, but also include a small fraction
of news TV shows. We refer to this dataset as the news trace.
In the second round, we collected data from three content
providers for a 6 day period in January 2012. This dataset
includes a variety of videos including TV shows, clips of TV
shows, movies and movie trailers. We call the second dataset
as the entertainment trace.

The trace collection mechanism utilized a plugin embed-
ded in the media player that is capable of reporting (anonymized)
video playback information. Our traces include a single log
entry for each distinct video playback and provides time of
access, user id, the location of the user (unique id, city, state,
country, latitude, and longitude), the url identifier of the
content, the content provider, the total length of the video
(in time and bytes), the number of bytes actually down-
loaded, the playback duration, and the average bitrate over
the playback session.

Downloads Traces. The second largest traffic contrib-
utor in a CDN is downloads of large files over HTTP. With
the software business migrating to the web, numerous enter-
prises deliver and update their software on the web, e.g.

”
Mi-

crosoft’s Windows update, Apple’s iTunes, and Symantec’s
security updates. Further, music, books, and movies are

2Since we only had US-based network topologies, we re-
stricted ourselves to US-based traffic.

downloaded through CDNs as well. The large file downloads
typically use a client-side software called the download man-
ager [18]. We collected extensive anonymized access data
reported from the download manager using Akamai’s Net-
Session interface [14] for a large fraction of content providers
across the entire network for a period of a month (Decem-
ber 2010). Our traces represent a nontrivial fraction of the
overall US-based traffic on Akamai’s downloads network and
accounted for a total of 1.2 million downloads, 717 TBytes
of traffic, served to 0.62 million unique end-users around the
US. Our traces provide a single long entry for each down-
load and provide time of access, user id, location of the user
(city, state, country, latitude, and longitude), the url identi-
fier of the content, content provider, bytes downloaded, and
file size.

Figure 6 shows the fraction of requests for new content
published each day for news, entertainment, and downloads
traces. The x-axis shows the day of trace and the y-axis
shows the fraction of requests for content published on that
day. The news trace has the highest fraction of requests (up
to 63%) due to new content because news clips are gener-
ated each day and the latest news clips are the most popular
videos on the website. The entertainment trace also has up
to 31% of requests each day due to new content such as
new episodes of TV shows, and the previews of upcoming
TV shows. The downloads trace has only 2-3% of all re-
quests due to new content on a typical day. However, on the
9th day of the trace major software updates were released,
which were downloaded on the same day by a large num-
ber of users. Therefore, nearly 20% of requests on that day
were for newly published content. The fraction of requests
for new content impacts the performance of demand-aware
placement strategies as we show in §5.

4.2 Network Topologies
We experimented with network topology maps from two

US ISPs. First is the Abilene ISP topology [21] and second
is is a large tier-1 US ISP topology (referred to as US-ISP).

5. EXPERIMENTAL EVALUATION
We conduct trace-driven experiments to compare different

content-aware traffic engineering strategies for NCDNs us-
ing the CDN traces and network topologies described above.
Our high-level goal is to identify a simple strategy that per-
forms well for a variety of workloads. In addition, we seek
to asses the relative value of optimizing content placement
versus network routing; the value of being demand-aware
versus being demand-oblivious; and the value of having fu-
ture knowledge of demand. A summary of our findings is as



follows.

• A simple combination of demand-oblivious placement
(LRU) and demand-oblivious routing (InvCap) signif-
icantly outperforms (by 2.2× to 17×) a joint-optimal
placement and routing with knowledge of the previous
day’s demand.

• Traffic engineering, i.e., routing optimized with knowl-
edge of recent traffic matrices, yields little improve-
ment in network cost compared to demand-oblivious
routing (InvCap) in conjunction with any reasonable
placement strategy.

• A demand-oblivious placement and routing is at most
4% sub-optimal compared to a joint-optimal place-
ment and routing with perfect knowledge of the next
day’s demand at higher storage ratios (≈ 4) with sim-
ple optimizations such as content chunking and link-
utilization-aware redirection.

• Simple hybrid strategies (partly demand-aware and
partly demand-oblivious) do not improve upon a com-
pletely demand-oblivious strategy.

5.1 Simulation Methodology
In order to realistically simulate end-users accessing con-

tent in an NCDN, we combine the CDN traces with ISP
topologies in §4 as follows. We map each content request
entry in the Akamai trace to the geographically closest PoP
in the ISP topology in the experiment (irrespective of the
real ISP that originated the request). Each PoP has a con-
tent server as in Figure 2, and the request is served locally,
redirected to the nearest (by hop-count) PoP with a copy,
or to the origin as needed.

MLU computation. We compute the traffic that flow
through each link periodically. To server a requested piece
of content from a PoP s to t, we update the traffic induced
along all edges on the path(s) from s to t as determined by
the routing protocol using the bytes-downloaded informa-
tion in the trace. To compute the MLU, we partition simu-
lation time into 5-minute intervals and compute the average
utilization of each link in each 5-minute interval. We discard
the values of the first day of the trace in order to warm up
the caches, as we are interested in steady-state behavior. We
then compute our primary metric, which is the 99-percentile
MLU, as the 99th percentile of the link utilization over all
links and all 5-minute time periods. We use 99-percentile
instead of the maximum as the former is good proxy for the
latter but with less experiemental noise. Finally, for ease of
visualization, we scale the 99-percentile MLU values in all
graphs so that the maximum 99-percentile MLU across all
schemes in each graph is equal to 1. We call this scaled MLU
the normalized MLU. Note that only the relative ratios of the
MLUs for the different schemes matter and scaling up the
MLU uniformly across all schemes is equivalent to uniformly
scaling down the network resources or uniformly scaling up
the traffic in the CDN traces.

Storage. We assume that storage is provisioned uni-
formly across PoPs except in §5.3.4 where we analyze het-
erogenous storage distributions. We repeat each simulation
with different levels of provisioned storage. Since the appro-
priate amount of storage depends on the size of the working
set of the content being served, we use as a metric of storage
the storage ratio, or the ratio of total storage at all PoPs in

the network to the average storage footprint of all content
accessed in a day for the trace. The total storage across all
nodes for a storage ratio of 1 is 228 GB, 250 GB, and 895
GB for news, entertainment and downloads respectively.

Content chunking. We analyze the impact of content
chunking in §5.3.2 and §5.3.5. In these experiments, we split
videos into chunks of 5 minute duration. The size of a chunk
of a video depends on the bitrate of the video, e.g., if bitrate
is 2 Mbps, chunk size is 75 MB. For the downloads trace,
we similarly split content into chunks of size 50 MB. In our
experiments, a demand-aware placement scheme uses the
demand of each chunk, instead of the demand for the original
content to calculate content placement. Demand oblivious
placement (caching) treats each chunk as a distinct content
to be either cached or evicted.

5.2 Schemes Evaluated
Each evaluated scheme has a content placement compo-

nent and a routing component. We schematically label each
evaluated scheme using the notation Routing-Scheme+Placement-
Scheme as follows.

InvCap-LRU uses Inverse Cap (with ECMP) as the rout-
ing strategy and LRU as the cache replacement strategy.
Inverse Cap is a static, shortest-path routing scheme where
link weights are set to the inverse of link capacity. This
scheme requires no information of either content demand or
the traffic matrix. If content is available at multiple PoPs
in the network, we fetch the content from the PoP which is
closest based on hop count distance, breaking ties randomly
among PoPs with equal hop count distance. OptR-LRU cal-
culates an optimal routing every three hours based on the
traffic matrix measured over the past three hours using the
multi-commodity flow optimization discussed in §3.3; it uses
the LRU cache replacement strategy.

We add a straightforward optimization to LRU where if
a user terminates the request before 10% of the video (file)
is viewed (downloaded), the content is not cached (and the
rest of the file is not fetched); otherwise the entire file is
downloaded and cached. This optimization is used since
we observe in our traces that a user watching a video very
often stops watching it after watching the initial period. A
similar phenomenon is observed for large file downloads, but
less frequently than video.

OptRP computes a joint optimization of placement and
routing based on the previous day’s content matrix using
the MIP formulation of §3.2 once a day. OptRP-Future has
oracular knowledge of the content matrix for the next day
and uses it to calculate a joint optimization of placement
and routing. OptRP and OptRP-Future are identical in all
respects except that the former uses the content matrix of
the past day while the latter has perfect future knowledge.
These two schemes help us understand the value of future
knowledge. In practice, it may be possible for an NCDN
to obtain partial future knowledge placing it somewhere be-
tween the two extremes. For instance, an NCDN is likely to
be informed beforehand of a major software release the next
day (e.g., new version of the Windows) but may not be able
to anticipate a viral video that suddenly gets “hot”.

To determine the value of optimizing routing alone, we
study two more schemes: InvCap-OptP and InvCap-OptP-
Future. These can be viewed as variants of OptRP and
OptRP-Future respectively where Inverse Cap routing is used
in the network but content placement is optimized, rather
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Figure 7: OptRP performs much worse than InvCap-LRU. OptRP-Future performs better than InvCap-LRU at
small storage ratios but the difference decreases at higher storage ratios.

than jointly optimizing both. The MIP used by these schemes
is described in §3.3.

For all schemes that generate a new placement each day,
we implement the placement during the low-traffic period
from 4 AM to 7 AM EST. This ensures that the traffic gen-
erated due to changing the content placement occurs when
the links are underutilized. For these schemes, the routing is
updated each day at 7 AM EST once the placement update
is finished.

5.3 Experiments

5.3.1 Analysis of Video & Downloads Traffic
Figure 7 shows the results for the news, entertainment

and downloads traces on Abilene and US-ISP. Our first ob-
servation is that a realistic demand-aware placement and
routing scheme, OptRP, performs significantly worse than
a completely demand-oblivious scheme, InvCap-LRU. OptRP
has 2.2× to 17× higher MLU than InvCap-LRU even at the
maximum storage ratio in each graph. OptRP has a high
MLU because it optimizes routing and placement based on
previous day’s content demand while a significant fraction of
requests are for new content not accessed the previous day.
As Figure 6 shows, the fraction of requests for new content
is up to 63%, 31%, and 20% for the news, entertainment,
and downloads traces respectively. Due to new content, the
incoming traffic from origin servers is significant, so the uti-
lization of links near the exit nodes connecting to the origin
servers is extremely high.

The fraction of requests served from the origin is much
higher for OptRP compared to InvCap-LRU as well as OptRP-
Future on the news and entertainment traces. Figure 8 shows
that OptRP serves 50% and 21% of requests from the ori-

gin for news and entertainment respectively. In comparison,
InvCap-LRU and OptRP-Future serve less than 2% of requests
from the origin. Therefore, OptRP has a much higher MLU
than both InvCap-LRU and OptRP-Future on the two traces.

The downloads trace differs from other traces in that, ex-
cept for one day, the traffic is quite predictable based on the
previous day’s history. This is reflected in the performance
of OptRP, which performs nearly the same as OptRP-Future
on all days except the ninth day of the trace (see Figure 9).
The surge in MLU for OptRP on the ninth day is because
nearly 20% of requests on this day is for new content con-
sisting of highly popular software update releases (see Figure
6). The surge in MLU on this one day is mainly responsible
for the poor performance of OptRP on the downloads trace.

The relative difference between InvCap-LRU and OptRP
grows larger as storage ratio increases. This is because
InvCap-LRU utilizes the additional cache at each location
to increase its hit rate and thereby reduce the traffic on
congested links in the network. On the other hand, OptRP
continues to serve the requests for new content not accessed
the previous day from the origin and performs poorly even
at high storage ratios.

Impact of future knowledge.
Next, we observe that InvCap-LRU does underperform com-

pared to OptRP-Future that has knowledge of future content
demand. However, InvCap-LRU improves with respect to
OptRP-Future as the storage ratio increases. The greatest
difference between the two schemes is for the experiment
with the entertainment trace on US-ISP. In this case, at a
storage ratio of 1, InvCap-LRU has twice the MLU of the
OptRP-Future scheme; the difference reduces to 1.6× at a
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Figure 8: OptRP serves 50% and 21 % from origin
in news trace and entertainment trace respectively.
InvCap-LRU and OptRP-Future serve less than 2% re-
quests from origin.
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Figure 9: On downloads trace, OptRP incurs a very
high MLU on one day. US-ISP.

storage ratio of 4. This shows that when storage is scarce,
demand-aware placement with future knowledge can signif-
icantly help by using knowledge of the global demand to
maximize the utility of the storage. However, if storage is
plentiful, the relative advantage of OptRP-Future is smaller.
An important implication of these results is that an NCDN
should attempt to do demand-aware placement only if the
future demand can be accurately known or estimated, oth-
erwise a simpler demand-oblivious scheme such as LRU suf-
fices.

Impact of optimizing routing.
How are the above conclusions impacted if InvCap-LRU

were to optimize routing or OptRP-Future were to use In-
vCap routing? To answer this question, we analyze the max-
imum reduction in MLU by using OptR-LRU over InvCap-
LRU across all storage ratios in Figure 10. We similarly com-
pare OptRP-Future and InvCap-OptP-Future. We find that
OptR-LRU improves the MLU over InvCap-LRU by at most
10% across all traces suggesting that optimizing routing is
of little value for a demand-oblivious placement scheme.
OptRP-Future reduces network cost by at most 13% com-
pared to InvCap-OptP-Future. As we consider OptRP-Future
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Figure 10: Optimizing routing gives little improve-
ment to MLU of either InvCap-LRU or InvCap-OptP-
Future

to be the “ideal” scheme with full future knowledge, these
results show that the best MLU can be achieved by optimiz-
ing content placement alone; optimizing routing adds little
additional value.

Non-monotonic “optimal” behavior.
Somewhat counterintuitively, the MLU sometimes increases

with a higher storage ratio for the OptRP scheme. There are
at least three reasons that explain this. First, the optimiza-
tion formulation optimizes for the content matrix assuming
that the demand is uniformly spread across the entire day,
however the requests may actually arrive in a bursty man-
ner. So it may be sub-optimal compared to a scheme that is
explicitly optimized for a known sequence of requests. Sec-
ond, the optimization formulation optimizes the MLU for
the “smoothed” matrix, but the set of objects placed by the
optimal strategy with more storage may not necessarily be
a superset of the objects placed by the strategy with lesser
storage at any given PoP. Third, and most importantly, the
actual content matrix for the next day may differ signifi-
cantly from that of the previous day. All of these reasons
make the so-called“optimal”OptRP strategy suboptimal and
in combination are responsible for the nonmonotonicity ob-
served in the experiments.

5.3.2 Content Chunking
Content chunking is widely used to improve content de-

livery efficiency. For example, HTTP [19] and Apple’s HLS
protocol [1] support content chunking and BitTorrent dis-
tributes content in small chunks [7]. In our context, both
demand-aware and demand-oblivious placement benefit from
chunking. A demand-oblivious placement improves with
chunking because a cache can store a partially downloaded
content if a user aborts the download before completion.
Chunking helps demand-aware placement for multiple rea-
sons. First, chunks of a content differ in popularity. There-
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Figure 11: Content chunking improves performance
of InvCap-LRU relative to OptRP-Future on both
topologies.

fore, placing more popular chunks at more locations is bet-
ter. Second, chunking enables storing more content at each
node, e.g., a large file may not fit at any PoP due to stor-
age constraints, but its chunks can be stored across a set of
PoPs. Third, splitting a content across multiple locations
spreads the traffic for that content over more links, which
reduces network cost.

Next, we describe our findings on the impact of chunking
(refer §5.1 for the methodology) on NCDN strategies. We
find that although chunking improves performance of both
InvCap-LRU and OptRP-Future as expected, it significantly
improves the performance of InvCap-LRU relative to OptRP-
Future. Figure 11 shows the results of our experiments on the
entertainment trace. Due to chunking, the maximum differ-
ence between the MLU of InvCap-LRU and OptRP-Future
reduces from 2.5× to 1.4×. At the maximum storage ratio
in each case, InvCap-LRU is at most 20% worse compared
to OptRP-Future with chunking. Our experiments (omitted
for brevity) on the downloads trace have qualitatively sim-
ilar conclusions. Chunking makes a small difference on our
experiments with the news trace as more than 95% content
is of duration less than our chunk size. Overall, chunking
strengthens our conclusion that a demand-oblivious place-
ment and routing achieve close to the best possible network
cost for an NCDN.

Even with content chunking, the demand-aware placement
and routing strategy, OptRP, has up to 7× higher network
cost compared to InvCap-LRU in the experiment with enter-
tainment trace (not shown in Figure 11). This is because
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Figure 12: Hybrid placement strategies either per-
form as well as InvCap-LRU or worse for both traces.

chunking does not help OptRP’s primary problem of not be-
ing able to adapt effectively to new content, so it continues
to incur a high cost.

5.3.3 Alternative Demand-aware Schemes
The experiments so far suggest that a demand-aware scheme

that engineers placement and routing once a day based on
the previous day’s demand performs poorly compared to
a demand-oblivious scheme, InvCap-LRU. In this section,
we evaluate the performance of two alternative demand-
aware schemes. The first is a hybrid scheme that combines
demand-aware and demand-oblivious schemes, and the sec-
ond is a demand-aware scheme that optimizes placement
and routing multiple times a day. We discuss each of them
in turn.

Hybrid placement: We evaluate a hybrid placement
scheme that splits the storage at each node into two parts -
one for a demand-aware placement based on previous day’s
content demand and the other for placing the content in
a demand-oblivious LRU manner. This hybrid strategy is
similar to that used in [2]. We present the results for ex-
periments with news trace and entertainment trace on the
Abilene topology in Figure 12. For this experiment, we used
20% of storage at each node as a LRU cache and the rest
of the storage to place content exactly as in OptRP. We
find that in both these cases InvCap-LRU performs either
as well or better than the OptRP scheme. We also ex-
perimented with assigning a greater fraction of storage to
demand-oblivious placement (omitted for brevity), but the
above conclusions remain unchanged in those experiments.

We also tried a second hybrid placement scheme that uses
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Figure 13: Demand-aware placement and routing
can match the performance of InvCap-LRU if com-
puted eight times per day.

LRU caching only for content with zero demand on the pre-
vious day, e.g., new content published on the present day;
planned placement is used for content with a non-zero de-
mand on the previous day. As before, we used 20% of storage
as an LRU cache and remainder for demand-aware place-
ment. The MLU for this hybrid scheme was higher than
that of the InvCap-LRU scheme as well.

This experiment shows that simple strategies that com-
bine demand-oblivious placement and demand-aware place-
ment do not perform better than a demand-oblivious content
placement scheme. Of course, a carefully designed hybrid
placement scheme by definition should perform at least as
well as the demand-oblivious and demand-aware schemes,
both of which are extreme cases of a hybrid strategy. How-
ever, we were unable to design simple hybrid strategies that
consistently outperformed fully demand-oblivious placement
and routing.

OptRP multiple times per day: Next, we analyze the
performance of demand-aware schemes that engineer place-
ment and routing multiple times each day at equal intervals
- twice per day, four times per day, and eight times per
day. In all cases, we use the content demand in the past
24 hours to engineer placement and routing. In Figure 13,
we compare the performance OptRP for different frequen-
cies against InvCap-LRU scheme. As OptRP engineers more
frequently, its performance improves. This is because it up-
dates placement more quickly based on the demand for new
content and a change in demand for older content. However,
OptRP needs to engineer eight times per day to match the
performance of a demand-oblivious placement. In all other

cases, InvCap-LRU performs better. The experiments with
the entertainment trace shown here represents the best case
for OptRP. Typically, OptRP incurs a higher MLU InvCap-
LRU even when engineering is done eight times per day, e.g.,
on the news trace, we find OptRP incurs up to 4.5× higher
MLU compared to InvCap-LRU even on engineering eight
times per day.

Considering the effort involved in executing a demand-
aware placement—measuring content demand at all PoPs,
solving a computationally intensive optimization problem,
moving content to new locations—and the frequency at which
it needs to be done—eight times a day—even to match the
cost achieved by a demand-oblivious strategy, our position is
that the pain does not justify the gain. In practice, NCDNs
are better served by opting for a much simpler demand-
oblivious strategy and provisioning more storage if optimiz-
ing the cost further is deemed necessary.

5.3.4 Impact of Experimental Parameters
We perform an extensive set of experiments to understand

the effect of some of the parameters that could have bi-
ased our findings: (1) storage distribution across nodes, (2)
frequency of routing updates, (3) number of cache deploy-
ments, and (4) number of exit nodes that connect to the
origin. However, we find that our overall conclusions are
robust to variations in the values of these parameters.

Demand-aware routing (OptR-LRU) parameters: We
ask if OptR-LRU, shown in the previous section to have
nearly the same network cost as InvCap-LRU, performs sig-
nificantly better if we either (1) change the interval at which
routing is updated, or (2) optimize routing based on a traf-
fic matrix other than the one measured over the past three
hours. We perform two sets of experiments to answer these
questions. The first experiment evaluates MLU for several
routing update intervals: 15 min, 30 min, 3 hr (default), 6
hr, and 24 hr. In each case, we compute routing based on
TM measured since the last routing update. We find that
the network cost of OptR-LRU remains almost unchanged
irrespective of the routing update interval (graphs omitted
for brevity).

The second experiment optimizes routing based on the
TM measured on the previous day instead of TM measured
since the last routing update, e.g., if routing is being updated
at 9am for the period of 9am-12pm, then we use TM mea-
sured from 9am-12pm on the previous day. We set the rout-
ing update interval to 3 hours and then to 6 hours. We find
that the network cost in in both these cases is nearly identi-
cal to OptR-LRU’s network cost with our default parameters
(graphs omitted for brevity). This experiment suggests that
OptR-LRU is unlikely to improve even if we optimize rout-
ing based on other previously measured TMs. In summary,
these experiments reinforce the finding that InvCap-LRU is
as effective as OptR-LRU.

Heterogenous storage: In this experiment, the storage
at each PoP is set proportional to the fraction of requests at
the PoP in each trace. We draw out two main observations
from our results (graphs omitted for brevity). First, OptRP
continues to perform poorly compared to InvCap-LRU. This
is expected as heterogenous storage makes little difference
to the “miss” traffic generated because of newly published
content. Second, network cost of InvCap-LRU as well as
OptRP-Future increases with heterogenous storage compared
to homogenous storage but the increase is more for InvCap-
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LRU compared to OptRP-Future. We observe that InvCap-
LRU’s network cost increases up to 30% or more in four
out of six experiments. But OptRP-Future’s network cost
increases up to 20% or less (except for the entertainment
trace on US-ISP). The increase in InvCap-LRU’s network cost
is likely because the PoPs that have the smallest fraction of
all requests are assigned extremely small values of storage,
which increases the cache miss rate at these PoPs.

We evaluated InvCap-LRU’s performance with two more
heterogenous storage distributions: (1) storage proportional
to capacity of outgoing links at PoP (2) storage proportional
to the number of outgoing links at PoP. Compared to ho-
mogenous storage, the network cost of InvCap-LRU is up to
180% more when storage is set proportional to capacity and
is up to 60% more when storage is set proportional to num-
ber of degree of the PoP. It is unclear to us if a simple heuris-
tic to select a heterogenous storage distribution exists that
significantly improves InvCap-LRU’s network cost over a ho-
mogenous storage distribution. Overall, as both InvCap-LRU
and OptRP-Future perform better with homogenous storage
than the heterogenous storage distributions we considered,
our earlier results with homogeneous storage should be con-
sidered as more representative.

Number of caches: To understand how many caches
should an NCDN deploy, we evaluate the performance of
InvCap-LRU when caches are deployed at a fraction of PoPs
selected randomly. In each experiment, total storage is fixed
but the fraction of PoPs with caches is varied from 0.2 to
1.0; storage is provisioned homogeneously across caches. As
Figure 14 shows, an increase in the number of caches reduces
the MLU, and deploying caches at all the PoPs results in the
least MLU. Even a cache deployment at 80% of PoPs is sub-
optimal, and results in up to 5× higher MLU in comparison
to a cache deployment at all PoPs. This experiment shows
that NCDNs should deploy caches at all PoPs, as we have
assumed in earlier experiments.

Number of exit nodes to origin: The experiments so
far assumed that the origin server can be reached through
exactly three exit locations in the network. Next, we per-
form our experiments with one exit location and five exit lo-
cations. Our main findings from the prior sections, namely–
InvCap-LRU performs significantly better than OptRP; OptRP-
Future performs better than InvCap-LRU; and optimizing
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Figure 15: Link utilization aware request redirection
helps InvCap-LRU reduce network cost up to 21%.
Link utilizations updated every 30 seconds performs
as well as using current link utilizations. (Entertain-
ment trace, US-ISP)

routing adds little value;–remain unchanged as we vary the
number of exit nodes. Thus, our findings are not sensitive
to the number of exit nodes connected to the origin.

5.3.5 Redirection Schemes for LRU
The demand-oblivous placement scheme, LRU, specifies

a cache replacement strategy, but there are several request
redirection schemes that can be used in combination with
LRU. In this section, we first propose a novel redirection
scheme that performs request redirection considering link
utilizations in order to reduce network cost. Next, we an-
alyze whether requests should be redirected to all PoPs or
a smaller subset of them in order to minimize network cost.
We use content chunking for all experiments in this section.

Link utilization aware request redirection: This
scheme is designed to reduce link utilization in an NCDN.
The idea is to periodically measure the utilization of all links
and then redirect requests over the paths that have less uti-
lized links. For example, if a request can be redirected to
either of two PoPs, but the links along the path from one
of the PoPs are more utilized than the links along the path
from the other PoP, then the PoP whose path has less uti-
lized links is chosen. Compared to our current redirection
strategy, i.e., choose the closest PoP based on hop count
distance, we expect that request redirection considering link
utilizations will achieve lower network cost.

Our implementation works as follows. When a request re-
sults in a cache miss at the local PoP (the PoP first contacted
by a user), it fetches content from other PoPs that may have
the content available. If multiple PoPs have the content, the
local PoP fetches content from the PoP for which the uti-
lization of the most utilized link along the path from that
PoP to the local PoP is the least. We break ties based on
hop count distance and then randomly.

We experiment with two versions of the above algorithm,
which differ in the frequency at which link utilization levels
are measured across all PoPs. In the first version, InvCap-
LRU-Current, all PoPs in the network know the link utiliza-
tions of all links at every moment. In the second version,
InvCap-LRU-30sec, link utilization is measured at all links
every 30 seconds, and is updated across all PoPs. Our base-
line for comparison is InvCap-LRU scheme. The goal of our
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Figure 16: InvCap-LRU-Nbrs redirects requests only
to neighbors while InvCap-LRU-Local redirects to no
other PoPs and sends requests directly to the ori-
gin. InvCap-LRU-Nbrs has a network cost within 27%
of InvCap-LRU while InvCap-LRU-Local incurs up to a
100% higher network cost. (Downloads trace, Abi-
lene)

experiments is to identify if link-utilization-based redirection
improves performance at all compared to the baseline; fur-
ther optimizing the frequency of monitoring link utilization
levels is beyond the scope of this paper.

Our results show that request redirection using link uti-
lizations does reduce network cost compared to InvCap-LRU.
Figure 15 presents the results for the experiment with the
entertainment trace on US-ISP (with other graphs omitted
for brevity). InvCap-LRU-Current reduces network cost up to
19% compared to InvCap-LRU. In the experiments with other
traces (graphs omitted), we find that InvCap-LRU-Current re-
duces network cost by 10% to 21% compared to InvCap-LRU.
In addition, InvCap-LRU-30sec matches the network cost of
InvCap-LRU-Current on all traces except for downloads trace
on Abilene topology, where its network cost is higher by up
to 9%. This result implies that an implementation in which
link utilization levels are updated at PoPs every 30 seconds
can achieve most of the benefits of link utilization aware
request redirection.

Link utilization aware redirection and content chunking,
in combination, nearly blur the difference between InvCap-
LRU and OptRP-Future. After these optimizations are used,
InvCap-LRU is at most 4% sub-optimal compared to OptRP-
Future at the highest storage ratio in each experiment. In
some cases, InvCap-LRU even achieves a lower network cost
than OptRP-Future, e.g, on the Entertainment trace on the
Abilene topology, InvCap-LRU performs 22% better than
OptRP-Future.

Request redirection to neighbors: In our InvCap-LRU
implementation, a PoP redirects request to all PoPs upon a
cache miss, which maximizes the hit rate of network caches
and reduces load on origin servers. To examine whether
request redirection to all PoPs is necessary and to quantify
its benefit, we compare InvCap-LRU against two strategies
that redirect requests to a much smaller set of PoPs. First,
is InvCap-LRU-Nbrs, where a PoP redirects requests only to
its one-hop neighbors on a cache miss before contacting the
origin. Second, is InvCap-LRU-Local, where a PoP sends
requests to the origin on a cache miss at a PoP.

In Figure 16, we see that InvCap-LRU-Nbrs has between
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Figure 17: Due to link failures, InvCap-LRU and
OptRP-Future see up to 110% and 99% increase in
MLU respectively. In case of link failures, InvCap-
LRU can even achieve a lower network cost than
OptRP-Future at high storage ratios.

6% to 27% higher network cost than InvCap-LRU depending
on trace and topology. In comparison, InvCap-LRU-Local has
up to 25% to 100% higher network cost than InvCap-LRU.
These results show that request redirection to other network
caches helps reduce network cost, but most of this reduction
can be had by redirecting requests only to neighboring PoPs.

InvCap-LRU-Local serves between 3× to 7× more requests
from origin than InvCap-LRU, which increases the utiliza-
tion of links near the exit nodes connecting to origin nodes.
InvCap-LRU-Nbrs also serves more requests from origin than
InvCap-LRU, but the increase is between 2× to 3×. There-
fore, network cost for InvCap-LRU-Nbrs is smaller compared
to InvCap-LRU-Local.

5.3.6 Is Traffic Engineering Necessary?
Our results suggest that optimizing routing yields little

improvement to network cost for the NCDN portion of the
traffic, but this finding does not imply that traffic engineer-
ing by ISPs is unnecessary. An important reason for ISPs
to engineer traffic is that they route transit traffic in addi-
tion to NCDN traffic. Since an ISP does not control either
content placement or request redirection for transit traffic,
traditional traffic engineering methods, e.g., OSPF traffic
engineering, can reduce the network cost due to transit traf-
fic. The benefit of traffic engineering, or lack thereof, de-
pends on the fraction of transit traffic vs. NCDN traffic in
an ISP.



Minimizing network cost in case of link failures is also an
objective of traffic engineering. Next, we study whether the
demand-oblivious placement and routing scheme, InvCap-
LRU, that is highly effective in the failure-free scenario, also
provides resilience to link failures. To this end, we compare
the performance of InvCap-LRU and OptRP-Future in case of
link failures. The set of failure scenarios we consider includes
all single-link failures. We calculate the network cost for a
failure scenario by simulating the entire trace with the failed
link. Across all such failure scenarios for each scheme, we
select the one with the highest network cost and attribute
that as the network cost for the scheme for purposes of our
comparative evaluation.

For this experiment, we add a constraint to OptRP-Future
that ensures that the set of paths between any pair of nodes
has at least two paths with no links in common. As a result,
the routing computed is resilient to any single link failure.
In terms of variables in Table 3, our constraint is

fije ≤ β × fij , ∀e ∈ E, i, j ∈ V

where we set β = 0.75. This constraint means that a link
can carry at most 75% of traffic between any pair of nodes.
OptRP-Future calculates placement and routing assuming a
failure-free scenario. In case of a link failure, we update
routing by excluding all paths that cross the failed link. For
each pair of nodes, traffic splitting ratios for the working
paths are multiplied by a normalizing constant such that
traffic splitting ratios add up to one. InvCap-LRU updates
shortest path routes in case of a link failure while keeping
existing link weights the same.

Figure 17 shows the network cost of InvCap-LRU and OptRP-
Future in the failure-free scenario and their network costs
during failures. InvCap-LRU and OptRP-Future see up to a
110% and 99% increase in network cost respectively dur-
ing failures. During failures, we find that InvCap-LRU has
a significantly higher network cost than OptRP-Future at
small storage ratios, but the difference reduces at higher
storage ratios with InvCap-LRU even achieving a lower net-
work cost than OptRP-Future at the maximum storage ratio
in each graph. Comparing the failure-free and failure scenar-
ios, the relative sub-optimality of InvCap-LRU with respect
to OptRP-Future remains the same at small storage ratios
but reduces at higher storage ratios. The nonmonotonicity
of OptRP-Future is because it optimizes routing and place-
ment assuming a failure-free scenario and hence performs
sub-optimally when link failures occur.

We believe that our analysis of the network cost during
failures could be further improved, e.g., we consider only
the worst case network cost in case of link failures, and our
modification of OptRP-Future does not guarantee that the
modified routing will be optimal in case of link failures. Our
primary focus in this paper is on minimizing hotspots, so a
more detailed evaluation of fault-tolerant traffic engineering
in NCDNs is deferred to future work.

5.3.7 Experiments with synthetic workloads
As our experiments are done with a fixed set of work-

loads and ISP topologies, this raises the question whether
our conclusions are generalizable in other cases. To address
this issue to some extent, we experiment with synthetic con-
tent workloads, which assume a Zipfian content popularity
distribution. This workload consisted of 1000 uniform sized
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Figure 18: Experiments with a synthetic trace show
that OptR-LRU yields almost no improvement in
MLU over InvCap-LRU. The OptRP-Future scheme
outperforms InvCap-LRU even at higher storage ra-
tios on the US-ISP topology.

videos of 10 minute duration each. The distribution of ag-
gregate popularity of videos follows a Zipf distribution with
parameter α = 1.0. Experiments with α = 0.5, and α =
0.25 yielded qualitatively similar results. The requests for
an object are uniformly distributed at all PoPs at all times.

Figure 18 shows two main findings. First, OptR-LRU
yields almost no improvement in MLU over InvCap-LRU,
which is consistent with our earlier findings. Second, the
OptRP-Future scheme outperforms InvCap-LRU even at higher
storage ratios on the US-ISP topology. This suggests that
the simple InvCap-LRU scheme may not give the close to
optimal costs in all scenarios. An analysis of relative perfor-
mance of schemes for general topologies and workloads is an
interesting open question, and would be considered in our
future work.

6. RELATED WORK
Traffic engineering and content distribution have both seen

an enormous body of work over more than a decade. To our
knowledge, our work is the first to pose the NCDN prob-
lem, wherein a single entity seeks to address both concerns,
and empirically evaluate different content-aware traffic engi-
neering strategies. Nevertheless, a significant body of recent
research has studied the interaction of content distribution
and traffic engineering in various forms, and we explain be-
low how our work relates to and builds upon this prior work.



Joint Optimization.
Recent work has explored the joint optimization of traf-

fic engineering and ”content distribution”, where the latter
term refers to the server selection problem. P4P proposed
by Xie et al. [24] seeks to improve application performance
for peer-to-peer (P2P) traffic while also reducing cost for the
ISP. P4P assumes a cooperative model where the ISP sup-
plies hints called p-distances to P2P applications that when
used by them improves their performance and also reduces
interdomain transit costs and the MLU for the ISP. In [15]
and [8], the authors study the interaction between traffic
engineering and content distribution using a game-theoretic
model and show that, without a joint optimization, the equi-
librium of this interaction may not result in a socially opti-
mal solution. In [15], it is shown that a joint optimization
can achieve benefits of up to 20% for ISPs and up to 30%
for CDNs as compared to the case when there is no cooper-
ation between them. CaTE [12], like P4P, shows that both
ISPs and content providers can benefit if content providers
perform request redirection based on network information
provided by ISPs.

Compared to all of these works that equate content dis-
tribution to server selection (or request redirection in our
parlance), the NCDN optimization formulation additionally
considers content placement itself as a degree of freedom.
As our results show, optimizing placement is powerful and
can single-handedly reduce the MLU significantly even in
conjunction with simplistic request redirection and routing
strategies.

Placement Optimization.
Applegate et al. [2] study the content placement prob-

lem for a VoD system that seeks to minimize the aggregate
network bandwidth consumed assuming a fixed routing in
the network. They compare different video placement al-
gorithms and find that an optimized, demand-aware place-
ment strategy with a small local cache (similar in spirit to
our “hybrid” strategy in §5.3.3) outperforms purely demand-
oblivious LRU-like strategies. Our work differs from theirs
with respect to both the problem addressed and the quali-
tative findings as follows. We model an NCDN that in addi-
tion to placement also controls routing, and assessing the in-
teraction and relative importance of routing and placement
strategies is one of our contributions.

Furthermore, unlike [2], we find that a simple, demand-
oblivious, LRU-like strategy significantly outperforms an op-
timized, demand-aware (static or hybrid) placement strat-
egy. There are two explanations for this seeming disparity.
First, we consider a comprehensive trace of CDN requests
with a variety of on-demand video as well as download traf-
fic that exhibits significant daily churn; in comparison, their
workload appears to be reasonably predictable even over
weekly timescales. Second, the optimized, demand-aware
placement strategy they consider also has some benefit of
future knowledge and is therefore somewhat comparable to
the optimized scheme with future knowledge that we ana-
lyze (OptRP-Future in §5). In general, obtaining knowledge
about future demand may not be practical for all types of
content, e.g., news videos, for a large NCDN. Furthermore,
our analysis of different storage ratios suggests that LRU
performs worse only at small storage ratios, and the differ-
ence between LRU and optimized content placement reduces
significantly on increasing the storage ratio.

Traffic Engineering.
Traffic engineering schemes have seen a long line of work

and a variety of schemes such as OSPF link-weight opti-
mization [10], MPLS flow splitting [9], optimizing routing
using multiple traffic matrices [23, 25], online engineering
strategies [16, 9], and provably near-optimal oblivious rout-
ing [3, 4] have been studied. All of these schemes assume
that the demand traffic is a given to which routing must
adapt. However, we find that an NCDN is in a powerful
position to change the demand traffic matrix, so much so
that even a naive scheme like Inverse Cap, i.e., no engineer-
ing at all, suffices in conjunction with a judicious placement
strategy and optimizing routing further adds little value. In
this respect, our findings are comparable in spirit to Sharma
et al. [20]. However, they focus on the impact of location
diversity, assuming a fixed number of randomly placed repli-
cas of each content, and find that even a small number of
random replicas suffice to blur differences between different
traffic engineering schemes with respect to a capacity metric
(incomparable to MLU), but find that engineering schemes
still outperform static Inverse Cap routing.

7. CONCLUSIONS
We posed and studied the content-aware traffic engineer-

ing problem where content distribution and traffic engineer-
ing decisions are optimized jointly as opposed to being op-
timized separately as it is done today. This paradigm is of
key importance to NCDNs who own and manage the infras-
tructure for content distribution as well as the underlying
network. Our trace-driven experiments using extensive ac-
cess logs from the world’s largest CDN and realistic ISP
topologies resulted in the following key conclusions. First,
simple demand-oblivious schemes for routing and placement,
such as Inverse Cap and LRU, outperformed sophisticated
placement and routing schemes that utilized the prior day’s
demand for its optimization. Second, traffic demand can be
“shaped” by effective content placement to the extent that
in many cases no engineering of traffic is needed. Finally,
we studied the value of the future knowledge of demand for
placement and routing decisions. While future knowledge
helps, what is surprising is that a small amount of addi-
tional storage allows demand-oblivious schemes to perform
as well as demand-aware ones that know the future.

8. REFERENCES
[1] Apple. HTTP Live Streaming. http://bit.ly/MgoUED.
[2] D Applegate, A Archer, V Gopalakrishnan, S Lee, and K K

Ramakrishnan. Optimal content placement for a large-scale
VoD system. In Co-NEXT, 2010.

[3] D Applegate and E Cohen. Making routing robust to
changing traffic demands: algorithms and evaluation.
IEEE/ACM Trans. Netw., 14:1193–1206, December 2006.

[4] Y Azar, E Cohen, A Fiat, H Kaplan, and H Racke. Optimal
oblivious routing in polynomial time. In STOC, 2003.

[5] Edge Cast.
http://www.edgecast.com/solutions/licensed-cdn/.

[6] Cisco. Visual Networking Index, 2011.
http://bit.ly/KXDUaX.

[7] B Cohen. BitTorrent Protocol. http://bit.ly/KDhQV1.

[8] D DiPalantino and R Johari. Traffic Engineering vs.
Content Distribution: A Game Theoretic Perspective. In
INFOCOM, 2009.

[9] A Elwalid, C Jin, S Low, and I Widjaja. MATE: MPLS
adaptive traffic engineering. In INFOCOM, 2001.



1 2 m

1 2 n s

These	  nodes	  have	  unit	  storage	  but	  have	  no	  demand	  for	  any	  content.	  

These	  nodes	  have	  no	  storage	  but	  have	  non-‐zero	  demand	  for	  content.	  

1 1

Unit	  capacity	  edges	  
from	  each	  set	  to	  the	  
elements	  of	  the	  set	   Special	  	  

node	  

A	  node	  for	  each	  

A	  node	  for	  each	  

1 1

Unit	  capacity	  	  
edges	  to	  s	  from	  	  
nodes	  1	  to	  m.	  

Figure 19: Reduction from SetCover to Opt-NCDN

[10] B Fortz and M Thorup. Internet traffic engineering by
optimizing OSPF weights. In INFOCOM, 2000.

[11] B Fortz and M Thorup. Optimizing ospf/is-is weights in a
changing world. JSAC, May 2002.

[12] B Frank, I Poese, G Smaragdakis, S Uhlig, and
A Feldmann. Content-aware Traffic Engineering. ArXiv
e-prints, 2012.

[13] IBM. ILOG CPLEX. http://ibm.co/KRuqhB.
[14] Akamai NetSession Interface.

http://www.akamai.com/client.
[15] W Jiang, R Zhang-Shen, J Rexford, and M Chiang.

Cooperative content distribution and traffic engineering in
an ISP network. In SIGMETRICS, 2009.

[16] S Kandula, D Katabi, B Davie, and A Charny. Walking the
tightrope: responsive yet stable traffic engineering. In
SIGCOMM, 2005.

[17] Nielsen. Online Video Usage Up 45%.
http://bit.ly/MiXiPU.

[18] E Nygren, R K Sitaraman, and J Sun. The Akamai
network: a platform for high-performance internet
applications. SIGOPS Oper. Syst. Rev., August 2010.

[19] RFC. 2616. http://www.ietf.org/rfc/rfc2616.txt.

[20] A Sharma, A Mishra, V Kumar, and A Venkataramani.
Beyond MLU: An application-centric comparison of traffic
engineering schemes. In INFOCOM, 2011.

[21] Abilene Topology. http://bit.ly/Lf8k7a.

[22] Verizon. HBO for FIOS Customers. http://bit.ly/JQ2dn8.

[23] H Wang, H Xie, L Qiu, Y R Yang, Y Zhang, and
A Greenberg. COPE: Traffic Engineering in Dynamic
Networks. In SIGCOMM, 2006.

[24] H Xie, Y R Yang, A Krishnamurthy, Y G Liu, and
A Silberschatz. P4P: Provider Portal for Applications. In
SIGCOMM, 2008.

[25] C Zhang, Y Liu, W Gong, J Kurose, R Moll, and
D Towsley. On optimal routing with multiple traffic
matrices. In INFOCOM, 2005.

APPENDIX
A. COMPLEXITY OF NCDN PROBLEM

Opt-NCDN is the decision version of the NCDN problem
described in §3. Opt-NCDN asks if the MLU of the network
can be α while satisfying the constraints of the problem.
Theorem 1 Opt-NCDN is NP-Complete even in the spe-

cial case where all objects have unit size, all demands have
unit value, and link and storage capacities have binary val-
ues.

Proof: We show a reduction from the well known SetCover
problem. We first define the SetCover problem that we will

reduce to Opt-NCDN.
SetCover: Let S = {1, 2, ..., n} be a set of n elements.

Let X = {S1, ..., Sm} where Si ⊆ S, 1 ≤ i ≤ m. Let k be
an integer. SetCover asks if there exists Y = {Y1, ..., Yk},
where Yk ∈ X and Y1 ∪ ... ∪ Yk = S. Set Y is called a set
cover of size k.

The reduction from SetCover to Opt-NCDN is described
using the network in Figure 19. Set V1 = {1, ...,m} refers
to nodes in the top row. Each node i ∈ V1 maps to the set
Si ⊂ S. Set V2 = {1, ..., n} refers to nodes in the bottom
row excluding node s. Each node i ∈ V2 maps to element
i ∈ S. Node s is called a special node.

Directed links (i, j) exist from all nodes i ∈ V1 to all nodes
j ∈ V2. The capacity of (i, j) is 1 unit if i ∈ Sj , otherwise
capacity is zero. Node s has incoming links (i, s) from all
nodes i ∈ V1 such that the capacity of all incoming links is 1
unit. All nodes in the top row V1 have unit storage whereas
nodes in the bottom row V2 ∪ {s} have zero storage.

The set of objects is {o, 1, 2, ..., (m − k)} and all objects
have unit size. Object o is a special object that has unit
demand at nodes in set V2 = {1, ..., n} and zero demand at
all other nodes. Objects 1, 2, .. (m− k) have unit demand
at special node s and zero demand at all other nodes.
Claim: There is a set cover of size k if and only if the

above network can achieve MLU ≤ 1.
If there is a set cover of size k, then the network can

achieve MLU of 1. Store the special object o at the k set
cover locations in the top row and satisfy demand for o at
nodes V2 = {1, ..., n} in the bottom row from these locations
with MLU = 1. The remaining (m−k) nodes in the top can
be used for objects {1, 2, ..., (m− k)} to satisfy the demand
at special node s with MLU of 1.

If there is no set cover of size k, then the network must
have a MLU > 1. Objects must be placed in some (m− k)
nodes in the node V1 = {1, ...,m} in the top row to satisfy
the demand for special node s. Thus, at most k nodes are
available for placing special object o. Since there is no set
cover of size k, some bottom node i ∈ V2 must satisfy its
demand for special object o using an edge whose capacity is
zero resulting in MLU = ∞ on that edge.

It is easy to show that Opt-NCDN ∈ NP. Hence, Opt-
NCDN is NP-Complete.

Theorem 2 Opt-NCDN is inapproximable within a factor
β for any β > 1 unless P = NP.

The proof of Theorem 1 shows that if there is a set cover
of size k, MLU = 1 and MLU = ∞ otherwise. Thus, if we
find a solution for which MLU is finite, it implies that MLU
= 1, which immediately gives a solution to the corresponding
SetCover instance.

Lets assume a β-approximation (β > 1) exists for Opt-
NCDN. Then, we can solve SetCover in polynomial time
by mapping SetCover instance to Opt-NCDN instance, and
checking if MLU≤ β (which implies MLU = 1). As SetCover
∈ NP-Complete, therefore, no β−approximation for Opt-
NCDN exists unless P = NP.

B. JOINT OPTIMIZATION OF
TRANSIT TRAFFIC MATRIX
AND CONTENT MATRIX

We present here a modification to the MIP in §3.2 to



jointly optimize routing for an ISP transit traffic matrix
(TTM) and a content matrix. Let D be a TTM and Dij

denote the traffic from PoP i to PoP j. We modify only the
constraints (3) and (4) in the earlier MIP as follows:

∑
k∈K

tijk +Dij = fij , ∀j ∈ V −X, i ∈ V (13)

∑
k∈K

tijk +
∑
k∈K

δijtiok +Dij = fij , ∀j ∈ X, i ∈ V (14)

C. LIMITING CONTENT PLACEMENT
UPDATE TRAFFIC

In this section, we describe our extension to the MIP pre-
sented in §3.2 which allows us to limit the MLU due to traffic
from updating the content placement. To this end, we add
constraints to the MIP to ensure that the MLU due to the
placement update traffic is less than a constant β. In our
experiment, we dynamically update the value of β to be 2/3
of the MLU within the past 24 hours of the experiment.

We follow the same notation as in §3.2. The binary vari-
able xik denotes if the content k ∈ K is stored at node
i ∈ V , Sk denotes the size of the content. To describe the
constraint, we define the following parameters: T denotes
the duration over which traffic due to placement update will
be spread out. Xjk denotes whether content k ∈ K is stored
at node j ∈ V currently. The current routing in the net-
work is rije, the fraction of traffic from node j to node i
crossing link e. In addition we define a function γ(i, j, k).
γ(i, j, k) = 1 if Xjk = 1 and node j is the closest node in
terms of hop count from node i which has stored a copy
of content k, otherwise. Both rije and γ(i, j, k) depend on
current routing and placement in the network and hence are
known constants. We assume that the transfer of content of
size Sk happens at a constant bit rate of Sk/T . In terms of
these variables we can define the total traffic ue on any link
e ∈ E during the placement update period.

ue =
∑
i∈V

∑
j∈V

∑
k∈K

γ(i, j, k)rijexjkSk/T ∀e ∈ E (15)

Finally, in order to limit the maximum utilization of any
link e ∈ E, we add the following constraint,

ue/Ce < β ∀e ∈ E (16)


