
Masters Project - Adressing Problem Spreading
in Agent Planning and Control

Author: Torben Jess, Advisor: Daniel D. Corkill & Victor R. Lesser

February 12, 2012

Abstract

This Masters project analyzes the influence that prediction of goal
spreading has in comparison to just the prediction of the state of a specific
goal in agent and Multi-Agent systems. A lot of environments like city
fires or bacteria in a human have this spreading behavior. These are
environments where one existing goal can cause another goal to start.
This behavior should have an influence on the way different goals are
evaluated and potential actions of agents are selected. So far the author
is not aware of any work that specifically addresses the difference between
spread prediction and no spread prediction.

We will analyze if and how prediction of this spreading effects agent
decision making and show that predicting this kind of behavior can enable
better decision and better performance of agent and Multi-Agent systems.
The effects of spread prediction are analyzed for city fires in the RoboCup
rescue Multi-Agent environment for burning buildings.

In addition to the analyzes of spread this master project therefore
also offers some further interesting insights in the behavior of fire in
RoboCup rescue and shows a good and efficient function to evaluate fires
in RoboCup rescue.

1 Introduction
In this masters project I’m going to analyze the difference between goal predic-
tion and goal-spread prediction and will empirically show that predicting the
spread of goals to other goals can have great advantages. While usual goal
prediction as is mainly focused on predicting one goal and it’s possible state in
some point in the future to make better decisions. The prediction of goal-spread
prediction also tries to identify possible further goals that this initial goal can
cause. This kind of behavior can be found in a lot of environments, but to the
authors knowledge hasn’t been addresses specifically for agents and Multi-Agent
systems. Wewill analyze this two kind of prediction (spread and no-spread) for
the case of building fires on the RoboCup Rescue fire simulator [1], where fires
show spreading behavior to other buildings.

1

When fire emergency call-centers receive information about a fire they usu-
ally determine information like the size of the building, wind directions, content
and material of the building, how close it is to other buildings and so on. This
could be done by asking the person who is calling or by sending helicopters or
first fire fighter to detect the situation. They probably also include informa-
tion about the building from maps, danger reports from companies and weather
reports. This knowledge is then used to generate some belief about the fire
situation and decide which actions to take to extinguish the fire in the best way
with the given resources of fire fighters. Intuitively they thereby use two slightly
different kinds of prediction to identify the best actions. The first one is the
behavior of the building itself, how fast it is burning and how much water would
be needed to extinguish this fire. The second kind of prediction is about the
spreading of a fire, is it going to ignite other buildings, when is this going to
happen and how could it be prevented. For example if a giant storage hall is
burning, the fire fighters are most likely sending more fire fighters with heavier
equipment, then when a small family house is burning (for the direct building
specific prediction). Or as another example, they would probably send more
fire fighters if a fire is burning in the middle of town with a lot of other houses
around then a fire in a house of similar structure burning in a suburb with a
lot of space around each building (as an example for spreading prediction). In-
cluding this kind of knowledge obviously seems to improve the behavior of the
real fire fighters. It is used in reality that is based on years of experience, a lot
of science and common knowledge.

Considering extinguishing the fire in a building as a goal and the fire fighters
as resources of an emergency center agent, then we are dealing with a scenario
where delayed or incomplete satisfaction of one goal can lead to the creation of
additional goals.

Similar applications where this spreading of goals can occur are bacteria.
When one bacteria is a goal for the immune system, then the division of bacteria
can cause more bacteria to cause damage and this can cause additional bacteria
and so on. We have a scenario, where one goal can cause other goals to start. We
define the initialization of a goal by another goal as spreading. The prediction
of spreading is thereby the prediction of if, when and where a goal initializes
other goals.

The knowledge of spreading has two advantages one just occurs limited re-
sources the other one a potential for earlier reaction.

Assuming an environment with limited resources like we have it in many
applications, this knowledge of goal spread can be very valuable. Like for the
case of just one fire fighting resource and two fires in the same distance to the fire
fighter one in the middle of the city and one in the outside of the city. Including
the possibility and knowledge of spreading in the prediction of the fire fighter
will probably cause the emergency center to choose the goal in the middle of the
city and reduce the overall damage of buildings. The reason is that the building
in the middle of the city is more likely to spread and cause more buildings to be
on fire. In environments with a lot of resources the decision between different
goals becomes unimportant, because all of them can be fulfilled successfully. For

2

example if there are enough fire fighters to fight the fire in the city and in the
suburbs appropriately we don’t have to worry about where to send my resources.
The problem is that this isn’t always the case. In catastrophic scenarios the
resources for fighting all possible fires are limited.

In the cases with limited and without limited resources, the knowledge of
spreading or potential spreading can have one additional advantage, if it creates
goals before they are even appearing. In our fire-fighting example this would be
the case, when the fire station is already able to send resources to a building,
because it knows that it is going to start burning.

This research is focused mainly on the first type of advantage where the
resources are limited and have to be used in the right way. This considers
specifically the empirical results and the developed algorithm. But the positive
effects of recognizing goals earlier are partly addressed and considered. There-
fore this research could be extended to the positive effect of spreading prediction
where goals are recognized earlier and therefore fought more accurately.

We will show that this goal spread prediction, can make a big difference,
by comparing non-spread goal prediction and spread goal prediction algorithm
in the RoboCup Rescue domain. In this project we will apply this intuitive
knowledge of spread that probably real emergency call center are using to the
artificial RoboCup Rescue fire simulator and show the different behavior of
agents in environments with goal spreading behavior. We will also analyze the
agent behavior and reactions when they have knowledge about the spreading of
fires and when they don’t have this knowledge.

There is a lot of work on the prediction of different environments like [2] or
on the prediction of the status of a specific goal in the future [3] 1. But the
consequences of spreading have not been addressed specifically in the literature.

The problem with spread prediction is that it isn’t guaranteed to be accurate
or just accurate in some specific number of cases. Therefore in some cases
using spread prediction could actually perform worse then not using spread
prediction, because it could cause wrong goal prediction and therefore wrong
decisions. Part of this research therefore is to find out if additional computing
time for prediction might be worth the gain of accuracy. Therefore some further
questions that need to be answered are: How to predict the behavior of fires?
How to predict the effects on other buildings? How accurate does the prediction
have to be? And how much computation time does the prediction take for a
specific outcome?

This work uses fixed implemented prediction functions for spread and no-
spread, it is not focusing on learning fire development or fire spread, we assume
that the learned function will reply in a similar way after some time steps that
our accurate prediction functions respond. 2 But even for the case of learning
the general results on considering spreading are the same. The case without any
goal prediction is also not considered, because it wouldn’t really be an accurate
decision if we were not trying to decide how the fire would develop in some way.

1This is actually done almost all the time, when decisions between different goals need to
be made.

2Using learning in prediction and no-prediction is a potential for future work.

3

Even just giving the actual fire state, to determine the number of resources, we
would have to predict how much water we have to put on the building. Therefore
making some well-informed decision about a fire always includes some predictive
capacity about the development of the fire.

The expectation is that spread-prediction performs better in scenarios with
spreading goals and lack of resources. This project will analyze this hypothesis
by first analyze the theoretical effects of spreading and then develop a spread
prediction algorithm for the RoboCup rescue domain and empirically analyze
if this algorithm performs better then non-predictive algorithm. In addition to
this analysis several spread predictive algorithm with different levels of accuracy
will be compared considering their overall performance. We expect that more
accurate prediction will perform better then less accurate prediction and we also
expect to see a border of inaccuracy where predictive algorithms perform worth
then non-predictive algorithms because of their inaccuracy.

The project is further structured as follows. First we overview related work.
After that we describe some theoretical insights in the prediction of goal spread-
ing. Then give a description of the specific RoboCup rescue domain and the
OAA architecture [4] that we used for my implementation. In Section 5 we also
describe the algorithm we used for the specific RoboCup rescue domain. In sec-
tion 6 we present an empirical evaluation of the algorithms and compare them
to my theoretical results, and in Section 7 we conclude with possible future work
in this area.

2 Related Work
The literature on prediction in different domains in general is very large. Some
papers like [5, 6] address the behavior of prediction and show that it can have
advantages, but they are also not considering spread-prediction.

There are three kind of related work that is relevant for this research, the
first kind of work is work on utility based goal evaluation. The second kind of
work is on fires in general, prediction of fires and on fires in RoboCup rescue.
Further work on prediction and especially spread prediction could be interesting.
We want to give an overview about both kind of work.

2.1 Utility based goal evaluation
Many different approaches on goal evaluation exist like [25, 26, 27]. The idea
of evaluating the utility of different plans for each goal is also used at different
kinds of research for example [28, 29].

The problem with this different research in utility-based goal evaluation is
that there exists no work that explicitly analyses the effects of including spread-
prediction in the goal utility calculation. There is probably some work where
potential knowledge of spreading is used to evaluate goals, but it is not stated
specifically or the author is not aware of this work. The new research step we

4

are planning to take in this research and make a connection between goal utility
evaluation and spread prediction.

This work is important because we are including our prediction in the utility
evaluation of different plans for a goal.

2.2 Fires, fire prediction and fires in RoboCup Rescue
There exists a lot of work on the whole RoboCup rescue domain like [7]. Some
of them are actually further addressing the fire-fighting domain [8]. A few like
[15] focus mainly on burning in the city. One of them [9] actually describes the
RoboCup rescue domain and gives some insights why prediction can be helpful
in this domain (see section 4.1 for further details on the fire simulator). None
of them actually focuses on good reactions of agents towards this expected fire
behavior.

Beside RoboCup rescue a few papers focus on the development and spreading
of fires. But most of them like [16, 17] are mainly focused on land fires. A few
are additionally focused on fires in cities like [18], but they are mainly about
predicting fires in a more global way so that real fire fighters address the problem
and not the interaction with the fire how it is required in Robocup rescue.

2.3 Spread prediction
Beside the goal and fire specific spreading there are other analyses of spreading
in some other applications that are important and especially give some further
theoretical insight. These domains are network science and analyses physical,
chemical or biological behavior.

In network science there exist the theory about random graphs and epidemic
spreading (or other kind of spreading like viruses) that addresses similar issues.
Network science shows that in case of an infinite large number of goals, there
either exist or doesn’t exist some large component. In case of existence of a large
component spreading of bacteria or other elements is much easier. Although this
are mainly theoretical results, that don’t always apply to other more complicated
domains, it still explains in a god way, why and how fires or other things like
bacteria are spreading and what are the key elements to prevent spreading or
reduce the effects of spreading. There exist a lot of papers that address this
problem; examples can be found in [19, 20].

The last domain applications in physical or biological process can be found
in the computational analyzes of bacteria development [21] or the simulation of
flower spreading over a field [22]. They are also mainly just theoretical results
and can’t directly apply for Robocup rescue because they are not considering
different sorts of reaction to fires.

5

3 Benefit of Prediction in goal functions
We now present an analysis of when and why the prediction of spread performs
better then prediction that doesn’t consider spreading. We will first give a
short formal description of spreading, because it hasn’t been specifically defined
for the case of goal spreading in agent systems. Then we explain why and
in which cases spread prediction performs better then no-spread prediction and
why spread can have such dramatic influences and why it is important to predict
it.

3.1 Formal definition of spreading
Assume that we have n different goals gi in G = {g1, g2, ..., gn} and an envi-
ronment e(t) and a time step t with tε{1, ..., T} and T is the number of time
steps our evaluation is running. Let At denote the actions of different agents in
time t. Then the spreading of a goal is when a goal gk cause another goal in
the environment and influence the environment, so that e(t+ 1) = o(e(t), G,A)
where o is the function of environmental updates. So that

G
′

t = Gt \ gk

then G
′

t+1 = f(o(e(t), G
′
, At) 6= (Gt+1 \ gk)

and Gt+1 = f(o(e(t), G,At)

and |G
′

t+1| < |Gt+1|+ 1

Where f computes the goal in the environment. This means there has to be
an other goal in Gt+1 that is not in G

′

t+1 instead of gk. If goal gk wouldn’t be in
the environment we wouldn’t have seen this additional goal to exist, therefore
gk spreads to gnew in time t.

The actual reason for this spreading is not included in this definition. It
could be the lack of resources to work on this goal successfully in a specific time
for example.

3.2 Possible advantage of spread prediction
We will analyze the advantage of spread prediction by first showing the ad-
vantages in a environment where perfect spread-prediction is possible in the
the first part and then further take a look what happens if some of the strict
assumptions int he first part are reduced.

6

3.2.1 Given completely accurate prediction

Assume that we have n different goals gi in G = {g1, g2, ..., gn} over all time
steps and for all goals we have m different potential plans P = {p1, p2, ..., pm}.
We also have environment e and the actions At . Let us further assume that we
can define an algorithm that is able to accurately predict when, how and where
one goal is going to spread to another goal if a specific plan is executed on this
goal.

Then the perfect function decision function H = f(G,P) that is using this
algorithm should perform better then H

′
= f

′
(G,P) that is not predictive.

Where f is predicting the best development and spread of all goals in G to
the end of our calculation T and is choosing Hout of P to achieve the best
possible plans. f

′
is doing the same but without considering any further goals

that start from G. H is the selected plan that are executed, so that At =
getActionsOf(H, t).

We further know that for perfect prediction algorithm S(H,G) ≥ S(H
′
, G)

where S computes the overall system result that we can achieve on the goals,
for a fire fighting scenario this result would be a limitation of overall building
damage, because for no-spreading they perform identical and for spreading H is
always more precise about the influences that a fire has over al time steps and
therefore always makes the better decisions.

Therefore just if S(H,G) = S(H
′
, G) spread prediction has no advantage.

The two possible reasons for this are they have either a non spreading envi-
ronment or they make identical decisions even with spreading. Therefore three
conditions have to be fulfilled so that spread-prediction has advantages. First
there has to be a spreading environment because otherwise spread prediction
doesn’t make any sense. Second the decision between the two functions have to
be different this means not all goals in the environment are allowed to spread
in the same way and must have different future utility then they would have
based on the non-predictive evaluation. Third there has to be a limited number
of resources, so that not all goals can be satisfied immediately.

Therefore spread prediction performs better if the following three conditions
are met:

1. Goal spreading exists

2. Time periods with limited resources

3. Different goal utility of goals for spreading and non-spreading

3.2.2 Given statistical accurate prediction

The problem with the previous results are that the assumptions are very strict.
They either aren’t given in most environments or their computation is too com-
plex. 3

3We will later see that both is the case in the RoboCup rescue domain I’m working in.

7

The two critical assumptions are the required accuracy of goal prediction and
the accuracy towards the concrete building that we try to predict is burning.

The assumption of accurate goal prediction for the algorithm is very strict
and pretty unrealistic in reality. But even for an algorithm that is just right
a specific high enough percentage of time most of these information is very
valuable. As potential future work there should be potential ways to proof
that under the given conditions the average decision case should perform much
better. 4

The second critical assumption that is very strict is the requirement of ac-
curacy towards the specific building that start burning. We probably won’t be
able to always say witch further potential goal would actually become a goal.
The reasons are again possible environment or computational limitations. But
even though this would strongly reduces or completely eliminates one possible
advantage of prediction that is mentioned in section 1 the earlier recognition of
goals. We can’t always direct resources to goals we know we are going to get
in the future. But the second prediction advantages the better use of resources
on existing fires can still exist by just predicting the potential workload. We
would still be able to decide between a building in the middle of the city and a
building outside of the city. We might not be able to predict goals earlier but
we could be able to detect additional workload that is going to be created by
not fighting a goal accurately. This could still be a big advantage and produce
much better results.5

Therefore even without these strict assumptions regarding accuracy spread
prediction still has advantages and could improve the performance. Just the
following additional conditions regarding the potential of the prediction function
have to be fulfilled.

1. Prediction is statistically more accurate

2. Prediction of future workload is possible

We will develop a spread prediction algorithm that fulfill these conditions and
show in the empirical results that is able to perform better then non-spread
predictive algorithms in environments as described in 3.2.1.

3.3 Importance of spread detection
One important effect of spread beside the reasons where it can happen given
in 3.2 is the possible exponential behavior of spread. If one goal spreads to
another goal, which spreads to further goals, we have an exponential growth. If
the possibility of spreading P to one of T possible target is

4We probably have to use AV G(S(H,G)) ≥ AV G(S(H
′
, G)) for a specific assumed func-

tion but the results are the same.
5In this project we will focus on the prediction of workload and the positive effects that

even just this prediction can have. But we will also describe how specific goal prediction could
be included in the architecture and our predictive algorithm.

8

PSpread × TSpread > 1

We have exponential growth given a uniform distribution of neighboring
goals per goal of T (which could be assumed for city fires for example where
each building almost always has the same amount of neighbors on each side).6
It is know from network science [11] that we then could have a giant epidemic or
similar a giant fire or other kind of giant influences. Therefore fighting spreading
fires and reducing P and T would stop this effect.

4 Description of RoboCup Rescue fire simulator
and the OAA architecture

RoboCup rescue is a research competition for catastrophic scenarios. It was
initialized as a consequence of the Kobe earthquake and includes competitions
for real robots and a simulator competition for different agents interacting in
a Multi-Agent environment [1]. The simulator can be found in [12], it offers
an environment with different rescue agents and simulators for fires, building
collapses, roadblocks or civilians health. They all affect each other. Agents
like call centers, fire fighter, ambulances and policemen should work together
to achieve less fire destruction and less dead or injured people [13]. There is
an annual competition between different teams to see which of them does the
best job in reducing the damaged buildings and rescuing the most civilians [14].
We used this environment because of the goal spreading behavior of the fire
simulator. In section 3 this is identified as one of the required environmental
features.

The organizationally adept agent architecture is a Multi-Agent systems ar-
chitecture that enables organizational control with organizational guidelines and
makes it possible to adapt to these guidelines [30]. It also offers a structure of
beliefs, goals and plans that is very useful for our case and is the reason why we
chose to work with this basic architecture. In this project we used the special
application of this architecture to the RoboCup Rescue fire simulator environ-
ment.

In the following subsections we will introduce the fire-simulator of RoboCup
Rescue and give a basic overview about the way the fire simulator works. It
should give the reader and overview about the environment we are working in to
better understand how the RoboCup rescue specific algorithms we implemented
work. In addition we will give an overview about the work on organizationally
adept agents and the OAA architecture that was used as the basic structure for
predictions. Both are important to understand the prediction algorithm and
the empirical results presented in the next sections.

6For other distributions similar results exist with slightly different but still constant values
exist that might imply just spreading to a larger part of goals but with similar dramatic
effects. (see [10] for details)

9

4.1 fire simulator
For this project we worked with the fire simulator of RoboCup Rescue. The
reasons are first, that it is one example for an environment that has a goal
spreading nature. One building is able to ignite other close buildings. That
behavior is required to show the positive effects of spread prediction. Second it
is predictable as already explained by the authors of the fire simulator [9]. This
predictability is a basic requirement to test the effects and required accuracy of
prediction and especially spread prediction. And third limiting the prediction
to just fire fighters and fires makes it easier to observe the agents behavior
and to get a better impressions and the different positive and negative effects
of prediction. Adding other simulators in this environment and analyze the
different behavior is part of possible future work (see section 7 for details).

We will give a brief overview about the simulator. A detailed description
of the fire simulator in the RoboCup rescue domain can be found in this paper
[9]. The simulator simulates two things the fire in a building and the possible
spreading effects of fires. They are both dependent on each other because the
spreading of fire to other buildings means that the actually burning building is
loosing this energy. This happens for example by heating up the surrounding
air or emitting radiation.

The fire simulator uses a four step simulation of these two aspects. The first
and second one are mainly about the building itself the third one monitors the
exchange of energy and the fourth one again is a building specific computation.
Each of these four steps are executed in every time step of the simulation.
7These four steps are:

1. burn()

2. cool()

3. exchangeBuilding()

4. cool()

The first step burn() simulates the actual burning and destruction of the building
itself. The simulator assumes that buildings are made out of one material.
They start burning because either the simulation tells it to burn for example
by random selection 8 or because the temperature of the building is higher then
the ignition temperature of the material9. This can happen possible because
another close burning building heats it up and then actually spreads the fire to
this building.

Each building has a specific amount of fuel depended on its size and material.
This fuel is used to determine how much energy and heat a fire can produce and

7The length of the simulation can be defined in a specific configuration file for our experi-
ments we set the length to 300 time steps.

8Necessary to create specific scenarios after an earthquake for example
9This variable can also be set in the configuration of the simulator. For our test we left it

at the standard configuration

10

how much of a building is already burned down 10. The temperature and the
energy are directly related and the production of energy via burning directly
causes a reduction of fuel. When a building runs out of fuel, its energy and
therefore its temperature is decreasing. Once no more fuel is left a building is
burned down.

The cool() steps which is used to calculate the effects of water that is put on
a building reduces the energy of a building and thereby also the temperature of
the building, which eventually can cause a building to be extinguished, if the
effect is strong enough. The main influence on the cooling step has the amount
of water put on a building in every time step by the fire fighters. Not all the
water put on a building is necessarily used. Depended on the building there is
only a limited amount of water that can be used to reduce the temperature in
one time step, the rest is used in following time steps. Or in another case if a
building is not burning then this water can later be used to cool a building that
is heating up from the environment. When the temperature is below a specific
material depended threshold temperature11, it stops burning. This can happen
by water that reduces the temperature or because all the fuel of a building is
burned. The cool method is started twice in every time step, once after the
burn method and one after the exchangeBuilding method.

The exchangeBuilding() method models two different effects that reduce or
increase the energy of buildings dependent on the surrounding buildings, the
environment and the air temperature. It can therefore cause a building to
eventually start burning or getting extinguished. It models two different effects
of energy exchange, the energy exchange by air and the energy exchange by
radiation.

For the exchange of air it assumes a giant grid of different air cells over the
whole environment. The squares of air are heated up or cooled down by the
buildings in that cell. When a building has a high temperature then it increases
the temperature of the air and cools down itself by loosing this energy. If a
building has a lower temperature it heats up and cools the surrounding air. In
every time step each cell also exchanges the temperature with the neighboring
cells and therefore cause a transportation of hot air to cooler air regions. This
warmer air can then heat up the buildings in neighboring cells. In addition to
that each cell is also loosing some natural energy in every time step, for example
by warm air rising [9, 12]

The exchange by radiation is modeled by considering the outside walls of
each building as the source of radiation production. It is depended on the wall
size and the building material. Because the calculation of angels and line of
sight of all walls to each other is too complicated, the simulator uses a Monte-
Carlo process at the beginning to calculate how much percentage of radiation
energy of which building reaches another building [9]. He then computes the
radiation energy of each building by specific physical formula and from this
the simulator calculates how much energy of this radiation will reach the next

10The amount of building damage is a main value in the utility computation of the RoboCup
rescue competition that can be found here [14] and also our main variable

11Can also be adjusted in the configuration file.

11

buildings and therefore increase the energy of these buildings. Each building
looses this radiation energy to other buildings but also gets energy from the
radiation of neighboring buildings, depending on the percentage calculated in
the Monte-Carlo process, some of the radiation energy actually gets lost, because
the Monte-Carlo simulated rays didn’t hit any other building. This simulates
the natural loss of radiation in different directions. At the current state different
highest of buildings are not considered in the simulator yet [9].

Because we are not including any effect of water cooling on non burning
buildings at this analyzes yet, we don’t have to worry about predicting the
amount of water on not burning buildings yet. By including this we would
further analyze the second positive effect of spread prediction that is the ability
to recognize goals earlier, which is not focus in this project.

Except for one small normal distributed random variable in the burn method
and the Monte-Carlo process for radiation the calculation in the fire simulator is
very deterministic [9]. All the values used to compute the fires in the simulator
or good estimates of these values can be achieved for the call center agents.
Therefore the fire development and possible spreads of fires are predictable in
some relatively accurate way. In addition to the first criteria of a spreading
the element of predictability also exist in this environment. It therefore offers a
good test-base for this project.

We will use it to develop an algorithm that predicts the potential spreading of
fire to make better decisions on the plans an agent should take. A lot of different
approaches are possible for doing this prediction, for example statistical methods
based on several test runs or learned approaches with several inputs. We decided
to use an approach that uses a simplified calculation of the fire simulator. In
comparison to a real fire scenario this means my approach tries to analyze a
simplified physical model of the fire behavior and uses this to make predictions.
This might be the most intuitive one, but that doesn’t necessary mean that this
approach make the most accurate predictions under all circumstances. There
are probably other methods that are calculating the results faster and maybe
better. The empirical results show that this approach works very accurate
(see section 6 for empirical results). Overall the accuracy is mainly critical in
relation to what spread prediction accuracy is actually required to show better
total performance and less regarding the best possible accuracy, because our
main focus is on showing the advantage of prediction.

Many of the values given in RoboCup rescue like building and environment
temperature or building material for example are also available in real fire sce-
narios. That means that in the future there could be techniques that consider
the effects of goal spreading in real fire fighting scenarios.

This is just a general overview about the fire simulator. Further details
can be found in the actual algorithm description that go into some details on
the actual fire simulator and describe how specific things are computed (see
section 5). For more details on the formula, the physical background, the exact
algorithm description and the different variables used see [9].

This description of the fire-simulator will be the basis of our spread-prediction
and non-spread prediction algorithms that are defined in section 5.

12

4.2 OAA architecture
The OAA architecture is designed to enable organizational guidelines for agents,
use them to direct their behavior and limit the search space of each agent [4, 30].
It especially makes it possible for the agents to evaluate these guidelines and
decide weather to follow them and eventually define new guidelines when specific
patterns in the behavior of agents are detected. It offers an architecture, with
beliefs, goals and plans that are created. It also has specific algorithms to decide
which of the possible candidate plans have to be selected later and how the plans
are created [30]. All this has already been applied for the RoboCup Rescue fire
domain with different fires as goals and a sequence of actions from the different
agents as possible plans. Therefore this architecture offers a good structure for
our experiments. It makes it easier to focus mainly on the effects of prediction
and the different advantages that prediction can have on different goals. It
is also just focused on decisions about different fires, so that we can focus on
spread prediction and non-spread prediction, how it is used for goal evaluation
and the agents reactions towards prediction. We therefore don’t change the
basic structure of the OAA architecture and just adepted the calculation for
goals and plans considering spread prediction or no-spread prediction there. To
make sure that organizational effects do not influence our prediction evaluation,
we didn’t use any of the guidelines of the architecture and were therefore able
just to study the behavior of agents with and without spread prediction.

In the OAA architecture for the RoboCup rescue domain there are two types
of agents from the original RoboCup rescue domain, the first one are fire fighters
and the second one call centers. The call centers are controlling the fire fighters
and are telling them what to do. They decide which goal and plan to follow
and therefore make the important decision. The fire fighters are therefore the
resources of the call center agents [30]. Our spread prediction and no-spread
prediction is included in the call center, because of the utility calculation and
decision process happening there.

The OAA architecture computes the utility for different fires on buildings
that we define as our goals the following way. For every building the call center
agent has a specific building belief. If this building belief changes to building
on fire, a goal for this building is created. 12For every goal a series of possible
plan templates is created. Each plan template p for goal g requires a different
amount of resources. In every time step each existing plan for every goal is
evaluated according to the following utility function.

U(p, g) = UR(p, g)× wR + UO(p, g)× wO + US(p, g)× wS (1)

Where UR(p, g), UO(p, g) and US(p, g) represent the self, request and or-
ganizational utility of different plan and goal combinations. Self is the utility
that an agent gets for following his own local perspective; it considers things
like time to get to the fire with his own resources for example. Request is for

12Buildings that are not on fire aren’t a target yet, but here we could include possible
buildings that are heating up as potential targets as future work.

13

the case, when someone requests another call center for resources. The orga-
nizational utility is the utility provided for following a specific organizational
behavior given by guidelines. In the case without guidelines that we are using
in our example UO(p, g) = 0 because there are no guidelines for which following
could provide a utility.

For the RoboCup rescue case there are two types of plan templates. The
first ones are RequestTemplates and the second ones are ExtinguishTemplates.
The requests are send to other call centers to get some of his resources. The
ExtinguishTemplates are for fires that each call centers fights on his own with
his own resources. For Request US(p, g) = 0 because we don’t have any own
utility when we fulfill the requests of other agents and for extinguish templates
UR(p, g) = 0 because we don’t get any utility from the requesting agent for
doing our own goals.13

The wR, wO and wS represent the percentage of each utility that counts
towards the total utility U(p, g). It can be used to control the architecture
towards more importance of the organization or towards a specific behavior, so
that it is more oriented towards his own view or the view of other agents when
he requests them.

After this utility calculation the goal with the highest utility for a specific
plan template is selected in the following greedy algorithm and the specific
resources are reserved. (See algorithm 1 and description here [30])

It is executed again, till none of the potential plan templates has enough
resources left to be executed, all plan templates just generate a negative utility
or there are no more possible goals. Each selected plan template and goal
combination is then started as a specific plan with the necessary actions by the
call center that is sending the fire fighters.

After giving an overview about RoboCup Rescue, its fire simulator and the
OAA architecture that is used for this project, we now what to introduce the
algorithm used for the spread prediction and not spread prediction analysis.

A combination of both types of plan templates such as partial lending of
resources isn’t included in the current state of the architecture [30]. A further
description of the idea can be found in [4] and further information about the
architecture can be found in [30].

After a description of different the basic environment that we used we now
want to give a description of the two algorithms that we used for my empirical
analyzes.

5 Algorithm description
In this chapter we want to give a basic algorithm description of the algorithm
for the RoboCup rescue domains. For readers of this project documentation
who are mainly interested in the algorithms that could be used for RoboCup

13The values for U(p,g) are simplified because of our decision to work without guidelines
and just analyze the spread prediction effects. For other cases the OAA architecture offers a
more complex structure, where different utilities are combined to compute U.

14

Algorithm 1 Algorithm in the OAA architecture for deciding which plans
templates to execute
Input: Goals, PlanTemplates, Resources
——————————————————————————————————–
committedPlans = null
committedGoals = null
reservedResources = null
possibleGoals = Goals
freeResources = Resources
repeat

bestGoal = null
templatesOfBestGoal = null
bestGoalPlanResources = null
eservedResources = null
maxU = 0
for all g in possibleGoals

templates = getFeasiblePlanTemplates(PlanTemplates, freeResources, g)
if templates.size() > 0

for all pt in templates
ptResources = computeBestResources(pt, freeResources)
Here we execute the utility calculation in the way explained later
u = calculateUtility(g, pt)
if u > maxU

maxU = u
bestGoal = g
templatesOfBestGoal = pt
bestGoalResources = ptResources

else
possibleGoals.remove(g)

committedPlans.add(templatesOfBestGoal)
committedGoals.add(bestGoal)
reservedresources.add(bestGoalPlanResources)
freeResources.remove(bestGoalPlanResources

until bestGoal == null or maxU < 0 or freeresources == empty
return commitedPlans, commitedGoals, reservedResources
——————————————————————————————————–
Output: CommittedPlans, CommitedGoals, ReservedResources

15

rescue this section and section 6 are probably the most important one. Readers
that just care about the advantage of prediction might just take a short look at
this section. They are probably mainly interested in section 6 would probably
be more interesting for them.

To show the advantage of spread prediction in the RoboCup rescue domain
and potentially in a lot of other domains we developed two different algorithms.
The first type of no-spread prediction algorithms optimizes his activity due to
the evaluation of the goals at the current state and reduces the total amount of
building damage at a particular goal (building). It predicts the expected state of
a building when a specific plan is executed on this building. The second spread
prediction algorithm tries to predict if and how the building is spreading in the
future and includes this prediction knowledge in the utility calculation of these
goals.

Based on the algorithm utility calculation of goals in the OAA architecture
our algorithms have to be able to evaluate the following values UR(p, g) and
US(p, g). We will show how both algorithm calculate this values for a specific
plan p and a specific goal g, because this is the only step in the OAA architecture
that is mainly changed by our algorithm.

5.1 No spread prediction algorithm
The no prediction algorithm just analyzes the goal (or building) it doesn’t con-
sider any further effects that the fire possibly has on other buildings and just
calculates the expected damage of this particular goal for a specific plan. The
algorithm calculates UR and US based on the given utility function structure in
the OAA architecture [30] in the following way.

US(p, g) = v(g)× S(p, g)− c(p, g)

For UR it is calculated in a similar way.14v(g) is the value of goal g, S(p, g)
computes the satisfaction degree for goal g given the specific plan template p
and c(p, g) is the cost of the plan [4]. The main goal of our prediction is to
minimize the total building damage of the RoboCup rescue domain. Therefore
we set

v(g) = GroundAreaOfBuilding ×NumberOfF loors

The reason for that is that the building damage score in RoboCup rescue we
try to minimize for our case15 is defined as

BuildingDamageScore =
BuildingsDamaged

TotalAreaOfAllBuildings

14Details on why these two values are enough for the specific OAA architecture can be found
in section 4.

15Using additional goal functions to optimize the agents behavior wasn’t the main concern
in this project, therefore we focused on the building damage, because it can be measured in
a relatively easy way and the computation of a satisfaction degree and related costs is also
easily possible.

16

16

Where

BuildingsDamaged =

#ofBuilding∑
i=0

Bi.T otalArea() ∗Bi.percentageDamage()

We can see that if a larger buildings is burned with a specific percentage the
score is reduced more then if a smaller buildings is burned. Therefore giving
goals with a larger building size a higher utility is a good strategy to get a better
building damage score.

S(p, g) as the satisfaction degree in the OAA architecture [30] is the expected
state that building has in percentage of damage if plan p is executed on goal g
. We will calculate this value by using knowledge about the physical processes
happening in the fire. In RCR the fire simulator models these physical processes.
. We want to use this knowledge to model the physical processes that would
happen in a burning building for a specific plan and then try to determine the
percentage of damage for each plan. The expected damage is used as a value
for the satisfaction degree.

The main task of our algorithm is in finding a good no-spread prediction to
calculate an accurate value for S(p, g). In this physical model S(p, g) mainly
depends on the amount of fuel at the end. In addition the time t it takes to
execute a plan is important to calculate opportunity costs c(p, g).

Theses three things are used to compute the utility for each plan and goal
combination. Over all goals and the potential plans for each goal we try to find
the one with the highest overall utility using a greedy algorithm (as described
in section 4.2).

We will do the calculation for S(p, g) and t with one algorithm. It will
calculate the expected fuel that is left at the end and the amount of time it takes
till the fire is out. Assuming the fire simulator describes the actual behavior of
the fire 17. Our model calculates fuel after extinguishing and time for a specific
plan by using the knowledge from this simulator.

As we have seen in section 4.1, the main steps are burn, cool and exchange-
Buidling. To make accurate predictions about the fire our algorithm will ap-
proximate the main steps of this simulator. There are only a few exceptions in
accuracy that our algorithm makes are for special cases beside the once already
mentioned above.

The main difference to the real simulator is that we are doing this calcula-
tion not for all buildings but just for our specific building that is burning. We
will compute each goal independent of other fires in the environment (with an
exception in the spread-prediction algorithms named burn that consider some

16In RoboCup rescue the building damage is defined as a discrete function with three steps
that set the damage of the building according to the configuration of the simulator. The
different steps depend on the amount of building fuel that is already burned.

17Although it is also just a simulation of real fire, because large city fires are very hard to
describe in reality. See [9] for further details.

17

surrounding buildings) and not consider their physical process, because other-
wise the computation would get to complicated. This makes our calculation
faster and goal specific. It also enables us to do this computation for all plan
templates and goals. But this also makes it a less accurate especially in more
complex situations with a lot of fires in the surrounding environment. The
neighboring building could start burning for example and cause our fire to get
stronger too. Our algorithms wouldn’t cover these cases. Empirical data re-
garding the influence towards accuracy can be found in section 6.1.

We will now first explain how we calculate the cost c(p, g) and then how we
recompute each of these main steps in our no spread prediction algorithm to
compute S(p, g) and t for c(p, g). First we explain how we calculate the cost,
then we show how we initialized the values for our model, then we show the
three main steps and finally how we are also compute the time for a plan and
the achieved satisfaction degree.

5.1.1 Cost calculation

The cost of the utility function c(p, g) for this algorithm are opportunity cost18.
The opportunity costs are the costs for not being able to use the resources in
the next time steps. If another fire starts then we can’t use our already used
resources. Therefore in the non-spread predictive case c(p, g) is the possibility of
another fire to start over the time frame where we need our resources multiplied
with the building area we could safe with this resources if such a fire starts.
Beside the knowledge of future possible fire arrival these costs are therefore
mainly dependent on the amount of time we need to extinguish the building with
a specific plan. Because time can be computed with the satisfaction degree as we
will see in the next subsections, the main problem is to calculate the expected
future arrival rate of new fires.

Given this description one function for the opportunity cost could be the
following one:

c(p, g) =

t(p,g)∑
t=1

∑
mεM

∑
kεKm

ψ(Γ(p),m, k, t)Γ(p)δk,m(t, r)

With δk,m(t, r) being the cumulative distribution function of the probability
that k building of size m start burning till time t that we can’t fight with
my other current resources. r is an array with the expected number of free
resources over the future step. t(p, g) is depended on the specific goal g and
the specific plan p and we are summing over all t. The costs are summed over
all possible number of buildings kεKm with Km = {# of building of sizem}

18Like the RoboCup rescue simulator doesn’t include costs for damaged fire fighters or other
potential costs like fuel for the cars or the actual man fire fighter in its evaluation function,
we also don’t include this in our algorithm at the moment. This is potential future work for
making the environment more complex and not specifically relevant for our analysis because
we want to focus on the analyzes of spread of goals and the effects of this and not the analyzes
of potential values to include into a utility function.

18

and all possible building sizes mεM with M = {All kind of building sizes}.
Γ(p) is the number of resources that would be reserved for our plan p to fight
this fire g and ψ(Γ(p),m, k, t) the area of the k buildings of size m that we
could safe with these resources till time t. The number of resources Γ(p) is
already in the plan, ψ(Γ(p),m, k, t) could be estimated by empirical test or by
using knowledge about how the simulator work. The values of building size
and number of buildings can also be computed from the given knowledge. The
hard part is defining the probability distribution. δk,m(t, r) for a given time t.
19This cumulative distribution has to include a lot of knowledge would have to
use the number of free resources r and the further expectation and probability
distribution of future fires to be calculated accurately.

Therefore to simplify the problem we assume the arrival in the past for some
limited time step will be similar to the arrival in future and that fires arrive with
a Poisson distribution for one specific resource. This is also done in the OAA
architecture [4]. It doesn’t necessary has to be the case; therefore one direction
of future work is to improve this calculation (see section 7). Important is that
this cost function doesn’t include any kind of spreading knowledge, otherwise we
would mix the effects of spreading knowledge in the following functions and no-
spreading knowledge in this function. We would otherwise mix these two kind of
effects and it would be able to clearly say which behavior caused which specific
advantage. Maybe the spreading knowledge in the cost function improved our
original no-spreading algorithm, so that it performed much better then without
his spreading knowledge.

After explaining the calculation for our cost we now show how we compute
S(p, g) as the satisfaction degree and t(p, g) for our cost.

5.1.2 Initialization

Before starting the calculation of these three methods, we need the starting
energy level et and the fuel ft of each building. To calculate the initial energy
level e0 we use the getTemperature() function of a building. But because this
function can just be computed20 as an integer approximation of the real value in
the fire simulator so that getTemperature() = floor(TempInFireSimulator).
This might occur because inaccuracy in the measurement of the real temperature
that exists in a building. We have to add 0.5 to this value to minimize the overall
expected error and use this approximation for further calculation. With this
specific temperature we are then able to approximate the energy of a building
by

energy = temperature× VBuilding × CapacityBuilding
with the capacity being a material dependent constant.

Usually the initial fuel can be calculated very easy with
19Which as we will later see that t(p, g) can be computed together with the satisfaction

degree.
20Because Robocup rescue is limiting the information it is giving to the call centers artifi-

cially to make their simulation more accurate

19

f0 = VBuilding × fuelDensityBuilding
With fuelDensity being a material dependent constant 21and VBuilding being

the volume of a building. So that

VBuilding = NumberOfF loorsBuilding ×GroundAreaBuilding ×RoomHeight

with the room height being 3 and identical for all buildings.
The problem for the InitialFuel are cases where the building was already

burned before and now starts burning again or where the building is already
burning for some time, before we start our analyzes. In this cases some fuel
is already burned and we have to adjust the fuel that our algorithm starts
with. This can be done by using an approximation that uses the same physical
knowledge. By monitoring the temperature of each building for the previous
time step we are able to analyze the change of temperature and therefore a
change of the energy level in a building. Assuming that just the burning process
happened and not considering any change in energy by air, we are able to
approximate the fuel of a building at the beginning.

Beside this computation of initial fuel, energy and temperature we also com-
pute two values that we need for the exchange with other buildings. The first
one is an Air Grid that is used to monitor the energy exchange between the dif-
ferent buildings with the air and is also used to simulate the heat transportation
via air.

In addition we also compute the markov process described earlier, where
each building computes the building that receives some of its energy and the
specific percentage of energy that this building is receiving. But instead of doing
is for all buildings we just do it for our specific building we are analyzing and
that is loosing energy. This makes the calculation much easier and faster.

Both initialization for radiation and air transport leave us with some neigh-
boring buildings, that get some of our energy. We will use this transport of
energy to our neighbors to compute if their are starting to burn or not and
analyze their spreading in 5.2.

After the initialization we start a loop where we repeatedly compute the
following three functions in the order described in section 3.1. The loop stops
if all fuel is burned or the temperature of a fire is below a material specific
threshold for each building, then we stop the this iteration and have our result
for the final fuel.

5.1.3 burn()

For the burn step we use the initial fuel f0, temperature tempt and energy of
the building to compute the amount of fuel burned in the next time step. This
burned fuel is called consumed and

21Defined in the configuration file of RoboCup rescue.

20

consumedt =
ft−1
f0
∗ tempt−1

1000
∗ burnRate

The burnRate is a normal distributed random variable where the values for
variance and expected value are defined in the configuration of Robocup rescue.
The consumed fuel is then added to the energy variable and subtracted from
the fuel. By changing the energy it is also changing the temperature because

temperature =
energy

V olumeBuilding ∗ Capacity
With the capacity being strictly material dependent and defined for each

building. This computation is exactly how the computation works in the phys-
ical simulator with the only difference that we have a slightly different random-
seed for our burnRate because of two time steps difference to the simulator and
our temperatures and fuel are just approximations of the values in the simula-
tor. This whole computation is also just done for just one building and not for
all building.

Whenever a specific threshold of the initial fuel percentage is burned our
algorithm uses this threshold to calculate the percentage of damage in a building
(details in subsection 5.1.6). The results for UR and US for this method are
identical.

5.1.4 cool()

To calculate the cooling effect, we try to approximate the amount of water
that is put on the building in each time step by the resources of this specific
plan p. Given the amount of water the calculation is exactly like it is in the
simulator just with the approximated values. In every time step the amount of
water we expect our fire fighters to put on a building is added to the total water
quantity of a building. The water quantity is then multiplied by a specific water
coefficient to calculate the effect of water. If the effect is bigger then the energy
of a building then the following computation is done:

pc = 1− (
effect− energy

energy
)

effect = effect ∗ pc

and the new values for the effect are used. Otherwise the effect of water
directly reduces the energy level and the water quantity of a building. Note
that it is possible that not all the water for one time step is used in this time
step, it therefore can happen that the amount of water considered to calculate
the effect is bigger then the amount of water we put on the building in this step.

To calculate the amount of water that we can to put on a building in each
time step, we need the time to travel to the building the time we can actually
fight the fire, the time to refill and come back to continue fighting the fire and
the time we can fight the fire after we refilled our tank. The reason, why the first

21

fighting time before refill and the second fighting time after refill are different is
that the fire brigade could already have used some of his water for another fire
and therefore isn’t full. 22

The time we can put water on a building can be calculated by the amount
of water in the firefighter divided by the amount of water we put on a building
in each time step. The time for putting water on a building with a full tank
could be calculated by dividing the capacity of the tank by the amount of water
we can put on a building. To calculate the time to get to the building and the
time to get to the refill station to refill the tank of the firefighter we have to find
a good approximation. We just know the resources of a plan and the building,
but not the exact time the resources take to actually travel to a building. To
calculate the travel time we use that most of the maps in RoboCup rescue use
a Manhattan like structure. Calculating the actual distance would require a
search of possible path for every plan, for every firefighter to every building and
from the building to the next refill station. This operation is too complicated
to do it in this simulation. Therefore we assume Manhattan distance and use
the time that it takes to travel to the building. The following graphs show that
the Manhattan distance is a good measure for our algorithm (see Figure 1).

They show the actual time of travel relative to the calculated Manhattan
distances. The results are computed by selecting buildings and the related
locations of roads of three maps (Kobe, Berlin and Test) at random and then
plotting there Manhattan distance and the actual travel time. Just in rare cases
the time difference between the actual time and the estimated time was really
big relative to the total time to estimate. The high correlation indicates that
there is a very strong connection between these two values especially for the
Kobe map, that we are using for our tests. Therefore we can use the following
function to calculate the traveling time of our agents to the fire and to the refill
station and the Kobe map.

travelT ime =

{
ceil(α×ManhattanDistance+ β) if value after . is > 0.7

floor(α×ManhattanDistance+ β) otw

Where the values for α = 0.000027179890590584 and β = 0.615934309 are
coming from our recursion on the experimental data. An the value of 0.7 as the
threshold between floor or ceil from empirical reduction of the total error by
trying different values.

Using all this to approximate the travel times, we can calculate the amount
of water we are able to put on the building in each time step in algorithm 2.

22At the current state we are not trying to further optimize the plan by deciding weather or
not the fire fighter should might not totally fill his tank or should fill up first before going to
the fire. This could make sense in some special cases. In general the advantage of getting to
the fire with some water at the beginning seems to be higher then refilling first, considering
the increasing nature of the energy level and the several runs with the simulator. Not totally
refilling is also not really promising in general as long as we don’t have many refilling stations
because the travel time is therefore relatively high. For the purpose of simplicity and because
the general case seems to be working pretty good so far we leave this additional complexity
in this step.

22

Figure 1: Relation between the manhattan distance and the actual travel time
for the Test, Kobe and Berlin map

23

Algorithm 2 Computation of water is put on a building per time step
Input: numberOfFirebrigade, TravelTimePerFirebrigade, RefillTimePerFirebrigade, Fire-
FightingTimePerFirebrigade, FreschFightingTimePerFriebrigade
——————————————————————————————————–
WaterPerTimeStep = new Array[NUMBER_OF_TIME_STEPS]
for all i in numberOfFirebrigade

counter=TravelTimePerFirebrigade[i]
while counter < TravelTimePerFirebrigade[i]+FightingTimePerFirebrigade[i]

WaterPerTimeStep[counter] = WaterPerTimeStep[counter] + WATER_PER_STEP
counter++
if counter>NUMBER_OF_TIME_STEPS

end while loop
for all i in numberOfFirebrigade

counter=TravelTimePerFirebrigade[i]+FightingTimePerFirebrigade[i]
while counter < NUMBER_OF_TIME_STEPS

counter = counter + RefillTimePerFirebrigade[i]
secondCounter = 0
if j>NUMBER_OF_TIME_STEPS

end while loop
while secondCounter < FreshFightingTimePerFirebrigade[i]

secondCounter++
counter++

WaterPerTimeStep[counter] = WaterPerTimeStep[counter] + WATER_PER_STEP
if counter>NUMBER_OF_TIME_STEPS

end while loop
return WaterPerTimeStepArray
——————————————————————————————————–
Output: WaterPerTimeStep

24

The resultingvariable is then used in our algorithm to get the amount of
water per step. This is then used in our algorithm in every step to calculate
the effect of the water. It is computed in the initialization and then used in the
cool method of our approximated adepted algorithm.

The calculation above is for US . For UR the calculation is almost identical
to the calculation used for US(p, g). The problems for requests are that we
have to estimate the location of fire fighters in another region, because we don’t
know there exact locations. Therefore we have to use a good estimate for there
location to calculate the time it takes to get to our building. To do this we
assume an uniform distribution of firefighters in the area of the requested agent
and calculate their travel time based on this estimate.

5.1.5 exchangeBuilding()

Computing the exchangeBuilding() method is the most difficult. The problem is
that we are just trying to get the development of one building for a specific plan.
Calculating for all buildings would be too complicated. Especially for several
plan templates that would have to be considered separately and considering
that we still wouldn’t be able to measure everything accurately, we have to
simplify our computation in comparison to the physical processes in the RCR
fire simulator. The exchangeBuilding() method is different from the cool() and
the burn() method, in the fact that it is not just considering one building, but
several other buildings in the environment. It is therefore also the reason for
fires to spread to other buildings. There are many different ways for this step
and we compared these different ways where we tested different version that
just test some of these steps and just ignore the other for a lot of different test
cases.

The first step of the exchangeBuilding method involves all Grid areas sharing
the temperature of the air with the neighboring grid areas. The change in the
temperature of the air is the air to air coefficient multiplied by, the length of
each time step and the delta temperature between each cell and the average
over all its neighboring cells. The delta temperature is the temperature in a
grid element subtracted by the average temperature of all neighboring grids.

∆Temp = (cellT emp−AV GNeighbors)× T × Ω

T the length of a time step and the Ω air to air coefficient are given by the
fire simulator configuration file. For the average of all neighbors, it just includes
the addition of at most eight neighboring temperatures and one division by 823,

There are two ways to implement this, one is to go through all 400 to 5000
grid elements and do this computation (dependent on the configuration of the
building) or just limit it to a specific amount of neighboring buildings, both
ways have been tested for our empirical results in 6.1 (see Algorithm 1 and 2).

23In a Grid structure with equal sized rectangles each grid element has 8 neighbors when it
is not on the border of the grid. Otherwise it has less then 8

25

After computing the exchange between the different grids we now compute
the exchange of heat between air and building. It is the exchange of heat of
buildings with the surrounding area.

For one building this step is pretty simple. We just have to do the same
computation that the simulator is doing for our cell. Not considering all the
other buildings and their cell makes the computation also much faster. The
simulator is doing the following computation for each building and all the cells
the building is in:

EnergyTransfer = (cellT emp− TempBuilding)× φ× cellCoverBuilding ×A

newCellTemp = oldCellTemp− EnergyTransfer/%
Where % the Air cell heat capacity, φ the Air to building flow and A the cell

size are from the configuration file and can be adjusted. The cell Temp starts at
0 and is updated in each time step. The temperature of a building is given in our
computation and the cell cover for a building is computed in the initialization.
It says how much percentage of a building are covered by a cell, so that each cells
get a specific percentage of the building energy. This computation is the same
as in the simulator, but limited to our initial building. In the spread prediction
we will later include this calculation for a limited number of other buildings.
We basically assume that all other buildings are not burning and therefore don’t
heat up the air. We will see that this assumptions works pretty good even if
some neighboring buildings are burning but gets less accurate once we have a lot
of neighboring buildings burning. In the empirical results we included a version
where we tested the algorithm once with just considering our building and the
exchange with air and once also considering a specific number of neighboring
buildings, by just computing the exchange of energy for this building and not
actually compute their burning (see section 6.1 for algorithm 3 and 4). For
the spread prediction we also include an algorithm that computes the actual
burning of neighboring buildings. All results can be found in the empirical
results of section 6.1.

The third step to compute the exchangeBuilding method after computing the
exchange of air heat between cells and the exchange of heat between buildings
and the air, is the exchange of radiation energy between buildings. Given the
temperature of our building we can calculate its radiation energy the following
way.

radiationEnergy = TotalWallAreaOfBuilding × σ × ε× Temp4

With σ being the Stefan Boltzmann constant and σ being the material spe-
cific degree of emission [9]. Because the simulator temperature is measured in
celsius but this physics formula requires Kelvin we have to do the following
computation Temp = getTemperature()OfABuilding + 273. This is the same
way it is in the simulator [9].

26

This radiation energy first reduces the energy of our building by

NewEnergyBuilding = OldEnergyBuilding − radiationEnergy

In addition it is also heating up other buildings and other buildings are heat-
ing up our building that we are considering. Including this additional informa-
tion requires some further computation, therefore two approaches are possible.
The first one just involves our building loosing his radiation energy and not com-
puting the Monte-Carlo process or an estimate for determining the connected
buildings.

The second approach computes the exchange of radiation between different
buildings and also the computation of buildings to the initial building. To
do this we have to first calculate the connection values that the simulator is
computing by a Monte-Carlo process. The process works like this depending
on the radiation energy of a specific wall it is sending a couple of random rays
and when it hits a building that this is part of the connected buildings. The
number of time a connected building is hit by such an random ray determines
the connected value which is the number of hits divided by the total number of
rays send of our initial building. We then calculate the energy arriving at our
building and the energy going to another building with the this value.

We are doing the following algorithm for our initial building:

NEInitialBuilding = OEInitialBuilding +
∑

kε{AllConnectedBuildings}

REk ∗ CVk

NE = NewEnergy

OE = OldEnergy

RE = RadiationEnergy

CV = ConnectionV alue

This is the same calculation that the simulator is doing and then we are
doing the following calculation for each connected building:

NEConnectedBuilding = OEConnectedBuilding+REInitialBuilding×CVConnectedBuilding

We assume that the connection value of our building to another building
are identical. This can be done because they usually have similar results for
their connection values as we tested for five buildings and 20 runs. We therefore
assume they are the same, although this isn’t exactly the case in a random
process like it is used in the RCR simulator. The exchange of energy between
all connected buildings with other buildings then the initial building is also not

27

considered, because the computation effort would be too much do this for all
connected buildings. (See section 6.1 at algorithm 3 and 4 that consider the
exchange with other neighboring buildings.). This values are also considered for
5.2 to calculate the spread of fires to other buildings.

For the exchange building we mainly change the energy of the building that
is later used to compute the fuel they burn and determine the destruction of the
building. After describing the different steps of our algorithm we now want to
give a further analyzes of the evaluation of our results in the satisfaction degree
and the time calculation.

5.1.6 Time and satisfaction degree calculation

After doing all this calculation, we will now show how this calculation can be
used to determine the two important values time and satisfaction degree.

For the time we have to consider that our calculation is executing each of the
physical process approximation steps similar to the fire simulator. Our calcu-
lation does the steps (burn, cool, exchange building) described in the previous
subsection. To produce the time we computed those steps in a loop where the
time was the counter, when the temperature of the building was smaller then
a specific threshold the loop stopped and the counter can be seen as the result
for the time, because our plan would end when the building is burned down or
extinguished. We just have to adjust the time by adding two time steps to this
counter, because this is the time our algorithm and the OAA architecture take
to detect that a building is on fire, develop possible plan templates calculate all
specific plan and goal combinations and initialize the actions of the plan like
starting to send the fire fighter to the fire. This means when we evaluate our
plan based on the time , when we start to execute the plan, what is also the
time we are blocking the resources.

Therefore t as a result is the number of loops that our algorithm takes for a
specific goal and plan combination till the fire is extinguished or the building is
burned down. It therefore represents the time our resources would be blocked
and therefore is really good for our specific calculation of opportunity cost.

For the satisfaction degree we have to use the fuel that is left at the end of
our calculation. In our calculation with the steps described above, the energy
is changed in all these steps and used to calculate the temperature and the fuel.
The temperature indicates when the building stops burning and determines the
time for this to happen as described above and the fuel is used in the simulator
to the determine the amount of damage that happened to a building.

The actual calculation for this is the same for our algorithm as it is for
RoboCup rescue. Whenever the fuel is going under a threshold percentage of
the initial fuel at the beginning of the simulation it is going to the next state.
RoboCup rescue has four of these states. The first one is reached when fuel <
0.66× InitialFuel, the second one is reached, when fuel < 0.33× InitialFuel
and the last one when fuel is 0.

The first state represents a light fire, the second state a heavier fire, the third
state a really strong fire and the fourth state that a building is burned down.

28

These states are then used to calculate the amount of damage that happens
to a building. The specific damage can be given in the configuration file. But
they are usually set to 66 percent for the first 33 for the second and 0 for the
third and fourth, while the building is burning and 0.75 for the first, 0.50 for
the second, 0.25 for the third and 0 for the fourth. Therefore extinguishing a
building actually reduces the damage of this building.

The results for the time and fuel are then used to compute S(p, g) and c(p, g).
It is important to notice that this algorithm tries to predict the possible state
that the building has after a plan is executed, but he is not trying to predict
any kind of spreading to the neighboring buildings. He is therefore analyzing
the current state of fires and not any potential spreads of the fires.

The empirical results in section 6.1 show the accuracy of our algorithm for
the no-spread predictive and spread prediction case.

We will now take a closer look at the algorithm for spread prediction and
how it is different from our algorithm without spread prediction.

5.2 Algorithm with spread prediction
The predictive algorithm is similar in the case that it also uses the physical prop-
erties of the fire simulator24, but in addition to just analyze what the possible
results for the current fires are it tries to predict the influence of the current
fires to other buildings. By doing that it should be able to perform better then
the algorithm, without prediction because it included the potential of fires to
spread to close bigger buildings for example. We will explain different algorithm
that we used later to empirically analyze the effects of prediction.

This it might give different utility to buildings that could for example inflame
other buildings. The basic structure for utility calculation is identical to the
calculation for the no-prediction algorithm. We also have UR(p, g) and US(p, g)
and use them in a similar way. The value for v(g) and the calculation for the
amount of water for every time step is also identical. Therefore we can also use
the same and already existing plan and goal selection algorithm (as described
in section 4.2 and mentioned in section 5.1).

The main differences are in S(p, g) and v(g). To calculate these values we
have to identify the buildings that we predict are going to start burning when
we use this plan. We will use the same basic algorithm for analyzing each goal,
so that we can compare the effects of prediction and no-prediction and don’t
have influence from different goal evaluation in our results. To do that we will
use the knowledge of how many energy is already going to a specific number
of close buildings, for example because they are in the same air cell or they
exchange radiation energy with our building.

The exchange for a specific close building is described and done as in 5.1.5.
The next question is how we select the number of close buildings, 25 and how we
decide weather they start burning or not, because there is no clear rule which

24It could also use the real physical properties that exist for a normal fire in a building.
25Close buildings are defined as buildings that could be ignited by our building.

29

buildings to consider and when these start burning. The critical problem is
considering more buildings means more complexity. Selecting all buildings for
this wouldn’t work because it would take too much time. There are different
ways we could do this and we will present an overview on the different ways in
5.2.2.

Another question we have to address is whether we just see what buildings
we are igniting or if we also compute their burning behavior. That means if
we should also consider that this building is heating up further because it is
burning and has further influence on other buildings. This would cause more
computation but would make our prediction possibly more accurate. We will
explain how we computed this for some of my experiments in 6.2.3. Finally
we will show how our computation for opportunity cost and satisfaction degree
change due to this additional knowledge in section 5.2.4.

5.2.1 Selecting close buildings

After showing how each of the building could exchange energy with our building
in 5.1.5. But instead of just limiting these effects to the buildings for air in the
same grid and for radiation the results of the Monte-Carlo process we choose
the buildings as described in here, which can be very similar to the way already
described.

We now give an overview over possible ways to select the building. We then
just have to compute the energy of this buildings and go through some number
of buildings and check their temperature in each time step.

To get a good impression on how accurate the prediction has to be and what
values should be considered we developed the following fife selection algorithms.
That decide which building to consider as close buildings and when to consider
them ignited or burning, so that we can say our fire spreads to this building.
Three of these algorithms consider the temperature of a specific number of
buildings. When this temperature is above a material dependent threshold we
define this building as burning like it is done in the simulator. In addition
we also developed two algorithms that don’t directly include the temperature
knowledge although this is the main criteria that should be considered in every
algorithm, because it is determining if a building is igniting or not in the real
simulator. They are used as empirical benchmark for the existing algorithms.

The following list contains each selection method with a short description
on how it works:

1. Air predict: This selects all buildings, that are in the same grid elements
then the burning building and ignites them when there temperature is
higher then the ignition temperature for the material they are made of

2. Radiation predict: This selects all buildings that share radiation energy
with out building and has the same ignition criteria then air predict

3. Air and radiation predict: This considers both buildings from air predict
and radiation predict and ignites them also with the ignition temperature
criterium

30

4. Random predict: This algorithm randomly selects one of the buildings
from air and radiation predict and ignites it with probability 0.1. Where
the probability was selected because over a number of runs over several
buildings this was the average number of buildings ignited in each time
step. It is mainly used as benchmark for 1-3.

5. Random select predict: This algorithm always takes a random building
out of the buildings for air and radiation predict and marks it as ignited,
when one building starts burning in a specific time step. For example
if we have building A, B and C and by temperature building C starts
burning, then this algorithm just selects one of A,B or C and ignites it
at random. And if A,B start burning then it selects two. It is much less
accurate regarding the building that is burning, but it is still containing
the knowledge if another building starts burning and therefore contains
some knowledge of spread.

Empirical results for all this five algorithms can be found in 6.3.2. After we
showed how building

5.2.2 Considering the burning of other buildings

If we know that one building is ignited the questions is what are we doing
with this knowledge and how could we further use this information. One way
is just use the knowledge that this building is burning. A further way would
be to compute this is building to and analyze it’s influence. It would also
be interesting to see if the further evaluation of another goal has influence on
our goal as we analyzed in section 3.1 already. Therefore we developed the
following algorithm to further predict the burning of already ignited building.
The problem is that this computation is much more complicated because it can
drastically increase the things we have to compute. But it might also strongly
improve the accuracy and performance of prediction. This effects and especially
the effect of additional influence on the initial fire, should be analyzed with this
algorithm.

We do this computation for each of the first 10 ignited building we know
that start burning, because for more then 10 the computation starts to get too
complicated. This already shows that this approach is very limited and can’t be
applied to all ignited fires. Because we already do the computation of exchange
with air and we also do some kind of radiation exchange in with our initial
building computing the Monte Carlo process for all new ignited buildings would
be too complicated, we don’t do this steps for the new ignited buildings. We
also assume that there is no water put on this building, because if we would
assume so, we would have to predict further plan templates or use other kind of
approximations. Because it usually always take some time till new fire fighters
arrive at a building and the goal we want to evaluate just burns for a limited
time we can make this assumption. Therefore we also don’t include this cool
calculation for new ignited buildings. The only step we have to do for all new
burning buildings is the burn step of the simulator. The good thing about

31

this simplification is, that the computation becomes much easier then if we
would consider all buildings and can therefore be done without much additional
complexity. It is also just focused on the burn step and therefore just on the
one ignited building. The radiation would include considering further buildings
and an additional process to determine the connection values.

The calculation for the burn step is identical to the calculation for the burn
step of our initial burning building. Details on the computation can be found in
section 5.1.3 and section 4.1. It requires the temperature (or energy), the fuel
and some building specific information like capacity, area, number of floors and
material. The last one can be computed given the building and the first one is
already computed for 5.2.2. So by adding one more variable for every building
like the fuel we are able do this calculation. Because the calculation of initial fuel
wouldn’t have a huge effect for each building and would be too complicated, we
assume that each building didn’t burn before to avoid the problem with previous
buildings mentioned in 5.1.1.

It is also important to notice that by computing this step for all build-
ings that have a certain temperature and by setting the specific temperature of
neighboring buildings who already burn higher then the threshold value, we au-
tomatically also compute the burning of neighboring buildings that have already
been on fire. This includes even more information in our algorithm and makes
him potentially more precise without significantly changing the simulation. We
thereby also analyze the positive effect of this is that we also analyze the effects
of potential other local goals on our spread prediction.

The rest of the first algorithm stays the same way and is not changed further.
We just add the computation loop where each of the ignited building is burned
like we already defined with the burn function. As we will see in the empirical
results is that calculations that are only just considering the other buildings to
heat up via radiation and air heat transportation already performs worse then
algorithm that don’t consider this. The reason is that this buildings already
contain much more heat then the real buildings, because they don’t loose heat
to other buildings via radiation and especially via air.

We therefore don’t use this additional burn information to influence our
initial building and just try to use this information to predict further ignition
of buildings.

Details on the empirical results for this algorithm can be found in section
6.1.2.

5.2.3 Satisfaction degree calculation

After using these 5 algorithms to identify possible burning buildings we use
this to calculate the satisfaction degree and the cost. But this time we have
to include the additional information for the fires that start burning in the
calculation. For the satisfaction degree we are doing the following computation:

SSpread(g, p) = SNoSpread(g, p) +

∑
kε{ConsideredBuilding}BuildingSizek × γ

BuildingSizeg

32

The SNoSpread(g, p) is given by section 5.1. We know the considered build-
ings and therefore their total area from the previous described algorithm.

For the cost the calculation for our initial building is identical but in addition
we have the costs for buildings that are starting to burn. which are:

cSpread(p, g) = cNoSpread(p, g) +
∑

kε{IgnitedBuilding}

BuildingSizek × γ

We multiply each buildings size by degree γ because we assume that we
will extinguish it very fast. In the given configuration of the simulator damage
calculation this is the percentage of building that is not considered damaged in
the best case.

γ = (1−DamageExtinguishedBuildingInStateOne)
The value for the damaged extinguish building in state one is given in the

configuration file. It is usually the value 0.75 and the best possible state a
building we know is going to ignite could be in. We could also assume the
worst, set the value to 1 and assume that the whole building is definitely going
to burn down. To make a better calculation for this we would actually consider
the number of other fires currently burning and the number of free resources.
Analyzing this as a further and probably more accurate prediction of the future
state of a building given resources and other goals. But for a first analyzes of
prediction this calculation is sufficient and very conservative, that means it is
underestimating the possible positive effects of prediction.

By multiplying γ with the building area we have the minimum safe area of
the considered, that this plan would cause for a specific goal. We then divide
the possible damage of the building by the area of our goal building, because
when we multiply this with v(g) we get:

v(g)× SSpread(g, p) = SNoSpread(g, p)×BSg +
∑

kε{CB}

BSk × γ

BS = BuildingSize

CB = ConsideredBuilding

Which is the minimum total building damage that a plan would cause and
therefore the identical utility equivalent to the no spread prediction case, where
we just analyze the building and the destruction for each building.

6 Empirical results
We will analyze the spread prediction and no-spread prediction algorithms de-
scribed in the previous section based on three values: accuracy, time consump-
tion and buildings damage prevented.

33

First we will analyze what kind of accuracy my prediction and my spread
prediction algorithms were able to generate. This important to get an impres-
sion of what accuracy level is necessary to get better performance with spread
prediction. The second one is the time of these two different type of algorithms
take. Spread prediction usually means additional computation and therefore
additional time consumption we want to analyze what is the actual computa-
tion time difference between these algorithms. The last result analyzed is the
total building damage, because this is the main value that should be reduced at
least for the utility functions as we set them for this project.26

6.1 Required accuracy
For the accuracy we will first analyze the accuracy of the non-spread prediction
algorithm. We will analyze different algorithms defined in section 5. After that
we will analyze the spread prediction algorithm and show how accurate the
different algorithms are in defining how, where and when a fire is spreading. In
the last section we will analyze the effects of the algorithms where we further
computed the burning behavior of an already ignited building.

6.1.1 Non spread prediction accuracy

In section 5.1 we showed that the steps in the algorithm for the burn and
the cool method of the RoboCup rescue fire simulator are relatively simple,
therefore it can also be computed easily without further considering if all these
computational steps are really necessary.

An algorithm without the burn step wouldn’t work at all and an algorithm
that is not considering an algorithm that is not considering the cool step would
deliver the same result for all plans. These two steps are therefore absolute
essential for an algorithm that tries to compute the physical processes of a
fire27. We therefore consider these steps in all six algorithms.

The only critical step was the exchange fire method. In section 5.1.5 we
showed the different versions for this method, that should be tested towards
their accuracy. We therefore will test the following 6 algorithms and check how
accurate they are:

1. Algorithm 1: Considers the radiation and the exchange of energy with the
air. It also computes the global air exchange.

2. Algorithm 2: Considers the radiation and the exchange of energy with
the air. It just computes the local exchange of air with direct neighboring
cells.

3. Algorithm 3: Considers the radiation and the exchange of energy with the
air. It also computes the radiation energy and the temperature exchange
of neighboring buildings.It also computes the global air exchange.

26As already indicated further work might include other values and therefore might consider
other evaluations of their functions.

27Which are also simulated by the fire simulator of RoboCup Rescue.

34

Table 1: Values of the used test cases.
test

cases

AVG

time

AVG fuel AVGstate Variance

time

Variance

fuel

Variance

state

cases

neighbors

burn

50 cases 20.63 1017370 1.51 15.68 637119 0.691 23

100

cases

19.7 642855 1.42 14.41 270837 0.7 43

4. Algorithm 4: Considers the radiation and the exchange of energy with the
air. It also computes the radiation energy and the temperature exchange
of neighboring buildings.It also computes the local air exchange.

5. Algorithm 5: Considers the exchange of energy with the air, but not the
radiation. It also computes the global air exchange.

6. Algorithm 6: Considers the radiation, but not the exchange with air. It
also computes the global air exchange.

Fore these algorithms we developed 50 test cases for these scenarios for all
algorithms and then further tested the best four of them on 50 additional cases.
(Overview about the test cases can be found in Table 1). In the results we
distinguished between cases were the neighbor was burning and the neighbor
wasn’t burning. The reason is that we limited our computation for each plan
to just one building. This makes cases were neighbors burn harder to compute
accurately, they should therefore be analyzed seperately. The algorithms are
evaluated based on their accuracy regarding fuel and state a building has after
a fire is extinguished and the time it took to extinguish the fire. It is important
to notice that state and fuel strongly influence each other. The state determines
the actual result of the algorithms but as we explained in section 5.1.6 therefore
a correct prediction of it is important. But because the state is computed based
on the fuel (see section 5.1.6 for details) and accuracy for this value also means
more accurate states. Especially because the state can just have 4 values and
is reducing the values for fuel to values from 1 to 4 an accurate fuel prediction
is a very important. As we will see in section 6.2 algorithm 2 also works faster
then algorithm 5 and 6 and should therefore be preferred also for time critical
situations.

For the 50 test cases table 2 shows the correlation between the actual results
and the estimated results of our non-spread prediction algorithms. Table 3
shows the error in the prediction.

The graphs that showing the graphical relation for actual and estimated
results can be found in attachment 1 (Figures 5 to 11).

We see that the algorithm 5 and 6 are less accurate results, then algorithm 1
to 4 regarding almost all kinds of error. They are also a little worse in the cor-
relation values but not then clear. When we look at the graphs in attachment 1
this is getting clearer. Regarding the fuel algorithm 5 and 6 tend to overestimate

35

Table 2: Correlation of our analyzed algorithms with the real values for 50 test cases

Algorithms
total no neighbors burn neighbors burn

time fuel state time fuel state time fuel state

Algorithm 1: 0.874 0.915 0.777 0.978 0.991 0.742 0.880 0.872 0.787

Algorithm 2: 0.932 0.914 0.834 0.972 0.981 0.742 0.925 0.883 0.844

Algorithm 3: 0.840 0.695 0.660 0.974 0.959 0.408 0.843 0.499 0.699

Algorithm 4: 0.837 0.812 0.668 0.976 0.964 0.593 0.808 0.718 0.680

Algorithm 5: 0.801 0.740 0.718 0.925 0.738 0.637 0.834 0.738 0.825

Algorithm 6: 0.792 0.693 0.497 0.899 0.636 0.350 0.831 0.784 0.609

Table 3: Average error to the real state for the 50 test cases

Algorithms
total no neighbors burn neighbors burn

time fuel state time fuel state time fuel state

Algorithm 1: 4.54 60103 0.22 1.59 24250 0.074 8 102191 0.391

Algorithm 2: 4 73020 0.18 2.07 35291 0.074 6.48 117310 0.304

Algorithm 3: 6.35 114766 0.33 2.72 51233 0.16 10.3 183822 0.522

Algorithm 4: 5.98 101253 0.28 2.56 48256 0.111 10 163467 0.478

algorithm 5: 8.88 238750 0.62 8.85 232940 0.703 8.91 245570 0.522

Algorithm 6: 9.9 284907 0.78 9.93 287406 0.889 9.87 281974 0.652

the burning process while 1-4 are pretty accurate but sometimes underestimate
it a bit. The reason is that 5 and 6 are not considering the complete exchange
of energy with the environment. Therefore some energy that is actually leaving
the building is not computed in our simulation. This also explains why they
don’t perform worse regarding the fuel for the case when the neighbors are burn-
ing, because they are then indirectly capturing the additional heat that actually
comes from neighboring buildings but is not considered in algorithm 1-4.

The time is usually underestimated especially for longer burning processes
by algorithm 1-4 and overestimated for algorithm 5 and 6. Again 1-4 perform
worse with burning neighbors and 5 and 6 perform almost identical for burning
and not burning. The reasons are the same as for the fuel. Algorithm 1-4 are
considering not neighboring all influences and 5 and 6 are not loosing enough
energy to the environment. Similar results can also be found considering the
state. With 5 and 6 tend to overestimate the state and the damage that is
going to happen in both case with and without neighbors burning and 1-4 tend
to underestimate the damage for the case of neighboring buildings burning.

Overall algorithm 5 and 6 are not performing very good especially for the
more common cases of fires that are burning shorter. 28We also try to prevent

28The reason for this is the more common type of smaller buildings in the Kobe RCR map
and also in a real city, therefore predicting them more accurately is important. It doesn’t
happen every day that a sky scraper is burning and different techniques could be applied for
this but smaller buildings can’t be treated separately in a city and a good algorithm for them
is more important.

36

Table 4: Correlation of further analyzed algorithms with the real values for 100 test cases

Algorithms
total no neighbors burn just neighbors burn

time fuel state time fuel state time fuel state

Algorithm 1: 0.915 0.906 0.899 0.984 0.961 0.957 0.9 0.825 0.825

Algorithm 2: 0.945 0.736 0.831 0.977 0.853 0.791 0.93 0.606 0.883

Algorithm 3: 0.868 0.402 0.844 0.95 0.459 0.922 0.873 0.331 0.762

Algorithm 4: 0.872 0.436 0.850 0.951 0.479 0.936 0.861 0.379 0.758

Table 5: Average error in comparison to the real value for 100 test cases

Algorithms
total no neighbors burn just neighbors burn

time fuel state time fuel state time fuel state

Algorithm 1: 3.58 128732 0.15 1.63 79809 6.16 6.16 193582 0.256

Algorithm 2: 4.07 219561 0.18 2.28 143129 6.44 6.44 320878 0.233

Algorithm 3: 5.89 395301 0.316 3.29 338825 9.21 9.21 467536 0.442

Algorithm 4: 5.73 369881 0.28 3.21 326196 9.07 9.07 427787 0.419

the case were we have to consider a lot of neighboring fires and exponential
fire growing. It therefore should be happen less often then the case that no
neighbors are burning. Therefore accuracy for the no-burning environment is a
bit more relevant.

Therefore we are After eliminating algorithm 5 and 6 and further comparing
algorithm 1-4 with additional 50 cases. We get the empirical results regarding
error and correlation in table 4 and 5.

Graphs of this 100 cases can be found in attachment 2. Overall the results
are in some way similar to the results for the 50 cases, but it is getting clearer
that algorithm 1 and 2 are performing best and algorithm 3 and 4 not that
accurate. Algorithm 1 seems to outperform algorithm 2 a bit.

Regarding fuel all four algorithm perform very good in general. Especially
for the cases were no neighbors are burning. If the neighbors are burning they all
tend to underestimate, which makes sense because they are all not considering
neighboring influences due to computational complexity. Algorithm 3-4 are
underestimating more then algorithm 2 and 1. The reason for this is that they
don’t perform so good in cases were neighbors are burning they have more and
bigger errors. Between algorithm 1 and 2, algorithm 1 performs best regarding
the fuel, because it makes less and smaller errors as you can see in the graphs.
The results for the state are similar to the results for fuel.

Regarding the time all algorithm tend to underestimate, especially for longer
cases and when the neighbors are burning. Again algorithm 3 and 4 are a less
accurate and algorithm 1 seems to perform a bit better then algorithm 2, because
it makes less errors.

Overall we can make the following order regarding accuracy of the for algo-
rithm:

37

1. Algorithm 1

2. Algorithm 2

3. Algorithm 4

4. Algorithm 3

5. Algorithm 5

6. Algorithm 6

Of course and if we would consider things like computation time algorithm 2
might perform better then algorithm 1 (see section 6.2).

Surprising is that algorithm 1 and 2 perform better then algorithm 3 and 4,
because they also compute the burning process of neighbors. The reason prob-
ably is that they are too inaccurate in computing this process in this buildings,
because considering more details would cause more computational time.

In the next step we will analyze the accuracy of the different spread predictive
algorithms.

6.1.2 Spread prediction accuracy

For the prediction of spread we developed 8 algorithm and 45 test cases. The
algorithms are the following:

1. One: Checks all buildings that are in the same area f they have heated up
enough to burn

2. Two: Checks all buildings that receive radiation energy from initial build-
ing if they have heated up enough to burn

3. Three: Checks all buildings that receive radiation energy from initial
building and are in the same area if they have heated up enough to burn

4. Four: Randomly selects a building to ignite out of the when one other
building when one building would start according to spread prediction
algorithm three

5. Five: Randomly selects a building with probability 0.1 and marks it as
ignited

6. Burn one: Spread prediction algorithm one but with the additional steps
of computing the burning the other building, when it would burn.

7. Burn two: Spread prediction algorithm two but with the additional steps
of computing the burning the other building, when it would burn.

8. Burn three: Spread prediction algorithm three but with the additional
steps of computing the burning the other building, when it would burn.

38

Table 6: Empirical comparison between the eight spread predictive algorithms
One Two Three Four Five Burn

one

Burn

two

Burn

three

Correct predicted buildings 210 452 444 450 153 219 461 460

Wrong predicted buildings 2 143 142 136 152 8 132 132

Predicted ignited buildings 212 595 586 586 305 227 593 592

Real ignited buildings 1120 1120 1120 1120 1120 1120 1120 1120

Percentage of correct

predicted buildings

18.9% 53.1% 52.3% 51.5% 27.2% 20.3% 52.9% 52.8%

Correlation between

predicted and actual

number of ignitions

0.649 0.652 0.7 0.7 0.448 0597 0.736 0.737

Correlation between

predicted starting time and

actual starting time

0.566 0.531 0.547 0.486 -0.118 0.595 0.545 0.55

(For further details on this algorithms see section 5.2).
Based on the 45 test cases where the fire of a building was spreading to

other buildings we measured to critical values. The first value is the predicted
number of buildings that we expect are going to burn in comparison to the actual
number of buildings that start burning. This is giving an impression about the
accuracy regarding the accuracy about the effect a fire could potentially have,
by predicting the number of buildings that are starting we are doing a workload
prediction and are comparing the algorithms using this prediction. If we would
want to use the second predictive advantage as it is described in section 1 and
3 we would also have to measure if the correct buildings are predicted in the
correct order.

The second comparison is the time the algorithms predict a building is going
to start burning. This is just done on the correct predicted buildings. So for all
these correct predictions we are comparing the predicted and the actual time.

Both values influence the actual decision described in section 5 and are there-
fore important measurements for determining the accuracy of each algorithm.
Empirical results comparing the eight algorithms based on these two values can
be found in table 6.

Graphs that are showing the relation between number of predicted ignitions
and actual ignitions can be found in attachment 3. The graphs that show the
relation between the actual and the predicted ignition time are in attachment
4.

Regarding the accuracy in the number of fires the overall performance of
the algorithms doesn’t look very good in comparison to the results from 6.1.1,
but relative to the complexity of the problem still seem to be pretty good. The
main problem is that some fires grow so fast, that our algorithms can’t cover
this growth. Most of them are therefore getting more inaccurate with growing
number of total buildings that start burning, while they are more accurate with

39

smaller number of starting buildings. Due to the usual size of all buildings
in the Kobe map and in the usual city the fires mainly don’t tend to grow
that strong so that the problem appears less in reality. One isn’t performing
very good and strongly underestimates the number of buildings that start, while
two and three show better accuracy performance. This shows that including the
radiation buildings has much stronger influence on how good we can identify if a
building would be ignited. Two and three also have problems with longer fires,
because environmental influences get more complex and harder to compute.
The algorithm three and four are identical regarding the number, because four
uses three to identify when it should ignite a random building. Five as the
completely random algorithm obviously often choses the wrong building. Burn
one is a bit better regarding the number of correct predicted buildings but the
overall correlation is also not very good. Like one it is also underestimating
many buildings. Burn two and burn three show good performance and are
more accurate regarding the number of correct predictions per building. This is
another indicator that shows how important the exchange of radiation energy
is in the fire simulator. They also show a higher correlation between the actual
and the predicted number of ignitions. Burn two and burn three also show some
tendency to underestimate.

Surprisingly is the accuracy regarding the actual buildings that are predicted
is more accurate for four then for three, also three chooses the buildings ran-
domly. This probably shows again the importance of radiation prediction, which
is implicit in this algorithm. Because a lot of radiated buildings are selected to
start igniting the algorithm selects a lot of these buildings even with random se-
lection and is therefore very accurate. The reason for the little higher accuracy
could then just have been luck regarding the selection of a view houses.

Good is that most algorithm are more accurate in the smaller number of
actual ignitions, because these cases are more common in our test map and also
in most cities, were most of the buildings are smaller.

Regarding the actual and predicted ignition time of correct spread predic-
tions algorithm the overall performance doesn’t seem very good but has to been
seen with the knowledge about the complexity of this problem. One and burn
one seem to be the most accurate one but they just tend to recognize smaller
fires which are then also easier to predict regarding the time. Algorithm four is
not so accurate and especially five is really bad. In five we clearly see the random
behavior. Four shows still a pretty good performance, the reason is probably
the same as it was for the exactness regarding the numbers. The importance of
radiation prediction gets clear in this.

The most accurate once are two, three and burn two, burn three. They
clearly show the highest performance, but the burn algorithms are a bit more
accurate.

When it comes to the overall accuracy of workload prediction the follow-
ing order regarding the performance of the algorithms seems therefore to be

40

appropriate. 29

1. Burn three

2. Burn two

3. Three

4. Two

5. Four

6. Burn one

7. One

8. Five

But this is just considering the workload prediction which is mainly relevant for
our case. For the prediction of possible further targets algorithm one would be
great because it has a high success rate.

6.2 Time consumptions
After we analyzed the algorithm considering their accuracy we also want to
analyze the time used by the algorithm to compute the prediction, because one
of the main disadvantages of prediction is the time it takes to calculate it.

The graph in figure 2 shows the time results for the algorithms of 6.1.
We see what we already expected during the algorithm description in sec-

tion 5. The spread predictive algorithms take much more time steps then the
not spread predictive algorithms. Among the spread predictive algorithms the
algorithm burn one, burn two and burn three also take more time then the algo-
rithms that are not consider additional buildings to burn. Because as we have
seen in 6.1.2 burn two and burn three are the most accurate spread prediction
algorithms and consider most buildings they also require the most time. We
see that using either three or burn three as our predictive algorithm isn’t much
worse then the other algorithms in relation to the overall time they take to the
othter algorithms and the better performance they show.

For the no-spread prediction algorithms we see that algorithms that consider
more influences like Algorithm 3 for example which considers the heat of other
buildings and the global air take much more time then algorithms that are just
considering the building itself. We also see that the computation of the global air
takes more then the double time in Algorithm 2 and Algorithm 1. Considering
the small gain in accuracy for Algorithm 1 in comparison to Algorithm 2 and
the bad performance of the other algorithms, overall Algorithm 2 shows the
best performance in relation of time to accuracy of these six algorithms. But
for short time or higher accuracy Algorithm 6 and Algorithm 2 are still good

29This is more a qualitative then a strict quantitive order given the empirical results and
our expectations about the environment.

41

Figure 2: Average running time of all algorithms tested in the accuracy section

options. As future work some improvements in the consideration of the burning
of other buildings in Algorithm 3 and Algorithm 4 as described in 6.1.1 could
make them potential candidates if more accuracy are required.

Algorithm 2 still shows a very good performance for RoboCup rescue and
seems already seems to be a very promising algorithm for this domain, although
potential further improvements as described in 7.2 are always possible.

Overall we clearly see that spread prediction requires much more time then
just prediction. One of the reason is definitely the strong increase in things
that have to be considered. It also shows that this prediction can’t be done for
many additional steps. In the next subsection we will analyze if this additional
computational effort generates better results, then no-spread prediction.

6.3 Building damage
While the 6.1 and 6.2 are mainly worried about the performance of my specific
algorithms. These section analyzes the effects that a spread predictive algorithm
has in comparison to non-spread predictive algorithm regarding performance.
It therefore analyzes the potential positive effects of prediction. To do this
is requires the most complicated environmental settings30. We developed three

30An environmental setting is hereby defined as some arrangement of the environment, for
example more buildings burning in areas with higher building density. It is not a defined
configuration where we already know which buildings is burning when this term is defined as
a scenario for this project.

42

kind of different environmental settings where we want to test our algorithm and
compare the performance of algorithms with spread prediction to the algorithms
without spread prediction.

These three environmental settings are:

1. Setting with enough resources for all goals

2. Setting with lack of resources, but small difference in the evaluation of
goals

3. Environment with enough resources and strong difference in goal utility
evaluation

The settings are oriented on the theoretical results we already developed in
section 3, where we identified settings with low resources and a lot of difference
in the spreading behavior of buildings as the one where spreading prediction
has the most positive effect. This would be equivalent to setting 3.

The setting one and two analyze the effect of spread prediction in settings
where we theoretically expect the effect of spread prediction to have a lower
advantage. The first one represents the one where there are too many resources
and the decision for a specific goal is less critical. The third one represents
the setting where all goals have a very similar spreading behavior and therefore
the difference between a spread-predictive and non-spread prediction in the
evaluation of goals is small and their behavior and results really similar.

For each environmental setting we developed 2 specific scenarios, where we
implemented this setting. Each of these scenarios has a different number of fire
fighters and OAA agents fire stations that control the fire fighters. The first
scenario has always 6 agents and just one OAA agent fire station agent. The
second scenario has 10 fire fighting agents and two OAA agent fire station. The
guidelines usually used in the OAA architecture are not used for our scenarios.
We chose this settings because we wanted to test the prediction algorithms in
a complex environment and show where it performs better. We also wanted to
show that it works for the case with and without requests and without request in
the specific environment we used and is therefore also applicable for Multi-Agent
systems.

The empirical results for these six test cases can be found in table 7 (setting
1), table 8 (setting 2) and table 9 (setting 3) and attachment 5. The algorithms
are compared based on the overall damage they can prevent to happen to the
city.

About setting 1 we see as expected that all fires are extinguished really fast
and that there doesn’t exist any negative exponential spreading effect that has
dramatic influences on the performance of any of these results. We also see that
in one case the performance of our spread-prediction algorithms is better and in
the other one the performance of the no-spread predictive algorithms are better.

In setting 2 we see a similar situation but with two difference. First the
difference between the algorithms is much bigger. Therefore resource critical
means also more difference in overall system performance of different algorithms.

43

Table 7: Empirical results for damage test cases comparison (Setting 1)
Setting 1 - Test case 1

Rank Algorithm Undamaged
area at the end

in %

1 Burn three 79.4
2 Three 79.2
3 Burn one 78.8
4 One 78.4
5 Burn two 77.1
6 Algorithm 1 76.7
7 Algorithm 4 76.4
8 Algorithm 2 76.2
9 Two 76.0
10 Algorithm 3 75.6
11 Algorithm 5 74.5
12 Four 74.4
13 Algorithm 6 74.1
14 Five 73.4

Setting 1 - Test case 2
Rank Algorithm Undamaged

area at the end
in %

1 Algorithm 2 86.1
2 Algorithm 1 85.3
3 Algorithm 4 85.0
4 Algorithm 3 84.6
5 Burn three 83.2
6 Burn two 82.9
7 One 82.4
8 Algorithm 6 82.4
9 Four 82.0
10 Algorithm 5 81.3
11 Burn one 81.2
12 Two 81.0
13 Three 80.7
14 Five 79.1

Table 8: Empirical results for damage test cases comparison (Setting 2)
Setting 2 - Test case 1

Rank Algorithm Undamaged
area at the end

in %

1 Burn three 57.2
2 Burn two 55.1
3 Three 53.9
4 Algorithm 1 53.4
5 Two 52.8
6 Algorithm 2 52.2
7 Four 48.3
8 Burn one 48.2
9 One 46.4
10 Algorithm 4 45.1
11 Algorithm 3 42.9
12 Algorithm 5 18.5
13 Algorithm 6 15.2
14 Five 13.5

Setting 2 - Test case 2
Rank Algorithm Undamaged

area at the end
in %

1 Algorithm 1 74.4
2 Algorithm 2 74.0
3 Burn two 72.7
4 Burn three 71.6
5 Algorithm 3 70.9
6 Burn one 70.3
7 Algorithm 4 58.4
8 One 56.9
9 Four 56.9
10 Algorithm 5 54.2
11 Three 53.9
12 Two 52.8
13 Algorithm 6 52.3
14 Five 13.5

44

Table 9: Empirical results for damage test cases comparison (Setting 2
Setting 3 - Test case 1

Rank Algorithm Undamaged
area at the end

in %

1 Burn three 62.1
2 Burn two 57.9
3 Algorithm 2 26.7
4 Algorithm 1 25.5
5 Algorithm 4 25.4
6 Algorithm 3 24.3
7 Three 23.4
8 Four 21.9
9 Two 21.4
10 Algorithm 6 19.8
11 Burn one 18.9
12 Algorithm 5 18.5
13 One 17.8
14 Five 16.8

Setting 3 - Test case 2
Rank Algorithm Undamaged

area at the end
in %

1 Burn three 78.5
2 Burn two 77.5
3 Three 75.3
4 Two 73.4
5 Four 72.9
6 Algorithm 1 46.7
7 Algorithm 4 46.4
8 Algorithm 2 46.2
9 Algorithm 3 45.6
10 One 45.3
11 Burn One 44.2
12 Algorithm 5 34.5
13 Five 34.3
14 Algorithm 6 33.5

Second in both cases we see this negative exponential spreading behavior, where
a few algorithms perform very bad and much worse than the other algorithms.

Setting 3 shows a very strong performance of spread-predictive algorithms in
comparison to algorithms that don’t consider spreading. It also shows a much
stronger tendency to the negative exponential spreading effect we have seen in
setting 2.

There seems to some kind of required algorithm accuracy so that spread-
prediction performs better.

Overall three kind of settings we can see a strong tendency that more ac-
curate algorithms perform better then less accurate algorithms. We don’t have
enough cases to say something about influence of accuracy in general. But over-
all there could be some relation that needs further analysis. Spread-prediction is
mainly an advantage in the last kind of setting while it isn’t really an advantage
in the first and second kind of setting.

7 Conclusion and Future Work
After this empirical evaluation we will show the conclusions that can be drawn
from this project and show possible future work that could be done in this field.

45

7.1 Conclusion
In the beginning we defined that the project had to main goals analyze the
effect of spread-prediction and define better functions for the fire-fighter goal
evaluation in RoboCup rescue.

7.1.1 Spread vs. no-spread prediction

The main result of this project is that the prediction of spread can be possible
and have possible effects especially when it is able to prevent an exponential
growth of the number of goals (for example fires like we have seen it in the
results of 6.3). The prediction of spread should be considered in these domains.
The environment has to fulfill the three criteria difference in goal evaluation, a
spreading environment and limited resources to make spread-prediction better
then usual predictive functions. In section 6.3 we saw that spread-prediction
doesn’t always show a better performance if these criteria don’t exist in the
environment. Our hypothesis that spread-prediction performs better then non-
spread prediction is therefore just true if these conditions are fulfilled. The
reason is that these conditions can cause exponential behavior and make it
possible for spread-prediction algorithms to detect them. Spread-prediction
algorithms are therefore capable to prevent this exponential growth better then
other algorithms.

Beside this general result that spread-prediction can have advantages the
issue of required accuracy is also important. In section 6.3 we saw that the
algorithms Burn three and Burn two have been the most accurate of them and
showed the best performance. They have been the only algorithms that have
been able to stop this exponential effect twice in the second and the first case.
But also less accurate algorithms like Three Two and Four have been able to do
this in at least one case. There probably isn’t a strict limit what kind of accuracy
is required in the predictive algorithms. It always depends on the actual situ-
ation. But there definitely is a relation between more challenging environment
that fulfills our requirements for spread-prediction and more accuracy required
to prevent exponential spreading and disastrous behavior. Further theoretical
and empirical work is required to get a better understanding of this relation.

Interesting is to notice that the random algorithm Four that mainly pre-
dicts the workload still can show a great performance. This means that the
actual accuracy in workload prediction has been the main effect to get a better
performance.

The completely random and therefore really bad algorithm Five showed
the overall worst performance, therefore at least some accuracy in the spread-
prediction is required.

We addition we have seen that the computation for spread prediction has two
closely related problem. First is limited, it can’t be done till forever because the
number of possible cases and especially potential goals can grow very fast too.
Second the analysis of the effect that two goals can have on spreading to another
goal showed that this prediction can get less accurate when just the spreading

46

of one goal is considered. Both problems make goal specific computation harder
and less accurate. But although this problems exist spread prediction can still
deliver good performance.

Overall spread prediction should be considered in applications, where one
goal can cause other goals, to potentially improve the agents performance. To
check if to use them or not the criteria to the environment are given in section 3.
But as we saw it is important to make sure that the spread-prediction algorithms
used are accurate enough, while the specific level of accuracy probably depends
on the actual application

All these results are limited to the spread-prediction that focusses on work-
load prediction. The advantage of spread-prediction that are based on earlier
recognition of goals are just briefly considered in this project.

7.1.2 Results regarding RoboCup rescue

In addition to this spread-predictive results that should be considered in devel-
oping algorithms in spreading environments there are some additional results to
consider for RoboCup rescue.

My approach for defining a good function for RoboCup rescue was mainly
focussed on using the physical knowledge included in the fire-simulator and try
to define good functions that are able to work with these functions. As we could
see in our empirical results of 6.1 and 6.3. There is a close connection between
the accuracy of an algorithm and it’s overall performance. Smarter and better
evaluation of goals (or fires) improve the overall performance of the system. We
therefore recommend using algorithms that are as accurate as possible and in the
best case also include spread-predictive algorithms in RoboCup rescue because
they show a better performance. But potential better results from techniques
in machine learning or improvement of the described algorithms are definitely
possible and a direction of future work can be found in section 7.2.

In RoboCup rescue it sometimes very critical that the algorithms to evaluate
goals perform fast enough. The importance of this critical time performance is
already included in the RoboCup rescue competition for example [14]. The exact
evaluation depends on a lot of different factors and possible adjustments of the
existing algorithms are possible (see future work section 7.2). For the algorithms
we evaluated figure 3 for no-spread prediction and figure 4 for spread-prediction
give a good overview on the algorithm performance in relation to the required
time. It could be used as a guidance on which type of algorithm to use in which
situation.

7.2 Future Work
There are various fields for possible future work. They can be divided in two
basic directions. The first one is the development of better algorithms for the
fire simulator and improvements of the algorithms developed in this paper. The
second possible direction is in the direction of spread prediction. For both types
we listed possible developments that we think could be done in the future.

47

Figure 3: Accuracy-time relation for no-spread prediction

Algorithm Required

available time

till when it

performs best

Algorithm 1 55.8

Algorithm 2 65

Algorithm 3 131.5

For the first type the following improvements are:

• Include a more sophisticated cost function, that is including more effects
and considering other influences especially for a more advanced interaction
with the OAA architecture.

• Test the effects of more complex computation. In this project we mainly
wanted to show the positive effects that prediction can have and give some
insights in the fire simulator or RoboCup rescue in the future more em-
pirical work could be done to find better algorithms that include more
advanced calculations and other effects without increasing the computa-
tional time to much. Possible things are to include some constant increas-
ing or decreasing factors where we know our simulator gets inaccurate, to
try to include more accurate burning of other buildings or to estimate the
exchange between the buildings. This requires a lot of different experi-
ments with various functions and could generate some further progress in
the accuracy of the predictions.

• Try different prediction approaches like learning or statistical models with
the same input that possible have faster computational time and see if
they can compete with the algorithm developed in this paper.

• Make the calculations for the algorithms more accurate, so that could
perform better in a RooCup rescue competition. For example experiments

48

Figure 4: accuracy-time relation for spread prediction

Algorithm Required

available time

till when it

performs best

One 570.1

Four 600.5

Two 602.1

Three 643.6

Burn three 707.7

49

with algorithm 3 and 4 could

• Include more simulators to see how prediction and especially spread pre-
diction can perform in more advance environments.

• Include the possible positive effects of considering buildings that are heat-
ing up as goals or already consider buildings where we know that the
current plan will not successfully fight them. That would make the reac-
ton faster and improve the overall performance of the fire fighters. (Using
the second possitive effect of spread-prediction).

For the second type of possible future work that range is much more broader
and various topics are possible.

• Further theoretical work in the directions that are already suggested. So
far the analysis is focussed on one simple example in the future more so-
phisticated theoretical analysis could be done to analyze when the spread-
ing has catastrophic exponential effects and when spreading stays locally
because the spread is converging to a smaller local area. The field of net-
work science and some of it’s mathematical results can also be very helpful
for this analysis.

• Application in different environments and in other applications. This
would help showing that spread prediction has advantages in various do-
mains. A few possible domains have already been suggested. One applica-
tion that seems interesting in combination of further empirical work is the
application in an simple POMDP . It would make it possible to analysze
the basic effects on a simpler level without many environmental influences.

• Include spread learning, where the agents try to learn when and where
fires are going to sprad to another building for example. This would help
to show that spread prediction can be applied in other broader fields and
is also interesting for learning.

Acknolegement
This material is based in part upon work supported by the National Science
Foundation under Award No. IIS-0964590. Any opinions, findings, conclusions
or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

50

Attachement 1

Figure 5: Algorithm accuracy for fuel (50 cases)

51

Figure 6: Algorithm accuracy for fuel just cases with neighbors burning (50
cases)

52

Figure 7: Algorithm accuracy for fuel just cases with no neighbors burning (50
cases)

53

Figure 8: Algorithm accuracy for time (50 cases)

54

Figure 9: Algorithm accuracy for time just cases with neighbors burning (50
cases)

55

Figure 10: Algorithm accuracy for time just cases with no neighbors burning
(50 cases)

56

Figure 11: Algorithm accuracy for state (50 cases)

Attachement 2

Figure 12: Algorithm accuracy for fuel (100 cases)

57

Figure 13: Algorithm accuracy for fuel just cases with neighbors burning (100
cases)

Figure 14: Algorithm accuracy for fuel just cases with no neihgbours burning
(100 cases)

Figure 15: Algorithm accuracy for time (100 cases)

58

Figure 16: Algorithm accuracy for time just cases with neighours burning (100
cases)

Figure 17: Algorthm accuracy for time just cases with no neighbors burning
(100 cases)

Figure 18: Algorithm accuracy for state (100 cases)

59

Attachement 3

Figure 19: Relation between predicted and actual number of starting buildings
for one, two, three and four

Figure 20: Relation between predicted and actual number of starting buildings
for five and burn one, two and three

60

Attachement 4

Figure 21: Relation between predicted and actual ignition time for algorithm
one, two, three and four

Figure 22: Relation between predicted and actual ignition time for algorithm
five and burn one, two and three

61

References
[1] H. Kitano, S. Tadokor. RoboCup Rescue - A Grand Challenge for Mul-

tiagent and Intelligent System. AI Magazine, Vol. 22, No. 1, p. 39-52 ,
2001

[2] F. Bousqueta, C. Le Page. Multi-agent simulations and ecosystem man-
agement: a review. Ecological Modelling, Vol. 176, Issues 3-4, p. 313-332,
September, 2004

[3] L. Beaudoin. Goal processing in autonomous agents. PhD Thesis, School
of Computer Science, University of Birmingha„ August, 1994

[4] Daniel D. Corkill, Edmund H. Durfee, Victor R. Lesser, Huzaifa Zafar,
Chongjie Zhang. Organizationally Adept Agents. COINS2011 Workshop
at Tenth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS-11), Taipei, Taiwan, May 2011

[5] H. Van Dyke Parunak et al. Real-time agent characterization and predic-
tion. AAMAS ’07 Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, No. 8, Article 278, Honolulu,
Hawaii, 2007

[6] H. Van Dyke Parunak et al. Characterizing and Predicting Agents via
Multi-Agent Evolution. US Patent, Application number: 13/079,766, Pub-
lication number: US 2011/0178978, A1 Filing date: Apr 4, 2011

[7] Andy Song , Lin Padgham , Lawrence Cavendon. Prediction in Dynamic
Environment:Robocup Rescue Exploration. Adaptive Learning Agents
Workshop 2007 in AAMAS07, p. 22-27, 2007

[8] Frans Oliehoek, Arnoud Visser, A hierarchical model for decentralized fight-
ing of large scale urban fires. AAMAS’06 Workshop on Hierarchical Au-
tonomous Agents and Multi-Agent Systems, p. 14-21, May, 2006

[9] Timo A. Nüssle, A. Kleiner, M. Brenne. Approaching Urban Disaster Re-
ality: The ResQ Firesimulator. Proceedings of the International RoboCup
Symposium ’04, 2004

[10] M. E. J. Newman. Networks: An Introduction. Oxford University Press,
chapter 12-17, March 2010

[11] Kenah E., Robins J.M. Second look at the spread of epidemics on networks.
Physical review, Vol. 76, Issue 3, p. 1-12, September, 2007

[12] Robocup Rescue Simulation Project. http://sourceforge.net/
projects/roborescue/. state: 12/01/2011

[13] Tadokoro, S. et al. The RoboCup-Rescue project: a robotic approach to
the disaster mitigation problem. Vol. 4, p. 4089-4094, San Francisco, CA,
USA, August, 2000

62

[14] RoboCup Rescue Simulation League Agent Competition 2010 Rules and
Setup (preliminary). February, 2010

[15] Masayuki Ohta, Tomoichi Takahashi, Hiroaki Kitano. Robocup-Rescue
Simulation: in case of Fire Fighting Planning. In Proceedings of RoboCup,
Volume 2019/2001, p. 351-356, 2000

[16] Ronald G. Rehm, Anthony Hamins, Howard R. Baum, Kevin B. McGrat-
tan, David D. Evans. Community-scale fire spread. In Proceedings of the
California’s 2001 Wildfire Conference: 10 Years After the 1991 East Bay
Fire, July, 2002

[17] Stephen G. Berjal, JohnW. Hearne. An improved cellular automaton model
for simulating fire in a spatially heterogeneous savanna system. Ecological
Modelling, Vol. 148, No. 2, p. 133-151(19), February, 2002,

[18] Keisuke Himoto and Takeyoshi Tanaka. Preliminary Model for Urban Fire
Spread: Building Fire Behavior Under the Influence of External Heat and
Wind. In Fifteenth Meeting Of The UNJR Panel On fire research and safety,
Vol. 2, p. 309-319, San Antonio, TX, November, 2000

[19] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, Duncan J.
Watts. Network Robustness and Fragility: Percolation on Random Graphs.
Vol. 85, p. 5468–5471, Issue 25, December, 2001

[20] Bollobás, Béla. The Evolution of Random Graphs—The Giant Component.
Cambridge University Press, Cambridge studies in advanced mathematics,
73 (2nd ed.), pp. 130–159, 2001

[21] Mini Ghosh, Peeyush Chandra, Prawal Sinha, J.B. Shukla. Modelling the
spread of bacterial disease: effect of service providers from an environmen-
tally degraded region. Applied Mathematics and Computation, Vol. 160, p.
615–647, 2005

[22] Jeger M.J., Pautasso M., Holdenrieder O., Shaw M. W. . Modelling disease
spread and control in networks: implications for plant science. The New
Phytologist Vol. 174, No. 2, p-279-297, January, 2007

[23] Alberto Talamo, Yousry Goha. Deterministic and Monte Carlo Modeling
and Analyses of Yalina-Thermal Subcritical Assembly. Nuclear Engineer-
ing Division, Technical Report, Published at http://www.osti.gov/bridge/,
July, 2010

[24] A. Farinelli, G. Grisetti, L. Iocchi, S. Lo Cascio, D. Nardi. RoboCup Rescue
simulation: Methodologies tools and evaluation for practical applications.
Robocup 2003 Robot Soccer World Cup Vii, Vol. 3020, p. 645-653, 2004

[25] Peter Haddawy, Steve Hanks. Utility Models for Goal-Directed, Decision-
Theoretic Planners. Computational Intelligence, Vol 14(3), p 392–429, Au-
gust 1998

63

[26] Xin Li, Leen-Kiat Soh. Applications of Decision and Utility Theory
in Multi-Agent System. University of Nebraska–Lincoln, Computer Sci-
ence and Engineering Technical Report TR-UNL-CSE-2004-0014, Issued
September 2004

[27] J. R. Marden, A. Wierman."Overcoming the Limitations of Utility Design
for Multiagent Systems" submitted for journal publication, 2011.

[28] Lon Padgham, Michael Winikoff. Developing Intelligent Agent systems.
John Wiley & Sons, ISBN 0-470-86120-7, chapter 2 & 9, 2004

[29] Michael H. Bowling and Rune M. Jensen and Manuela M. Veloso. Mul-
tiagent Planning in the Presence of Multiple Goals. Booktitle: Planning
in Intelligent Systems: Aspects, Motivations and Methods, John Wiley &
Sons, Inc., 2005.

[30] Chongjie Zhang et al. Adapting the Behavior of Organizationally Adept
Agents by Using Annotated Guidelines. submitted for publication, Novem-
ber, 2011

64

