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1 Abstract

In this work we consider the problem of determining efficient scanning strategies
for adaptive networks of radars used to monitor meteorological events. While
most meteorological radars traditionally scan 360 degrees, repeatedly, more ac-
curate readings can be obtained if adaptive sector scanning is performed. We
propose a scanning strategy based on analyzing eigenimages computed given a
set of observed radar images. These eigenimages allow us to identify spatial
regions with high radar measurement variance, and thus provide us with the
necessary information to reconfigure radar resources towards regions where the
storms’ states seem to be changing the fastest. These are exactly the regions
where newer and more accurate readings are usually necessary. We show that
performing adaptive reading in this manner provides gains over the traditional
sit-and-spin approach, and also over a baseline random scanning strategy. We
also show that there is a difficult trade-off between the minimum size of storm
that one might want to track, and the capability of saving scanning resources
by not focusing on irrelevant sectors.

2 Introduction

Typical meteorological radars are usually configured to always scan 360 degrees.
This is the case, for example, of the radars used by the National Weather Service
NEXRAD system [9]. Although this type of radar provides a comprehensive



reading of the atmosphere, it might waste resources by scanning regions where
no interesting phenomena are ocurring, and therefore might not able to obtain
high-resolution measurements of the sectors that are in fact relevant.

Recently, a new type of radar technology has been proposed in order to
construct small, low-power but agile radars that can perform sector scanning.
This type of technology is being developed, for example, by the Collaborative
Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center [14].
Radars that can scan just a subsector of the atmosphere might outperform sit-
and-spin radars. The reason for this is that given a fixed amount of time,
scanning smaller sectors of the sky implies that more time can be spent obtain-
ing readings from that sector, and that thus more accurate measurements are
possible. By contrast, a radar that always scans 360 degrees will have to ro-
tate faster in order to still cover the complete space in the same pre-determined
fixed amount of time, and therefore will devote less sensing energy for detecting
existing phenomena in a given region.

In this work, we study how to determine good scanning strategies for a net-
work of radars; that is, how to configure a set of radars so that the quality
of readings over all meteorological phenomena is maximized. There are sev-
eral factors that should be considered when choosing a scanning strategy. The
speed of rotation of the radar matters, as mentioned before, but we should also
take into account the expected number of decision epochs before a sector is re-
scanned. This is important because we want to make sure that even sectors that
now seem uninteresting will be periodically re-scanned in order to make sure
that no meteorological phenomena have appeared in the meantime. Another
factor to be considered is whether to optimize myopically, that is, taking into
account just the observations up to the current moment, or to optimize over
expected future observations. This work will develop an approach for myopic
decisions, although later on we discuss a simple extension that could allow for
optimizations with a lookahead.

The scanning strategy proposed in this work is based on spectrally analyzing
a sequence of observed radar images. Specifically, we construct a set of basis
images (sometimes called eigenimages) that correspond to the eigenvectors of
the covariance matrix of a fixed number of past radar images. The first such
eigenimages describe a subspace of the original space of images that accounts for
most of the observed variance over radar measurements. Usually these eigen-
vectors are used in order to find a lower-dimensional representation of the data,
by projecting the original high-dimensional points (such as radar images) onto
the bases of eigenvectors. We, on the other hand, analyze the eigenvectors’ com-
ponents directly, and use that information to construct relevant features of the
storms. This type of analysis allows us to identify regions of the radar’s sectors
in which significant changes in the meteorological phenomena’s states has been
observed. These regions are exactly the ones for which newer and more accurate
readings are usually necessary, and towards which the next measurement efforts
should be directed.

For each possible radar joint action (i.e., for each possible way in which
we can configure the set of radars) we specify a quality metric, which reflects
how well that specific joint action allows the radars to scan for meteorologi-



cal phenomena. By using Boltzmann exploration with a specifically calculated
temperature parameter, it is also possible to take into account some properties
that meteorologists find desirable. For example, it is usually desirable that each
radar sector be re-scanned on average at least once every 2 minutes.

We present comparisons of our method with (i) the scan strategy tradition-
ally used in real-life, in which radars simply rotate 360 degrees all the time, and
(ii) a baseline random scanning strategy, and show that our approach performs
better in a variety of situations. We also show that there is a difficult trade-
off between the minimum size of storm that one might want to track, and the
capability of saving scanning resources by not focusing on irrelevant sectors.

The rest of this paper is organized as follows. Section 3 presents related work;
Section 4 defines the Radar Scheduling Problem; Section 5 reviews the method
of Principal Component Analysis, which will be used in our approach. Sections
6 and 7 present our approach and some results, and in Section 8 we summarize
this work, discuss its limitations and outline possible future extensions.

3 Related Work

Several previous researchers have studied strategies for obtaining meaningful
adaptive measurements of storms, and in particularly for efficiently tracking
and predicting their spatial motion and evolution. One traditional approach
has been to identify and represent storms by means of their centroids, and then
to track those centroids over time [3, 4]. Once storms are correctly detected,
the change in the position of their centroids can be used as a basis for esti-
mating their future states. This type of technique works well for predicting
well-organized and isolated storms, since for these it is easy to assign a mean-
ingful centroid. However, whenever storms split and merge, evolve over time in
a complicated manner, or simply start growing or decaying, these methods do
not perform satisfactorily. An approach based on tracking centroids is currently
being used in the CASA’s closed-loop operation [5]. The SCIT algorithm [4] is
another example of such approach. Finally, an algorithm that detects centroids
by running K-means on radar images is also presented in [6, 7].

Another type of approach used in order to perform tracking of meteorological
phenomena consists in using correlation-based models [1, 12]. In this case, a set
of observations is treated as a sequence of images, and then the local-area cross-
correlation between every two successive images is computed. This technique
enables small-scale storm analysis, but relies on a good choice for the size of
the window to be analyzed: if the window is too small, the motion field might
be incorrectly estimated due to storm growth and decays; if it is too large, local
features might not be well represented.

In this work we want to avoid having to identify each storm individually, and
also to avoid having to keep track of centroids. Centroids, although computa-
tionally efficient, are not particularly good representations for complex storms
whose shape changes over time or that might split or merge with other storms.
Correlation-based techniques are also not ideal since, as mentioned before, it



is not always easy to identify the right scale for analysis. Our work tries to
bridge this gap by providing an approach that does not rely on a representation
based on single centroids, and that does not assume any knowledge about the
temporal evolution of storms, their spatial shape, or the dynamics that guide
their evolution.

As will be mentioned in Section 6, our approach is based on analyzing the
Principal Components of a set of radar images. Previous works such as [13]
also used this type of spectral decomposition, but only in order to find a lower-
dimensional representation of the measurements, and in order to obtain a short-
term linear prediction of the next states of the phenomena.

4 The Radar Scheduling Problem

In this section we formulate the multi-radar scheduling problem; this formula-
tion is based on the one presented in [8]. We assume that there is a constant
number of radars, that each one is located at a fixed position in space, and
that each has a given range. Notice that the radars might have overlapping
footprints. At each decision epoch, each radar can choose from a set of scan
actions. A scan action determines the size of the sector to be scanned, its start
angle, its end angle, and the angle of elevation. As [8], we do not consider eleva-
tion angles. We assume that a radar can scan either a 90°, 180°, 270°, or 360°
sector, and that the starting angle is limited to be either 0°, 90°, 180°, or 270°.
These assumptions imply 13 actions per radar'. Our goal is to use spectral
analysis over a set of past radar images in order to obtain relevant features that
help us to determine which scan actions to use, so as to obtain good quality
measurements of the existing storms.

Before we proceed to present the Radar Scheduling Problem, it is important
to highlight some properties of meteorological radars. Specifically, one impor-
tant property of such radars is that the smaller the sector scanned, the better
the resulting quality of collected data. The reason for this is that given a fixed
amount of time, scanning smaller sectors of the sky implies that more time
can be spent obtaining readings from that sector, and that thus more accurate
measurements are possible. Another property of such radars is that any scan
strategy that focuses on smaller segments of the sky incurs greater risk of miss-
ing new phenomena which might have arrived in the meantime in sectors that
are not being scanned. Considering these two properties, we define an effective
strategy to be one that chooses scan actions that provide a good balance between
such conflicting requirements; that is, one that tries to maximize the accuracy
of the readings while minimizing the probability of missing new phenomena.

We will now describe a quality function U which, for each storm in the
environment, associates a real number describing how well the current scan
action measures the properties of the corresponding storm. Such a quality

IThere are 16 possible actions, but four of those — specifically the ones that scan the whole
360° but which start at different angles, are equivalent, and thus we can disregard three of
them.



function will be used later on to determine how noisy the measurements obtained
by the scan action are, and consequently how effective the scanning strategy is.
The quality function for a given storm and joint action will also be used to
define a cost function, which is what we will try to optimize in this work.

In order to compute the quality with which an action measures a storm,
we consider several properties of the radars, and of the specific storm being
scanned. Specifically, we consider the overall storm’s spatial shape, the location
of the radars, the speed of rotation of the radars, and their range. Let s, be
a scan action of radar r. Let S be a set specifying a joint action, i.e., a scan
action s, for each individual radar. The quality U,(S) with which S scans a
storm p is given by

Up(§) = maxUp(s)
w(s
Uilsr) = Flelws) % |8 ) + 1= 9 (e )|
where
¢(p,sr) = the area of p covered by the scanning action s,;
d(r,p) = the normalized distance from the center of mass of p to the location
of radar r;
w(s,) = the area of space covered by scanning action s,; this depends on the
range of r and on the start and end angles of s,;
8 = a tunable parameter that balances the relative importance of p being

close to r, and the negative effects of high rotation speeds of r.

Up(sy) is the quality obtained for scanning phenomenon p using radar r and
scan action s,. The functions Fi.(-), F\, () and Fy(-) are adapted from [10] and
were derived from discussions with radar meteorologists. F is a function that
captures the effect on the quality function due to partially scanning a storm; Fy,
represents the negative effects of high radar rotation speeds; and Fj; represents
the negative effect on quality due to scanning storms that are far away from the
radar. Examples of these functions, as used in [8], are shown in Figure 1.

Also, in order to represent the negative effect on the observation quality
of storms that were not re-scanned in the last decision epoch, we decay their
observation quality by a fixed amount &:

Up, = max(U, — «,0) for all storms p that were not observed in the
last decision epoch.

Given any strategy for determining a joint action S at a given decision epoch,
we can compute its cost. The cost of a strategy at a given time step depends
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Figure 1: Step functions for the computation of U, as used in [8].

on how well each storm is measured by the collective action of the set of radars
being used. We first compute the quality U, for each existing storm p, and then,
based on that, we compute the current cost C(t) of the strategy:
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where IV is the true number of existing storms at time ¢, N,ps is the number
of storms effectively observed by the last joint action, ||d|| is the number of
storm attributes being measured by the radars, d;; is the true value of the j-th
attribute of storm i, d;?]l?s is the measured value of the j-th attribute of storm i,
and P is a penalty factor for missing a storm.

The value of the observed attributes dgg’-s are calculated by adding zero-mean
Gaussian noise to the true attributes d,; of a storm p. The higher the quality of
observation of p, the lower the noise. Specifically, the variance of the Gaussian
noise affecting each attribute j of a storm p depends on the current scanning
quality of p:
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where V™% corresponds to either the average value of attribute j (in case of
velocities or radii), or to the largest positive value that that attribute can take.
The parameter p is a scaling factor; as * increases, so too does the amount of
noise added to the true value of the attribute. The variance of the noise is not
only used to perturb the true values of the attributes of the storm, but also in
order to define the penalty P for missing a storm. We assume that all unobserved

storms are actually observed with quality zero, and that therefore each of its

max

attributes j will be on average — away from its true value. Summing this
quantity over all attributes of a storm gives the following penalty, for a given
unobserved storm:
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In the rest of this work, all performance measurements will be made by
observing how the cost C of a scanning strategy changes over time, given a
scanning strategy. The lower the cost, the better the strategy.

5 Principal Component Analysis

Principal Component Analysis is a statistical technique used mainly for dimen-
sionality reduction and for feature extration. The central idea is to find a linear
projection of the original data onto a subspace that preserves most of the vari-
ance observed in the original data. This orthogonal projection defines what is
known as a principal subspace.

Let {z,} be a set of N data points, each with dimensionality D. We want
to find a projection of these points onto a space with dimensionality M < D
while maximizing the variance of the projected data. Let us start by assuming
that we are trying to find the projection onto a one-dimensional subspace. The
extension of the results shown below to M > 1 can be proved by induction.

Since M = 1, we can define the projection by using only one D-dimensional
vector, which we call u;. We can assume that u; is a unit vector, since we are
only interested in is its direction, not its magnitude. Because u; is a unit vector,
the projection of a data point x,, onto the one-dimensional space is simply given
by ulx,. Let Z be the mean value of {x,}. The variance of the projected data
is then given by

1 N
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g
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N
=

where S is the covariance matrix of the data:
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Remember that our goal is to find a basis vector u; that maximizes the pro-
jected variance of the projected data, u? Su;. We first have to transform this
problem into a constrained maximization problem. Specifically, if we do not
somehow encode the fact that u; is contrained to be a unit vector, maximizing
the variance would be achieved by simply using a vector u; that points in the
right direction, but that has infinite magnitude. We perform this transforma-
tion by introducing a Lagrange multiplier, which we denote A;. Since u; is
unitary, and therefore ufu; = 1, we can find the best vector u; by making an
unconstrained maximization of

U{Sul + )\1(1 - U,{Ul)

By setting the derivative of this equation to zero, we obtain

Su1 = )\1’LL1

which we can then left-multiply by u? to obtain

U{Sul = )\1

These two equations imply both that u; must be an eigenvector of the co-
variance matrix S, and that the vector u; that maximizes the projected variance
is the one with largest eigenvector A;. In case M > 1, we can define additional
principal components us,us,...u, by applying the same reasoning as above,
but starting with the data after projecting it onto u;. In this manner, each ad-
ditional principal component is responsible for “explaining” part of the variance
that was not captured by the simple subspace defined by earlier basis vectors.

6 Contribution

Our approach for defining a good scanning strategy is based on analyzing the
first eigenvector, E7, of the covariance matrix of a set of radar images. This
eigenvector, as will be shown, is the one that encodes most of the information
about what are the regions of highest variability in the radar images. Specif-
ically, for a given number k of past radar images, each being n x m pixels
reporting reflectivity, we can construct a matrix M where the columns corre-
spond to images?; this gives us a matrix with dimensions (nm) x k. By running

2Note, however, that nothing in our approach requires that the pixels of the images encode
reflectivity; dealing with other types of radar readings is left as future work.



PCA on the data stored in this matrix we obtain a set of eigenvectors which de-
scribe a new space in which to represent the radar observations, and in which it
is easier to characterize and analyze the variability in reflectivity of each storm.
Specifically, the set of axis defining this new space can be ordered in a way as
to indicate what are the attributes of the observed measurements (in this case,
pixels reporting reflectivity) that vary the most.

Intuitively, each nm-dimensional eigenvector provided by PCA can be re-
shaped as a n x m image. This type of visualization creates what is usually
called an eigenimage (more details in Section 6.2). These eigenimages form
a basis that spans the whole set of observed radar images. The eigenimage
with highest eigenvalue is specially interesting to us, since the value of its com-
ponents, or pixels, indicates regions of highest variability over the past radar
images. These regions are exactly the ones for which newer and more accurate
readings are usually necessary, and towards which the next scanning actions
should be directed.

Before we present representative examples of these eigenimages, and describe
the way in which they are used to define an efficient scanning strategy, let us
first describe the domain in which we ran our simulations, and also the manner
in which we control the process that generates simulated radar readings.

6.1 Description of the domain and simulation process

The domain used in this work corresponds to a rectangular region of 90km by
60km. We use two radars with overlapping footprints, each with a 30km range.
At any given time we allow at most a given fixed number of storm cells in the
environment. New storms are created by a process described below. Whenever
the center of mass of a storm is no longer within the range of any radar, that
cell is removed from the simulation.

Storms appear in the environment at a given time probabilistically, based on
a stochastic model of rainfall in which cells arrive according to a spatio-temporal
Poisson process [2, 11]. Each decision epoch in our domain lasts 30 seconds. In
order to compute how many new storm cells will potentially be added during
each 30-second decision epoch, we sample a Poisson random variable with rate

)‘77611 (St

where the parameters used above are the same as the ones modeled in [11].
Specifically, A = 0.075 storms/km?, and n = 0.006 cells/minute. From our
radar setup we have §, = 90 x 60 km?, and because each decision epoch takes
30 seconds, d; = 0.5 minutes.

Each storm in our simulation is described by an arbitrarily rotated ellipse,
and has the following 7 attributes:

e x coordinate;



e y coordinate;

e i, the velocity along the z axis;
e 9, the velocity along the y axis;
e 7,7, the ellipse’s major radius;
e 7., the ellipse’s minor radius;

e «, the ellipse’s rotation angle with respect to the x axis.

Note that meteorological radars are typically not able to measure these at-
tributes directly; therefore, such attributes will only be for defining and sim-
ulating the storms’ dynamics over time, but will not be given directly to our
analysis algorithm. The input to our algorithm will correspond to a sequence
of simulated radar images, all of which are constructed based on the simulation
of the storms’ dynamics, and on the previously mentioned values. Notice also
that some attributes, such as velocity, are not directly encoded in the simulated
radar images, although they might, to some extent, be inferred if one observes a
sequence of images and tries to estimate the position and shape of each storm.

For each new storm being added to the simulation, we sample its attributes
from the following distributions. The z and y cordinates are uniformly sam-
pled, as well as the storm’s angle of rotation. The storm’s radii are drawn from
a Gaussian distribution N(ug,0%). The horizontal and vertical velocities are
sampled from a Gaussian distribution, whose parameters are based on real-life
measurements, as follows. As in [8], 39 existing storm cell tracks from the Na-
tional Severe Storms Laboratory were used in order to estimate the distribution
of storm velocities. Each track consists of a series of measurements of latitude
and longitede of storms’ centers; by computing the difference in latitude and
longitude between successive pairs of points, it is possible to fit the resulting
latitude/longitude velocities using Gaussian distributions. Moreover, it is pos-
sible to convert each degree of latitude/longitude to its equivalent in kilometers,
and thus to find the parameters that describe the distribution of horizontal and
vertical velocities. [8] computed these values and found that the latitude (or )
velocity has mean 9.1 km/h and standard deviation of 35.6 km/h, and that the
longitude (or y) velocity has mean of 16.7 km/h and standard deviation of 28.8
km/h. In order to obtain a new storm’s (x,y) velocity, we sample from such a
Gaussian distribution.

Based on the two building blocks described above (the Poisson process that
creates new storms, and the uniform and Gaussian distributions used to instan-
tiate their parameters), we are able to simulate the dynamics of a set of storms
over time. Given such a simulated storm track, we can then generate readings
that represent a simulated radar image of the track. These simulated radar
images will be used as input to all scanning algorithms. An example of such a
simulated radar image is shown in Figure 2. Circles delimit the range of each
radar, and ellipses correspond to currently active storms.
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Figure 2: Example of a simulate radar image generated based on a simulated
track. In this simulation, a maximum of 10 storms was allowed to be active in
the enviroment at any given time.

6.2 Analysis of eigenimages

In order to determine possible interesting regions to be scanned, we analyse the
components of the first eigenvector obtained by running PCA over a set of past
observed radar images. Before we define exactly what we mean by a component
of an eigenvector, let us revise some of the concepts presented in the previous
subsection, and also introduce some new ideas. First of all, let us note that if
we take k past radar images, each being composed by n x m pixels reporting
reflectivity, and organize them in the columns of a matrix M, we end up with a
matrix whose dimensions are (nm) x k. As described in Section 5, the method
of Principal Component Analysis (PCA) works by computing the eigenvectors
of S, the covariance matrix of the data stored in M. This covariance matrix is
a (nm x nm)-dimensional matrix whose rank is at most k; therefore, from basic
linear algebra we can conclude that each eigenvector of S is a nm-dimensional
vector, and that there are at most k orthogonal eigenvectors. We note also that
because each original radar image is composed by n x m pixels, it is possible
to interpret them as points in a nm-dimensional space, where each axis of that
space represents a pixel. To give a concrete example, let us suppose that we
were dealing with images formed by just 2 pixels; in this case, we could visualize
each such image as a point in a 2-dimensional plane, in which the values along
each of the two axes would represent the value of each of the two pixels. Since
we are dealing with much larger images, however, which might in general be
composed by n x m pixels, we have to interpret them not as points in a 2-D
plane, but as points in a larger nm-dimensional vector space. Considering this
fact, and the previously mentioned observation that eigenvectors of S are also
nm-dimensional vectors, we can conclude that by reshaping such eigenvectors
as n X m matrices, we might visualize them as n x m images. These images are
typically called eigenimages. Note also that because each eigenvector of S is a
nm-dimensional vector, it is in practice represented as a tuple of nm numbers;
we call each of those numbers a component of the eigenvector. When viewing
an eigenvector as an image, each of these components directly corresponds to
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a pixel in the corresponding eigenimage. As will be discussed in the following
Sections, great part of this work is based on the analysis of these components.

Finally, we note that because i) S, the covariance matrix of the radar images,
has at most k eigenvectors, and i) these eigenvectors define a new complete
space that spans the whole set of k radar images, we can in principle recon-
struct (or re-express) any of original radar images as a linear combination of
such eigenvectors. In other words, the set of eigenimages computed by PCA
spans the whole set of original radar images. Because of the properties of the
eigenvectors computed by PCA, it is the case that the first such eigenvectors
(i.e., the ones with highest eigenvalues, up to a threshold) can be used to de-
fine a subspace that encodes most of the observed variance across images. In
fact, we observe that in practice much fewer than k eigenimages are typically
necessary to reconstruct any of the original radar images, and thus we conclude
that much fewer than k eigenvectors are sufficient to encode all the regions of
the images where significant variability has been observed.

When analyzing eigenimages, we observe that each one of them tends to
encode different aspects of the variability across images. To give a concrete
example, suppose we were analyzing human faces, instead of radar images; this
application of PCA is usually known as eigenfaces. The first eigenimage in an
eigenface application tends to encode the region of the eyes, mouth and hair,
since these are the parts of human faces that vary the most across individuals.
These regions are usually characterized by pixels with very bright or very dark
values. The subsequent eigenimages in an eigenface application (i.e., the ones
with progressively smaller eigenvalues) tend to encode regions of the face the
vary less, such as eyebrows and the hairline. These less significant eigenimages
encode finer and finer features of the images, and in practice any eigenimage
with a very small eigenvalue contributes very little to describing the overall,
global regions of high variability across faces. In the case of eigenimages formed
by analyzing radar images, on the other hand, we expect the first eigenimages
to encode regions of the space where most of the change in reflectivity is occur-
ring. In fact, as will be described shortly, the first eigenimage in our analysis
was usually capable of encoding the movement, over time, of the fringes (or
boundaries) of the storms, and thus allowed us to identify from where and to
where storms seemed to be moving in the short term. This type of information
is very important to our application, since it gives us hints regarding where the
radars should focus on in order to obtain newer and more accurate readings of
the evolving storms.

When constructing the matrix M, one needs to decide how many radar
images, k, will be used. The larger the number of past observations is used, the
more of an overall big picture we get regarding which spatial regions present high
measurement variability. However, by using a large number of past observations
we also get less precise indicators about which regions have undergone recent
high variance measurements. In our experiments we have used a window of
time of 10 past radar images, which means that our approach decides for a new
scan action every 30 seconds, based on observations from the past 5 minutes.
Using fewer images than that did not, empirically, provide enough information
to describe the short-term changes in the state of the storms; using more images,
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on the other hand, had the downside of “remembering” too much information
from the past, and thus wrongly characterizing regions where storms used to
be a long time ago as being regions where significative variability has recently
occurred. Note that because we use 10 past radar images in each step of the
decision-taking process, during the first 5 minutes of simulation we don’t have
yet enough data to construct the required eigenimages. Therefore, during this
initial period of the process we employ a simple sit-and-spin strategy.

We now present, in Figures 3, 4 and 5, examples of eigenimages generated
based on our simulated radar images. In Figure 3 we show the first three eigen-
images computed over a set of 100 past radar images; these images correspond
to the simulation of 50 minutes of real time. The simulation used to generate
the tracks allowed up to 5 storms to be active in the environment at any given
time. A similar set of eigenimages, but now for a simulation allowing up to 2
active storms, is shown in Figure 4. Figure 4 shows us in a clearer way that in
general very bright and very dark regions of the eigenimages tend to represent
the regions of the scanned space in which most of the variability has occurred.
Typically, dark regions of the first eigenimage tend to encode parts of the space
where radar measurements went from reading a storm, to reading just back-
ground noise (i.e., regions where there was once a storm, but which then moved
somewhere else). Brighter regions of the first eigenimage, on the other hand,
tend to encode regions of the space where storms are arriving at. Long-term
eigenimages such as the ones presented in Figures 3 and 4 provide us with a big
picture regarding the overall storms’ structure, that is, about the way in which
they tend to move in the long run. However, this type of long-term eigenimage
has the disadvantage of also recording areas of high variability due to storms
that might not be active anymore. Therefore, such images are not particularly
useful for deciding a good current scan action.

o5l

Figure 3: First three eigenimages generated by analyzing the last 100 radar
observations. A maximum of 5 storms was allowed to be active in the enviroment
at any given time. Very bright and very dark regions encode places where high
variance has been observed, and are related to the direction in which storms are
moving.

In Figure 5, on the other hand, we present the first three eigenimages for a
simulation involving up to 5 storms but considering just the past 10 minutes of
radar observations. We notice that by using a smaller window of time, short-
term storm motion features can be observed. In this case, bright and dark
regions in the first eigenimage tend to represent the fringes, or boundaries, of
the storms. The rest of the eigenimages represent regions of the images where
less variability has been observed, and in general do not seem to encode features
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Figure 4: First three eigenimages generated by analyzing the last 100 radar
observations. A maximum of 2 storms was allowed to be active in the enviroment
at any given time. Very bright and very dark regions encode places where high
variance has been observed, and are related to the direction in which storms are
moving.

that are directly useful for characterizing a good scanning strategy. In Section
8 we discuss a possible way in which other eigenimages, and the entropy over
eigenvalues, could be used in order to provide us with further useful information.

- |

Figure 5: First three eigenimages generated by analyzing the last 20 radar
observations, or 10 minutes of real time observations. A maximum of 5 storms
was allowed to be active in the enviroment at any given time. This type of
eigenimage provides a good way of extracting short-term motion features based
on the past observed radar images.

6.3 Action space and action quality

As previously mentioned, in this work we focus primarily on analyzing the first
eigenimage. We choose to use just the first eigenimage because it is the one
that encodes most of the information about what are the regions where the
highest variabilities in reflectivity have been observed. The first eigenimage
also seems to encode features that represent the fringes, or boundaries, of the
storms. These are particularly useful for our purposes since they allow us to
identify from where and to where storms seem to be moving in the short term,
and thus give important indications regarding where the radars should focus on
in order to obtain newer and more accurate readings of the evolving storms.

We will now formally define the set of actions that are available to each
radar, and describe how to evaluate their qualities. We start by identifying the
regions of an image that can be scanned by each radar r. We also identify which
individual regions of an image can be covered by each possible scan action of
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each radar r. For instance, when the leftmost radar in Figure 2 performs a
scan whose start angle is 0 degrees, and whose end angle is 180 degrees, the
scanned region corresponds to the top half of the leftmost circle shown in that
Figure. Another example of this type of scanned region, implied by a specific
radar action, is shown in Figure 6.

In what follows, we denote the spatial region of an image I that is scanned
by an action s, by I(s,). Let E; be the first eigenvector obtained when running
PCA over a fixed window of past radar images. Let A = {E1(s,)} be the set of
all possible image regions scanned by each individual action s, of radar r. For
each action s,, we compute its quality based on the intensity of the components
of the region described by Fj(s;). That is, the quality of an action s, is based
on the intensity of the components of the region of the eigenimage that would
scanned by the action s,.

If we assume that the set of active storms usually do not occupy the whole
space all the time, then it is reasonable to assume that the most frequent com-
ponent intensity present in the eigenimage indicates regions where no moving
phenomena have recently occurred. In other words, by considering the inten-
sities of components of an eigenimage FEj, and by taking the mode of such
intensities (or by analyzing its histogram), we can try to identify what we call
the “background variance” over a set of images. The background variance em-
pirically indicates regions of the scanning space in which the radars have very
likely mot scanned any recent moving phenomena, such as evolving storms. In
Figure 6 we present an eigenimage, the same eigenimage but with background
variance removed, and also the region Fj(s,) scanned by an action s, of the
rightmost radar®, in case s, corresponds to the action whose scanned sector
goes from 0° to 90°. In part (c) of Figure 6 we can see that all regions with
intensity different than zero (i.e., all those not represented in black) correspond
to the fringes of a moving storm. In other words, these regions encode and
highlight only the regions of the space in which radar measurements indicate
important changes in the state of the storms.

(a) (b)

Figure 6: (a) Original eigenimage; (b) eigenimage with background variance
removed; (c¢) example of region covered by a scanning action of the rightmost
radar, in case the corresponding scanned sector goes from 0° to 90°.

Let ||E1(sy)|| denote the size, in number of pixels, of the region scanned by

3not shown.
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the action s,.. Let H(FE1(s,)) be the number of non-zero elements in the region
scanned by that action. Based on these values, we define the quality Q(s;) of
a scanning action s, to be a value proportional to the amount of the scanned
region that contains features indicating high variability in the storm’s intensity,
and penalized by the size of the scanned region:

Qo) = max (H(E:(5) = 7lE1(s0)1,0)

where 7 is a tunable parameter that represents the fact that an action’s quality
depends not only on the amount of the scanned region that contains features
indicating high variability in the storm’s intensity, but also, in an inversely
proportional manner, on the size of the region scanned. This is so because in
order to scan large regions of the space, a radar has to rotate faster, and thus
obtains less precise measurements. The penalty weight 7 is probably the most
important parameter in our approach, since it regulates how advantageous it is
to expand the scanned area and to collect more information, but at the expense
of losing radar resolution. The specific value of 7 to be used is usually related
to the minimum size of storm that one still wants to be able to detect. The
importance of this parameter will be further discussed in Section 7.

Now let us describe how our approach decides which scan actions to execute.
Let sl,s2,...,s2 be the set of all p actions available to radar 7. We choose the
scan action of radar r probabilistically, according to a Boltzmann distribution
constructed based on the quality of the actions of that radar. Specifically, the

probability 7(s’) of choosing action s is given by

. eQ(s1)/T
™) = S awnT
Z]:l e "
where T is a temperature parameter that regulates how likely it is that we
choose an exploratory action rather than the greedy action.

One important aspect of this type of probabilistic approach for picking ac-
tions is that it allows us to very easily cope with some requirements that me-
teorologists usually have. It can be desirable, for instance, to guarantee that
each radar sector is scanned on average at least once every 2 minutes. In our
simulations, each radar’s scan space was divided into 4 equally sized disjoint
sectors. Each of the 13 actions available to a radar can then be seen as scanning
each possible sequence of adjacent sectors. In order to guarantee that on aver-
age every sector is scanned at least once every K decision epochs, let us analyze
the simplified case when we consider only scanning individual sectors. Let us
imagine that we want to guarantee that one given sector, i, is scanned at least
once every K decision epochs. Let us also assume that because all actions being
considered scan regions of same size, 7 can be set to zero. In the worst case,
H(E(s%)) = 0, that is, the sector of interest, 4, has no indication of varying
phenomena, and all other 3 sectors have maximum value for H: H(E;(s?)) = 1,
for all j # 4. In this case, the probability of scanning sector i is
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If we want to lower bound the probability of scanning the sector ¢ by a
constant probability €, we can solve the above equation for T:

3eT +1

and therefore

In the worst case, the sector of interest, ¢, will continue to have zero quality
even during future decision epochs, and in that case we can find the expected
number of decision epochs until ¢ is first scanned (or re-scanned) by using the
properties of geometric distributions. Specifically, we might use a geometric
distribution in order to analyze the expected number of Bernoulli trials, each
with probability of success equal to ¢, before the first success occurs. The
expected number of trials until the first success occurs is given by 1. Therefore,
applying this result to our case, in which we want the expected number of
decision epochs before 7 is re-scanned to be on average K, we find that % =K.
Substituting this in the equation for the lower bound on T gives us

1
1\’
1n<1311f)

The same type of argument could we developed for the case when we do not
scan only individual sectors, and for when 7 is not zero.

T >

Notice that after having used the above mentioned strategies for choosing
the scan action s, for each radar r, the joint action S is then simply constructed
as the set containing all individual actions, that is, {s,}, for all r.
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7 Results

We now present some results in which we compare our technique to the tra-
ditionally used sit-and-spin strategy, and to a baseline random strategy. As
mentioned in Section 4, all scanning strategies will be evaluated based on the
scanning costs in which they incur.

Let us first describe some specific details about how we organized the domain
used for these comparisons. In our simulations we considered a window of
10 past radar images, in order to compute the eigenimages. As described in
Section 4, there are 13 actions available for each radar, and therefore a total
of 132 possible joint actions. The parameter p, which affects how noisy the
observations can be, was set to p = 20. That way, vertical attributes of a
storm could be measured up to 3 km off their correct location, for example.
Storms were created according to the previously described Poisson process, and
velocities were drawn from the presented Gaussian distributions. The major
and minor radii of each storm were drawn either from N(10,4?), in case we
wanted to generate a simulation involving large storms, or from N(5,22), in
case we were interested in generating a simulation involving only small storms.

Figure 7 presents the typical results that were obtained when simulating an
intermediate number of maximum active storms, and when considering large
storms. This Figure presents results corresponding to a simulation of 50 min-
utes of real time observations, in which we allowed up to 5 active storms at a
time. Storms’ radii were drawn from N (10,42). The performance gain that was
obtained by our technique is a direct consequence of that fact that it success-
fully manages to focus its scan efforts only on the regions where some storm
variability has been observed.

In case we allow many more active storms at a time (10 storms, as depicted
in Figure 2), then the space quickly becomes crowded with meteorological phe-
nomena. In this case, the best policy is usually very close to simply scanning the
whole 360 degrees all the time, since there are phenomena to be observed every-
where and because skipping any one sector could possibly imply not observing
several storms. Missing several storms would, of course, have a big negative
impact on the scanning cost of the strategy. However, whenever it is possible
for our approach to avoid scanning one or more sectors, it takes advantage of
that fact. Nonetheless, we notice that, as a general trend, adding more storms
makes the performance gain provided by our approach smaller, in comparison
to sit-and-spin. This observation can be verified in Figure 8.

When, on the other hand, we allow the simulation to have only very few
active storms at a time, we observe a similar outcome to the one described last.
When just a few storms are active, it is very likely that one of them will be
partially visible by at least one given scan action. In other words, it is likely
that at some point in time a storm will not be completely contained in just one
sector. Let s, the the action of radar r that observes a storm just partially. Since
we do not have access to the information of whether the measured variability
in the corresponding region was due to a complete (and small) storm moving
around, or due to a small portion of a larger, and partially observed storm,
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Figure 7: Scanning cost for each of the scanning techniques. The results were
averaged over 10 runs, using the same simulated track. The major and minor
radii of the storms were sampled from N(10,42), allowing for relatively large
storms. A maximum of 5 storms was allowed at a time, and the penalty T was set
to 0.25. We can see that our approach outperforms the sit-and-spin technique
because it is able to save scanning resources by not focusing on irrelevant sectors.

60 T T T T T T T T
Eigenstorm s
Random =
Sit-and-Spin
50 1
40 F
6 30 F -
| L ¢ \
) ’ L4 / 1]
20 / 1
10 F 1
0 n n . n s s s s L
0 10 20 30 40 50 60 70 80 20 100

Time (x30 seconds)

Figure 8: Scanning cost for each of the scanning techniques. The results were
averaged over 10 runs, using the same simulated track. The major and minor
radii of the storms were sampled from N(10,42), allowing for relatively large
storms. A maximum of 10 storms was allowed at a time, and the penalty 7 was
set to 0.1. We can see that our approach still performs better than sit-and-spin,
but that the advantage is now not so evident, since the best policy in this case
is very close to sit-and-spin.
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how should we evaluate the action s,.? The answer to this question will define
whether or not we scan the sector; if we believe the variability to have been
caused by a small portion of a storm that is mostly contained in another sector,
then we should not waste resources by scanning the current sector. Otherwise,
we should.

The bias on how we treat these situations is primarily affected by the penalty
weight, 7. For small values of 7, there is almost no extra cost for scanning
additional regions, and therefore the radar will tend to be optimistic and scan
whatever regions contain variability that might indicate the presence of (even
small) storms. In that case, the chance of being penalized by missing a storm is
decreased, but the quality of measurements becomes lower due to the increase
in the radar’s rotation speed. In case 7 is not small, the radar will tend to be
agnostic as to whether small regions of variability should be scanned or not.
The specific value of 7 to be chosen is directly related to the size of the smallest
storm that we want to be able to detect. Larger values of 7 might decrease the
scanning cost, since the radar would hopefully not scan irrelevant sectors, but
could also eventually cause large penalties for missing small storms. This effect
is further discussed in Section 7.1.

In Figure 9 we present the costs of scanning a system with very few active
storms at a time — just two. In order to minimize the chance of missing storms,
we had to set 7 to a smaller value. The side-effect of this decision, however, was
that because the radar now tended to perform optimistic scans, our strategy
got closer to simple sit-and-spin. In fact, Figure 9 shows that even though the
performance of our approach was still better than sit-and-spin, the margin of
advantage was not so large as in the case where more storms were populating
the space.

7.1 The problem with small storms

The problem of finding the value of 7 that best balances possible improvements
in the scanning cost, while at the same time minimizing the chance of missing
storms, depends primarily on the size of the smallest storm that we want to be
able to detect.

In case 7 is not set appropriately, the scan strategy could end up ignoring
possibly small storms, and even though that decision could provide temporary
gains in performance, it could also cause big penalties in case actual small storms
were mistaken for noise. This effect is clearly depicted in Figure 10, in which
the performance of our approach was worse than simple sit-and-spin because
our strategy repeatedly mistook small storms for noise.

8 Discussion

We have proposed a new method for determining efficient scanning strategies
for adaptive networks of radars, based on spectrally analyzing a sequence of
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Figure 9: Scanning cost for each of the scanning techniques. The results were
averaged over 10 runs, using the same simulated track. The major and minor
radii of the storms were sampled from N(10,42), allowing for relatively large
storms. A maximum of 2 storms was allowed at a time, and the penalty 7 was
set to 0.1. We can see that our approach still performs better than sit-and-spin,
but that the advantage is now not so evident, since we had to set 7 to a relatively
small value in order for the radar not to confuse partially observed storms with
noise. Small values of 7 usually make our approach tend towards a sit-and-spin
behavior.

radar images. Our approach has some advantages over previous works: it does
not assume that the current or maximum number of storms is known; it also
does not assume that the storms have been identified or labeled in any way,
and neither that information about their centroids is available. We also do
not assume anything about the spatial shape of the storms, although in our
experiments we have restricted their shapes to only arbitrarily rotated ellipses.

Our approach seems to work well both when compared to the traditionally
used sit-and-spin strategy, and also to a baseline random strategy. When there
are many storms in the environment, in a way that the whole space is almost
completely full with meteorological phenomena, our method successfully avoids
scanning irrelevant sectors whenever possible. However, the performance gain in
this case, when compared to sit-and-spin, is not very large, because sit-and-spin
is indeed the best policy. When the number of storms is intermediate, however,
our methods performs clearly better.

Whenever scanning and tracking small storms is important, our method
suffers with the difficult problem of correctly setting a good value for the penalty
weight, 7. Specifically, it is not trivial to balance the need of observing small
storms while at the same time successfully ignoring noise and irrelevant partially
observed storms. One possible way of dealing with this limitation could be to
increase the size of the action space, since then each radar would be able to
decide in a more refined way which regions to scan. However, in case this
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Figure 10: Scanning cost for each of the scanning techniques. The results were
averaged over 10 runs, using the same simulated track. The major and minor
radii of the storms were sampled from N(5,22), allowing for relatively small
storms. A maximum of 5 storms was allowed at a time, and the penalty 7
was set to 0.1. We can see that in the presence of relatively small storms, it
is easy to mistake an actual storm for noise or for a partially observed storm
mostly located in another sector. Whenever our approach made this mistake,
the scanning cost increased due to the penalties for missing storms.

technique were applied to noisy images, it is not clear whether a simple sweep
through the whole sector would not be more efficient than constantly having to
alternate between scanning very small regions, and skipping others.

We see three possible direct extensions to this work. The first one is related
to complementing the method by analyzing additional eigenvectors. In the
current work, we have considered just the eigenimage with higher eigenvalue,
since it accounts for most of the variance. However, other eigenvectors might
encode important features that describe the evolution of the storm at different
scales. Another interesting extension could be to analyze the entropy of the
eigenvalues. By computing the entropy of the eigenvalues up to the current
decision epoch, and by studying how the entropy changes over time, it should
possible to get some evidence about how well-structured the storm cells are. In
case the storm cells are not well-structured, either because their spatial shape
evolve in complicated ways or because they move through possibly non-linear
paths, the entropy will be large. On the other hand, in case the storms move
in a predictable way and are more or less static in terms of their shapes, the
entropy will be small.

Finally, and maybe more importantly, this work could be extended to con-
sider non-myopic decisions. Currently, all actions are based only on past ob-
servations. We could certainly make use of the bases given by PCA in order
to find a lower-dimensional representation of the radar images, and then use
this new representation as the global state of the system. Based on this new
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representation for the state, and assuming that the temporal evolution of the
environment might be well approximated by a linear system on the new features,
we could predict the next radar images by using Least Squares Regression. This
would allow our technique to be extended for non-myopic decisions, which could
improve on the current quality of the scanning strategy.
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