Learning Parameterized Skills

Bruno Castro da Silva, George Konidaris, Andrew G. Barto
Technical Report UM-CS-2012-007

Computer Science Department
University of Massachusetts Amherst
{bsilva, gdk, barto}@cs.umass.edu

March 6, 2012

Abstract

We introduce a method for constructing a single skill capable of solv-
ing any tasks drawn from a distribution of parameterized reinforcement
learning problems. The method draws example tasks from a distribu-
tion of interest and uses the corresponding learned policies to estimate
the geometry of the lower-dimensional manifold on which the skill poli-
cies lie. This manifold models how policy parameters change as the skill
parameters are varied. We then apply non-linear regression to construct
a parameterized skill by predicting policy parameters from task param-
eters. We evaluate our method on an underactuated simulated robotic
arm tasked with learning to accurately throw darts at any target location
around it.

1 Introduction

One approach to dealing with the complexity of applying reinforcement learn-
ing to high-dimensional control problems is to specify or discover hierarchically
structured policies. The most widely used hierarchical reinforcement learning
formalism is the options framework (Sutton et al., 1999), where high-level op-
tions (also called skills) define temporally extended policies that can be used
directly in learning and planning but abstract away the details of low-level
control. One of the motivating principles underlying hierarchical reinforcement
learning is the idea that subproblems recur, so that acquired or designed options
can be reused in a variety of tasks and contexts.

However, the options framework as usually formulated defines an option as
a single policy. An agent may instead wish to define a parameterized policy that
can be applied across a class of related tasks. For example, consider a soccer

playing agent. During a game the agent might wish to kick the ball with varying
amounts of force, towards various different locations on the field; for such an
agent to be truly competent it should be able to execute such kicks whenever
necessary, even with a particular combination of force and target location that it
has never had direct experience with. In such cases, learning a single policy for
each possible variation of the task is clearly infeasible. The agent might therefore
wish to learn good policies for a few specific kicks, and then use this experience
to synthesize a single general skill for kicking the ball—parameterized by the
amount of force desired and the target location—that it can execute on-demand.

We propose a method for constructing parameterized skills from experience.
The agent learns a few instances of the parameterized task and uses these to esti-
mate the geometry of the lower-dimensional manifold on which the skill policies
lie. This manifold models how policy parameters change as the skill parameters
are varied. We then use non-linear regression to construct a parameterized pol-
icy by predicting policy parameters from task parameters. We apply the method
to an underactuated simulated robotic arm tasked with learning to accurately
throw darts at any target location around it.

2 Setting

In what follows we assume an agent which is presented with a set of tasks
drawn from some task distribution. Each task is modeled by a Markov Decision
Process (MDP) and the agent must maximize the expected reward over the
whole distribution of possible MDPs. We assume that the MDPs have dynamics
and reward functions similar enough so that they can be considered variations
of a same task. Formally, the goal of such an agent is to maximize:

/P(T)J(ngﬂ')dﬂ (1)

where 7y is a policy parameterized by a vector § € RY, 7 is a task pa-
rameter vector drawn from a |T'|-dimensional continuous space T, J(w,7) =
E { Zfi o Tt| T, T} is the expected return obtained when executing policy 7 while
in task 7 and P(7) is a probability density function describing the probability
of task 7 occurring. Furthermore, we define a parameterized skill as a function

0:T - RV,

mapping task parameters to policy parameters. When using a parameterized
skill to solve a distribution of tasks, the specific policy parameters to be used
depend on the task currently being solved and are specified by ©. Under this
definition, our goal is to construct a parameterized skill © which maximizes:

/P(T)J(W@(T),T)dr (2)

2.1 Assumptions

We assume the agent must solve tasks drawn from a distribution P (7). Suppose
we are given a set K of pairs {7,0;}, where 7 is a vector of task parameters
sampled from P(7) and 6, is the corresponding policy parameter vector that
maximizes return for task 7. We would like to use K to construct a parame-
terized skill which (at least approximately) maximizes the quantity in Equation
2.

We start by highlighting the fact that the probability density function P
induces a (possibly infinite) set of skill policies for solving tasks in the support
of P, each one corresponding to a vector 6, € RY. These policies lie in an
N-dimensional space containing sample policies that can be used to solve tasks
drawn from P. Since the tasks in the support of P are assumed to be related,
it is reasonable to further assume that there exists some structure in this space;
specifically, that the policies for solving tasks drawn from the distribution lie
on a lower-dimensional surface embedded in RY and that their parameters vary
smoothly as we vary the task parameters.

This assumption is reasonable in a variety of situations, especially in the
common case where the policy is differentiable with respect to its parameters.
In this case, the natural gradient of the performance J (71'9, T) is well-defined and
indicates the direction (in policy space) that locally maximizes J but which does
not change the distribution of paths induced by the policy by much. Consider,
for example, problems in which performance is directly correlated to how close
the agent gets to a goal state; in this case one can interpret a small perturbation
to the policy as defining a new policy which solves a similar task but with a
slightly different goal. Since under these conditions small policy changes induce
a smoothly-varying set of goals, one can imagine that the goals themselves
parameterize the space of policies: that is, that by varying the goal or task one
moves over the lower-dimensional surface of corresponding policies.

Note that it is possible to find points in policy space in which the corre-
sponding policy cannot be further locally modified in order to obtain a solution
to a new, related goal. This implies that the set of skill policies of interest might
be in fact distributed over several charts of a piecewise-smooth manifold. Our
method can automatically detect when this is the case and construct separate
models for each manifold, essentially discovering how many different skills exist
and creating a unified model by which they are integrated.

3 Overview

Our method proceeds by collecting example task instances and their solution
policies and using them to train a family of independent non-linear regression
models mapping task parameters to policy parameters. However, because poli-
cies for different subsets of T" might lie in different, disjoint manifolds, it is
necessary to first estimate how many such lower-dimensional surfaces exist be-
fore separately training a set of regression models for each one.

More formally, our method consists of four steps: 1) draw | K| sample tasks
from P and construct K, the set of task instances 7 and their corresponding
learned policy parameters 6,; 2) use K to estimate the geometry and topology
of the policy space, specifically the number D of lower-dimensional surfaces
embedded in RY on which skill policies lie; &) train a classifier Y mapping
elements of T' to [1,. .., DJ; that is, to one of the D lower-dimensional manifolds;
4) train a set of (N x D) independent non-linear regression models ®; ;, i €
[1,...,D], 5 € [1,...N], each one mapping elements of T' to individual skill
policy parameters 6;, i € [1,...N]. Each subset [®;1,...,®; n] of regression
models is trained over all tasks 7 in K where x(7) = i.! We therefore define a
parameterized skill as a vector function:

@(T) = [(bx(‘r),h ey (I’X(.,.),N]T. (3)

Task space
T

policy space

Figure 1: Steps involved in executing a parameterized skill: a task is drawn from
the distribution P; the classifier y identifies the manifold to which the policy for
that task belongs; the corresponding regression models for that manifold map
task parameters to policy parameters.

Figure 1 depicts the above-mentioned steps. Note that we have described our
method without specifying a particular choice of policy representation, learning
algorithm, classifier, or non-linear regression model, since these design decisions
are best made in light of the characteristics of the application at hand. In
the following sections we present a control problem whose goal is to accurately
throw darts at a variety of targets and describe one possible instantiation of our
approach.

4 The Dart Throwing Domain

In the dart throwing domain, a simulated planar underactuated robotic arm is
tasked with learning a parameterized policy to accurately throw darts at targets
around it (Figure 4). The arm is placed in the center of a room and is surrounded

I This last step assumes that the policy features are approximately independent conditioned
on the task; if this is known not to be the case, it is possible to alternatively train a set of D
multivariate non-linear regression models ®;, i € [1,..., D], each one mapping elements of T’
to complete policies parameterizations # € RY, and use them to construct ©. Again, the i-th
such model should be trained only over tasks 7 in K such that x(7) = ¢.

by two 3-meter high walls and by a 4-meter wide ceiling. The arm is composed of
three connected links and a single motor which applies torque only to the second
joint, making this a difficult non-linear and underactuated control problem. At
the end of its third link, the arm possesses an actuator capable of holding and
releasing a dart. The state of the system is a 7-dimensional vector composed by
6 continuous features corresponding to the angle and angular velocities of each
link and by a seventh binary feature specifying whether or not the dart is still
in being held. The goal of the system is to control the arm so that it executes a
throwing movement and accurately hits a target of interest. In this domain the
space T of tasks consists of a 2-dimensional Euclidean space containing all (z, y)
coordinates at which a target can be placed—a target can be affixed anywhere
on the walls or ceiling surrounding the agent.

5 Learning Parameterized Skills for Dart Throw-
ing

To implement the method outlined in Section 3 we need to specify methods to
1) represent a policy; 2) learn a policy from experience; 3) analyze the topology
of the policy space and estimate D, the number of lower-dimensional surfaces on
which skill policies lie; 4) construct the non-linear classifier x; and 5) construct
the non-linear regression models ®. In this section we describe the specific
algorithms and techniques chosen in order to tackle the dart-throwing domain.
We discuss our results in Section 6.

Our choices of methods are directly guided by the characteristics of the do-
main. Because the following experiments involve a multi-joint simulated robotic
arm, we chose a policy representation that is particularly well-suited to robotics:
Dynamic Movement Primitives (Schaal et al., 2004), or DMPs. DMPs are a
framework for modular motor control based on a set of linearly-parameterized
autonomous non-linear differential equations. The time evolution of these equa-
tions defines a smooth kinematic control policy which can be used to drive
the controlled system. The specific trajectory in joint space that needs to be
followed is obtained by integrating the following set of differential equations:

K =K(g—x)—Qu+(9—x0)f
KT = v,

where z and v are the position and velocity of the system, respectively; xg and
g denote the start and goal positions; x is a temporal scaling factor; and K
and @ act like a spring constant and a damping term, respectively. Finally, f
is a non-linear function which can be learned in order to allow the system to
generate arbitrarily complex movements and is defined as

, wi;(s
Fs) = Zaitils)
> ¥i(s)
where ;(s) = exp(—h;(s — ¢;)?) are Gaussian basis functions with adjustable
weights w; and which depends on a phase variable s. The phase variable is

constructed so that it monotonically decreases from 1 to 0 during the execution
of the movement and is typically computed by integrating x$ = —as, where «
is a pre-determined constant. In our experiments we used a PID controller to
track the trajectories induced by the above-mentioned system of equations.

This results in a 37-dimensional policy vector 6 = [\, g, w1, ..., wss]T, where
) specifies when the arm should let go of the dart; g is the goal parameter of
the DMP; and wy,...,wss are the weights of each Gaussian basis function in
the movement primitive.

We combine DMPs with a policy learning method known to perform well
with this type of policy represention. POWER (Kober & Peters, 2008) is a policy
search technique that collects sample path executions and updates the policy’s
parameters towards ones that induce a new success-weighted path distribution.
We choose POWER due to its simplicity and because it has been shown to out-
perform other policy learning algorithms in a variety of standard benchmarks
and on real robotics problems (Kober & Peters, 2010). PoOWER works by exe-
cuting rollouts p constructed based on slightly perturbed versions of the current
policy parameters; perturbations to the policy parameters consist of a struc-
tured, state-dependent exploration e¢7 ¢(s,t), where gy ~ N'(0,%) and 3 is a
meta-parameter of the exploration; ¢(s,t) is the vector of policy feature activa-
tions at time ¢t. By adding this type of perturbation to # we induce a stochastic
policy whose actions are a = (6 + £¢)7¢(s, 1)) ~ N(0,¢(s,t)T (s, t)). After
performing rollouts using such a stochastic policy, the policy parameters are
updated as follows:

Opir = 9k+<zT:W(s,t)Q“(s,a,t))>_l X

t=1 w(p)

< ZW(S, t)e Q7 (s, a, t))>w(p)

t=1

where QT (s,a,t) = Zszt (S, a7, 87,1, t) is an unbiased estimate of the return,
Wi(s,t) = é(s, t)d(s, t) T (s, HT (s, t))f1 and (-),(p) denotes an importance
sampler which can be chosen depending on the domain. A useful heuristic when
defining w is to discard sample rollouts with very small importance weights;
importance weights, in our experiments, are proportional to the relative perfor-
mance of the rollout in comparison to others.

To analyze the geometry and topology of the policy space and estimate
the number D of lower-dimensional surfaces on which skill policies lie we used
the ISOMAP algorithm (Tenenbaum et al., 2000). ISOMAP is a technique
for learning the underlying global geometry of high-dimensional spaces and the
number of non-linear degrees of freedom that underlie it. This information
provides us with an estimate of D, the number of disjoint lower-dimensional
manifold where policies are located; ISOMAP also specifies to which of these
disconnected manifolds a given input policy belongs. This information is used to
train the classifier x, which learns a mapping from task parameters to numerical
identifiers specifying one of the lower-dimensional surfaces embedded in policy
space. For this domain we have implemented x by means of a simple linear
classifier. In general, however, more powerful classifiers could be used.

Finally, we must choose a non-linear regression algorithm for constructing
®; ;. We use standard Support Vector Machines (SVM) (Vapnik, 1995) due
to their good generalization capabilities and relatively low dependence on pa-
rameter tuning. In the experiments presented in Section 6 we use SVMs with
Gaussian kernels and a inverse variance width of 5.0. As previously mentioned,
if important correlations between policy and task parameters are known to ex-
ist, multivariate regression models might be preferable; one possibility in such
cases are Structure Support Vector Machines (Tsochantaridis et al., 2005).

6 Experiments

Before discussing the performance of parameterized skill learning in this domain,
we present some empirically measured properties of its policy space. Specifically,
we describe topological characteristics of the induced space of policies generated
as we vary the task. We sampled 60 tasks (target positions) uniformly at random
and placed target boards at the corresponding positions. The policies for solving
each one of these tasks were computed using POWER; the learning algorithm
was configured to perform a policy update every 20 rollouts and to run until a
minimum performance threshold was reached. In our simulations, this criteria
corresponded to the moment when the robotic arm first executed a policy that
landed the dart within 5 centimeters of the intended target. In order to speed
up the sampling process we initialize policies for subsequent targets with ones
computed for previously sampled tasks.

We first analyze the structure of the policy manifold by estimating how each
dimension of a policy varies as we smoothly vary the task. Figure 2a presents this
information for a representative subset of policy parameters. On each subgraph
of Figure 2a the x axis corresponds to a 1-dimensional representation of the task
obtained by computing the angle at which the target is located with respect to
the arm, and the y axis corresponds to the value of a selected policy parameter.
The first important observation to be made is that as we vary the task, not only
do the policy parameters vary smoothly, but they tend to remain confined to one
of two disjoint but smoothly varying lower-dimensional surfaces. A discontinuity
exists, indicating that after a certain point in task space a qualitatively different
type of policy parameterization is required. Another interesting observation
is that this discontinuity occurs approximately at the task parameter values
corresponding to hitting targets directly above the robotic arm; this implies
that skills for hitting targets to the left of the arm lie on a different manifold
than policies for hitting targets to its right. This information is relevant for two
reasons: 1) it confirms both that the manifold assumption is reasonable and that
smooth task variations induce smooth, albeit non-linear, policy changes; and 2)
it shows that the policies for solving a distribution of tasks are generally confined
to one of several lower-dimensional surfaces, and that the way in which they
are distributed among these surfaces is correlated to the qualitatively different
strategies that they implement.

Figures 2b and 2c show, similarly, how a selected subset of policy parameters
changes as we vary the task, but now with the two resulting manifolds analyzed

107 oy amens, 0
a)
0 -2
etmaftung?
-10 -4
-1 0 1 2 3 4 -1 4

3 460.5

2 b 460
b) B0 .

1 o 459.5

.o
0 A 459
1 3.5 1.
1" -3

c) o

Figure 2: Analysis of the variation of a subset of policy parameters as a function
of smooth changes in the task.

separately. Figure 2b shows the variations in policy parameters induced by
smoothly modifying tasks for hitting targets anywhere in the interval of 1.57
to 3.5 radians—that is, targets placed roughly at angles between 90° (directly
above the agent) and 200° (lowest part of the right wall). Figure 2¢ shows that
same information but for targets located on one of the other two quadrants—
that is, targets to the left of the arm. We superimposed in Figures 2a-c a red
curve representing the non-linear fit constructed by ® while modeling the rela-
tion between task and policy parameters in each manifold. Note also how a clear
linear separation exists between which task policies lie on which manifold: this
separation indicates that two qualitatively distinct types of movement are re-
quired for solving different subsets of the tasks. Because we empirically observe
that a linear separation exists, we implement y using a simple linear classifier
mapping tasks parameters to the numerical identifier of the manifold to which
the task belongs.

We can also analyze the characteristics of the lower-dimensional, quasi-
isometric embedding of policies produced by ISOMAP. Figure 3 shows the
2-dimensional embedding of a set of policies sampled from one of the mani-
folds. Embeddings for the other manifold have similar properties. Analysis of
the residual variance of ISOMAP allows us to conclude that the intrinsic di-
mensionality of the skill manifold is 2; this is expected since we are essentially
parameterizing a high-dimensional policy space by task parameters, which are
drawn from the 2-dimensional space T. This implies that even though skill
policies themselves are part of a 37-dimensional space, because there are just
two degrees-of-freedom with which we can vary tasks, the policies themselves
remain confined to a 2-dimensional manifold. In Figure 3 we use lighter-colored
points to identify embeddings of policies for hitting targets at higher locations.
From this observation it is possible to note how policies for similar tasks tend
to remain geometrically close in the space of solutions.

8 \
°r 5]
o
..
2 .‘.
e ©
or e 00 ©} O OO o
o o 0O

@
2k

(@]
-4k @)
L

Q
8k 'O
L L L L J

-10
-10 -5 0 5 10 15

Figure 3: 2-dimensional embedding of policies parameters.

Figure 4 shows some types of movements the arm is capable of executing
when throwing the dart at specific targets. Figure 4a and Figure 4b present
trajectories corresponding to policies aiming at targets high on the ceiling and
low on the right wall, respectively; these were presented as training examples to
the parameterized skill. Note that the link trajectories required to accurately
hit a target are complex because we are using just a single actuated joint to
control an arm with three joints.

Figure 4c shows a policy that was predicted by the parameterized skill for a
new, unknown task corresponding to a target in the middle of the right wall. A
total of five sample trajectories were presented to the parameterized skill and
the corresponding predicted policy was further improved by two policy updates,
after which the arm was capable of hitting the intended target perfectly.

Figure 5 shows the predicted policy parameter error, averaged over the pa-
rameters of 15 unknown tasks sampled uniformly at random, as a function of
the number of examples used to learn the parameterized skill. This is a mea-
sure of the relative error between the policy parameters predicted by © and
parameters of a known good solution for the same task. The lower the error,
the closer the predicted policy is (in norm) to the correct solution. After 6
samples are presented to the parameterized option it is capable of predicting
policies whose parameters are within 6% of the correct ones; with approximately
15 samples, this error stabilizes around 3%. Note that this type of accuracy is
only possible because even though the spaces analyzed are high-dimensional,
they are also highly structured; specifically, solutions to similar tasks lie on
a lower-dimensional manifold whose regular topology can be exploited when
generalizing known solutions to new problems.

Since some policy representations might be particularly sensitive to noise,
we additionally measured the actual effectiveness of the predicted policy when
directly applied to novel tasks. Specifically, we measure the distance between
the position where the dart hits and the intended target; this measurement

b)

c)

Figure 4: Learned arm movements (a,b) presented as training examples to the
parameterized skill; (¢) predicted movement for a novel target.

is obtained by executing the predicted policy directly and before any further
learning takes places. Figure 6 shows that after 10 samples are presented to the
parameterized skill, the average distance is 70cm. This is a reasonable error if
we consider that targets can be placed anywhere on a surface that extends for
a total of 10 meters. If the parameterized skill is presented with a total of 24
samples the average error decreases to 30cm, which roughly corresponds to the
dart being thrown from 2 meters away and landing one dartboard away from
the intended center.

Although these initial solutions are good, especially considering that no
learning with the target task parameters took place, they are not perfect. We
might therefore want to further improve them. Figure 7 shows how many ad-
ditional policy updates are required to improve the policy predicted by the pa-

10

0.5 T T T T T T

g 04 1
=
5]
]
2z
= 03 1
-
<
& 02 J
9]
&
S
>
< 0.1 1
O 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Sampled training task instances

Figure 5: Average predicted policy parameter error as a function of the number
of sampled training tasks.

’g 300 T T T T T T
)

2

= 250 f

]

2

I3

é 200

[5)

8

& 150 |

8

]

8 100

=

s

Z

I 50

g

8

=

z 0 , , , , , ,

0 5 10 15 20 25 30 35

Sampled training task instances

Figure 6: Average distance to target (before learning) as a function of the
number of sampled training tasks.

rameterized skill up to a point where it reaches a performance threshold. The
dashed line in Figure 7 shows that on average 22 policy updates are required
for finding a good policy when the agent has to learn from scratch. On the
other hand, by using a parameterized skill trained with 9 examples it is already
possible to decrease this number to just 4 policy updates. With 20 examples or
more it takes the agent an average of 2 additional policy updates to meet the
performance threshold.

11

30 T T T T T T

With parameterized skill ==
Without parameterized skill -~

o)
°
2 25]
3] (averaged over tasks)
kS|
3t
g 20
<
E
e
8]
g 15F
o
8
g 107¢}
]
o
=
g sy
S
~
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Sampled training task instances

Figure 7: Average number of policy updates required to improve the solution
predicted by the parameterized skill as a function of the number of sampled
training tasks.

7 Related Work

The simplest solution for learning a distribution of tasks in RL is to include
7, the task parameter vector, as part of state descriptor and treat the entire
class of tasks as a single MDP. This approach has several shortcomings: 1)
learning and generalizing over tasks is slow since the state features corresponding
to task parameters remain constant throughout each episode; 2) the number
of basis functions needed to approximate the value function or policy needs
to be increased since the policy representation has to be powerful enough to
not only solve the current MDP but to capture all the non-trivial correlations
between task policy parameters; 3) sample task policies cannot be collected in
parallel and later on combined in order to accelerate the construction of the
parameterized skill; and 4) if the distribution of tasks is non-stationary, there
is no simple way of adapting a single estimated policy in order to deal with a
new pattern of tasks.

Alternative, more efficient approaches have been proposed under the general
heading of skill transfer. Konidaris and Barto (2007) introduce a method for
constructing reusable options by learning them in an agent-centered state space
instead of in the original problem-space. This technique does not, however,
construct generalized skills capable of solving a family of related tasks. Soni
and Singh (2006) create adaptable options whose meta-parameters, e.g., their
termination criteria, can be adapted on-the-fly in order to deal with unknown,
changing aspects of a task. However, this technique does not directly predict
a complete parameterization of the policy for new tasks. Liu and Stone (2006)
propose a method for transferring a value function between a specific given
pair of tasks but require prior knowledge of the task dynamics in the form of a

12

Dynamic Bayes Network.

Several other similar methods have been proposed in which the goal is to
transfer a model or value function between a given pair of tasks, but not neces-
sarily to reuse a set of learned tasks and construct a generalized, parameterized
solution. It is also often assumed that a mapping between features and actions
of the source and target tasks exists and is known a priori, as in Taylor and
Stone (2007). Hausknecht and Stone (2011) propose a way of estimating a pa-
rameterized skill for kicking a soccer ball with varying amounts of energy. They
exhaustively test variations of a control policy by varying one of its parameters,
known a priori to be relevant for the skill, and measuring the resulting net
effect on the distance that the ball travels. By assuming a quadratic relation
between these variables, they are able to construct a regression model and invert
it, thereby obtaining a closed-form for the value that the policy parameter needs
to assume whenever a given type of kick is desired. This is an interesting exam-
ple of the type of parameterized skill that we would like to construct, albeit a
very domain-dependent one. Finally, Braun et al. (2010) discuss how Bayesian
modeling can be used to explain experimental data from cognitive and motor
neuroscience that supports the idea of structure learning in humans, a concept
very similar in nature to the one of parameterized skills. The authors do not,
however, propose a concrete method for properly identifying and constructing
such skills.

8 Conclusions and Future Work

We have presented a general framework for constructing parameterized skills.
The idea underlying our method is to sample a small number of task instances
and generalize them to new problems by combining classifiers and non-linear
regression models. This approach is effective in practice because it exploits
the intrinsic structure of the policy space and the fact that skill policies for
similar tasks typically lie on a lower-dimensional manifold. Our framework
allows for the construction of effective parameterized skills and is also able to
identify the number of qualitatively different strategies required for solving a
given distribution of tasks.

This work can be extended in several important directions. First, the ques-
tion of how to actively select training tasks in order to improve the overall
readiness of a parameterized skill, given a distribution of tasks expected in the
future, needs to be addressed. Another important open problem is how to prop-
erly deal with a non-stationary distribution of tasks. If a new task distribution
is known exactly it might be possible to use it to resample instances from K
and thus reconstruct the parameterized skill. However, more general strategies
are needed if the task distribution changes in a way that is not known to the
agent.

Another important question is how to analyze the topology and geometry
of the policy space more efficiently. Methods for discovering the underlying
global geometry of high-dimensional spaces typically require dense sampling of

13

the manifold, which could, in case of very irregular spaces, require solving an
unreasonable number of training tasks. Note, however, that most local policy
search methods like the Natural Actor Critic and POWER move smoothly over
the manifold of policies while searching for locally optimal solutions. Therefore,
at each policy update during learning they provide us with a new sample which
can be used for further train the parameterized skill; each task instance therefore
results in a trajectory through policy parameter space. Integrating this type of
sampling into the construction of the skill essentially corresponds to an type of
off-policy learning method, since samples collected while estimating one policy
could be used to generalize it to different tasks.

References

Braun, D., Waldert, S., Aertsen, A., Wolpert, D., and Mehring, C. Structure
learning in a sensorimotor association task. PLoS ONE, 5(1):e8973, 2010.

Hausknecht, M. and Stone, P. Learning powerful kicks on the Aibo ERS-7: The
quest for a striker. In RoboCup-2010: Robot Soccer World Cup XIV, volume
6556 of Lecture Notes in Artificial Intelligence, pp. 254—65. Springer Verlag,
2011.

Tjspeert, A., Nakanishi, J., and Schaal, S. Movement imitation with nonlinear
dynamical systems in humanoid robots. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 1398-1403, May 2002.

Kober, J. and Peters, J. Policy search for motor primitives in robotics. In
Advances in Neural Information Processing Systems 21, pp. 849-856, 2008.

Kober, J. and Peters, J. Imitation and reinforcement learning. IEEE Robotics
& Automation Magazine, 17(2):55-62, 2010.

Konidaris, G. and Barto, A. Building portable options: Skill transfer in re-
inforcement learning. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pp. 895-900, 2007.

Liu, Y. and Stone, P. Value-function-based transfer for reinforcement learn-
ing using structure mapping. In Proceedings to the Twenty-First National
Conference on Artificial Intelligence, pp. 415-420, 2006.

Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. Learning movement prim-
itives. In Proceedings of the Eleventh International Symposium on Robotics
Research. Springer, 2004.

Soni, V. and Singh, S. Reinforcement learning of hierarchical skills on the
Sony Aibo robot. In Proceedings of the Fifth International Conference on
Development and Learning, 2006.

Sutton, R., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial In-
telligence, 112:181-211, 1999.

14

Taylor, M. and Stone, P. Cross-domain transfer for reinforcement learning.
In Proceedings of the Twenty Fourth International Conference on Machine
Learning, 2007.

Tenenbaum, J., de Silva, V., and Langford, J. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

Tsochantaridis, 1., Joachims, T., Hofmann, T., and Altun, Y. Large margin
methods for structured and interdependent output variables. Journal of Ma-
chine Learning Research, 6(Dec):1453-1484, 2005.

Vapnik, V. The Nature of Statistical Learning Theory. Springer New York Inc.,
New York, NY, USA, 1995. ISBN 0-387-94559-8.

15

