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Abstract

A novel probabilistic bound on statistics of a one-dimensional distribution, given bounds
on the support of the distribution and a sample from that distribution, is presented. No
knowledge beyond bounds on the support of the unknown distribution is required. Among
the sample statistics that may be bounded include the mean, higher order moments, the
variance, and arbitrary percentiles. The bounds are simple functions of the sample points
and are derived based on distribution-free bounds on the cumulative distribution function.
We show that we can produce bounds on the mean that are guaranteed to be at least as
tight as the Chernoff-Hoeffding bound. And for many common distributions, we show that
our bounds are significantly tighter than the Chernoff-Hoeffding bound.

1. Introduction

In almost every scientific field, when the mean of a random variable is estimated from sam-
ples that are assumed to be independent and identically distributed (i.i.d.), it is common to
accompany the estimate of the mean with confidence intervals. Given that the assumptions
associated with a given method of computing a confidence interval hold, the probability
that the confidence interval will contain the population mean is α, which is known as the
confidence.

There are three common ways of generating confidence intervals. They each have sig-
nificant drawbacks. The most common is to assume that the distribution of the sample
mean is Gaussian. While this is true in the limit of infinite sample sizes, it is not true
for finite sample sizes unless the population distribution is Gaussian. Thus the guarantees
provided by these confidence intervals are frequently violated. The second method is to in-
voke the Chernoff-Hoeffding bound, which does not make assumptions about the population
distribution other than to bracket its support. While the assumptions associated with the
Chernoff-Hoeffding bound are a much better match to realistic applications, these bounds
are disappointingly loose. Finally, there are bootstrap methods, which are appealing for
their simplicity and applicability to a wide range of statistics, but which rely on asymptotic
properties and so are not gauranteed to produce valid intervals for finite sample sizes.



In this report we present a significantly improved method for producing confidence
intervals in a general setting. In particular, we present a novel method for producing
confidence intervals for the mean that has the following properties.

1. It does not make any assumptions about the distribution of the sample mean.

2. It relies only on the assumption that the support of the population distribution can
be bracketed with upper and lower values and that the data samples are i.i.d. In this
sense it is like the Chernoff-Hoeffding bound.

3. It is guaranteed to be at least as tight, and is often significantly tighter, than the
Chernoff-Hoeffding bound.

This bound is a drop-in replacement for any of the bounds currently used, and overcomes
all of the problems discussed with the previous bounds. As such, we believe it has very
wide applicability in practical applications.

Finally, we show how the same basic ideas can be used to bound the variance of an
unknown distribution, the median, arbitrary percentiles, and a variety of other moments.
It is hence a very general methodology with a large range of applications.

2. Background and Prior Work

In this section, we first review the three most common approaches for producing confidence
intervals for the mean. Since our approach depends on bounds on the cumulative distri-
bution function (CDF) given an empirical CDF, we then describe two existing bounds on
the CDF. Finally, we review related work on bounding statistics of a random variable given
information about the underlying distribution.

2.1. Previous Methods for constructing Confidence Intervals for the Mean

Here we review previous methods for constructing confidence intervals for the mean, starting
with the Central Limit Theorem-based approach and then reviewing the Chernoff-Hoeffding
bound and bootstrap methods.

2.1.1. Central Limit Theorem-Based Approach

The Central Limit Theorem states that under mild assumptions on the underlying distri-
bution, the sample mean of i.i.d. samples has a limiting normal distribution (Casella and
Berger (2001)). More precisely, if X1, X2, . . . are a sequence of i.i.d. random variables with
E[Xi] = µ and V ar[Xi] = σ2 <∞, then

√
n(X̄n − µ)

σ
→ N(0, 1), (1)

in distribution.
Based on the Central Limit Theorem, an approximate α-confidence interval for the mean

is
[X̄n − z(1−α)/2

σ√
n
, X̄n + z(1−α)/2

σ√
n

], (2)
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where P (Z > z(1−α)/2) = (1− α)/2 when Z is a standard normal random variable.
For finite samples, the confidence interval based on the Central Limit Theorem is only

an approximation and the quality of the approximation depends on both the sample size
and the underlying distribution.

2.1.2. Chernoff-Hoeffding Bound

Unlike approaches based on the Central Limit Theorem, the Chernoff-Hoeffding inequality
(Hoeffding (1963)) makes no asymptotic assumptions and so is valid for finite sample sizes.
Let X1, . . . , Xn be i.i.d. samples from a distribution with support on [0, 1] and mean µ. Let
X̄n be the sample mean. The Chernoff-Hoeffding inequality states that for 0 < ε < 1− µ

P (|X̄n − µ| ≥ ε) ≤ 2e−2nε
2 ≡ 1− α. (3)

The Chernoff-Hoeffding bound is a function of the sample size and does not use any ad-
ditional properties of the set of samples. Bennett’s inequality (Bennett (1962)) is another
well-known bound and is a function of both the sample size and the true variance of the
distribution. But in many practical applications, the true variance is not known and so
either the Bennett inequality cannot be used or the sample variance must be substituted
for the true variance. In the latter case, the guarantees made by the Bennett inequality are
lost.

2.1.3. Bootstrapping

Let X1, X2, . . . , Xn be i.i.d. real-valued random variables with cumulative distribution func-
tion F (x) = P (X ≤ x). The empirical cumulative distribution function is given by

Fn(x) =
1

n

n∑
i=1

I{Xi≤x}, (4)

where I{E} is the indicator function which takes on a value of 1 when E is true, and 0
otherwise.

Given n i.i.d. samples from a distribution F , the bootstrap method (Efron and Tibshirani
(1993)) can be used to find confidence intervals for statistical functionals of the form T (F ).
To do so, the bootstrap approximates the distribution of T (F ) with the distribution of T (Fn)
by drawing B bootstrap samples from the original set of samples. Various approaches can
then be used to derive confidence intervals for T (F ) using the approximate distribution
of T (Fn). Since the bootstrap uses a two-stage approximation, first approximating T (F )
with T (Fn) and then approximating T (Fn) with B bootstrap samples, the results are not
guaranteed to be valid for finite B and n. While the quality of the second approximation
can be controlled by increasing the number of bootstrap samples, the quality of the first
approximation depends on the size of the available sample and often this size cannot be
easily increased.

2.2. Bounds on the CDF

Like the bootstrap method, our approach also relies on the empirical CDF. Yet, our approach
uses probabilistic bounds on the CDF that are valid for finite sample sizes and thus requires
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no asymptotic assumptions. In the following two sections, we review two probabilistic
bounds on the CDF that can be used with our approach.

2.2.1. Massart Bound

Let X1, X2, . . . , Xn be i.i.d. real-valued random variables with cumulative distribution func-
tion F (x) = P (X ≤ x) and Fn(x) be the empirical distribution function defined by Eq. (4).
The following bound on F (x) is due to Dvoretzky et al. (1956) and its constant was deter-
mined by Massart (1990):

P (sup
x
|F (x)− Fn(x)| > ε) ≤ 2e−2nε

2 ≡ 1− α. (5)

We refer to this as the Massart bound and it says that with probability at least α, the
maximum absolute difference between the cumulative distributive function and the empirical
distribution (the Kolmogorov-Smirnov statistic) is at most ε.

2.2.2. Order Statistics Bounds

Learned-Miller and DeStefano (2008) note that the bound given by Eq. (5) gives the same
margin of uncertainty at all points of the empirical CDF but intuitively, the distribution
should be able to be bounded more tightly near the ends of the support than in the mid-
dle. Based on this observation and subsequent empirical validation, Learned-Miller and
DeStefano proposed an alternative bound based on the order statistics of the sample data.

Let X(1), . . . , X(n) denote the order statistics of X1, . . . , Xn. Note that for samples Xi

from a continuous distribution F (x), the values F (Xi) are uniformly distributed on [0, 1]
(Casella and Berger (2001)). The random variable F (X(i)) is therefore beta distributed
with parameters i and n− i+ 1 (See, for example, Arnold et al. (2008)). This means that
for each i and 1

2 ≤ δ ≤ 1,

P

(
F
(
X(i)

)
∈
(
β−1i,n−i+1

(
1− δ

2

)
, β−1i,n−i+1

(
1 + δ

2

)))
= δ, (6)

where β−1i,n−i+1 is the inverse CDF of the beta distribution with parameters i and n− i+ 1.

For fixed n and δ, define ai = β−1i,n−i+1

(
1−δ
2

)
and bi = β−1i,n−i+1

(
1+δ
2

)
. Note that while

Eq. (6) is valid, the interval (ai, bi) is not the smallest interval that contains δ probability
mass since the mode of the beta distribution does not necessarily correspond to the median
and the beta distribution is also not necessarily symmetric about the median.

For fixed n and δ, Learned-Miller and DeStefano then use Monte Carlo simulations to
determine the α such that

α = P
(
F (X(i)) ∈ (ai, bi), ∀i ∈ {1, . . . , n}

)
.

In practice, we need to compute the δ that produces a particular set of values for α and
n. This is computationally expensive as we need to search for the corresponding δ and at
each step in the search run a Monte Carlo simulation. Fortunately, the triplets (δ, α, n) do
not depend on the particular set of sample points and so can be precomputed and stored.

It is important to note a significant difference between the bounds given by Eq. (5)
and the order statistics bounds. While the former holds at all points in the support of the
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Figure 1: Extending the order statistics bounds does not add any restrictions on the CDFs
beyond the requirement that they pass within the bounds at each sample point.
In the diagram, the lines with the closed and open circles represent the empirical
CDF. The ai and bi represent the upper and lower bounds obtained for the CDF
at each of the sample points using the order statistics method. The dotted lines
show how the upper and lower order statistics bounds may be extended past
sample points.

distribution, the latter holds only at the sample points. Learned-Miller and DeStefano note
that because of the monotonicity of CDFs, when F (X(i)) ∈ (ai, bi), for w ∈ (X(i−1), X(i)],
F (w) < bi. Similarly, when F (X(i)) ∈ (ai, bi), for w ∈ [X(i), X(i+1)), F (w) > ai. While
these extended bounds are indeed valid, because of the monotonicity of the CDF, they do
not add any restrictions on the CDFs beyond the requirement that they pass within the
bounds at each sample point. In other words, in bounding the CDF we can restrict our
attention to the bounds at the sample points without loosening the bounds. See Figure 1.

2.3. Related Approaches

Our approach to bounding the mean and other statistics relies on probabilistic bounds
on the CDF, such as those given by the Massart and order statistics bounds. Previous
work has also used bounds on either the probability distribution or cumulative distribution
function to derive conclusions about statistics of the random variable. For example, given
uncertainty about a prior distribution and the family of sampling distributions, Lavine
(1991) developed methods for computing bounds on the posterior expectations over classes
of sampling distributions that are “similar” to a given parametric family.

Smith (1995) described how bounds on the expected value of arbitrary objective func-
tions can be computed given only limited information about the underlying distribution.
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This information included properties of the distribution such as moments, entropy con-
straints, and bounds on the density of of the distribution.

Langewisch and Choobineh (2004) show how bounds on the mean and variance can be
computed when there is known uncertainty about the underlying random variable. They
define various classes of ill-specified random variables in which there is uncertainty about
the sets of points or bounded intervals for which probability mass is assigned and/or the
probability mass assigned to each of those sets. They then show how bounds on the variance
and mean can be computed for distributions from each of these classes.

Williamson and Downs (1990) use bounds on the CDF to derive corresponding bounds
for statistical functionals. While our approach also uses bounds on the CDF to derive
bounds on statistics of a random variable, rather than assume the bounds are given, we
derive our CDF bounds in a probabilistic manner. As a result, probabilistic statements
can be made about the corresponding derived bounds. In this regard, our approach is
most similar to that of Learned-Miller and DeStefano (2008). Given bounds on the CDF
computed using Eq. (5), they use an efficient graph algorithm, which they term the “string-
tightening algorithm,” to find the CDF with maximum entropy among all valid CDFs that
obey the bounds.

In summary, rather than being a function of a limited set of properties of the sample,
such as the sample mean and sample size, or making assumptions about the underlying
distribution, our bounds utilize the entire sample and make no assumptions other than
that the distribution has known bounded support. Further, even though our bounds are a
function of the entire sample, they are still efficient to compute and in the case of the mean,
are guaranteed to be as tight as the Chernoff-Hoeffding bound.

3. Deriving Concentration Inequalities from CDF bounds

Given bounds on the CDF and support of a probability distribution, bounds on statistics
such as the mean, variance, higher order moments, and percentiles can be computed. Note
that when we require known bounds on the support of a probability distribution, all we
require is an interval [a, b] that contains all the non-zero probability mass of the distribution.
In particular, this interval may be larger than the true support of the distribution.

In this section, we first begin by showing how the Chernoff-Hoeffding inequality can be
derived from the Massart bound and then describe our method for computing probabilistic
bounds on statistics of a distribution.

3.1. Relationship between Massart Bound and Chernoff-Hoeffding Inequality

Examining the inequalities (3) and (5), it appears that the two are closely related as they
share the term 2e−2nε

2
. To illustrate the relationship between the two, we use the following

lemma.

Lemma 1 Let X be a random variable with CDF F (x), and support contained in [a, b], 0 ≤
a ≤ b. Then

E[X] =

∫ b

a
(1− F (x))dx. (7)
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Algorithm 1 Compute Massart Bounds

Input: n = number of sample points
{xn} = set of sample points
a, b = end points of support of R.V.
α = confidence

Output: mU {Upper bound on Mean}
mL {Lower Bound on Mean}

1: {x(n)} = order statistics of {xn}

2: ε =
√

ln((1−α)/2)
−2·n

3: mL = a · ε+ x(1) · (1/n)
4: mU = x(1) ·max(0, 1/n− ε)
5: for i = 2→ n do
6: mU+ = (max (0, i/n− ε)−max (0, (i− 1)/n− ε)) · x(i)
7: mL+ = (min (1, i/n+ ε)−min (1, (i− 1)/n+ ε)) · x(i)
8: end for
9: mU+ = ε ·B

The proof of Lemma 1 is included in Appendix A for reference.
Recall that the Massart bound places confidence envelopes that lie above and below and

run parallel to the empirical CDF. Let F (x) be a distribution with support on [0, 1] and let
X1, .., Xn be i.i.d. samples. Using Lemma 1, the absolute value of the difference between
the empirical mean and the true mean, µ, is given by

∣∣E[X]− X̄n

∣∣ =

∣∣∣∣∫ 1

0
(1− F (t))dt−

∫ 1

0
(1− Fn(t))dt

∣∣∣∣ =

∣∣∣∣∫ 1

0
Fn(t)− F (t)dt

∣∣∣∣ .
The Massart bound asserts that the probability that Fn(t) and F (t) differ by more than ε
is less than 2e−2nε

2
. Therefore

P

(∣∣E[X]− X̄n

∣∣ =

∣∣∣∣∫ 1

0
Fn(t)− F (t)dt

∣∣∣∣ ≥ ∣∣∣∣∫ 1

0
(F (t) + ε)− F (t)dt

∣∣∣∣ = ε

)
≤ 2e−2nε

2
,

thus recovering the Chernoff-Hoeffding inequality. The intuition behind the relationship
between the Massart bound and the Chernoff-Hoeffding inequality is that a bound on a
CDF can be translated into a bound on the mean. Using this intuition, we proceed in the
following sections to derive additional bounds on the mean along with bounds on other
statistics.

3.2. Bounding the Mean

Algorithm 1 presents pseudocode for computing an upper bound, mU , and lower bound,
mL, on the mean for a given confidence level α. The algorithm uses the Massart bound
together with the intuition, which is formalized in the following lemma, that given bounds
on the CDF of a probability distribution, the CDF that maximizes the mean is the one that
runs along the lower envelope of the bound. Similarly, the CDF that minimizes the mean
is the one that runs along the upper envelope.

7



Lemma 2 Let X be a random variable with CDF F (x), and support contained in [a, b], 0 ≤
a ≤ b. Let L(x) and U(x) be lower and upper bounds on F (x). Then among the CDFs that
obeys the bounds, the CDF with the maximum mean is given by L(x) and the CDF with the
minimum mean is given by U(x).

Proof To maximize the mean, we wish to maximize Eq. (7). This is equivalent to mini-

mizing
∫ b
a F (t)dt. The CDF that obeys the bounds given by L(x) and U(x) and minimizes

this term is given by L(x).
Similarly, to minimize the mean, we wish to minimize Eq. (7). This is equivalent to

maximizing
∫ b
a F (t)dt. The CDF that obeys the bounds given by L(x) and U(x) and max-

imizes this term is given by U(x).

Using Lemma 2, we can prove the correctness of Algorithm 1.

Theorem 3 Let X be a random variable with CDF F (x), support contained in [a, b], 0 ≤
a ≤ b, and mean µ. Let {xn} be a set of n i.i.d. samples from F (x) and mU and mL be the
upper and lower bounds, respectively, computed using Algorithm 1 with confidence level α.
Then

P (µ ∈ (mL,mU )) ≥ α.

Proof Denote Fn(x) to be the empirical distribution of the {xn} and L(x) and U(x) to be
the upper and lower bounds on F (x) computed using the Massart bound with confidence
level α. By construction, mL is computed from U(x) and mU is computed from L(x). Thus,
by Lemma 2, mL and mU correspond to the means of the CDFs that have the minimum
and maximum means, respectively, among all CDFs that obey the bounds given by L(x)
and U(x). And since by construction F (x) lies within the bounds given by L(x) and U(x),
we have

P (µ ∈ (mL,mU )) ≥ α.

Note that while Lemmas 1 and 2 and Theorem 3 require that the random variable takes
on only nonnegative values, they can be extended to random variables that take on negative
values by defining an auxiliary random variable Y = X−a, computing the bounds on E[Y ]
and then using the linearity of expectation to transform these bounds on Y to bounds on
X.

The next theorem shows that for a given confidence level, the bounds computed using
Algorithm 1 are at least as tight as those obtained from the Chernoff-Hoeffding inequality.
We start with the following lemma.

Lemma 4 Let X be a random variable with CDF F (x), and support contained in [0, 1].
Let {xn} be a set of n ≥ 3 i.i.d. samples, x̄n be the sample mean of {xn}, α ∈ (0, 1), and let

ε =
√

ln((1− α)/2)/(−2n). (8)

Let [mL,mU ] be the lower and upper bounds obtained using Algorithm 1. Then

max(x̄n −mL,mU − x̄n) ≤ ε. (9)
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Figure 2: An illustration of the quantity R used in the proof of Theorem 4. The central
solid lines with the open and closed circles represent the empirical CDF while the
upper and lower dotted lines represent the upper and lower Massart bounds on
the CDF.

Proof We show x̄n −mL ≤ ε. The reasoning for mU − x̄n ≤ ε is similar.
First note that the ε computed in line 2 of Algorithm 1 is given by Eq. (8). Also note

that

x̄n =
1

n

n∑
i=1

x(i).

After line 3, mL = (1/n)x(1). Let

j = min ({j ∈ [2, n− 1]; (min (1, j/n+ ε)−min (1, (j − 1)/n+ ε)) < 1/n}) .

Such a j exists because, as shown by Learned-Miller and DeStefano (2008), if ε =
√

ln((1− α)/2)/(−2n),
then ε > 1

n , ∀n ≥ 3. Then define

n∑
i=j

(min (1, i/n+ ε)−min (1, (i− 1)/n+ ε))

= (min (1, j/n+ ε)−min (1, (j − 1)/n+ ε)) = R

and so
n∑
i=j

1

n
= ε+R.
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See Figure 2 for a pictorial representation of the quantity R. Now we have

x̄n −mL =
1

n

n∑
i=1

x(i) −mL (10)

=
1

n

j−1∑
i=1

x(i) +
1

n

n∑
i=j

x(i)− 1

n

j−1∑
i=1

x(i) +
n∑
i=j

(min (1, i/n+ ε)−min (1, (i− 1)/n+ ε))x(i)

 (11)

=
n∑
i=j

(
1

n
− (min (1, i/n+ ε)−min (1, (i− 1)/n+ ε)

)
x(i) (12)

≤
n∑
i=j

(
1

n
− (min (1, i/n+ ε)−min (1, (i− 1)/n+ ε)

)
(13)

=

 n∑
i=j

1

n

−
 n∑
i=j

(min (1, i/n+ ε)−min (1, (i− 1)/n+ ε))

 (14)

= ε+R−R = ε. (15)

In going from Eq. (12) to Eq. (13) we use the fact that by construction the terms in the
summation in Eq. (13) are positive and xi ≤ 1, ∀i ∈ [1, . . . , n].

With this lemma, it can be shown that our Massart-based bounds are at least as tight
as those provided by the Chernoff-Hoeffding inequality.

Theorem 5 For a given confidence level α, the bounds computed using Algorithm 1 are at
least as tight as the bounds provided by the Chernoff-Hoeffding inequality.

Proof Let {xn} be a set of n i.i.d. samples from a distribution with CDF F (x), support
contained in [0, 1], and mean µ. Let α ∈ (0, 1) with corresponding ε given by Eq. (8). Note
that this ε is equal to the ε obtained by solving Eq. (3) for ε given fixed α. From the
Chernoff-Hoeffding inequality, we have

P (µ ∈ (x̄n − ε, x̄n + ε)) ≥ α.

which is equivalent to the probabilistic interpretation of the output of Algorithm 1 using
Theorem 3 and Lemma 4 when we have equality in Eq. (9) with

x̄n −mL = mU − x̄n = ε.
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3.3. Bounding the Variance

Compared to bounds on the mean of a distribution, relatively few bounds on the variance
of unrestricted distributions exist. In this section, we derive a bound that requires only
knowledge of a finite interval, not necessarily tight, that contains the support of the distri-
bution. Knowing that the support of a distribution is contained in [a, b] results in an upper
bound of (b − a)2/4 corresponding to probability mass equally split between the two end
points of the interval. Jacobson (1969) showed that if it is also known the distribution is
unimodal, then this bound can be tightened to (b− a)2/9.

Our variance bound is derived from bounds on the CDF and the following lemma.

Lemma 6 Let X be a random variable with CDF F (x), and support contained in [0, 1].
Then the variance of X is given by

2

∫ 1

0
x(1− F (x))dx−

(∫ 1

0
(1− F (x))dx

)2

. (16)

The proof of Lemma 6 is included in Appendix B for reference. Using this lemma, we
now prove the following theorem.

Theorem 7 Let X be a random variable with CDF F (x), and support contained in [0, 1].
Let L(x) and U(x) be lower and upper bounds on the CDF. Then the variance-maximizing
or -minimizing CDF that obeys these bounds is either identically L(x), identically U(x),
begins on L(x) and then has a jump discontinuity to U(x), or begins on U(x) and then
moves horizontally to L(x).

Proof We want to find the extrema of the functional specified by Eq. (16) subject to the
constraints

F ′(x) ≥ 0, (17)

F (x) ≥ L(x), (18)

F (x) ≤ U(x). (19)

Forming the Lagrangian gives

L = 2

∫ 1

0
x(1− F (x))dx−

(∫ 1

0
(1− F (x))dx

)2

+

∫ 1

0
λ1,x(L(x)− F (x))dx+

∫ 1

0
λ2,x(F (x)− U(x))dx−

∫ 1

0
λ3,xF

′(x)dx.

At an extremum, the derivative of L with respect to each F (x) is zero:

∂L

∂F (x)
= −2x+ 2

∫ 1

0
(1− F (u))du− λ1,x + λ2,x − λ3,xF (2)(x)

= 2(1− x)− 2

∫ 1

0
F (u)du− λ1,x + λ2,x − λ3,xF (2)(x) = 0

11



Further, the Karush-Kuhn-Tucker conditions must be satisfied:

λ1,x(L(x)− F (x)) = 0,

λ2,x(F (x)− U(x)) = 0,

λ3,xF
′(x) = 0,

λi,x ≥ 0.

First note that if λ1,x = 0 and λ2,x = 0, then

2(1− x) = 2

∫ 1

0
F (u)du+ λ3,xF

(2)(x).

Note that in particular, there is only one x for which this is true and λ3,x = 0 which in turn
implies that there can be at most one point on the variance-maximizing or -minimizing CDF
that lies inside the bounds and for which F ′(x) is positive. So other than this point, if the
variance-maximizing or -minimizing CDF is within (but not on) the bounds, the derivative
of the CDF must be zero.

There are thus only four possible cases we must consider for the variance-maximizing
or minimizing CDF.

1. It starts and stays on the lower bound.

2. It starts and stays on the upper bound.

3. It starts on the lower bound and then jumps to the upper bound.

4. It starts on the upper bound and then moves horizontly to the lower bound, proceeding
to follow the lower bound.

For Case 3, we must solve a single variable optimization problem at each of the horizontal
edges of the lower bound on the CDF. Let x(i) and x(i+1) be two consecutive order statistics.
Then for the horizontal edge between x(i) and x(i+1) we must optimize the following with
respect to t, where x(i) ≤ t < x(i+1).

2

∫ t

0
x(1− L(x))dx+ 2

∫ 1

t
x(1− U(x))dx−

(∫ t

0
(1− L(x))dx+

∫ 1

t
(1− U(x))dx

)2

(20)

Eq. 20 can be rewritten as

2

∫ x(i)

0

x(1− L(x))dx+ 2

∫ t

x(i)

x(1− L(x(i)))dx+ 2

∫ x(i+1)

t

x(1− U(x(i)))dx+ 2

∫ 1

x(i+1)

x(1− U(x))dx−

(∫ x(i)

0

(1− L(x))dx+

∫ t

x(i)

(1− L(x(i)))dx+

∫ x(i+1)

t

(1− U(x(i)))dx+

∫ 1

x(i+1)

(1− U(x))dx

)2

.

(21)

Now explicitly computing the integrals that depend on t.
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2

∫ x(i)

0

x(1− L(x))dx+ (t2 − x2
(i))(1− L(x(i))) + (x2

(i+1) − t2)(1− U(x(i))) + 2

∫ 1

x(i+1)

x(1− U(x))dx−

(∫ x(i)

0

(1− L(x))dx+ (t− x(i))(1− L(x(i))) + (x(i+1) − t)(1− U(x(i))) +

∫ 1

x(i+1)

(1− U(x))dx

)2

.

(22)

Now taking the derivative of Eq. 22 w.r.t. t, setting equal to zero, and solving for t gives:

t =

∫ x(i)

0 (1− L(x))dx+
∫ 1

x(i+1)
(1− U(x))dx+ (x(i+1) − x(i)) + (x(i)L(x(i))− x(i+1)U(x(i)))

1− (U(x(i))− L(x(i+1))
(23)

In addition to checking the point t if x(i) < t < x(i+1), the endpoints, x(i) and x(i+1)

must also be checked.
Similarly for Case 4, we must simply solve a single variable optimization problem at

each of the sample points to find the horizontal transition.

3.4. Bounding Higher-Order Moments

In order to derive bounds on higher-order moments from bounds on the CDF, the moments
can be categorized into four cases:

1. Odd powers-The CDF that maximizes the moment follows the lower envelope and the
CDF that minimizes the moment follows the upper envelope.

2. Even power and lower bound of the distribution’s support is nonnegative-Once again,
the CDF that maximizes the moment follows the lower envelope and the CDF that
minimizes the moment follows the upper envelope.

3. Even power and upper bound of the distribution’s support is nonpositive-The CDF
that maximizes the moment follows the upper envelope and the CDF that minimizes
the moment follows the lower envelope.

4. Even power and lower and upper bounds of the distribution’s support are negative
and postive, respectively-The CDF that maximizes the variance begins on the lower
envelope and jumps to the upper envelope at x = 0. The CDF that minimizes
the variance begins on the upper envelope and transitions horizontally to the lower
envelope. The proof is very similar to the proof of the variance bound and hence is
omitted.

3.5. Bounding Arbitrary Percentiles

From bounds on the CDF, corresponding bounds may also be placed on any percentile.
For a distribution with CDF F (x), the percentile Pi for i ∈ [0, 1] can be defined as F−1(i).
Given an upper bound, U(x), and lower bound, L(x), on the CDF of a distribution, it is
trivial to bound the value of a percentile. Define

Li = inf{x|U(x) = i} Ui = sup{x|L(x) = i}.

If the upper and lower bounds on the CDF hold with probability at least α, then

P (Pi ∈ (Li,Ui)) ≥ α.

13



Figure 3: A comparison of the shape of the Massart bound and order statistics bound on
a CDF for a uniform distribution. The Massart bound is equally tight across all
values of the domain while the order statistics bound is tighter near the ends of
the support of the distribution and looser in the middle. Figure reproduced with
permision from Learned-Miller and DeStefano (2008).

3.6. One-Sided Bounds

In many cases, bounds may be tightened if we only wish to upper or lower limit the statistic
of interest. For example, if we only want to upper bound the mean, µ, of a random variable
with support contained in [0, 1] given n i.i.d. samples, the Chernoff-Hoeffding inequality
states that for 0 < ε < 1− µ

P (X̄n − µ ≥ ε) ≤ e−2nε
2
.

For some of the bounds on the statistics discussed above, the computation of the upper
or lower limits depends only on either the upper or lower bound on the CDF. Thus, one-sided
versions of the Massart and order statistics bounds on the CDFs can be used to produce
tighter upper or lower bounds for these statistics. For the order statistics bound, we can
also adjust the confidence intervals at each sample point in order to get tighter bounds
on the statistics. The bound on the CDF discussed in Section 2.2.2 has an elongated-oval
shape since when the order statistics are bounded with equal confidence, the bounds are
smaller at the ends of the support and larger in the middle of the support (Figure 3). For
certain statistics though, we can alter this shape to result in a tighter bound. For example,
to upper bound the mean it is better to have a tighter bound for larger values in the domain
at the expense of looser bounds for smaller values.
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Figure 4: Plots of the average difference between the Chernoff-Hoeffding bound and the
corresponding CDF-based bound as a function of the sample size. We set α = .95
in these experiments. For upper bounds, larger values indicate tighter bounds
relative to the Chernoff-Hoeffding bound and for lower bounds, smaller values
indicate tighter bounds relative to the Chernoff-Hoeffding bound. Note that the
curve for the Massart-based upper bound cannot be seen in the Bernoulli plot
because it is covered by the curve for the Massart-based lower bound.

4. Experimental Results

To evaluate empirically the tightness of each of the bounds, we ran experiments on a variety
of distributions. For each distribution and each sample size n, we sampled n points from
the distribution and computed the corresponding bounds over multiple trials and then
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plotted the difference between the Chernoff-Hoeffding bound and the corresponding CDF-
based bound. Thus for upper bounds, larger values indicate tighter bounds relative to
the Chernoff-Hoeffding bound and for lower bounds, smaller values indicate tighter bounds
relative to the Chernoff-Hoeffding bound. The results are shown in Figure 4. Note the
different scales on the y-axis. For distributions without finite support, we used rejection
sampling to reject points that were outside user-specified bounds.

Note that in many cases the bound based on order statistics is as tight or tighter than
the other bounds, although it is possible for the bound to be looser than the Massart-
based and Chernoff-Hoeffding bounds for certain distributions (most notably, the Bernoulli
distribution). Also notice that the Massart-based bound is always at least as tight as the
Chernoff-Hoeffding bound and usually tighter. It is also important to note that both of the
CDF-based bounds tend to be significantly tighter than the Chernoff-Hoeffding bound for
small sample sizes.

In Figure 5 we show the results of a similar set of experiments, this time varying α
with fixed n. The results show that the relationship between the relative tightness of the
different bounds tends to hold across different confidence levels.

To evaluate empirically the tightness of the variance bounds, we ran experiments on a
variety of distributions. For each distribution and each sample size n, we sampled n points
from the distribution and computed the corresponding bounds over multiple trials and then
plotted the average upper and lower bounds. For comparison, we also plotted the true
variance and the trivial upper bound (b− a)2/4. The results are shown in Figure 6.

5. Discussion and Conclusion

We have shown that by using probabilistic bounds on the CDF of a distribution, corre-
sponding bounds can be computed for statistics such as the mean, the variance, higher-
order moments, and percentiles. While classical bounds are a function of a relatively small
number of inputs, such as the sample size, the sample mean, and if known, the variance of
the distribution, our bounds use properties of the entire sample.

For the Massart-based bound on the mean, our bounds are guaranteed to be at least as
tight as those produced by the Chernoff-Hoeffding inequality. And since the algorithm to
compute these bounds is simple and efficient, with the most expensive step being the sorting
of the input samples, it can easily be substituted for the Chernoff-Hoeffding inequality in
applications that presently utilize the latter, such as randomized algorithms.
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Appendix A. Proof of Lemma 1

We show the proof for continuous distributions. The proof for discrete distributions is
similar with summations replacing integrals.∫ b

a
(1− F (x))dx =

∫ b

0
P (X ≥ x)dx

=

∫ b

0

∫ b

x
f(t)dt dx

=

∫ b

0

∫ t

0
f(t)dx dt

=

∫ b

0
tf(t)dt = E[X].

Appendix B. Proof of Lemma 6

We show the proof for continuous distributions. The proof for discrete distributions is
similar with summations replacing integrals.

Since V (X) = E[X2]− E[X]2 and from Lemma 1,

E[X] =

∫ 1

0
(1− F (x))dx,
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we must only show that

E[X2] = 2

∫ 1

0
x(1− F (x))dx.

2

∫ 1

0
x(1− F (x))dx = 2

∫ 1

0
xP (X ≥ x)dx

= 2

∫ 1

0

∫ 1

x
xf(t)dt dx

= 2

∫ 1

0

∫ t

0
xf(t)dx dt

=

∫ 1

0
t2f(t)dt = E[X2].
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