
University of Massachusetts, Technical Report UM-CS-2012-009 1

Provisioning Multi-tier Cloud Applications Using Statistical Bounds on
Sojourn Time

Upendra Sharma Prashant Shenoy Don Towsley
University of Massachusetts Amherst

{upendra, shenoy, towsley}@cs.umass.edu

Abstract
In this paper we present a simple and effective approach for
resource provisioning to achieve a percentile bound on the
end to end response time of a multi-tier application. We, at
first, model the multi-tier application as an open tandem net-
work of M/G/1-PS queues and develop a method that pro-
duces a near optimal application configuration, i.e, number
of servers at each tier, to meet the percentile bound in a ho-
mogeneous server environment – using a single type of server.
We then extend our solution to a K-server case and our tech-
nique demonstrates a good accuracy, independent of the vari-
ability of service-times. Our approach demonstrates a provi-
sioning error of no more than 11% as compared to a 196%
worst case provisioning error obtained by techniques based
on an M/M/1-FCFS queue model. In addition, we extend
our approach to handle a heterogenous server environment,
i.e., with multiple types of servers. We find that fewer high-
capacity servers are preferable for high percentile provision-
ing. Finally, we extend our approach to account for the rental
cost of each server-type and compute a cost efficient applica-
tion configuration with savings of over 80%. We demonstrate
the applicability of our approach in a real world system by
employing it to provision the two tiers of the java implemen-
tation of TPC-W – a multi-tier transactional web benchmark
that represents an e-commerce web application, i.e. an online
bookstore.

1 Introduction
Cloud computing platforms are becoming increasingly pop-
ular for hosting enterprise applications due to their ability to
support dynamic provisioning of virtualized resources to han-
dle workload fluctuations and also because of usage based
pricing. Enterprise applications are known to observe dy-
namic workload and provisioning correct capacity for these
applications remains an important and challenging problem.
High variability in workload is caused by a variety of rea-
sons, such as flash crowds, short term sustained surges, or
long-term fluctuations based on change in business or under-
lying IT infrastructure etc. Predicting these workload fluctu-
ations or the peak workload is challenging. Erroneous pre-

dictions often lead to under-utilized systems or in some sit-
uations cause temporarily outage of an otherwise well pro-
visioned web-site; for e.g. in November 2000 Amazon.com
site suffered a forty-minute outage due to overload. Conse-
quently, rather than provisioning server capacity to handle in-
frequent (and hard to predict) peak workloads, an alternate
approach of dynamically provisioning capacity on-the-fly in
response to workload fluctuations has become popular. Dy-
namic provisioning is especially well suited to the cloud due
to the ability of cloud platforms to provision capacity when
needed and charge for usage on pay-per-use basis.

There have been numerous efforts that have addressed
the issue of dynamic provisioning of server capacity to dis-
tributed applications [10, 13, 21, 24, 23] . These efforts fall
into two categories - proactive, where a model of the appli-
cation is used to compute the capacity needed to service a
particular workload at a certain performance level, or reac-
tive, where additional capacity is allocated after a workload
spike arrives and causes significant performance degradation.

In case of proactive approaches, application models have
been derived to predict how much capacity is needed to
provide a certain mean response time for a given workload
[23, 24]. However, typical service level agreement (SLAs)
for the application are specified in terms of the worst case (or
peak) response times [9] (e.g. 99% of the requests should see
no more than a 1-sec response time). Consequently, there is
a mismatch between the provisioning models which allocate
capacity for a target mean response, time and the SLA, which
dictates that the capacity should be allocated based on a high
percentile (peak) response time.

Second, many enterprise applications are distributed or
replicated with multi-tier architecture. Typically SLAs are
specified on an end-to-end basis for the entire application.
The few provisioning efforts that focus on allocating capac-
ity for the tail of the work translate it to per-tier SLA metrics
[24]; doing provisioning for per-tier SLA metric can result in
large errors in the capacity provisioning if the tier response
times estimates are incorrect.

Third, most provisioning techniques to-date are cost obliv-
ious – they can determine how much server capacity to allo-
cate but do not consider the cost of allocating the server ca-
pacity. In cloud platform, different types of server are avail-

University of Massachusetts, Technical Report UM-CS-2012-009 2

able at different prices. For example, small 1-core server
is 8.5c/hr, large 4-core costs 34c/hr. The capacity does not
scale linearly across configurations and nor does the price
[20]. Thus it may be possible to provision a certain capacity
C for an application in many different ways - using different
types of server (e.g. 4 small or 2 large) which incur different
costs for provisioning the same amount of capacity. A cloud
specific provisioning scheme must take the cloud costs into
account when making provisioning decisions.

In this work we present a new model driven provisioning
approach targeted for cloud platforms. Our approach focuses
on i.) allocating capacity based on peak (high percentile) of
the workload, ii) takes a holistic view of the entier multi-
tier application by considering bounds on on end to end re-
sponse times while making provisioning decisions and iii)
takes cloud server configs and pricing models when deter-
mining the most cost effective config to provision a certain
amount of capacity.

1.1 Research Contributions

The contributions of this paper are the following:
Cost aware provisioning subject to a percentile re-

sponse time SLA. We present an algorithm for resource opti-
mization for a multi-tier cloud application, subject to an SLA
expressed in terms of high percentile of end to end response
time, that minimizes the total cost of compute resources re-
quired by the application. Our formulation models the appli-
cation as an open tandem queue network of M/G/1-PS queues
to estimate the capacity (resource requirement) of the applica-
tion to honor the SLA expressed as a response time percentile.

Service time and response-time approximations. We
present an approximation of the response time distribution
of the M/G/1 processor sharing queue based on the distribu-
tion of conditional expected response times given the service
times and show it to be accurate for our purposes. In addi-
tion, we present a new service time characterization based on
a mixture of shifted exponential distributions, which leads to
the efficient solution of a tandem system consisting of M/G/1
processor sharing queues.

Cost-efficient configuration with heterogeneous servers
subject to percentile SLA. We extend the above approach to
account for the presence of multiple types of servers with dif-
ferent costs and computational capabilities. This is achieved
by formulating an integer optimization problem with the con-
straint that per-tier capacity should be at least as much as that
computed by the queueing theoretic model.

Prototype implementation and experimentation. We
have implemented our analytical model in MATLAB and
tested it using a multi-tier application, i.e. java implemen-
tation of TPC-W, over a private cloud. We created the pri-
vate cloud over a Linux cluster with Xen hypervisor using
OpenNebula [16]. For comparison, we also implemented a
baseline case using M/M/K-FCFS queues. Our experimental
results show that our approach is able to provision the appli-

cation to meet the SLA specified on 99 percentile of end-to-
end response time, while the baseline techniques provisioned
with a provisioning error as large as 140%. We show that our
approach is able to handle the service time variability with the
worst case provisioning error of 10.4% as opposed to a 196%
error shown by the baseline case. In the case of heterogeneous
provisioning, our approach shows, as high as, 81% savings in
server cost as compared to that of the corresponding optimal
homogeneous configuration. In case of private cloud experi-
ments we found that heterogeneous approach showed around
11% cost saving (using Amazon EC2 pricing) over homoge-
nous configurations.

The rest of the paper is organized as follows: Section 2 de-
scribes the architecture of a multi-tier application, the cloud
platform, the SLA metric, and formulates the optimization
problem. Section 3 describes our queuing theoretic model of
the multi-tier application. Section 4 describes how we fit ser-
vice time distribution to the given service-time histogram, and
proposes an approximation to the response time distribution.
Section 5 describes our approach for obtaining a near opti-
mal application configuration with a single server type (i.e.,
homogenous setup). Section 6 describes our method for ob-
taining a cost efficient application configuration with multiple
server types (i.e., heterogenous setup). Section 8 explains the
results of numerical and experimental validation. Section 9
presents related work and we conclude the work in Section
10.

2 Background and Problem Formula-
tion

In this section, we present the system model and a high level
problem description. We describe the SLA performance met-
ric, and thereafter formulate the provisioning problem that we
address in this work.

2.1 Multi-tier Application
Modern large scale web applications are developed as mul-
tiple tiers for reasons pertaining to scalability. A multi-tier
architecture offers flexibility for development as well as de-
ployment of applications. Each application tier, typically,
provides a specific functionality and the various tiers form
a processing pipeline. In a typical multi-tier application vari-
ous tiers participate in the processing of an incoming request;
each of the participating tiers receives partially processed re-
quests from the previous tier and feeds these requests into the
next tier after local processing (see Figure 1). The tiers are
replicated to scale according to the processing demand; a load
balancer is used to distribute the load over all replicas of such
a tier. Figure 1 depicts a two-tier application1 where both tiers

1Such an application is, sometimes, also called a three-tier architecture
[4], where the “remote web clients” form the first tier and the other two form
the second and third tiers. Since in this work we focus on the provisioning of

University of Massachusetts, Technical Report UM-CS-2012-009 3

are replicated. This is a commonly employed architecture by
e-commerce web applications where, both, web-server and
database tiers are clustered to scale up according to increase
in the incoming workload.

We assume that each tier is placed on a dedicated server
and that replicating a tier essentially means replicating the
server. Each clustered tier is also assumed to employ a
protocol-session aware load balancer responsible for dis-
tributing requests to replicas in that tier. It is assumed that
the each tier’s capacity, i.e., number of servers allocated to
it, can be varied dynamically without disturbing the applica-
tion’s normal functioning, and that each tier can be indepen-
dently provisioned for capacity.

2.2 Cloud Platforms
Cloud computing has emerged as a new IT delivery model.
Infrastructure as a Service (IaaS) cloud-model is being seri-
ously evaluated by enterprises to deploy their web applica-
tions that support dynamic capacity resizing. In this model,
an organization/client can rent remote compute and storage
resources to host networked applications and resources can
be dynamically added or removed on an as-needed basis.
We consider a cloud computing platform that allows compute
servers to run hosted applications. We assume that the plat-
form offers N heterogeneous server configurations for rent,
each with a different rental-cost and configuration.

We assume that the cloud platform has an infinite pool
of servers and that servers can be provisioned by invoking
server-instance creation APIs; servers may be requested and
terminated at any time and billing is based on the amount of
time for which each server is used (e.g., based on the num-
ber of hours for which each server is used). We also assume
that the cloud platform employs virtualization—each phys-
ical server is assumed to run a hypervisor that controls the
allocation of physical resources on the machine and offers
performance isolation to each of its virtual servers.

2.3 Problem Formulation
Let N and M denote the number of tiers and server-types re-
spectively. Let tier j be jointly served by

∑M
i=1 nij servers,

where nij denotes the number of servers of type i present at
tier j. Let nj = [n1j , n2j , . . . nMj] be a vector represent-
ing the server configuration of tier j and p = [p1, p2, . . . pM],
where pk denotes the cost of a server of type k. Let T be the
end-to-end response time of requests to the multi-tier appli-
cation and FT be its CDF, i.e. FT (t) = P (T ≤ t). Then for
a given percentile bound θ, and response-time threshold TD,
the cost minimization problem becomes:

minimize
N∑
j=1

M∑
i=1

nijpi, (1)

the web application capacity, which is the web-server tier (i.e. the Java Tier)
and the DB tier; thus we address it as a two-tier setup

subject to the constraint

FT (TD) ≥ θ. (2)

It should be noted that FT , also depends on nij , since nij
specifies the application configuration that determines the
end-to-end response time of the application. In the next sec-
tion we present a model of a multi-tier application which en-
ables us to capture the effect of nij on FT .

3 Application Model
In this section we model the multi-tier application as a net-
work of queues. Our first model of multi-tier application is a
chain of tiers where each tier is modeled as single M/G/1-PS
queue (see Figure 2). Each tier carries out a specific function,
for instance, a web-application server or a database server etc.
In this work we assume single customer class.

T1 T2 Tn...
λ1 λ2 λn

µnµ1 µ2

λD =

Figure 2: Multi-tier application model

LetAi denote the ith tier of the application, λi the average
arrival rate of incoming requests at the ith tier, and µi the av-
erage service rate ∀i = 1 . . . N . We define the total response
time of a request as the time between when it enters the first
tier and the time when it leaves the last tier. Note that dif-
ferent λi for each tier handles the case where one tier issues
multiple requests to the lower tier.

In our model of multi-tier application, we assume that the
response times at all tiers are independent. Let Tj be a ran-
dom variable representing the response time for tier j, then
the end-to-end response time of a request is

T =

N∑
j=1

Tj . (3)

Let fT (t) be the probability density function (PDF) of the re-
sponse time T and LT (s) = L(fT (t)) be the Laplace trans-
form of the PDF of response time T then

LT (s) =

N∏
j=1

LTj (s), (4)

whereLTj (s) is the Laplace transform of the PDF of Tj . Thus
the PDF of end-to-end response time, fT (t), can be computed
by taking the Laplace inverse of (4)

fT (t) = L−1
 N∏
j=1

LTj (s)

 . (5)

To solve (5) we require the PDF of the random variable Tj .
Unfortunately there are no exact formulas for response time
distributions of an M/G/1-PS queue. We, therefore, present
an approximation for the same in the next section.

University of Massachusetts, Technical Report UM-CS-2012-009 4

Server n1

server1server1

Load
Balancer

server1

Replicated Tier -1
(Java Tier)

Server n2

server1server1
Load

Balancer
server1

Replicated Tier -2
(DB Tier)

λ
HTTP Load Blancer TCP Load Blancer

Client n

server1server1Client 1

Remote Web Client

Figure 1: Topological configuration of a typical replicated two-tier web application

4 Estimating End-to-end Response
Times

In this section we describe our approach to estimate the PDF
of end-to-end response time of a chain of M/G/1-PS queues.
In order to do that we estimate the PDF of response time of a
single M/G/1-PS queue and then leverage (5) to compute the
end to end response time.

Section 4.1 describes our method of approximating the re-
sponse time distribution of a M/G/1-PS queue in. The result
depends of the definition of the PDF of service-time distribu-
tion of the queue and we describe a mechanism to approxi-
mate the same for any real-life system in section 4.2. Sec-
tion 4.3 provides a closed form equation of the end-to-end
response time of the chain of queues.

4.1 Approximate Response Time Distribution

The exact form of the response time distribution for the
M/G/1-PS is not generally known [27]. Thus we approximate
it with the expected conditional response time distribution as
described below. Let T denote the job response time, and X
its service time; then the expected conditional response time,
conditioned on the service time being x is

τ = E[T |X = x] =
x

1− ρ
, (6)

where ρ = λ/µ is the average load.
We approximate T by τ . Since τ is a function of X ,

Fτ (t) = P [τ ≤ t] = P [X1−ρ ≤ t] = P [X ≤ t(1− ρ)],
FT (t) ≈ Fτ (t) = FX(t(1− ρ)), (7)

It has been observed in real-life systems that job service
time distributions exhibit heavy tailed behavior [8]. Heavy
tailed distributions have very high variance; high variance in
service time distribution of jobs makes it a dominant factor in
determining the behavior of response time distribution. Ap-
proximation proposed in (7) captures the variability of ser-
vice time and will be particularly useful in such situations.
We discuss the impact of variability of service time in sec-
tion 7 and demonstrate that our approach shows significant
improvement.

4.2 Approximate Service Time Distribution
In real systems, like computer clusters and web servers, there
is a strong evidence that job service times are highly variable
[8]. Some heavy tailed distributions do not have a closed-
form Laplace transforms, e.g., the Pareto distribution, while
those possessing convenient Laplace transforms might lead to
an intractable complex function after undergoing an N th or-
der convolution in (4). We, thus, need a distribution function,
which can closely approximate a service time distribution ob-
served by a real world application and leads to an easily in-
vertible Laplace transform even after undergoing higher order
convolutions. In this section we describe such a distribution
function and also present an algorithm to approximate the ser-
vice time distribution from the service-time histogram; ser-
vice time histograms can be easily collected from the server
either through logs or through off-line profiling.

We express the service time distribution as a mixture of K
shifted exponentials, as shown in (8). The motivation behind
this is two fold: i.) the web application workload is a mix of
different job types [14, 7]. Capturing the service time distri-
bution as sum of shifted exponentials, essentially, means that
job-size of each job-type is exponentially distributed but each
job-type has a different mean job-size. ii.) The formulation
leads to a Laplace transform that is easy to invert.

Formally, we want to fit a mixture of shifted exponentials,

fX(x) =

K∑
k=1

αk1{x ≥ tk}µke−µk(x−tk), x ≥ 0 (8)

to data x1, x2, . . . , xn, where 1{P} is one if predicate P is
true and zero otherwise. This involves inferring the number
of shifted exponentials, K, the shifts of each exponential,
{tk}, the mix proportion of the shifted exponential, {αk},
and their average rates {µk} from the data. Let us begin by
assuming that K and t1, . . . , tK are already known. In other
words we want to find the best fit for {µk} and {αk}; we per-
form maximum likelihood estimation using the expectation-
maximization algorithm (EM).

4.2.1 EM algorithm for estimating mixture parameters

Suppose we know which shifted exponential distribution each
observation xi belongs to, in other words suppose we have
yi ∈ {1, . . . ,K} available to us where yi ∈ {1 . . .K} repre-
sents the particular shifted exponential distribution. Then the
parameter values that maximize the log likelihood function

University of Massachusetts, Technical Report UM-CS-2012-009 5

can be computed as:

αk =
1

n

n∑
i=1

1{yi = k}/n, k = 1, . . . ,K (9)

1/µk =

∑n
i=1 1{yi = k}xi∑n
i=1 1{yi = k}

, k = 1, . . . ,K (10)

EM is an iterative algorithm that infers yi as needed. Suppose
µjk and αjk are the estimates at the end of the j-th iteration.
The next iteration consists of an expectation step followed by
a maximization step as given below.
Expectation. Let yi,k denote the probability (expectation) that
sample xi belongs to the k-th shifted exponential. It is given
as

yi,k = P [Yi = k|X = xi]

=
αjk1{xi ≥ t

j
k}µke−µ

j
k(xi−t

j
k)∑K

l=1(α
j
l1{xi ≥ t

j
l }µle−µ

j
l (xi−t

j
l))

(11)

∀i = i, . . . , n and k = 1, . . .K. Note that yi,k = 0 when
xi < tjk.
Maximization. Having computed yi,k, we now update our es-
timates of αk and µk. This is done by using modified versions
of (9) and (10).

αj+1
k =

1

n

n∑
i=1

yi,k, k = 1, . . . ,K (12)

1/µj+1
k =

∑n
i=1 yi,kxi∑n
i=1 yi,k

, k = 1, . . . ,K (13)

This is referred to as the maximization step because the above
estimates maximize the likelihood given the current values of
{yi,k}.

These steps are repeated until the parameters converge;
{α0

k} and {µ0
k} are the initial values, which can be computed

as mentioned in the section below.

4.2.2 Algorithm for approximating service-time distri-
bution

We use an iterative approach to determine the best number of
exponentials K, and then determine tk, µ0

k, and α0
k, to initial-

ize the EM algorithm, (11), (12) and (13).
The basic idea underlying the algorithm, as outlined in

as mentioned in [14], is to iteratively run a k-means cluster-
ing algorithm for every value of k = 1 . . .Kmax and com-
pute the following three metrics2: coefficient of variation3

of intra-cluster distance (Cintra), coefficient of variation of
inter-cluster distance (Cinter), and ratio of intra-cluster to
inter-cluster coefficient of variation (βcv). The value of βcv
drops as number of clusters increase and will be minimum

2the metrics are computed as mentioned in [14]
3Coefficient of variation or variation coefficient is defined as a ratio of the

standard deviation to the mean, i.e. Cv = σ/µ;

(i.e. zero) when number of clusters is equal to the total num-
ber of points. We find that K, where the rate of decrease of
βcv falls below a threshold (or the slope goes above a negative
threshold value).

Having computed K, and the cluster centers ek, we com-
pute initial estimates of the mean service rate {µ0

k} and mix-
ture fraction (α0

k) as follows:

µ0
k =

1

ek − tk
, α0

k =
number of points in cluster

total number of points
. (14)

We set the shifts to be equidistant from from two neigh-
boring cluster centers, i.e., ti = (µi−1 + µi)/(2µi−1µi),
∀i = 2 . . .K. However, t1 = 0, i.e., the shift for the first
exponential is zero (details of the algorithm can be found in
Appendix A.1.

4.3 Approximate Application Response Time
Distribution

The PDF of the end to end response time ofN -tier application
is obtained using (8) and (7) in (5) as

fτ (t) = L−1
 N∏
j=1

Kj∑
k=1

αjkµ
′
jke
−st′j

(s+ µ′jk)

 , (15)

where for each tier j = 1, . . . , N , service times are modeled
as mixtures ofKj shifted exponentials and their density func-
tions are expressed using (8); we rewrite the result for the jth

tier for the sake of completeness:

fXj (x) =

Kj∑
k=1

αjk1{x ≥ tjk}µjke−µjk(x−tjk). (16)

After inverting (15), the final expression of fτ (t) takes the
following form:

fτ (t) =

K1∑
i1=1

. . .

KN∑
iN=1

(
1{t ≥ t′}

∏N
j=1 αjijµ

′
jij
×

∑N
l=1 rle

−µ′lil (t−t
′)
)
, (17)

where µ′jij = µjij (1 − ρj), t′ =
∑N
j=1 tj,ij/(1 − ρj), and

rl = 1/
(∏N

k 6=l(µ
′
kik
− µ′lil)

)
.

Note that αjij and µjij are the parameters of the kth

shifted exponential of the jth-tier (as shown in (16)); ρj is
the average utilization of the jth tier, and rj is the jth residue,
where j = 1, . . . , N .

Note that the expression in (15) does not involve higher
order poles4 because none of the rates µlil is ever equals any

4If for some l, j, µlil = µjij , we slightly perturb the starting µ0lil for
tier-l by adding a small random number and re-run the EM algorithm for that
tier-l

University of Massachusetts, Technical Report UM-CS-2012-009 6

of the µjij . This becomes especially helpful in inverting the
Laplace transform as absence of higher order terms in denom-
inator leads to a simple computation of partial fractions.

The final expression of fτ (t) in (17) is, essentially, a prod-
uct of sums of the shifted exponentials, which is easily read-
able in (15). This means that the fτ (t) will be expressed,
in total, by

∏N
j=1Kj terms; for example let Kj = a,∀j =

1 . . . N , then fτ (t) will be expressed as a sum of aN terms. It
is easy to see that number of terms grow exponentially with
number of tiers. Fortunately, real life systems do not have
more than three or at most four tiers and thus fτ (t) is easily
computable.

5 Approach for Finding Near-optimal
Homogeneous Configuration

In this section we present a solution to the the resource opti-
mization problem, as expressed by (1) and (2), but with only
one type of server, M = 1 (homogeneous setting).

We substitute the approximate response time of an M/G/1-
PS queue, i.e. fτ (t) as shown in (17), in (2) to obtain:

Fτ (TD) =
∑K1

i1=1 . . .
∑KN
iN=1

(
1{TD ≥ t′}

∏N
j=1 αjijµ

′
jij∑N

l=1
rl(1−e

−µ′lil
(TD−t

′)
)

µ′lil

)
≥ θ, (18)

where µ′jkj and rj are the same as in (17) while t′ =∑N
j=1 tj,ij/(1− ρj).
Thus the problem of minimizing (1) reduces to the prob-

lem of maximizing ρj (∀j = 1, . . . , N) such that Fτ (TD) ≥
θ, where Fτ (TD) is given by (18). As this is an N -
dimensional non-linear maximization problem, it is not easy
to solve. However, the problem complexity is significantly re-
duced by constraining the loads to be the same at each tier5,
i.e.,

ρ1 = ρ2 = . . . = ρN = ρ.

It should be noted that it is desirable to have a balanced uti-
lization at each tier in real-life systems. In practice, adminis-
trators often use a rule of thumb to bound the max utilization
of servers of all tiers to avoid performance problems and out-
ages [17].

Consequently, (18) reduces to an inequality in a single
variable, namely ρ.

Fτ (TD) =
∑K1

i1=1 . . .
∑KN
iN=1

(
1{TD ≥ t′}

∏N
j=1 αjijµjij∑N

l=1
r′l(1−e

−µ′lil
(TD−t

′)
)

µlil

)
≥ θ, (19)

where, t′ =
∑N
j=1 tj,ij/(1 − ρ), and r′l = 1/

∏N
k 6=n(µkik −

µlil). We solve for the maximum value of ρ, say ρ∗, by nu-
merically solving (19) as an equality.

5The constraint reduces the solution search space and thus the final so-
lution is not guaranteed to be an optimal solution as it could result into a
slightly over-provisioned system.

5.1 Computing the Application Configuration
In practice, large scale applications have each of their tier
replicated for scalability as depicted in Figure 3. The idea is
to be able to handle increasing number of requests while con-
forming to the SLA. In an ideal situation an application-tier’s
ability to process the number of requests increases linearly
with number of its replicas, which means that if an appli-
cation or application-tier with a single replica had a service
rate of µ then K replica version of application-tier will have
a request rate of Kµ. We have assumed a linear scaling in
this work but that is not a limitation and any kind of scaling
function can used in the technique to obtain the number of
replicas at each application-tier. We have used replicas and
servers interchangeably because we have assumed dedicated
hosting model.

T1 T2 TnT1 T2 TnT1 T2 TnA1 A2 An...
λ1 λ2 λn

µnµ1 µ2

λD =

Figure 3: Multi-tier application model

We use ρ∗ to compute the number of servers at each tier,
i.e. nij . In the homogenous setup i = 1 and thus we solve
for nj , j = 1 . . . N . Let λj and µj be arrival and service rates
respectively, at tier j then nj = dλj/(ρ∗µj)e, and

µj =

Kj∑
i=1

αji
(1 + µjitji)e

−µjitji

µji
. (20)

The pseudo code of the algorithm for finding the near op-
timal application configuration in homogenous setup (i.e. for
a single-server-type) is in Appendix A.2.

6 Cost Efficient Heterogenous Config-
uration

We extend the solution approach described in Section 5 to be
able to generate a cost efficient configuration in a heteroge-
nous setting.

The basic idea underlying our approach is to greedily
search for a low cost configuration which has a high utiliza-
tion. At a high level the algorithm is iterative involving the
following three steps at each iteration: 1.) creating a sin-
gle hybrid-server from a given hybrid-configuration for each
tier, 2.) solve the homogeneous configuration problem for
the hybrid-server, 3.) translate the solution for hybrid-server
into a heterogenous configuration, and the iterations are used
to search for new hybird-configuration with lower cost and
higher utilization. Figure 4 shows the block diagrammatic
representation of the cost effective heterogeneous configura-
tion algorithm.
Hybrid server: Inorder to reuse our methodology for finding
the near optimal number of servers in homogeneous setting, it

University of Massachusetts, Technical Report UM-CS-2012-009 7

Model

Hybrid
Config

Model

Cost
Comparator

�n

Heterogeneous
Config

Hybrid
Server Hetero

Config
Generator

�ji

ILP

1

2
3

4

Accept

NO

YES

Figure 4: Functional block diagram of heterogeneous config-
uration algorithm

is imperative that we approximate each hybrid configuration
at each tier by a single server; we call it a hybrid-server. We
construct the service time distribution of the hybid-server for
each tier as a proportional mixture of the service time distri-
butions of the servers involved in the heterogeneous configu-
ration. Let n = {ni} denote the hybrid-configuration where
ni, i = 1, . . . ,M , is the number of servers of type i. Then the
hybrid-server’s service-time distribution function for tier-j is
expressed as

f ′j =

M∑
m=1

βjmfjm, (21)

where fjm is the service-time probability density function
(PDF) of the mth-server-type at jth-tier and f ′j is the PDF
of the hybrid-server for tier-j; βjm is the mixing proportion
of the component server m for tier-j and is computed using
the formula

βjm =
nmµjm∑M
j=1 nmµjm

. (22)

We explain our procedure of creating a hybrid-server with
the following example: suppose we have two servers, say s1
and s2, with corresponding average service rates at tier-j as
µj1 = 50 and µj2 = 100, respectively. We construct a single
hybrid-server, say sh, by proportionally mixing the compo-
nent shifted-exponentials of each s1 and s2. Let the config-
uration be one-server of each type, i.e. n = [1, 1]; then the
mixing proportions using (22) is βj1 = 1/3 and βj2 = 2/3,
and the final service-time distribution of the hybrid-server for
the jth tier is f ′j =

(
fj1
3 +

2fj2
3

)
.

Heterogeneous configuration: Once we obtain the optimal
configuration for a given hybrid-server, and given workload
and percentile, we translate this solution configuration to the
corresponding heterogenous server configuration; this is done
by reversing the steps of creating the hybrid-server. Let us as-
sume that the servers are indexed in increasing order of their
average service rate; i.e. µ1 ≤ µ2 ≤ . . . ≤ µM ; let n′j be the
number of hybrid-servers at tier-j, then the number of servers
of type-i for tier-j is nji = βjin

′
j/(µi/µ1)).

Searching for a new hybrid-configuration: The cost of the
new heterogenous configuration, computed in step-3, is eval-
uated using the prices of the servers. If the cost is less than
that of the current solution configuration, then this new con-
figuration is accepted else it is dropped. The new configura-

tion is again fed to the model, and its utilization ρ∗ is eval-
uated for the desired arrival rate λD. We then try to search
for a new hybrid-configuration which has higher utilization
than this configuration but has lower cost then the current-
configuration; the new utilization ρn = (ρmax + ρl)/2,
where ρmax is maximum utilization of the hybrid-server and
ρl = ρ∗. The new hybrid configuration is searched for using
the following ILP solved for each tier:

minimize

M∑
i=1

njipi, (23)

subject to the constraint

M∑
i=1

njiµji > λD/ρn. (24)

Note that if the currently suggested configuration is not
accepted we continue to search for higher ρ∗. The algorithm
stops when ρn − ρmax is less than a pre-decided threshold;
the pseudo code is given in Appendix A.3.

7 Experimental Evaluation

In this section we demonstrate the efficacy of our ap-
proach. We have implemented our analytical method using
MATLAB R©. For solving the ILP, we have used lpsolve ver-
sion 5.5.2.0 and have used mxlpsolve MATLAB Interface
version 5.5.0.6 for calling lpsolve from within the MATLAB
environment.

We begin by showing the effectiveness of the service-time
approximation algorithm on lognormal6 distribution with dif-
ferent coefficient of variations (Cv). Thereafter we evaluate
the goodness of the approximation of the response-time dis-
tribution for a 1-tier and a 2-tier system by comparing the re-
sponse times computed using (17) with those obtained using a
multi-tier application-simulator described below. Finally we
do a case-study of provisioning of a two-tier application for
a SLA specified as a threshold on the 99th percentile of re-
sponse time. We evaluate the effectiveness of our approach by
computing the 99 percentile of response times obtained using
a two-tier application-simulator configured according to the
capacity decisions provided by our approach; note that the
simulator depicts an ideal version of a multi-tier application
which we analytically model as a chain of M/G/1-PS queues.
We also evaluate the effectiveness of our approach, using a
metric called provisioning error (described in Section 7.4), by
comparing against the two other baseline approaches, which
model the multi-tier application as an open tandem network
of M/M/K-FCFS queues.

6PDF of a log normal distribution is expressed as f(x, µ, σ) =
1

xσ
√
2π
e−((ln(x)−µ)/(

√
2σ))2 , where mean of the distribution is eµ+σ

2/2

University of Massachusetts, Technical Report UM-CS-2012-009 8

7.1 Multi-tier Application Simulator
We implemented a simulator for the PS queue in MATLAB R©.
It takes as input an array of request arrival instants and size of
each request (in terms of service time) and outputs the request
departure instants. We used this queue simulator to simulate
a multi-tiered application by feeding the output of first queue
to the input of the next queue.

To simulate an application with replicated tiers, we have
implemented a loadbalancer, as shown in Figure 1, which
takes the incoming requests from the previous tier and dis-
tributes it to the next tier according to a specific load distribu-
tion policy. It also does the necessary book-keeping to track
each request across various tiers for computing the end-to-
end response time. We have implemented a random load-
balancing policy, i.e. loadbalancer distributes the requests
at random but ensures that each server gets the same load,
i.e. ρ∗ as computed in section 5. We have assumed an ideal
loadbalancer, which means that it introduces no queueing and
processing delay. Note that this is not a limitation of our ap-
proach, as our approach can easily account for loadbalancer
by considering it as another tier and its capacity can also be
computed, which is often needed in a real setup.

7.2 Service Time Approximation
We have implemented the EM algorithm (in MATLAB) for
finding the parameters of mixture of shifted exponentials,
namely αi, µi in (8), using the E and M steps mentioned in
Section 4.2.1. The shifts and initial values of parameters are
estimated using the algorithm outlined in Section 4.2.2. We
use MATLAB’s implementation of KMeans algorithm with
10 iterations for each clustering and have kept Kmax = 20 in
all our experiments, which means that we search for the num-
ber of shifted exponents from 3 till 20. We evaluate the ac-
curacy of CDF approximation using relative percentage error
defined as ε(x) = (Faprx(x) − Fsim(x))/(Fsim(x)), where
Faprx(x) and Fsim(x) are the values of approximate and ac-
tual CDFs, respectively, evaluated at x.

We approximate a log-normal distribution with mean rate
of 20 using a mixture of shifted exponentials. The maximum
error is less than 8%, which reduces as we approach the tail
of the distribution. The coefficient of variation of the original
distribution is 1 (Cv = 1); it was expressed as a sum of 7
shifted exponentials. The log-log plot of complimentary CDF
(CCDF) and approximation done by our approach is shown in
Figure 5a.

To evaluate the effectiveness of our approach in approx-
imating highly variable distributions, we approximated of a
log-normal distribution with same mean rate of 20 but with a
coefficient of variation of 100 (Cv = 100); it was expressed
using 10 shifted exponentials. Figure 5b shows the CCDF of
the actual distribution in red while our approximated distri-
bution is shown in blue.

The CCDFs in Figure 5 highlight the approximation of the
tail of the distribution by plotting the 1 − F (x) in a log log

scale. We observed that the approximation shows a relatively
high error at low percentiles (as high as 21%) but displays low
errors at the tail, with errors less than 1% at 95 percentile.
This is because, that at low percentiles the number of ex-
ponentials available to approximate the distribution are less
but as we approach the tail of the distribution a large number
of exponentials contribute towards the approximation of the
PDF and thus we observe much greater accuracy.

Another aspect of our algorithm is K, i.e. the number of
exponentials required to approximate a distribution. We con-
ducted a large number of experiments on various data sets
with Cv ranging from 1 to 100. In our experiments we found
that K its average values starts at 14 for Vv = 1 and slightly
decreases to an average value of 10 for Cv = 100. It should
be noted that we are testing our approximation scheme for
a smooth distribution function, but the scheme has been de-
signed keeping a web application in vision, which has only a
limited number of request types at each tier and our approach
is tuned to estimate this number as K.

(a) Lognormal with Cv = 1

(b) Lognormal with Cv = 100

Figure 5: Figure shows the log log plot of 20,000 data points
sampled from lognormal distribution with Cv = 1and 100;
the original CDF is shown in red and approximate in blue.

In summary, the service time approximation approach of-
fers very low errors, i.e. less than 1%, in estimating the tail
of a distribution.

7.3 Response Time Approximation
In this section we describe the effectiveness of our approach
of approximating the end to end response time of an applica-
tion modeled as a chain of M/G/1-PS queues.

We evaluated the goodness of the response-time approx-
imation we compare the response time computed by our ap-

University of Massachusetts, Technical Report UM-CS-2012-009 9

proach with that obtained from the simulator described above.
We show the results for for a 1 and 2-tier setups by plotting
the response time CDFs for our approximation and simula-
tion. To evaluate the impact of high variability, we have
sampled service times from a lognormal distribution with a
Cv = 10.

We generate the workload which has exponential inter-
arrival times with λ = 25 and service times sampled from a
lognormal distribution with µ = 50 at each tier. The simula-
tion results are considered exact since the simulation model is
an exact representation of the queueing network under study.

(a) CDF of RT 1-tier app

(b) CDF RT of 2-tier app

Figure 6: Figure shows the CDF plot of actual response time
distribution in red and approximated using our approach in
blue for a heavy-tailed service-time distribution with µ = 50
and cv = 10

The approximated response time, using our approach, ex-
hibits high accuracy, as can be seen from Figure 6. The
jagged tail of simulation result is because of less number of
data points.

7.4 Provisioning in a Homogenous Setup
In this section we evaluate the effectiveness of our approach,
outlined in section-5, in finding the homogenous configura-
tion for a two-tier application, where each tier is replicated
using same type of servers.

For a given SLA, expressed as a cutoff threshold TD on
the 99th percentile of end to en response time, we fix a
service time distribution and for different arrival rates com-
pute the number of servers required at each tier of the ap-
plication. We, then, run the replicated application simulator
with these number of servers and obtain the end to end re-
sponse time distribution for the provisioned application. To
evaluate the goodness of provisioning decisions made, we

define a metric called provisioning error, which essentially
calculates the error in the 99th percentile response time ob-
served from the simulator, i.e. Tscheme, and TD. Formally,
εscheme = (Tscheme − TD) ∗ 100/TD. To do a comparative
evaluation of our technique, we have implemented two base-
line provisioning algorithms based on M/M/1-FCFS queues,
namely per-tier-exp and end-to-end-exp. The schemes are de-
scribed below:

per-tier-exp (pte) : In this scheme we assume the knowl-
edge of average proportion of time spent by a request at each
tier. In other words, let T be the total time spent by a re-
quest in the system and Ti be the time spent at tier i; then,
pte assumes the knowledge of E[δi], where δi = Ti/T . We
model each tier as an M/M/K-FCFS queue and again approx-
imate multiple servers by a single server, thus each tier can
be approximated by an M/M/1-FCFS queue. For this system
the response time is exponentially distributed with parameter
µ(1−ρ). Finally, as in Section 5, for each tier j, we solve for
ρ∗ with TD = δjT and compute nj = dλj/(ρ∗µj)e

end-to-end-exp (ete): We developed this scheme com-
pletely along the lines of our scheme, however assuming an
M/M/K-FCFS queue based model instead of an M/G/K-PS
queue based model. The corresponding version of (19) is:

FT (t
′) =

N∑
j=1

rj(1− e−µ
′
jt
′
) ≥ θ, (25)

where t′ = TD, rj = 1/
∏N
k 6=j(µ

′
k−µ′j) and µ′j = µj(1−ρ).

The provisioning algorithm for homogenous setting remains
nearly unchanged7.

We ran the experiment with TD = 0.4s, µ = 50 and Cv =
3. We increased the workload from λ = 40 rps to 240 rps
and for each λ we computed application capacity using each
of the three algorithms. For pte we used δ1 = δ2 = 0.5. The
results are shown in Table 1.

λ %-εour %-εete %-εpte Configour Configete Configpte
40 -3.63 16 15.2 [3;3] [2;2] [2;2]
80 -6.17 48.1 27.9 [5;5] [3;3] [4;3]
120 -0.235 94.3 38.5 [8;7] [4;4] [5;5]
160 -2.25 91.6 49.9 [9;9] [5;5] [6;6]
200 -2.17 140 40.7 [12;12] [6;6] [8;8]

Table 1: Near optimal configuration suggested by the three
schemes and provisioning error of each scheme. Note that,
unlike the positive error, negative value of ε is not an SLA
violation.

A Positive value of ε means that some or all of the tiers
of the application were provisioned with fewer servers than
required (we call it under-provisioning); however, a negative
value means the opposite (we call it over-provisioning). Thus
a positive ε is an SLA violation, while a negative ε is not.
However, a negative ε does suggests a possibility of finding a

7Algorithm in Appendix A.2 takes two minor changes: 1.) step-4 is
skipped, 2.) step-2 replaces (19) by (25)

University of Massachusetts, Technical Report UM-CS-2012-009 10

more cost efficient solution. Note that our scheme never re-
ports under-provisioning as opposed to the worst case under-
provisioning of 140% by ete and 53.7 by pte.

In summary: for a single server type scenario (i.e. homo-
geneous setup), application provisioned by our scheme con-
forms to SLA, while the baseline approaches show as high as
140% provisioning error

7.5 Effect of Variability of Service Time

In this section we evaluate the effect of variability of service-
time distribution on three provisioning schemes, namely ours,
pte and ete.

For a fixed λ = 160, we computed the capacity of the two
tier application, in a homogenous setting, using all the three
schemes. We obtained the service times for both the tiers by
sampling from a lognormal distribution with a fixed µ of 50
rps, while a varying the standard deviation σ. We vary σ so
that we can control Cv , ranging from 1 to 10.

The computed capacities, by each of the schemes, were
again tested using the application-simulator. Their percentage
provisioning errors were computed and plotted in Figure 7.

Figure 7: Variation in provisioning error with cv

Figure 7, shows that percentage provisioning error for ete
and pte increases as a function of Cv , while maintaining
the average service-rate constant, as opposed to our scheme,
which shows a worst case provisioning error of 11%. The
main reason behind this is that both ete and pte schemes are
unable to capture the tail of the service-time distribution and
thus cause severe under-provisioning.

Thus we conclude that our scheme captures the tail of
service-time distribution and is able to provision for the 99-
percentile capacity with a max provisioning error less than
11% as opposed to other schemes which severely under-
provision the capacity with the max-provisioning error of 196
%

7.6 Cost Efficient Server Configuration in a
Multiple Server-type Environment

Here we demonstrate the effectiveness of our heterogenous
provisioning algorithm in finding a cost-efficient solution
when multiple types of servers are available. We have kept
the time threshold TD = 0.4-sec and varied the desired load
from λ = 40-rps to λ = 240-rps. We have considered four
types of servers, namely small (S), medium (M), large (L),
and extra-large (XL), with their corresponding average ser-
vice rates being 50, 100, 150 and 200 rps, respectively. The
coefficient of variation of service times for requests at each of
the tiers is Cv = 9.

ServerType Small Medium Large XLarge
Price 0.02 0.04 0.06 0.08

(a) server prices

λ %-εhomo %-εhetro Confighomo Confighetro %CostSaving
40 1.63 -40.9 [9;9] [0 1 0 0;0 1 0 0] 77.78
80 1.01 -35.7 [17;15] [0 0 0 1;0 0 1 0] 78.13

120 1.16 -22.9 [26;23] [0 0 2 0;0 1 1 0] 77.55
160 1.06 -23.5 [34;30] [0 0 1 1;0 0 2 0] 79.69
200 1.09 -21.5 [43;47] [0 0 3 0;0 1 2 0] 81.11
240 1.04 -9.82 [51;45] [0 0 2 1;0 0 3 0] 80.21

(b) 99-percentile provisioning and cost benefit

Table 2: Near optimal configuration suggested by the three
schemes and provisioning error of each scheme. Note that a
negative ε only means over-provisioning and is not an SLA
violation

We assume linear pricing as depicted in Table 2a. The
results of provisioning algorithms in homogenous and het-
erogenous settings are shown in Table 2b. We call the com-
puted capacity configurations in the homogenous and hetero-
geneous settings as Confighomo and Confighetro, respec-
tively. Confighomo uses only the “small” server-type, while
Confighetro uses all the available server types. As in pre-
vious evaluations, we again test the computed configuration
using the multi-tier application simulator.

Each configuration is N ×M dimensional matrix depict-
ing the number of servers of each type; each row j depicts
the configuration of the jth tier, while each column tells the
number of servers for each type: for e.g. Confighomo = [9; 9]
means 9-small servers at both the tiers, while Confighetro =
[0 1 0 0;0 1 0 0] means 0-small, 1-Medium, 0-large and 0-
x-large server at both the tiers. The “%Cost Saving” is com-
puted as a percentage of cost of homogenous configuration,
i.e. Cost(Confighomo)−Cost(Confighetro)Cost(Confighomo)

.
We make following important observations: 1) the per-

centage provisioning error for the heterogeneous scheme is
as large as −41%, which means that not-only is this configu-
ration cost-efficient but it also provides low average response-
times (because negative provisioning error means the system
is probably over-provisioned). 2) it is better to use larger
servers that fit the same cost and average service-rate; in other
words its better to use a small number of large servers instead

University of Massachusetts, Technical Report UM-CS-2012-009 11

of a large number of small servers.
In summary, it is better to use a small number of large

servers instead of a large number of small servers for high
percentile provisioning ii) Cost efficient heterogenous algo-
rithm offers server configurations with cost savings as high
as 81% and also offer a configurations with lower average
response-times.

8 Evaluation on Private Cloud
In this section we describe an experimental investigation for
provisioning for a percentile SLA in a private cloud setup.
Our goal is to evaluate our provisioning algorithm under sit-
uations which are typical to multi-tier web applications de-
ployed in a datacenter or private/public cloud environment.
As in Section 7.4, we do a case-study of server provision-
ing for the 99th percentile of response time threshold of a
two-tier system and verify our results using the two-tier java
implementation of TPC-W. Similar to Section 7.4 and 7.6, we
evaluate the effectiveness of our approach over the multi-tier
TPC-W application. Our evaluation metrics are the overall
rental cost of the virtual servers supporting the application de-
ployment, and percentage provisioning error (defined in Sec-
tion 7.4).

8.1 Private Cloud Setup
In this section we provide the necessary details of our exper-
imental testbed, i.e private cloud, and necessary steps before
we can perform server provisioning.

8.1.1 Experimental Testbed and Workload

Web Application: We used TPC-W [1] for our experiments.
TPC-W is a multi-tier transactional web benchmark that rep-
resents an e-commerce web application – an online book-
store – comprising of a web server tier and a database tier.
It simulates the activities of a retail store website using 14
different type of pages for web interactions; each of these
pages are created dynamically by the web server using dif-
fering amounts of data stored in the database tables. TPC-W
benchmark defines three different mixes of web interactions,
namely browsing, shopping and ordering, each varying the
ratio of inventory browsing related web pages and ordering
related web pages. It applies the workload mixes via remote
browser emulator (RBE).

We used the Java implementation of TPC-W [4]. The web
application has following two-tiers: i.) Web server tier based
on Apache Tomcat servlet container 5.5.26 ii.) database tier
based on MySQL 5.0.77. We deployed each of the tiers on
separate dedicated servers. We performed round robin load
balancing between replicas of web server tier using a dedi-
cated loadbalancer server on HAProxy [11] on a server as a
dedicated load balancer. We used round robin load balancing
at the database tier by setting up a master-slave replication

configuration of MySQL servers; we instrumented TPC-W to
use the replication aware MySQL JDBC connector version
3.1.12.

Private Cloud: We constructed private cloud using
OpenNebula [16] on Xen/linux-based cluster consisting of
two types of servers: 8-core 2GHz AMD Opteron 2350
servers and 4-core 2.4 GHz Intel Xeon X3220 systems. All
machines run Xen 3.3 and Linux 2.6.18 (64bit kernel). Our
platform is assumed to support small and large servers, com-
prising 1 and 4 cores, respectively. These are constructed
by deploying a Xen VM on the above mentioned servers and
dedicating the corresponding number of cores to the VM (by
pinning the VM’s VCPUs to the cores)

Workload: We used the browsing mix of the TPC-W
specification; that was generated using TPC-W clients. We
have tested our approach in each of the settings, namely ho-
mogenous and heterogenous, by increasing the workload in
large steps to test the resiliency of the provisioned applica-
tion setup in being able to conform to SLAs.

8.1.2 Server Profiling for Service-time Histograms and
Per Tier Arrival Rates

We profiled each server type separately for each tier. The con-
cerned tier would always have only one server of concerned
server-type .

Profiling servers for web server tier: In order to record
the request service times at the first tier, i.e. web-server tier,
we instrumented Tomcat8 such that it reports per-request ser-
vice times, along with the other default statistics, in the server
logs. For each server type (e.g. small and large) we provi-
sion one instance of the server-type and deploy the first tier of
TPC-W (i.e. the web server tier with instrumented version of
Tomcat) and attach it to an already installed TPC-W database
on an instance of large server type. We issue the browsing
workload using the TPC-W clients (i.e. RBEs) for a dura-
tion of 35 mins and collect the service times from the tomcat
server logs.

Profiling servers for database server tier: Profiling the
servers for the second tier of TPC-W (i.e. the database tier)
was in two steps: firstly, we collect the 35-min query logs
from MySQL server, executing the TPC-W workload; then
for each server type we slowly replay each of the SQL query
and record their execution time as service times.

Estimating λj: We estimate the per tier arrival rates, i.e.
λj , j = 1 . . . N , using the average scaling ratios Vj for each
tier j.We compute Vj by dividing the number of number of
requests at tier-j by those at tier-1. This is carried out after
the server profiling step.

8for each request processing call in a thread we make a JNI call to a
system call, namely getrusage(), for recording the CPU utilization

University of Massachusetts, Technical Report UM-CS-2012-009 12

8.2 Percentile Based Capacity Provisioning on
Private Cloud

Given λD and TD, we outline the high level steps required to
compute application capacities for both homogenous and het-
erogenous setup. In both the cases we assume to require an
SLA where 99th percentile of the end-to-end response time
must be less than 0.5 seconds. We follow the following se-
quence of steps

Step 1: Estimating service time distributions: We use
the service times collected during the offline profiling step
and use the service time approximation algorithm – outlined
in Appendix A.1 – based on the results of section 4.2.

Step 2: Estimating capacity in a homoge-
nous/Heterogenous setup: We used the single core
virtual machines (i.e. small) in our homogenous setup. Load
across multiple web-server replicas was distributed using
a HAProxy based load-balancer, however, in the case of
database tier, we used the master-slave setup. In this setup
all the wites are sent to the master, whereas the reads are
load-balanced.

We test our approach for both homogenous and heteroge-
neous environment. For homogenous setup, we choose small
server type for this case and assume TD = 0.5sec. To test the
provisioning setup for large change in workload, we varied
λD from 15 rps to 90 rps. For each λD, using our approach,
we computed server capacities for each of the tier of TPC-W.
We ran the setup for 35-mins and in the end we collected the
end-to-end response times from the first tier (i.e. web-server
tier). We ran our heterogeneous provisioning algorithm on
the same setup and found that it gave a different configura-
tion, only for λD = 90. Table 3a provides the details of the
final configuration and also the 99th-percentile of the end-to-
end response time details of the experiment. We compute the
percentage provisioning error, εour, as mentioned in 7.4.

λD 99th % % εour Configour
15 0.361 -27.8 [1;1]
30 0.459 -8.2 [1;2]
45 0.488 -2.4 [1;3]
90 0.512 2.4 [2;7]
90 0.46 -8.0 [2,0;2,1]

(a) Server Provisioning

Server Type small large
Prices ($) 0.085 0.34

(b) Server prices

Table 3: Near optimal configuration suggested by our algo-
rithm and percentage provisioning error for both homogenous
and heterogeneous setup. Note that -ve εour only means that
the system is over-provisioned and thus SLA will not be vio-
lated

We found that server provisioning by our approach keep
provisioning error below 3%. The positive 2.4% error at
λ = 90 for homogenous setup could be because the mas-
ter database server gets over loaded as it has to replicate the
updates to each of the 6 slaves. We see that the server provi-
sioning for the heterogenous environment, is not only 11.11%
cheaper than the corresponding homogenous server setup but

also has a lower 99th response time.
In summary, our algorithm effectively accurately captures

the service time distributions and provisions the two-tier im-
plementation of TPC-W with the worst provisioning error of
3%. Also, we, again, find that its better to use bigger server
for high percentile provisioning.

9 Related work
A number of efforts have modeled internet applications.
Modeling single tier has gotten much of the attention. Doyle
et al. propose a queuing model for static content [10],
Menasce uses a queuing model to model the web servers [13],
while Slothouber [21] modeled the HTTP server. Urgaonkar
et al. use G/G/1 queueing model for replicated tiers and as-
sume the knowledge of per-tier response times. They use the
peak session arrival rate to capture the workload and provi-
sioning capacity to service this peak workload. Thus, the
approach is of less practical significance as it cannot give a
statistical bound on response time.

Abdelzaher et al. in [2] use classical feedback control the-
ory to model the bottleneck tier for providing performance
guarantees for web applications serving static content. Simi-
larly, Chen et al. in [6] use a machine learning technique for
provisioning the database tier.

Chandra et al. in [5] propose a queuing model based ap-
proach, that partitions capacity of a shared server among mul-
tiple hosted applications. The approach focuses on the capac-
ity needed to handle high request volumes during overload
scenarios. Ranjan et al. [18] use a G/G/N queuing model
to compute the number of servers necessary to maintain a
target utilization level. This strategy is shown to be effec-
tive for sudden increases in request arrival rate. Other efforts
have employed similar M/G/1 queuing models in conjunction
with offline profiling to model service delay and predict per-
formance [22] but they do not provision for response time
percentile and neither do they address the problem in het-
erogenous environment. The approach in [25] formulates the
application tier server provisioning as a profit maximization
problem and models application servers as M/G/1/PS queuing
systems; the approach only considers the impact of different
number of end-clients (and thus, request volumes) and does
not solve for a solution with a percentile response time.

Benanni et al. in [3] employ approximate mean-value
analysis (MVA) to develop an online provisioning technique
for multiple request classes. Urgaonkar et al. in [23] develop
a queuing network model for multi-tier Internet applications
having request classes with differentiated QoS; the authors
use mean response times and do not provision the system for
percentile response-times. Zhang et. al. [28] use a multi-class
model to capture the dynamics of workload by employing a
fixed set of 14 predefined transactions-types and leverage it to
predict the performance of a multi-tier system but again plan
using the mean response-time.

There has been some work for finding the pdf of response

University of Massachusetts, Technical Report UM-CS-2012-009 13

time, for e.g. Muppula et al. in [15] derive the response time
for a closed queuing network using pteri-nets and sojourn
time distribution was calculated for large Markov chains in
[12]. The approach leads to an inversion of a complex
Laplace transform. Xiong et al. in [26] perform the provi-
sioning of a multi-station setup for a given percentile bound.
The model the system as a open tandem network of M/M/1-
FCFS queues and compute the response time PDF by numer-
ical inversion of its Laplace transform; they assume that each
station is serviced by same type of servers.

In contrast to these efforts, our work automatically char-
acterizes service time distribution as a mixture of shifted ex-
ponentials and we use this to estimate the response time dis-
tribution. This estimated distribution is used to estimate the
capacity of the system. This estimated capacity is used to
provide a near optimal solution to the provisioning problem.
Further, while most of these efforts have focused on a single
server type environment (i.e. homogeneous), we extend our
approach for the cloud specific heterogenous environment as
well. We developed a full prototype implementation and our
experiments were conducted on an actual private cloud.

10 Conclusion

Multi-tier architecture is a preferred architecture for enter-
prise web applications and high response time percentile pro-
visioning is the more meaningful than mean response time
based ones. We present an approach of optimizing server al-
location for a multi-tier application to achieve a percentile
bound on the end to end response time. We model the applica-
tion as an open tandem network of queues and model each tier
as an M/G/1-PS queue. We have developed an approximate
model to compute the response time distribution and have
also developed a technique to estimate the service time distri-
bution from the service time histograms. We have developed
an algorithm to compute per tier server allocation of the ap-
plication and in a homogenous setup. We also have extended
the homogenous setup solution to solve the server allocation
problem in a heterogenous setup. We have tested the efficacy
of our approach using a multi-tier application simulator and
also compared it against two other baseline approaches devel-
oped using models based on M/M/K-FCFS queue. We have
demonstrated superior performance of our approach as com-
pared to the baseline approaches. Our experiments indicated
that its better to use small number of large servers than large
number of small servers. Finally we tested our approach us-
ing the multi-tier implementation of TPC-W benchmark over
private cloud created using Xen over Linux.

References

[1] The tpcw benchmark. http://www.tpc.org/
tpcw/.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Per-
formance Guarantees for Web Server End-Systems: A
Control-Theoretical Approach. IEEE Transactions on
Parallel and Distributed Systems, 13(1):80–96, 2002.

[3] M. N. Bennani and D. A. Menasce. Resource allocation
for autonomic data centers using analytic performance
models. In ICAC ’05, pages 229–240, Washington, DC,
USA, 2005. IEEE Computer Society.

[4] H. W. Cain and R. Rajwar. An architectural evalua-
tion of Java TPC-W. In In Proceedings of the Seventh
International Symposium on High-Performance Com-
puter Architecture, pages 229–240, 2001.

[5] A. Chandra, W. Gong, and P. Shenoy. Dynamic Re-
source Allocation for Shared Data Centers Using On-
line Measurements. In Proceedings of Eleventh Inter-
national Workshop on Quality of Service (IWQoS 2003),
June 2003.

[6] J. Chen, G. Soundararajan, and C. Amza. Autonomic
Provisioning of Backend Databases in Dynamic Content
Web Servers. In ICAC, pages 231–242, June 2006.

[7] L. Cherkasova and P. Phaal. Session based admission
control: a mechanism for peak load management of
commercial web sites. IEEE Transactions on Comput-
ers, 51(6), June 2002.

[8] M. Crovella. Performance evaluation with heavy tailed
distributions. In Proceedings of the 11th Interna-
tional Conference on Computer Performance Evalua-
tion: Modelling Techniques and Tools, TOOLS ’00,
pages 1–9, London, UK, 2000. Springer-Verlag.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev.,
41:205–220, October 2007.

[10] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-based resource provisioning in a web service
utility. In Proceedings of Fourth USENIX Symposium on
Internet Technologies and Systems (USITS ’ 03), Seat-
tle, WA, March 2003.

[11] Haproxy the reliable, high performance tcp/http load
balancer. http://haproxy.1wt.eu/.

[12] P. G. Harrison and W. J. Knottenbelt. Passage time
distributions in large markov chains. In SIGMETRICS
’02: Proceedings of the 2002 ACM SIGMETRICS inter-
national conference on Measurement and modeling of
computer systems, pages 77–85, New York, NY, USA,
2002. ACM.

University of Massachusetts, Technical Report UM-CS-2012-009 14

[13] D. Menasce. Web Server Software Architectures.
In IEEE Internet Computing, volume 7, Novem-
ber/December 2003.

[14] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A.
Mendes. A methodology for workload characterization
of e-commerce sites. In EC ’99: Proceedings of the 1st
ACM conference on Electronic commerce, pages 119–
128, New York, NY, USA, 1999. ACM.

[15] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. G.
Kulkarni. Numerical computation of response time dis-
tributions using stochastic reward nets. In Annals of Op-
erations Research, pages 155–184, 1994.

[16] Opennebula. http://www.opennebula.org.

[17] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder,
A. Tantawi, and A. Youssef. Managing the response
time for multi-tiered web applications. In IBM, Techni-
cal Report, January 2005.

[18] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. Qos-driven
server migration for internet data centers. In Proceed-
ings of the Tenth International Workshop on Quality of
Service (IWQoS 2002), May 2002.

[19] S. M. Ross. Stochastic Processes. Wiley, 2 edition, Jan.
1995.

[20] U. Sharma, P. J. Shenoy, S. Sahu, and A. Shaikh. A
cost-aware elasticity provisioning system for the cloud.
In ICDCS, pages 559–570, 2011.

[21] L. Slothouber. A Model of Web Server Performance.
In Proceedings of the 5th International World Wide Web
Conference, 1996.

[22] C. Stewart and K. Shen. Performance Modeling and
System Management for Multi-component Online Ser-
vices. In Proc. USENIX Symp. on Networked Systems
Design and Implementation (NSDI), May 2005.

[23] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An Analytical Model for Multi-tier Inter-
net Services and Its Applications. In Proc. of the ACM
SIGMETRICS Conf., Banff, Canada, June 2005.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier in-
ternet applications. ACM Transactions on Adaptive and
Autonomous Systems (TAAS), Vol. 3, No. 1, pages 1–39,
March 2008.

[25] D. Villela, P. Pradhan, and D. Rubenstein. Provision-
ing Servers in the Application Tier for E-commerce Sys-
tems. In Proceedings of the 12th IWQoS, June 2004.

[26] K. Xiong and H. Perros. Qrp01-6: Resource optimiza-
tion subject to a percentile response time sla for enter-
prise computing. In Global Telecommunications Con-
ference, 2006. GLOBECOM ’06. IEEE, pages 1 –6, 27
2006-dec. 1 2006.

[27] S. F. Yashkov. Processor-sharing queues: some progress
in analysis. Queueing Syst. Theory Appl., 2(1):1–17,
1987.

[28] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni.
A regression-based analytic model for capacity plan-
ning of multi-tier applications. Cluster Computing,
11(3):197–211, 2008.

A Pseudocodes

This appendix section presents the pseudocode of three algo-
rithms which have been proposed by us in this paper.

A.1 Pseudocode for service time approxima-
tion algorithm

We outilne the service time approximation algorithm men-
tioned; the analytical results are mentioned in Section 4.2.

input : Service-time histogram x = {x1 . . . xn} ;
Maximum number of clusters Kmax;
output: α = [α1 . . . αK],µ = [µ1 . . . µK], t =

[t1 . . . tK];

1 for k=1:Kmax do
2 [ek, βk]= kmeans(x, k);
3 end
4 [βcv,K] = min(βk);e = eK ;
5 e0 = sort(e);
6 α0

1= (# of points in 1st cluster)/n; t1 = 0; µ0
1 = 1/e01;

7 for k=2:K do

8 α0
k =

(# of points in kth cluster)
n ;

9 tk =
e0k−e

0
k−1

2 ; µ0
k = 1

e0k−tk
;

10 end
11 [α,µ]= EM(x,K,α0,µ0, t);
12 return α,µ, t
Algorithm 1: Determining approximate service time
distribution from the service-time histogram

A.2 Pseudocode for finding the tier-wise con-
figuration algorithm

We outilne the near optimal algorithm mentioned in Section
5.

University of Massachusetts, Technical Report UM-CS-2012-009 15

input : number of tiers = N ;
arrival rate for jth-tier λj ∀j = 1, . . . N , ;
the service-time distribution fXj (t) of each tierj ;
percentile, i.e. θ and response time threshold TD ;
bound on ρ, i.e ρl ≤ ρ ≤ ρu
output: Configuration n = {n1, . . . , nN};
The optimal per-tier utilization ρ∗;

1 Calculate µji, tji, αj,i using Alogrithm 1;
2 Search for ρl ≤ ρ∗ ≤ ρu such that (19) is satisfied;
3 for each tier j do
4 Compute µj using (20) ;
5 Compute the integers nj = dλj/(ρ∗µj)e;
6 end
7 return n = {n1, . . . , nN} and ρ∗

Algorithm 2: Find number of servers required at each
tier in a single server-type setting

A.3 Pseudocode for cost efficient algorithm
We outilne the pseudo-code mentioned in Section 6.

B Stochastic Ordering of Approxi-
mate Response Time

We consider an M/G/1 queue with Poisson arrivals at rate λ
and service time X with density function fX(x) and cumula-
tive density function (CDF) FX(x) = P(X < x), x ≥ 0. We
assume that customers are served under the processor shar-
ing discipline. Under the assumption of iid service times and
ρ = λE[X],the sytem exhibits steady state behavior. Let τ
denote the response time. We are interested in approximating
its density We are interested in approximating the response
time distribution. Let τ(x) = E[T |X = x] denote the ex-
pected response time under PS conditioned on the service
time being x. It is given as

τ(x) = x/(1− ρ), x ≥ 0

Hence τ(x) is a random variable and we drop the dependence
on x; it has the following cumulative distribution,

Fτ (y) =

∫ y

0

dFX(x(1− ρ), y ≥ 0

Note that E[τ] = E[T]. We define the following stochas-
tic ordering relation that we will use to order T and τ . Let
X,Y ∈ R+ be rvs with cdfs FX(x), FY (x), x ≥ 0. We say
thatX is smaller than Y in the convex ordering sense (written
X ≤cx Y iff E[f(X)] ≤ E[f(Y)] for all convex functions f .
Moreover, (see [19]), X ≤cx Y iff∫ y

0

FX(x)dx ≤
∫ y

0

FY (x)dx, ∀y ≥ 0.

We have the following result

input : N ; λ = [λ1 . . . λN];
fji,∀j = 1 . . . N, i = 1 . . .M ; θ; TD;
hybConf = [njm]N×M ; ρl ≤ ρ ≤ ρu;

output: Complete configuration [nji]N×M

1 ITER=true, ρl = 0; ρmax = 0; curConfig=[0];
curCost =∞; δ = 0.001;

2 while ITER do
3 for each tier-j do
4 for each server type-m do
5 Compute βjm using (22);
6 end
7 Compute f ′j using (21);
8 end
9 Get hybConf ′ = [n′j]1×N and ρ∗ using Algorithm

2;
10 ρmax = (ρ∗ > ρmax)?ρ∗:ρmax ;
11 for each tier-j and server-type m do
12 Compute curConfig = [njm]N×M , where

njm = dβjmn′j/(µjm/min(µjm))e ;
13 end
14 if cost of [njm]N×M < curCost then
15 curCost = cost([njm]N×M);
16 ρl = utilization of curConfig;
17 ρn = (ρmax + ρl)/2;
18 else
19 ρn = (ρmax + ρn)/2;
20 end
21 if |ρn − ρmax| ≤ δ then
22 ITER=false;
23 end
24 Compute new hybConf after solving (23) and

(24).
25 end
26 return [nji]N×M

Algorithm 3: Find number of servers required at each
tier in a heterogenous server setting

Theorem B.1 τ ≤cx T .

Proof. Note that τ conditioned on the service time being x
has the following cumulative distribution,

Fτ |X=x(u|X = x) =

{
0, u < x/(1− ρ),
1, u ≥ x/(1− ρ)

the following relation holds,∫ y

0

Fτ |X=x(u|X = x)du ≤
∫ y

0

FT |X=x(u|X = x)du, y ≥ 0

because a positive valued random variable taking value d > 0
is smaller in the sense of convex order than a positive random
variable with arbitrary distribution and mean d. Now focus

University of Massachusetts, Technical Report UM-CS-2012-009 16

on τ ,∫ y

0

Fτ (u)du =

∫ y

0

∫ ∞
0

Fτ |X=x(u|X = x)dFXdu

=

∫ ∞
0

∫ y

0

Fτ |X=x(u|X = x)dudFX

≤
∫ ∞
0

∫ y

0

FT |X=x(u|X = x)dudFX

=

∫ y

0

FT (u)du

As this holds for all y ≥ 0, we conclude that τ ≤cx T .

