
BlinkFS: A Distributed File System for Intermittent Power
Navin Sharma, David Irwin, and Prashant Shenoy

University of Massachusetts Amherst

Abstract
Operating off intermittent power is beneficial for data

centers in a variety of scenarios. For instance, data cen-
ters may use real-time electricity markets to buy more
power when it is cheap, or leverage more clean, but
intermittent, energy sources. As another example, ex-
tended blackouts may require capping power at low lev-
els for long periods to extend UPS lifetime. However,
regulating power consumption is challenging for clusters
that store persistent state, since power fluctuations im-
pact both I/O performance and data availability. To ad-
dress the problem, we design and implement BlinkFS,
which combines blinking with a power-balanced data
layout and popularity-based replication/reclamation to
optimize I/O throughput and latency as power varies.
Our experiments show that BlinkFS outperforms exist-
ing energy-proportional approaches, particularly at low
steady power levels or high levels of intermittency. For
example, we show that BlinkFS improves completion
time for MapReduce-style jobs by 42% at 50% full
power compared to an existing energy-proportional DFS.
Further, at 20% full power, BlinkFS still finishes jobs,
while existing approaches stall due to inaccessible data.

1 Introduction
The growth of cloud-based services continues to fuel a
rapid expansion in the size and number of data centers.
The trend only exacerbates the environmental and cost
concerns already associated with data center power con-
sumption, which a recent report estimates at 1.7-2.2%
of U.S. consumption [14]. Excessive consumption has
serious environmental ramifications as well, since 83%
of U.S. electricity derives from burning fossil fuels [15].
Energy costs are also on a long-term upward trend, due to
a combination of government regulations to limit carbon
emissions, a steady rise in global energy demand, and
the increasing complexity of locating and extracting new
fossil fuel reserves. Even using today’s “cheap” power,
a data center’s energy-related costs represent a signifi-
cant fraction (∼31% [4]) of its total cost of ownership.
Prior research assumes that data centers have an unlim-
ited supply of power, and focuses largely on optimizing
applications to use less energy without impacting per-
formance. By comparison, there has been little research
on optimizing application performance for intermittent
power that fluctuates over time. However, operating off

intermittent power is beneficial in a variety of scenarios.
Market-based Electricity Pricing. Electricity prices
vary continuously based on supply and demand. Many
utilities now offer customers access to market-based
rates that vary every five minutes to an hour [1]. As a
result, the power data centers are able to purchase for a
fixed price varies considerably over time. Figure 1 shows
how much power a fixed budget of $55/hour bought in
the New England hourly wholesale market in 2011. In
this case, maintaining a fixed per-hour budget, rather
than a fixed per-hour power consumption, results in 16%
more power for the same price. The example demon-
strates that data centers that execute delay-tolerant work-
loads, e.g., batch jobs, could reduce their electricity bill
by varying their power consumption based on its price.
Unexpected Blackouts or Brownouts. Data centers of-
ten use UPSs for backup power during unexpected black-
outs. An extended blackout may force a data center to
limit power consumption at a low level to arbitrarily ex-
tend UPS lifetime. While low power levels may impact
performance and violate SLAs, it may be critical for cer-
tain applications to maintain some, even low, level of
availability, e.g., disaster response applications. As we
discuss, maintaining availability at low power levels is
challenging if applications access distributed state. Fur-
ther, in many developing countries, the electric grid is un-
stable with voltage rising and falling unexpectedly based
on changing demands. These “brownouts” may also af-
fect the power available to data centers over time.
Increasing Renewable Integration. Recent price trends
and environmental concerns have led data centers to ex-
periment with clean energy sources, including wind [3]
and solar [17]. Wind and solar power are inherently in-
termittent. Since long-term battery-based storage is pro-
hibitively expensive, increasing renewable integration re-
quires closely matching power consumption to genera-
tion. Data centers are particularly well-positioned to ben-
efit from renewables, since unlike household and indus-
trial loads, delay-tolerant batch workloads may permit
performance degradation due to varying power.

We recently proposed a blinking abstraction [19] to
regulate a server cluster’s energy footprint in response
to power variations. The abstraction rapidly, e.g., once
a minute, “blinks” servers between a high-power active
state and a low-power inactive state. In prior work, we
demonstrate how to enable blinking for memcached, a

 0

 1

 2

 3

 4

 0 60 120 180 240 300

P
ow

er
 (M

W
)

Days

$55/hour Budget

Figure 1: Electricity prices vary hourly in wholesale mar-
kets, resulting in the power available for a fixed budget
varying considerably over time.

stateless distributed memory cache [19]. However, we
intend blinking to be a general abstraction for leveraging
intermittent power in a wide range of applications. In this
paper, we use blinking to design a distributed file system
(DFS) optimized for intermittent power, called BlinkFS.
As we discuss, intermittent power raises interesting DFS
design questions, since periods of scarce power may ren-
der data inaccessible, while periods of plentiful power
may require costly data layout adjustments to scale up
I/O throughput. BlinkFS has numerous advantages for
intermittent power over co-opting prior energy-efficient
storage systems, e.g., [8, 13, 16, 18, 22, 23].
Low Amortized Overhead. Blinking every node
at regular intervals prevents costly and abrupt data
migrations—common to many systems—whenever
power decreases, to concentrate data on a small set
of active nodes, or increases, to spread data out and
increase I/O throughput. Instead, blinking ensures each
node is active, and its data accessible, for some time
each blink interval, at the expense of a modest overhead
to transition nodes between the active and inactive state.
Bounded Replica Inconsistency. Deactivating nodes
for long periods requires write off-loading to temporar-
ily cache writes destined for either inactive or overloaded
nodes [7]. The technique requires excessive writes when-
ever nodes activate or deactivate (to migrate or apply any
off-loaded writes), while compromising reliability if off-
loaded writes are lost due to node failure. In contrast,
BlinkFS ensures all replicas are consistent within one
blink interval of a write, regardless of the power level.
No Capacity Limitations. Since migrating to a new data
layout is expensive, one goal of BlinkFS is to decouple
I/O performance at each power level from the specific
data layout: the same layout should provide good per-
formance at all power levels. To ensure such a data lay-
out, Rabbit [8] severely limits the capacity of nodes stor-
ing secondary, tertiary, etc. replicas. Blinking enables a
power-independent data layout without such limitations.
Always-accessible Data. Prior systems render data
completely inaccessible if there is not enough power to
store all data on the set of active nodes. In contrast,

BlinkFS ensures data is always accessible, with latency
bounded by the blink interval, even at low power levels.

Since each node’s data is inaccessible for some period
each blink interval, BlinkFS’s goal is to gain the advan-
tages above without significantly degrading latency. In
achieving this goal, we make the following contributions.
Blinking-aware File System Design. We detail
BlinkFS’s design and its advantages over co-opting exist-
ing energy-proportional systems for intermittent power.
The design leverages a few always-active proxies to ab-
sorb reads and writes and mask blinking’s complexity.
Latency Reduction Techniques. We discuss techniques
for mitigating blinking’s latency penalty. Our approach
combines staggered node active intervals with a power-
balanced data layout to ensure replicas are active for the
maximum duration each blink interval. BlinkFS uses
popularity-based replication/reclamation to further de-
crease latency for frequently-accessed blocks.
Implementation and Evaluation. We implement
BlinkFS on a small-scale prototype using 10 Mac minis
connected to a programmable power supply that drives
variable power traces. We benchmark performance and
overheads at different (fixed and oscillating) power lev-
els. We then compare BlinkFS with prior approaches
in two intermittent power scenarios using three appli-
cations: a MapReduce-style batch system, the Mem-
cacheDB key-value store, and file system traces from a
search engine. As an example of our results, BlinkFS im-
proves MapReduce job completion time by 42% at 50%
power compared to an existing energy-proportional DFS.
At 20% power, BlinkFS still finishes jobs, while existing
approaches stall due to inaccessible data.

2 Background
Reducing data center power consumption is an active
research area. Much prior work focuses on energy-
proportional systems, where power usage scales lin-
early with workload demands [12]. The goal of energy-
proportional systems is to not impact performance: if
demands increase, these systems increase power con-
sumption to maintain performance. Energy-proportional
distributed applications vary power consumption by ac-
tivating and deactivating nodes as workload demands
change. One approach for addressing intermittent power
is to co-opt existing energy-proportional approaches,
but vary the number of active nodes in response to
changes in available power rather than workload de-
mands. Unfortunately, the approach does not work
well with intermittent power, since power variations
may be significant, frequent, and unpredictable. While
energy-proportional systems optimize energy consump-
tion to satisfy workload demands, designing for intermit-
tent power requires systems to optimize performance as
power varies. Below, we summarize how intermittent

power affects energy-proportional storage systems, and
then discuss two specific approaches.

2.1 Energy-Proportional DFSs
DFSs, such as the Google File System (GFS) [11] or
the Hadoop Distributed File System (HDFS) [20], dis-
tribute file system data across multiple nodes. Designing
energy-proportional DFSs is challenging, since naı̈vely
deactivating nodes to reduce energy usage has the poten-
tial to render data inaccessible [16]. One way to prevent
data on inactive nodes from becoming inaccessible is by
storing replicas on active nodes. Replication is already
used to increase read throughput and reliability in DFSs,
and is effective if the fraction of inactive nodes is small.

For example, with HDFS’s random placement policy
for replicas, the probability that any block is inaccessible
is m!(n−k)!

n!(m−k)! for n nodes, m inactive nodes, and k replicas
per block. Figure 2 plots the fraction of inaccessible data
as a function of the fraction of inactive nodes, and shows
that nearly all data is accessible for small numbers of in-
active nodes. However, the fraction of inaccessible data
rises dramatically once half the nodes are inactive, even
for aggressive replication factors, such as k=7. Further,
even a few inactive nodes, where the expected percentage
of inaccessible data is small, may pose problems, e.g., by
stalling batch jobs dependent on inaccessible data.

A popular approach for designing energy-efficient
storage systems is to use concentrated data layouts,
which deactivate nodes without causing data to become
unavailable. These layouts generally store primary repli-
cas on one subset of nodes, secondary replicas on an-
other mutually-exclusive subset, tertiary replicas on yet
another subset, etc., to safely deactivate non-primary
nodes [8, 16]. Unfortunately, these layouts cause prob-
lems if available power varies frequently. Below, we
highlight two problems with the approach
Inaccessible Data. If there is not enough power avail-
able to activate the nodes necessary to store all data, then
some data will become inaccessible at low power levels.
As we mention in §1, sustained low power periods may
occur during extended blackout or brownout scenarios.
Thus, gracefully degrading throughput and latency down
to extremely low power levels is important. With con-
centrated data layouts, as data size increases, the number
of nodes, and hence minimum power level, required to
store all data and keep it accessible also increases.
Write Off-loading Overhead. Energy-proportional sys-
tems leverage write off-loading to temporarily cache
writes on currently active nodes, since clients cannot ap-
ply writes to inactive nodes, e.g., [8, 7, 22]. Write off-
loading is also useful for deferring writes to overloaded
nodes, which are common when only a small number of
active nodes store all data. While a small number of ac-
tive primary nodes decreases the minimum power level

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

In
a

cc
e

ss
ib

le
 D

a
ta

 (
%

)

Inactive Nodes (%)

k=1
k=3
k=7

Figure 2: Inaccessible data rises with the fraction of in-
active nodes using a random replica placement policy.

necessary to keep data accessible, it overloads primaries
by forcing them to process all writes. The approach also
imposes abrupt overheads when activating or deactivat-
ing nodes, either to apply off-loaded writes to newly ac-
tive nodes or overloaded primary nodes, respectively.

Further, intermittent sources, e.g., wind power, that
exhibit abrupt power variations require near-immediate
node deactivations and may not permit the completion of
such high overhead operations. While battery-based en-
ergy storage may mitigate the impact of sudden power
variations, it is expensive to install and maintain [10].
Further, deferring writes to replicas on inactive nodes de-
grades reliability in the event of node failure. Failure’s
consequences become worse during low power periods,
by both increasing the number of off-loaded writes stored
on active nodes, as well as the time that replicas on inac-
tive nodes must remain in an inconsistent state.

Below, we outline two approaches to energy-
proportional DFSs that use concentrated data layouts and
vary power by activating and deactivating nodes. We
highlight the additional problems these DFSs encounter
if power variations are significant and frequent.

2.2 Migration-based Approach
We classify any approach that varies power consump-
tion by migrating data to concentrate it on a set of ac-
tive nodes, and then deactivating the remaining nodes, as
a migration-based approach. With this approach, power
variations trigger changes to number of nodes storing ei-
ther the most popular data or primary, secondary, ter-
tiary, etc. replicas. In either case, data layout changes
require migrations to spread data out to provide higher
I/O throughput (as nodes become active) or to concen-
trate data and keep it accessible (as nodes become inac-
tive). Thus, mitigating migration overheads is a focus of
prior work on energy-efficient storage [13, 18, 23].

To highlight the problems with this approach, consider
the simple example in Figure 3(a), where there is enough
power to operate four nodes storing a data set’s primary
replicas and the data fills two nodes’ storage capacity.
A sudden and unexpected drop in power by 2X, leaving
only two active nodes, may not afford enough time for
the necessary migrations, leaving some data inaccessible.
Even with sufficient time for migration, an additional 2X

D1

D1

D1

Tim
e

100%

50%

25%

D2

D2

D2

D3

D3

D3

D4

D4

D4

D1 D2

D2
D4

D3 D4

D1
D3

D2
D4

D1
D3

(b)(a)

Figure 3: Simple example using a migration-based ap-
proach (a) and blinking (b) to deal with power variations.

power drop, leaving only one active node, forces at least
50% of the data to become inaccessible.

We focus on regulating power consumption within a
single data center. Another way to handle power vari-
ations is to migrate applications and their data to re-
mote data centers with ample or cheap power [9]. The
technique is infeasible for large storage systems. Even
assuming dedicated high-bandwidth network links, we
view frequent transfers of large, e.g., multi-petabyte,
storage volumes as impractical.

2.3 Equal-Work Approach
Amur et al. propose an energy-proportional DFS, called
Rabbit, that eliminates migration-related thrashing using
an equal-work data layout [8]. The layout uses progres-
sively larger replica sets, e.g., more nodes store (n + 1)-
ary replicas than n-ary replicas. Specifically, the layout
orders nodes 1 . . . i and stores bi = B

i blocks on the ith
node, where i > p and p nodes store primary replicas
(assuming a data size of B). The layout ensures that any
1 . . . k active nodes (for k < i total nodes) are capable of
servicing B

k blocks, since B
i < B

k . Since the approach
is able to spread load equally across any subset of nodes
in the ideal case of reading all data, it ensures energy-
proportionality with no migrations.

Amur et al. provide details of the approach in prior
work [8], including its performance for workloads that
diverge from the ideal. Rabbit’s primary constraint is
its storage capacity limitations as i → ∞, since B

i de-
fines the capacity constraint for node i. Thus, for N ho-
mogeneous nodes capable of each storing M blocks, the
nodes’ aggregate storage capacity is MN , while Rabbit’s
storage capacity is pM +

∑N
i=p+1

pM
i = O(logN). As

an example, for N=500 nodes and M=214=16384 64MB
blocks, the aggregate storage capacity across all nodes is
MN=500 terabytes, while Rabbit’s capacity is less than
15 terabytes, or 3% of total capacity, when p=2.

The relationships above show that the fraction of un-
used capacity increases linearly with N . Thus, the to-
tal storage capacity is capable of accommodating signif-
icantly more replicas than Rabbit uses as N increases.

To reduce capacity limitations, Rabbit is able to indi-
vidually apply the layout to multiple distinct data sets,
by using a different 1 . . . i node ordering for each data
set. However, multiplexing the approach between data
sets trades-off desirable energy-efficient properties, e.g.,
few nodes storing primary replicas and ideal energy-
proportionality. Thus, Rabbit’s design presents issues for
large clusters of nodes with similar storage capacities.

3 The Blinking Abstraction
The systems in the previous section use activation poli-
cies that vary power consumption only by varying the
number of active nodes. The blinking abstraction sup-
ports other types of blinking policies, including syn-
chronous policies that transition nodes between the ac-
tive and inactive state in tandem, asynchronous policies
that stagger node active intervals over time, and various
asymmetric policies that blink nodes at different rates
based on application-specific performance metrics. Be-
low, we provide a brief summary of blinking. A more
detailed description is available in prior work [19].

Blinking enables an external controller to remotely set
a blink interval t and an active interval tactive on each
node, such that for every interval t the node is active
for time tactive and inactive for time t − tactive. ACPI’s
S3 (Suspend-to-RAM) state is a good choice for the
inactive state, since it combines the capability for fast
millisecond-scale transitions with low power consump-
tion (<5% peak power). In contrast, techniques that
target individual components, such as DVFS in proces-
sors, are much less effective at satisfying steep drops in
available power, since they are often unable to reduce
consumption below 50% peak power [21]. To control
inter-node blinking patterns, the abstraction also enables
a controller to specify when a blink interval starts, as well
as when within a blink interval the active interval starts.

3.1 Advantages for DFSs
To see the advantages of blinking for DFSs, recall the
previous section’s example (Figure 3(b)), where there is
initially enough power to operate four nodes that each
provide storage for a fraction of the data. If the available
power decreases by 2X, with blinking we have the op-
tion of keeping all four nodes active for time tactive = t

2
every blink interval t. In this case, instead of migrating
data and concentrating it on two active nodes, we are able
to keep the same data layout as before without changing
our aggregate I/O throughput over each blink interval,
assuming each node has the same I/O throughput when
active. Thus, at any fixed power level, blinking is able
to provide the same I/O throughput, assuming negligible
transition overheads, as an activation approach.

However, blinking has a distinct advantage over
a migration-based approach if the available power

changes, since it is possible to alter node active inter-
vals nearly instantly to match the available power with-
out the overhead of migration. Additionally, in contrast
to Rabbit, the blinking approach does not require severe
capacity limitations on nodes to maintain throughput. A
blinking approach is also beneficial at low power levels
if not enough nodes are active to store all data, since data
is accessible for some period each blink interval.

3.2 Reliability Concerns
We are not aware of any work that addresses the reliabil-
ity impact of frequently transitioning a platform’s elec-
tric components between ACPI’s S0 and S3 state. Anec-
dotally, we have blinked our prototype tens of thousands
of times over the past year without any failures. Prior
work on energy-proportional storage has likely not con-
sidered blinking due to the reliability concerns of fre-
quently transitioning magnetic disks to and from their
low-power standby state. For instance, prior work esti-
mates a disk reaches its rated limit (estimated at 50, 000
start/stop cycles) in 5 years when transitioning only 28
times per day [23]. Since our prototype blinks nodes
once a minute, it would reach the same limit in only 35
days. Flash-based Solid State Drives (SSDs) are reduc-
ing the reliance on magnetic disks, and do not have the
reliability concerns associated with rapid blinking. SSDs
are becoming increasingly popular, since they support
higher I/O rates and are more energy-efficient than disks
for a range of seek- and scan-intensive workloads [5, 21].

We also view blinking as potentially useful for nodes
with magnetic disks that co-locate computation and data,
since a node’s mechanical components, e.g., disks and
exhaust fans, typically comprise only a small percentage
of overall power consumption [5]. For example, prior
work estimates that consumer disks use roughly 10W
when active and 5W when idle [5], while other non-
mechanical components may consume more than 150W.
As a result, introducing a new low-power state, similar
to ACPI’s S3 state, that decouples the power state of the
mechanical components from the platform’s power state
would still permit blinking a node’s high-power electric
components. Since today’s nodes do not have this power
state, our prototype uses SSDs. Disk arrays, or nodes
with many disks that consume a large fraction of plat-
form power, may require further optimizations—outside
the scope of this paper—to make blinking feasible.

4 BlinkFS Design
Figure 4 depicts BlinkFS’s architecture, which resembles
other recent DFSs, including GFS [11], HDFS [20], Rab-
bit [8], etc., that use a master meta-data server to co-
ordinate access to each node’s data via a block server.
The master also maintains the file system namespace,
tree-based directory structure, file name → blocks map-

File Metadata Server
---------------------- Power

Manager

File Proxy

Power Client
Block Server

Power Client
Block Server

Power Client
Block Server

Application BlinkFS
Client

Power
Signal

da
ta

<write
, cl

ient's
data>

BlinkFS
Legend:

Data msg.
Control msg.

F
U
S
E

File Proxy

bid1
bid2

bidk

bs1
bs2

bsn

/bob/test
<filename, block index>

<block info, replicas

info & blink status>

<write, b id, b ver., offset, data>

<read, b id, b ver., offset, len> <migrate/replica
te, b id,

to, data>

<b
lin

k /
 b

loc
ks

 st
at

us
>

<i
ns

tru
ct

io
n

fo
r B

S
op

er
at

io
ns

>

<blocks layout>

<Nodes blink state >

<B
lin

k
st

at
e

(s
ta

rt
tim

e,
 o

n
pe

rio
d)

>

<CPU util, I/O
 rate, O

N period>

Blinking Nodes

<b i
d,r

ep
lica

 st
at> <b id/ BS id, stat>

Figure 4: BlinkFS Architecture

ping, and block → node mapping, as well as enforces
the access control and block placement/replication pol-
icy. As in prior systems, files consist of multiple fixed-
size blocks replicated on zero or more nodes. To mitigate
the impact of node failure, the master may recover from
meta-data information stored at one or more BlinkFS
proxies, described below, or maintain an up-to-date copy
of its meta-data on one or more backup nodes.

BlinkFS also includes a power manager that monitors
available power, as well as any energy stored in batteries,
using hardware sensors. The power manager implements
a blinking policy that continuously alters per-node blink-
ing patterns to match power consumption with available
power. Specifically, the power manager communicates
with a power client on each node to set the blink inter-
val duration t, as well as its start time and active interval
(tactive). The power client also acts as an interface for ac-
cessing other node resource utilization statistics, includ-
ing CPU utilization, I/O accesses, etc. The power man-
ager informs the master of the current blinking policy,
i.e., when and how long each node is active every blink
interval. To access the file system, higher-level applica-
tions interact with BlinkFS clients through well-known
file system APIs. Our prototype implements the file sys-
tem calls in the POSIX API.

We do not assume that BlinkFS clients are always ac-
tive, since clients may run on blinking nodes themselves,
e.g., in clusters that co-locate computation and DFS stor-
age. Thus, to enable clients to read or write blocks on in-
active nodes, BlinkFS utilizes one or more always-active
proxies to intercept read and write requests if a client
and block server are not concurrently active, and issue
them to the appropriate node when it next becomes ac-
tive. Each proxy maintains a copy (loaded on startup by
querying the master) of the meta-data information neces-
sary to access a specific group of files (each file is han-
dled by a single proxy), and ensures replica consistency
every blink interval. The proxy propagates any file sys-

tem operations that change meta-data information to the
master before committing the changes. The power man-
ager also maintains an up-to-date view of each node’s
power state, since each power client sends it a status mes-
sage when transitioning to or from the inactive state. The
messages also serve as heartbeats: if the power manager
does not receive any status messages from a power client
within a pre-set time interval, e.g., 5 minutes, it checks
if the co-located block server has failed; if so, it informs
the master to initiate the appropriate recovery actions.

Similar to a set of always-active nodes storing primary
replicas, proxies consume power that increases the mini-
mum threshold required to operate the cluster. However,
proxies only serve as intermediaries, and do not store
data. As a result, the data set size does not dictate the
number of proxies. Instead, proxies limit I/O through-
put by redirecting communication between many clients
and block servers through a single point. However, as we
discuss below, mostly-active clients may bypass proxies
when accessing data. Further, proxies are most useful
at low power levels, where available power, rather than
proxy performance, limits I/O throughput. Below we dis-
cuss the details of how BlinkFS’s components facilitate
reading and writing files, and then present techniques for
mitigating BlinkFS’s high latency penalty.

4.1 Reading and Writing Files
BlinkFS proxies mask the complexity of interacting with
blinking nodes from applications. The master and each
client use a well-known hash function to map a file’s ab-
solute path to a specific proxy. To read or write a file,
clients typically issue requests to the proxy directly. We
also discuss optimizations that enable a client to bypass
a proxy if it is active at the same time as a block server.
Handling Reads. The meta-data necessary to read a file
includes its block IDs and their version numbers, as well
as the (IP) address and blinking information of the block
servers storing replicas of the file’s blocks. The proxy
holds read requests until a node storing the block be-
comes active, issues the request to the block server, re-
ceives the data, and then proxies it to the client. If mul-
tiple block servers storing the block’s replicas are active,
the proxy issues the request to the node with the longest
remaining active interval, assuming the remaining active
time exceeds a minimum threshold necessary to read and
transmit the block. Using a proxy to transfer data is nec-
essary when executing both clients and block servers on
blinking nodes, since the client may not be active at the
same time as the block server storing the requested data.

To optimize reads, mostly-active clients may directly
request from the proxy the block information—IDs and
version numbers—and blinking policy for each block
server holding a replica, and then access block servers di-
rectly when they become active. The optimization signif-

icantly reduces the proxy load for read-intensive work-
loads. To ensure the proxy applies all previous client
writes to a block before any subsequent reads, the proxy
includes a version number for each block, incremented
on every update, in its response to the client. If the ver-
sion number for the block stored at the block server dif-
fers, then the proxy holds pending writes that it has not
yet applied. In this case, the read stalls until the proxy ap-
plies the writes and the version numbers match. Note that
a read may span multiple blocks across multiple nodes.
Handling Writes. The proxy performs a similar se-
quence for writes. All writes flow through a file’s proxy,
which serializes concurrent writes and ensures all block
replicas are consistent each blink interval. The proxy
may also return to the client before applying the write
to every block replica, since subsequent reads either flow
through the proxy or match version numbers at the block
server, as described above. The proxy maintains an
in-memory write-ahead log to track pending off-loaded
writes from clients. Since the log is small, the proxy is
able to store in-memory backups on one or more nodes
(updated on each write before returning to the client),
which it recovers from in case of failure. When the client
issues the write, the proxy first records the request in
its log and returns to the client; the proxy then propa-
gates the write to all replicas as the block servers become
active; finally, when all replicas successfully apply the
write, the proxy removes the request from its log.

Since all block servers are active for a period each
blink interval, all replicas are consistent within one blink
interval from when the write is issued, and the maximum
time a write remains pending in the proxy’s log is one
blink interval. Of course, the proxy does have a fixed-
size log for pending writes. After filling the log, further
write requests stall until the proxy propagates at least one
of its queued writes to each replica. As with reads, clients
could also interact directly with block servers, as long as
the client and block server are both active at the same
time. In this case, the proxy uses a similar lease mecha-
nism as GFS to handle concurrent writes.

4.2 Reducing the Latency Penalty
While migration-based activation approaches incur high
overheads when power levels change, they ensure data
is accessible, i.e., stored on an active node, as long as
there is enough power to activate the nodes necessary
to store all data. In contrast, naı̈ve blinking incurs a
high latency penalty, since each node is inactive for some
time each blink interval. BlinkFS combines three tech-
niques to reduce its latency penalty: an asynchronous
staggered blinking policy, a power-balanced data layout,
and popularity-aware replication and reclamation.
Asynchronous Staggered Blinking. Staggered blink-
ing’s goal is to minimize the overlap in node active inter-

(1)

(2)

Blink Interval

(3)

(4)

Nodes

R1

Staggered

(5)

(6)

(7)

(8)

R2

R3

R4
(if necessary)

R1

R3

R2

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

1st

2nd

3rd4th
(if necessary)

(a) Staggered Blinking (b) Power-balanced Data Layout

Figure 5: Combining staggered blinking (a) with a power-balanced data layout (b) maximizes block availability.

vals by staggering start times equally across each blink
interval. Figure 5(a) depicts an example of staggered
blinking. To perform well at both high and low power
levels, the policy assigns equal-sized active intervals to
all nodes, and varies the size of this active interval to ad-
just to changes in available power. Thus, at any power
level all nodes are active for the same amount of time.
By contrast, while a synchronous policy, where all nodes
activate in tandem (akin to co-scheduling), may exhibit
slightly lower latencies at high power levels (especially
for read requests issued during an active interval that
span multiple blocks stored on multiple nodes), it per-
forms much worse at moderate-to-low power since it
does not take advantage of replication to reduce latency.

Formally, for available power pavailable, total power
ptotal necessary to activate all nodes, total power pinactive

required to keep all nodes in the inactive state, blink
interval duration t, and N nodes, the duration of each
node’s active interval is tactive = t ∗ pavailable−pinactive

ptotal−pinactive
,

and the blink start time (within each interval) for the ith
node (where i=0 . . . N − 1) is bstart=(t− tactive) ∗ i

N−1 .
As we discuss next, combining staggered blinking with
a data layout that carefully spreads replicas across nodes
maximizes the time that at least one replica of a block is
stored on an active node each blink interval. Importantly,
the approach maximizes this time at all power levels.

Power-balanced Data Layout. A power-balanced data
layout spreads replicas for each block across nodes, such
that any set of nodes storing the block’s replicas have
minimum overlapping active intervals using the stag-
gered blinking policy above. To place replicas in such
a layout, we order all N nodes in a circular chain from
0 . . . N − 1 and choose a random node to store the first
replica of each block. We then place the second replica
on the node opposite the first replica in the circle, the
third replica on one of the nodes half-way between the
first and second replicas, the fourth replica on the other
node between the first and second replicas, etc. Sim-
ilarly, to delete replicas, we reverse the process. Fig-
ure 5(b) depicts an example of the layout for the three

replicas using staggered blinking from Figure 5(a).
The layout policy above is optimal, i.e., maximizes

the time each block is available on an active node each
blink interval, if the number of replicas is a power of
two. Maintaining an optimal placement for any number
of replicas requires migrating all replicas each time we
add or remove a single one. The layout performs well
as the number of replicas for each block vary, and does
not require expensive migrations each time the number
of replicas for a block changes. Note that for blocks with
highly stable access patterns, where the number of repli-
cas rarely changes, we evenly distribute replicas around
the chain. Our layout is more resilient to failures than
concentrated data layouts, since it spreads blocks and
replicas evenly across nodes, rather than concentrating
data on small subsets of nodes.
Popularity-aware Replication and Reclamation.
Replication in DFSs is common to tolerate node failures
and improve read throughput. Likewise, migrating popu-
lar replicas to active nodes is common in energy-efficient
DFSs [13, 18, 22, 23]. BlinkFS also uses replication
to mitigate its latency penalty as power varies. Addi-
tionally, BlinkFS employs popularity-aware replication
and reclamation to further reduce access latency for
popular blocks. Note that our replication strategy is
independent of the power level, since replicating at low
power levels may be infeasible. In this case, a modest
amount of battery-based storage may be necessary to
spawn the appropriate replicas to satisfy performance
demands [10]. By default, BlinkFS maintains three
replicas per block, and uses any remaining capacity to
potentially store additional latency-improving replicas.

As clients create new files or blocks become less pop-
ular, BlinkFS lazily reclaims replicas as needed. Using
staggered blinking and a power-balanced data layout, the
number of replicas r required to ensure a block is avail-
able 100% of each blink interval, based on the total nodes
N , blink interval t, available power p, and active node
power consumption pnode, is r = d N

b (N−1)p
N∗pnode−p c

e. At low

enough power levels, i.e., where 1 > p
pnode

, there are

FUSE Functions
getattr(path, struct stat ∗)
mkdir(path, mode)
rmdir(path)
rename(path, newpath)
chmod(path, mode)
chown(path, uid, gid)
truncate(path, offset)
open(path, struct fuse file info ∗)
read(path,buff,size,offset,fusefileinfo∗)
write(path,buff,size,offset,fusefileinfo∗)
release(path,fuse file info∗)
create(path,mode,fuse file info∗)
fgetattr(path, stat∗,fuse file info∗)
BlinkFS-specific Functions
getBlinkState(int nodeid)
getBlockInfo(int blockid)
getFileInfo(path)
getServerLoadStats(int nodeId)

Table 1: API for BlinkFS, including POSIX file system
calls and BlinkFS-specific calls.

periods within each blink interval where no nodes are
active. In this case, the minimum possible fraction of
each blink interval the block is unavailable is 1 − p

pnode
,

assuming it is replicated across all nodes.
The master uses the relationships above to compute a

block’s access latency, given its replication factor and the
current power level, assuming requests are uniformly dis-
tributed over each blink interval. There are many policies
for spawning new replicas to satisfy application-specific
latency requirements. In our prototype, the master tracks
block popularity as an exponentially weighted moving
average of a block’s I/O (read) accesses, and replicates
blocks every period in proportion to their relative popu-
larity, such that all replicas consumes a pre-set fraction
of the unused capacity. For frequently updated blocks,
BlinkFS caps the replication factor at three, since exces-
sive replicas increase write overhead.

5 Implementation
We implement a BlinkFS prototype in C, includ-
ing a master (∼3000LOC), proxy (∼1000LOC), client
(∼1200LOC), power manager (∼100LOC), power client
(∼50LOC), and block server (∼900LOC). The client
uses the FUSE (Filesystem in Userspace) library in
Linux to transfer file system-related system calls from
kernel space to user space. Thus, BlinkFS clients ex-
pose the POSIX file system API to applications. BlinkFS
also extends the API with a few blink-specific calls, as
shown in Table 1. These system calls enable applica-
tions to inspect information about node blinking patterns
to improve their data access patterns, job scheduling al-
gorithms, etc., if necessary. All other BlinkFS compo-
nents run in user space. While the master, proxy, and
power manager are functionally separate and communi-
cate via event-based APIs (using libevent), our prototype
executes them on the same node. To experiment with a
wide range of unmodified applications, we chose to im-

plement our prototype in FUSE, rather than extend an
existing file system implementation, such as HDFS.

Our prototype includes a full implementation of
BlinkFS, including the staggered blinking policy, power-
balanced data layout, and popularity-aware replication.
Our current implementation redirects all writes through
the proxy to maintain consistency for concurrent writes,
but permits clients to issue reads directly to block servers
if both are concurrently active. Since our prototype has
a modular implementation, we are able to insert other
blinking policies and data layouts. We implement the
migration-based approach and Rabbit from §2, which
both use an activation policy, to compare with BlinkFS.
We also implement a load-proportional blinking policy,
which we used with memcached in prior work [19], that
blinks nodes in proportion to the popularity of the blocks
they store. The policy is useful for access patterns with
skewed popularity distributions, e.g., Zipf, but does not
require migrations (as in PDC [18]).
Hardware Prototype. We construct a small-scale hard-
ware prototype that uses intermittent power to experi-
ment with BlinkFS in a realistic setting. We extend our
prototype from prior work with more powerful desktop-
class nodes [19]. We use a small cluster of ten Mac mi-
nis running Linux kernel 2.6.38 with 2.4Ghz Intel Core 2
Duo processors and 2GB of RAM connected together us-
ing an energy-efficient switch (Netgear GS116) that con-
sumes 15W. Each Mac mini uses a flash-based SSD with
a 40GB capacity. We also use a separate server to experi-
ment with external always-on clients, not co-located with
block servers. To minimize S3 transition times, we boot
each Mac mini in text mode, and unload all unnecessary
drivers. With the optimizations, the time to transition to
and from ACPI’s S3 state on the Mac mini is one sec-
ond. Note that much faster sleep transition times, as low
as a few milliseconds, are possible [19]. Unfortunately,
manufacturers do not optimize sleep transition time in
today’s desktop and server-class nodes. Faster transition
times would improve performance, especially worst-case
latency, by reducing the blink interval’s length.

We select a blink interval of one minute, resulting in
a transition overhead of 1

60=1.67% every blink interval.
We measure the power of the Mac mini in S3 to be 1W
and the power in S0 to be 25W. Thus, in S3, nodes oper-
ate at 4% peak power. Since BlinkFS requires at least one
node (to host the master, proxy, and power manager) and
the switch to be active, its minimum power consump-
tion is 40W, or 15% of its maximum power consump-
tion. The remaining nine nodes each run a power client,
block server, and BlinkFS client. We power the cluster
from a battery that connects to four ExTech 382280 pro-
grammable power supplies, each capable of producing
80W, that replay the variable power traces below. Our
experiments use the battery as only a short-term buffer of

 0

 20

 40

 60

 80

 100

4KB 32KB 128KB 4MB 16MB

Th
ro

ug
hp

ut
 (M

B
ps

)

Block size

Write (via proxy)
Read (via proxy)

Read (direct)

Figure 6: Maximum sequential read/write throughput for
different block sizes with and without the proxy.

5 minutes; optimizations that utilize substantial battery-
based storage are outside the scope of this paper.
Power Signals. We program our power supplies to re-
play DC current traces from a distributed generation de-
ployment, including both solar panels and wind turbines,
and a signal based on wholesale electricity prices. In
our benchmarks, we also experiment with both different
steady power and power oscillation levels as a percent-
age, where 0% oscillation holds power steady throughout
the experiment and N% oscillation varies power between
(45 + 0.45N)% and (45− 0.45N)% every 5 minutes.

For our renewable trace, we combine traces from our
solar/wind deployment, and set a minimum power level
equal to the power necessary to operate BlinkFS’s switch
and master node (40W). We compress our renewable
power signal to execute three days in three hours, and
scale the average power to 50% of the cluster’s maxi-
mum power. Note that the 24X compressed power signal
is not unfair to the migration-based approach, since our
data sets are relatively small (less than 20GB). We would
expect large clusters to store more than 24X this much
data, increasing the relative transfer time for migration.
BlinkFS’s performance is by design not dependent on the
data set size. For our price trace, we use the New Eng-
land ISO 5-minute spot price of energy for the 3-hour
period from 7am to 10am on September 22, 2011, as-
suming a fixed monetary budget of 1¢/kWh; ISO’s reg-
ulate wholesale electricity markets in the U.S. The av-
erage price in the trace is 4.5¢/kWh, the peak price is
5.2¢/kWh, and the minimum price is 3.5¢/kWh.

6 Evaluation
We evaluate BlinkFS using the hardware prototype
and power signals described in §5 with three differ-
ent applications: a MapReduce-style application [6] (a
throughput-sensitive batch system), unmodified Mem-
cacheDB [2] (a latency-sensitive key-value store), and
file system traces from a search engine. Since our imple-
mentation uses FUSE, applications run as normal pro-
cesses with access to the BlinkFS mount point. Before
describing each case study, we benchmark BlinkFS’s
overheads as a baseline for understanding its perfor-

Latency (ms) Power (%)
⇓ 20 40 60 80 100

Replication factor = 1

Std Dev W 1619 1069 1014 9 7
R 15524 12701 1692 725 9

90thper
W 60 60 61 62 65
R 46058 33636 64 64 63

Replication factor = 3

Std Dev W 6017 4475 2089 22 22
R 5476 322 309 9 7

90thper
W 79 103 131 145 147
R 13065 64 63 63 63

Replication factor = 6

Std Dev W 8883 5743 2467 703 372
R 523 7 7 7 7

90thper
W 127 183 257 258 263
R 63 63 63 63 63

Table 2: Standard deviation and 90th percentile latency
at different power levels and block replication factors.

mance at different steady and oscillating power levels.

6.1 Benchmarks
To benchmark BlinkFS, we wrote a single-threaded ap-
plication that issues blocking read/write requests to the
client’s interface, rather than through FUSE, to exam-
ine performance independent of FUSE overheads. One
limitation of FUSE is that the maximum size of write
and read requests are 4KB and 128KB, respectively, ir-
respective of BlinkFS’s block size. BlinkFS has a con-
figurable block size, since we intend it for multiple types
of applications. Our benchmarks examine performance
using multiple block sizes. The breakdown of the la-
tency overhead at each component for a sample 128KB
read is 2.5ms at the proxy, 0.57ms at the block server,
2.7ms at the client, and 0.33ms within FUSE for a total of
6.1ms. The results demonstrate that BlinkFS’s overheads
are modest. We also benchmark BlinkFS’s maximum se-
quential read and write throughput at full power for a
range of block sizes. Figure 6 shows that, as expected,
read and write throughput increase with increasing block
size. However, once block size exceeds 4MB through-
put improvements diminish, indicating that I/O transfer
overheads begin to dominate processing overheads.

Read and write throughput via the proxy differ be-
cause clients off-load writes to proxies, which return be-
fore applying the writes to block servers. We also bench-
mark the throughput for reads sent directly to the proxy,
which shows how much the proxy decreases maximum
throughput (∼40% for large block sizes). The overhead
motivates our client optimization that issues reads di-
rectly to the block server, assuming both are concurrently
active. The throughput of writes sent directly to block
servers is similar to that of reads. We ran a similar ex-
periment using 4MB blocks that scales the number of
block servers, such that each block server continuously
receives a stream of random I/O requests from multiple
clients (using a block size of 4MB). In this case, write
throughput reaches its maximum (75MBps) when using

 0

 2000

 4000

 6000

 8000

 0 20 40 60 80 100

La
te

nc
y

(m
se

c)

% of Total power

1-replica
3-replicas
6-replicas

 0

 400

 800

 1200

 1600

 2000

 0 20 40 60 80 100

La
te

nc
y

(m
se

c)

% of Total power

1-replica
3-replicas
6-replicas

(a) Reads (b) Writes

Figure 7: Read and write latency in our BlinkFS prototype at different power levels and block replication factors.

three block servers, due to CPU overheads. The result
shows that in the worst case a proxy-to-block server ra-
tio larger than 1:3 does not improve write throughput.
As our case studies demonstrate, for realistic workloads,
each proxy is capable of supporting at least ten nodes.

We also benchmark the read and write latency for dif-
ferent block replication factors for a range of power lev-
els. Figure 7(a) shows that average read latency increases
rapidly when using one replica if available power drops
below 50%, increasing to more than 8 seconds. Addi-
tional replicas significantly reduce the latency using stag-
gered blinking: in our prototype, all blocks are always
available, i.e., stored on an active node, when using six
replicas at 20% power. Write latency exhibits worse per-
formance as we increase the number of replicas. In this
benchmark, where clients issue writes as fast as possible,
the proxy must apply writes to all replicas, since its log of
pending writes becomes full (Figure 7(b)). Since the in-
crease in the write latency is much less than the increase
in read latency, the trade-off is acceptable for workloads
that read data. Table 2 shows the standard deviation and
90th percentile latency for read and write requests as the
replication factor and power levels change.

Finally, we benchmark the overhead to migrate data as
power oscillates, to show that any approach that involves
significant data migration is not appropriate for signifi-
cant and frequent power variations. To demonstrate the
point, we implement a migration-based approach that
equally distributes data across the active nodes. As
power varies, the number of active nodes also varies,
forcing migrations to the new set of active nodes. We
oscillate available power every 5 minutes, as described
in §5. We wrote a simple application that issues random
(and blocking) read requests; note that the migration-
based approach does not respond to requests while it is
migrating data. Figure 8 shows that read throughput re-
mains nearly constant for BlinkFS at different oscillation
levels, whereas throughput decreases for the migration-
based approach as oscillations increase. Further, the size
of the data set significantly impacts the migration-based
approach. At high oscillation levels, migrations for a
20GB data set result in zero effective throughput. For

 0

 10

 20

 30

 40

Low(5%) Mid.(25%) High(50%)

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Oscillation from 45% of Full Power

BlinkFS
Migration (10 GB)
Migration (20 GB)

Figure 8: BlinkFS outperforms a migration-based ap-
proach as power oscillation levels increase.

smaller data sets, e.g., 10GB, the migration-based ap-
proach performs slightly better than BlinkFS at low os-
cillation levels, since the overhead to migrate the data is
less than the overheads associated with BlinkFS.

In large clusters, even small power variations trigger
substantial migrations. For instance, consider a 1000
node cluster, where each node stores 500GB. If available
power varies even 2% (near the average change in hourly
spot prices), the cluster must deactivate 20 nodes, neces-
sitating a 10 terabyte migration in the worst case. Mi-
grating this data over a ten gigabit link would take more
than two hours, and prevent the cluster from performing
useful work. We compare the migration-based approach
with BlinkFS for these small power variations.

6.2 Case Studies
We experiment with a MapReduce-style application,
MemcacheDB, and file system traces from a search en-
gine using the real-world renewable and price traces dis-
cussed in §5 for three different approaches: BlinkFS,
Rabbit, and Load-proportional. Since MapReduce is a
type of batch processing system, it is well-suited for
intermittent power if its jobs are tolerant to delays.
We also experiment with more interactive applications
(MemcacheDB and file system traces) to demonstrate
BlinkFS’s flexibility to handle challenging applications
in difficult circumstances, e.g., extended low power pe-
riods from blackouts. To fairly compare with Rabbit, we
use an equal-work layout where the first two nodes store
primary replicas, the next five nodes store secondary
replicas, and the last two nodes store tertiary replicas.

 0

 3000

 6000

 9000

20 50 80

Ti
m

e
(s

ec
s)

% of Total power

BlinkFS
Rabbit

Load proportional

 0

 100

 200

 300

 400

 500

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

P
ow

er
 (w

at
ts

)

Time (minutes)

Power
BlinkFS

Load Proportional
Rabbit

(a) Steady Power (b) Solar/Wind Power Signal

Figure 9: MapReduce completion time at steady power levels and using our combined wind/solar power trace.

 0

 500

 1000

 1500

 2000

20 50 80

La
te

nc
y

(m
se

c)

% of Total power

BlinkFS
Rabbit

Load proportional

 0

 1000

 2000

 3000

 4000

 5000

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

La
te

nc
y

(m
se

c)

P
ow

er
 (w

at
ts

)

Time (minutes)

Power
BlinkFS

Load Proportional
Rabbit

(a) Steady Power (b) Solar/Wind Power Signal

Figure 10: MemcacheDB average latency at steady power levels and using our combined wind/solar power signal.

Note that, while Rabbit performs better than BlinkFS
in some instances, it relies on severe capacity limita-
tions, as described in §2, to eliminate migrations. For
BlinkFS’s power-balanced data layout, we use 2/9ths of
the capacity to store one replica of each block, and the
rest to store additional replicas. We set the default num-
ber of replicas to be three, with a maximum replication
factor of six for our popularity-aware replication policy.
For the load-proportional policy, we arrange blocks on
nodes a priori based on popularity (from an initial run of
the application) to eliminate data migrations, which pro-
vides an upper bound on load-proportional performance.
Since MapReduce co-locates computation and data, the
nodes execute both a client and a block server. For the
other applications, we use an external, e.g., always-on,
client. Finally, we use a block size of 4 MB.
MapReduce. For MapReduce, we create a data set based
on the top 100 e-books over the last 30 days from Project
Gutenberg (http://www.gutenberg.org/). We randomly
merge these books to create 27 files between 100 and
200MB, and store them in our file system. We then
write a small MapReduce scheduler in Python, based on
BashReduce, that partitions the files into groups for each
job, and sends each group to a MapReduce worker node,
co-located on each block server. We execute the simple
WordCount MapReduce application, which reads files on
each node, counts the words in those files, and sends the
results back to the scheduler. The scheduler then exe-
cutes a final reduce step to output a file containing all
distinct words and their frequency in the data set.

We experiment with MapReduce using both constant
and intermittent power. At constant power levels, Fig-
ure 9(a) shows that the completion time is nearly equal
for all three policies at high power, but BlinkFS outper-
forms the others at both medium and low power levels.
For instance, at 50% power BlinkFS improves comple-
tion time by 42% compared with Rabbit and 65% com-
pared with load-proportional. Note that at low power
(20%), MapReduce stalls indefinitely using Rabbit, since
it requires at least two active nodes to ensure all data
is accessible. Both Rabbit and Load-proportional also
impact MapReduce computations by deactivating or re-
ducing, respectively, the active time of cluster nodes as
power decreases. BlinkFS does not affect the scheduling
or placement policy as power varies.

For variable power, we execute a stream of smaller
jobs, which process data sets that only consist of 27 e-
books, to track the number of jobs we complete every
five minutes. For this experiment, Figure 9(b) shows
that BlinkFS outperforms Load-proportional at all power
levels, since it does not skew the active periods of each
node. While Rabbit performs better at high power levels,
it stalls indefinitely whenever power is unable to keep all
data accessible, i.e., two active nodes.
MemcacheDB Key-Value Store. MemcacheDB is a
persistent version of memcached, a widely-used dis-
tributed key-value store. MemcacheDB uses Berke-
leyDB as its backend. We installed MemcacheDB on
our external node, and configured it to use BlinkFS to
store its BerkeleyDB. To avoid any BerkeleyDB caching

effects, we configure MemcacheDB to use only 128 MB
of RAM and set all caching-related configuration options
to their minimum possible value. We then populated
the DB with 10,000 100KB objects, and wrote a Mem-
cacheDB workload generator to issue key requests at a
steady rate according to a Zipf distribution.

Our results show that both BlinkFS and Rabbit per-
form equally well at high and medium constant power
levels (Figure 10(a)), while the load-proportional ap-
proach performs slightly worse. Load-proportional does
not benefit from replication, since replicas of popu-
lar blocks are inevitably stored on unpopular nodes.
As a result, BlinkFS significantly outperforms Load-
proportional at low power levels. As with MapReduce,
Rabbit has infinite latency at low power, since its data
is inaccessible. Next, we run the same experiment us-
ing our wind/solar power signal and observe the average
request latency over each 5-minutes interval. As shown
in Figure 10(b), BlinkFS performs better than the load-
proportional policy at nearly all power levels. The la-
tency for BlinkFS scales up and down gracefully with
the power signal. As in the MapReduce example, Rabbit
performs better, except when the available power is not
sufficient to keep the primary servers active.

Search Engine. We emulate a search engine by re-
playing file system traces, and measuring the number
of queries serviced each minute. The trace is available
at http://www.storageperformance.org/specs/. To emu-
late the trace, we created a large 30GB file divided into
491, 520 blocks of size 64KB. To replay the trace, we im-
plement a simulator in Python to issue its I/O requests.
We run the experiment with the variable price power
signal described in the previous section. As Figure 11
shows, BlinkFS outperforms the load-proportional pol-
icy at all power levels. As expected, the migration-
based approach performs slightly better than BlinkFS
at steady power levels, but much worse for even slight
(∼10%) fluctuations in the available power. Since the
available power is always more than the power required
to run two nodes, Rabbit (not shown), outperforms (57
queries/minute) the others, since it stores primary repli-
cas on these two nodes. Even for such a small dataset and
power fluctuations, BlinkFS satisfies 12% and 55% more
requests within a 3-hour period than the migration-based
and Load-proportional approaches, respectively.

7 Conclusion

We optimize BlinkFS for intermittent power, resulting
from cost optimizations in market-based pricing, inter-
mittent renewables, or blackout/brownout scenarios. We
envision rising energy prices incentivizing data centers
to design systems optimized for intermittent power.

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150 180
 0

 50

 100

 150

 200

 250

 300

Q
ue

rie
s/

m
in

ut
e

P
ow

er
 (w

at
ts

)

Time (minutes)

Power
BlinkFS

Migration
Load Proportional

Figure 11: Search engine query rate with price signal
from 5-minute spot price in New England market.

References
[1] Dynamic Pricing and Smart Grid, 2011.
[2] MemcacheDB, 2011.
[3] P. Gupta. Google to use Wind Energy to Power Data Centers. In

New York Times, July 20th 2010.
[4] J. Hamilton. Overall Data Center Costs. In Perspectives.

http://perspectives.mvdirona.com/, September 18, 2010.
[5] S. Rivoire and M. Shah and and P. Ranganathan. JouleSort: A

Balanced Energy-Efficient Benchmark. In SIGMOD, June 2007.
[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-

ing on Large Clusters. In OSDI, December 2004.
[7] Dushyanth Narayanan and Austin Donnelly and Antony Row-

stron. Write Off-Loading: Practical Power Management for En-
terprise Storage. In FAST, February 2008.

[8] H. Amur and J. Cipar and V. Gupta and M. Kozuch and G. Ganger
and K. Schwan. Robust and Flexible Power-Proportional Storage.
In SoCC, June 2010.

[9] S. Akoush and R. Sohan and A. Rice and A. Moore and A. Hop-
per. Free Lunch: Exploiting Renewable Energy for Computing.
In HotOS, May 2011.

[10] R. Urgaonkar and B. Urgaonkar and M. Neely and A. Sivasubra-
maniam. Optimal Power Cost Management Using Stored Energy
in Data Centers. In SIGMETRICS, March 2011.

[11] S. Ghemawat and H. Gobioff and S. Leung. The Google File
System. In SOSP, October 2003.

[12] L. Barroso and U. Hölzle. The Case for Energy-Proportional
Computing. Computer, 40(12), December 2007.

[13] R. Kaushik and M. Bhandarkar. GreenHDFS: Towards an
Energy-Conserving Storage-Efficient, Hybrid Hadoop Compute
Cluster. In USENIX, June 2010.

[14] Jonathan Koomey. Growth in Data Center Electricity Use 2005
to 2010. In Analytics Press, Oakland, California, August 2011.

[15] Lawrence Livermore National Laboratory. U.S. Energy
Flowchart 2008, June 2011.

[16] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of
Hadoop Clusters. In HotPower, October 2009.

[17] R. Miller. Microsoft to use Solar Panels in New Data Center. In
Data Center Knowledge, September 24th 2008.

[18] E. Pinheiro and R. Bianchini. Energy Conservation Techniques
for Disk Array-based Servers. In SC, July 2004.

[19] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing
Server Clusters on Intermittent Power. In ASPLOS, March 2011.

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In MSST, May 2010.

[21] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin,
and I. Moraru. Energy-efficient Cluster Computing with FAWN:
Workloads and Implications. In e-Energy, April 2010.

[22] Akshat Verma, Ricardo Koller, Luis Useche, and Raju Ran-
gaswami. SRCMap: Energy Proportional Storage Using Dy-
namic Consolidation. In FAST, February 2010.

[23] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: Helping Disk Arrays Sleep Through the Winter. In
SOSP, October 2005.

http://www.cntenergy.org/pricing/
http://www.cntenergy.org/pricing/
http://www.memcachedb.org/
http://www.memcachedb.org/
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1247522
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1251264
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1364830
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1807164
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1991619
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=1993766
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://dl.acm.org/citation.cfm?id=945450
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4404806
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
http://dl.acm.org/citation.cfm?id=1924927
https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1740405
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1006220
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1950389
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1914427
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1791347
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1855531
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828
http://dl.acm.org/citation.cfm?id=1095828

	Introduction
	Background
	Energy-Proportional DFSs
	Migration-based Approach
	Equal-Work Approach

	The Blinking Abstraction
	Advantages for DFSs
	Reliability Concerns

	BlinkFS Design
	Reading and Writing Files
	Reducing the Latency Penalty

	Implementation
	Evaluation
	Benchmarks
	Case Studies

	Conclusion

