
Characterizing Continuous Time Random Walks

on Time Varying Graphs

D. Figueiredo1, P. Nain2, B. Ribeiro3, E. de Souza e Silva1 and D. Towsley3

1 Systems Engineering Department 2 INRIA 3 Department of Computer Science

COPPE B.P. 93 University of Massachusetts Amherst

Federal University of Rio de Janeiro 06902 Sophia Antipolis 140 Governors Drive

Rio de Janeiro, Brazil France Amherst, MA 01003

{daniel,edmundo}@land.ufrj.br philippe.nain@inria.fr {ribeiro,towsley}@cs.umass.edu

Technical Report UM-CS-2012-011v2

Abstract

In this paper we study the behavior of a continuous time random walk (CTRW) on a stationary

and ergodic time varying dynamic graph. We establish conditions under which the CTRW is a

stationary and ergodic process. In general, the stationary distribution of the walker depends on the

walker rate and is difficult to characterize. However, we characterize the stationary distribution in

the following cases: i) the walker rate is significantly larger or smaller than the rate in which the

graph changes (time-scale separation), ii) the walker rate is proportional to the degree of the node

that it resides on (coupled dynamics), and iii) the degrees of node belonging to the same connected

component are identical (structural constraints). We provide examples that illustrate our theoretical

findings.
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1 Introduction

During the last decade, there has been a wide interest in characterizing and modeling the structure of

various networks, from neural networks, to the web, to Facebook friends. Real networks are inherently

dynamic in the sense that both nodes and edges come and go over some time-scale. However, most efforts

consider the network as either a single static graph or as a pre-defined sequence of graph configurations.

Random walks are an important building blocks for characterizing networks. Their simple behavior on

static networks has been explored to devise algorithms for various purposes, from ranking to searching

(details in Section 5). However, very little is known about the long-term behavior of random walks on

dynamic networks.

In this paper, we study continuous time random walks (CTRWs) on stationary and ergodic dynamic

graphs. We make the following contributions towards this goal:

• We consider stationary and ergodic dynamic graphs where nodes are always present in the network

but edges are allowed to come and go over time, including the cases where the network consists

of several connected components. We introduce the notion of T-connectivity and show that if

the dynamic graph is stationary, ergodic and T-connected then the CTRW is also stationary and

ergodic. In the full generality of our framework, the stationary distribution of the walker depends

on the walker rate and is difficult to characterize. However,

• we characterize the stationary distribution of the random walk for several cases: (i) Time-scale

separation: the walker rate is significantly larger or smaller than the rate in which the graph

changes; (ii) Coupled dynamics: the walker rate is proportional to the degree of the node that it

resides on; (iii) Structural constraints: the degrees of nodes within any connected components

are identical (but can vary among different components).

• We evaluate numerically several examples to support our theoretical results and illustrate their

applicability. We also present a simple illustrative DTN application.

The remainder of this paper is organized as follows. Section 2 presents the proposed modeling framework

together with some definitions and properties. Section 3 presents the stationary distribution of CTRW

when the walker rate (for being too fast or too slow in respect to the speed the graph changes) allows

a time scale decomposition of the combined walker and graph processes; we also present conditions

under which the CTRW stationary distribution is invariant under time scale changes. Section 4 presents

the numerical examples and applications. In Section 5 we discuss the related work. Finally, Section 6

concludes the paper.
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2 Model formulation

In this section we define important concepts that will be used throughout this paper. We define a dynamic

graph as a simple marked point process. A continuous time random walk (CTRW) over a dynamic graph

is also a marked point process. We define the concept of T-connectivity to express the ability of nodes

to be connected in time. We also define conditions for stationarity of the graph process and the CTRW

process. We start by defining the graph dynamics.

Definition 2.1 (Dynamic Graph) The time evolution of the graph under consideration is given by

the (possibly simultaneous) addition and deletion of edges. Let V denote a finite set of n nodes and

let A denote a finite set of m adjacency matrices A = {Ak}mk=1, where Ak is an n × n unweighted

symmetric adjacency matrix. A dynamic graph is a simple Random Marked Point Process (RMPP)

Ψ = {(Xi, Si)}i∈Z, where Z is the set of all integers, Xi ∈ A denotes the i-th graph configuration and Si

is the time that the network spends in that configuration.

Because Ψ is simple, P (Si = 0) = 0 for all i. Moreover, we assume 0 < E[Si] < ∞, i ∈ Z. We use

Gk to denote the graph configuration that has adjacency matrix Ak, k = 1, . . . ,m. Throughout this

work we use Ak and Gk interchangeably. To simplify our analysis we focus on unweighted adjacency

matrices. However, edge weights can be easily accounted for in the walker rates and thus our results are

also applicable to weighted dynamic graphs. We define the process {A(t)}t∈R, as

A(t) =
∑
i∈Z

Xi1{Ti≤t<Ti+1} , (1)

where by convention · · · < T−1 < T0 ≤ 0 < T1 < · · · are the successive times at which the graph switches

to another configuration with Si := Ti+1−Ti, i ∈ Z, i.e., A(t) denotes the adjacency matrix of the graph

at time t; A(t) is right-continuous.

Assumption 2.1 The graph process Ψ is stationary and ergodic.

Throughout this paper we assume that Assumption 2.1 holds. The following proposition shows that the

ergodicity and stationarity of Ψ = {Xi, Si}i∈Z implies {A(t)}t∈R is also stationary and ergodic.

Proposition 2.1 Under Assumption 2.1, {A(t)}t∈R is stationary and ergodic.

A proof of Proposition 2.1 is provided in Appendix A. In what follows we provide a result that will be

useful in our proofs:
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Theorem 2.1 Under Assumption 2.1,

lim
t→∞

1

t

∫ t

0

1{A(x)=Ak}dx = σk , P-a.s., (2)

where σk > 0.

Proof. The proof of Theorem 2.1 follows directly from Proposition 2.1 and Birkhoff’s ergodic theorem

(Shiryaev [19, pg. 409, Theorem 1]). �

We refer to σ = (σ1, . . . , σm) as the stationary distribution of {A(t)}t≥0. We note in passing that a direct

consequence of Theorem 2.1 is that limt→∞
1
t

∫ t
0

1{A(x)=Ak}dx = E[1{Xi=Ak}Si]/E[Si] = σk, for all i, k.

Another important property of a stationary and ergodic Ψ that we use throughout this work is the

uniform convergence of the time average regardless of the initial conditions.

Proposition 2.2 (Uniform mixing) Under Assumption 2.1,

lim
t→∞

1

t

∫ t

0

P (A(x) = Ak|B)dx = σk , k = 1, . . . ,m , (3)

for any Borel set B such that P (B) > 0. Furthermore, the convergence is uniform with respect to any B.

Proof. A short proof is presented. An extended proof can be found at Appendix B. Stationarity

and ergodicity imply (2). Integrating both sides of (2) w.r.t. dP (ω) for ω ∈ B and using the bounded

convergence theorem, Fubini’s theorem and Egorov’s theorem [10, pg. 43, Theorem 2] gives (3) uniformly

in B for any Borel set B such that P (B) > 0. �

It is possible for one or more graph configurations to consist of two or more disconnected components,

in which case we have to be concerned about whether a walker can move from any node to any other

node over time. In what follows we introduce the concept of connectivity over time between two nodes

(denoted as T-connectivity).

Definition 2.2 (T-connectivity) Two nodes u and v are said to be T-connected in Ψ, if they are

connected in the graph induced by adjacency matrix A = ∨kAk, where ∨ is the binary OR operator.

An alternative equivalent definition of T-connectivity uses A =
∑m
k=1Ak in place of A = ∨kAk. T-

connectivity can also be stated as a graph property.

Definition 2.3 (T-connected graph) A dynamic graph is said to be T-connected if all pairs of nodes

are T-connected.
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We now define a Continuous Time Random Walk (CTRW) over the dynamic graph, starting at time

t = 0.

Definition 2.4 (CTRW) A continuous time random walk (CTRW) on a dynamic graph {A(t)}t∈R
associated with RMPP Ψ, is a process {(A(t), U(t))}t≥0, where U(t) ∈ V is the position (node) of the

walker at time t. The times between CTRW steps are independent and exponentially distributed. The

rate at which the walker makes a step at node U(t) = v when A(t) = Ak is γk,v. At the time the walker

leaves v, it chooses one of its currently connected neighbors in Ak (if any) uniformly at random. When

v has no neighbors in Ak the walker stays at v until the next step event.

Let Γ = {γk,v} denote the set of walker rates associated with {A(t)}t≥0. We will find it useful to express

γk,v as γk,v = βk,vγ, k = 1, . . . ,m and v ∈ V . Walker rates of interest to us include βk,v = 1 (denoted

CTRW with constant walker rate) and βk,v = dk,v, where dk,v is the degree of v given adjacency matrix

Ak (denoted CTRW with degree dependent walker rate).

The above framework is general enough to describe several more particular dynamic graph models, such

as renewal processes and Markovian processes. In a Markovian process Si is exponentially distributed

and P [Xi = xi|Xi−1 = xi−1, Xi−2 = xi−2, . . . ] = P [Xi = xi|Xi−1 = xi−1], xi ∈ V , i = 0, 1, . . . .

Notation Summary

Ψ = {(Xi, Si)}i∈Z dynamic graph process (in events)

{A(t)}t∈R dynamic graph process (in time)

{(A(t), U(t))}t≥0 CTRW process

σ = (σ1, . . . , σm) stationary distribution of {A(t)}t≥0

γk,v = βk,vγ walker rate of the CTRW at node

v at configuration Ak

3 Characterizing RWs: Stationary Behavior

In this section we focus on the stationary behavior of a RW on a dynamic graph, in particular the steady

state fraction of time the walker spends in each node of the network: π = (π1, . . . , πn).

The steady state distribution π is trivial if the graph is static and T-connected, i.e., A(t) = A′, ∀t ≥ 0,

where A′ is a symmetric (0, 1)-adjacency matrix of a connected graph. The stationary distribution is

unique and given by

πv =
dv/γv∑
w dw/γw

, v ∈ V,
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where dv denotes the degree of node v and γv is the walker rate at node v. Characterization on a dynamic

graph is much more challenging. How can we characterize π on dynamic graphs? When does π converge

for dynamic graphs? When can we give an expression for π? We focus on three cases where we are able

to characterize this behavior.

We begin our study of the stationary behavior of the process {U(t)} with the following.

Theorem 3.1 If the RMPP Ψ is T-connected, stationary, and ergodic, then the process {(A(t), U(t))}t≥0

is stationary, and the stationary distribution is unique.

Proof. We create a new marked point process, {(X ′i, S′i)}∞0 that is a superposition of the graph process

{(Xj , Sj)}∞0 and a Poisson process having rate γmax = maxr∈Γ r (recall that Γ is the set of walker

rates). To simplify our proof we shall assume P [T0 = 0] = 1, where T0 is as defined in (1), although

the proof is valid for any T0 ≤ 0. We associate the mark “0” with each point of the Poisson process,

Hence X ′i ∈ {0} ∪ {A1, . . . , Am}. As both the graph and Poisson processes are event stationary, the new

merged process is also event stationary [5, Section 1.3.5]. Let t′0 < t′1 < · · · < t′i ≤ · · · denote the times

associated with this new process, {(X ′i, S′i)}∞0 . Consider the process {(A′i, Ui)}∞0 where Ui denotes the

walker position at time t′i and A′i denotes the adjacency matrix during the period [t′i, t
′
i+1). Note that

(A′i, Ui) ∈ A × V takes values from a finite set. {(A′i, Ui)} is described by a stochastic recursion of the

form (A′i, Ui) = φ(Ui−1, X
′
i, Ri) where

A′i = φa(U ′i−1, X
′
i, Ri) = 1{X ′i = 0}A′i−1 + 1{X ′i 6= 0}X ′i,

Ui = φb(U
′
i−1, X

′
i, Ri),

for all i = 0, . . .. Here X ′i, S
′
i are as previously defined and {Ri} is an iid sequence of uniformly distributed

rvs in [0, 1] independent of {(X ′i, S′i)}. These auxiliary rvs are used to choose the neighbor to which the

walker goes or to remain stationed at its current node. Note that {(X ′i, S′i, Ri)} is stationary. φb is defined

so that when X ′i 6= 0, the walker does not move (Ui = Ui−1) but the graph changes to configuration X ′i.

If X ′i = 0, the walker moves from Ui with probability γX′i,Ui/γmax, moving to one of its neighbors (in

configuration A′i−1) chosen uniformly at random (using Ri).

Theorem 1 in [12] states that if there exists a random subset, B ⊆ A × V such that a sample path

monotonicity condition ((5) in [12]) holds and the existence of a finite non-empty sample path absorbing

set ((9) in [12]) exists, then it is possible to construct process {X ′i, S′i, A′i, Ui} that is event stationary as

is {Ui}. In our case, because our state space is finite, these conditions trivially hold by taking B = A×V .

Since {X ′i, S′i, A′i, Ui} is event stationary, {A′(t), U(t)} is also stationary. It follows from our construction

that {A(t)} = {A′(t)}; hence {A(t), U(t)} is also stationary.

We now address the question of uniqueness through a coupling argument. Consider two random walks

{{U1(t)}t≥0 and {U2(t)}}t≥0 that differ in their starting locations at time t = 0, U1(0) = u1 and U2(0) =
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u2. We are interested in establishing that the time, T at which they meet, is finite a.s.. After time T

the processes couple, i.e., for t > T , U1(t) = U2(t). This is possible because the times between steps

are exponentially distributed random variables. Thus, when T is finite, the above coupling argument

implies that {U1(t)} and {U2(t)}, which we have shown to be time asymptotic stationary, have the same

stationary distribution.

It is left to show is that T is finite. We sketch the argument here and relegate the details to Appendix C.

The basic idea is to identify intervals of time of length T ′ <∞ starting at times iT ′ ≥ 0, i = 0, 1, . . ., and

based on the ergodicity and time stationarity of the graph process to establish a lower bound, p0, on the

probability of two walkers coupling during interval [iT ′, (i + 1)T ′]. The probability that the walkers do

not couple within the interval [0, jT0) is upper bounded by (1 − p0)j . Thus the walkers couple in finite

time a.s.. �

Note that if the graph process is not T-connected, then it is possible for the system to exhibit multiple

stationary regimes that depend on the initial position of the walker. Next we characterize π when there

is a time-scale separation of the walker and graph dynamics.

3.1 Stationary Behavior under Time-scale Separation

Consider a scenario where the walker is either much faster or much slower relative to the rate that the

graph changes configurations. In this case, we have a time-scale separation between the two processes

that allows us to characterize π.

3.1.1 The Fast Walker

Let us first assume that the walker rate is much larger than the rate at which the graph changes. For

a sufficiently large γ, the steady state probabilities of the random walk π is a linear combination of the

corresponding probabilities of the adjacency matrices A1, . . . , Am. Theorem 3.2 formalizes this argument

for the case that every adjacency matrix in A is connected. We will describe, under certain conditions,

how to relax this assumption later.

In preparation, let γk,v = βk,vγ and let π(k)(γ) = (π
(k)
1 (γ), . . . , π

(k)
n (γ)) denote the steady state distribu-

tion of a random walk on the undirected graph with adjacency matrix Ak as a function of γ > 0. It is

given by

π(k)
v (γ) ≡ π(k) =

dk,v/βk,v∑
j∈V dk,j/βk,j

, v ∈ V ; k = 1, . . . ,m. (4)

independent of γ. Let

π(k)(γ, t, w) = (π
(k)
1 (γ, t, w), . . . , π(k)

n (γ, t, w))
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denote the distribution of the CTRW on Ak at time t ≥ 0 starting from node w. Assume Ak is irreducible,

k = 1, . . . ,m, i.e., the graph with adjacency matrix Ak is connected. Because the random walk with

adjacency matrix Ak is described by a time-reversible Markov chain, π(k)(γ, t, w) can be expressed as

π(k)(γ, t, w) = π(k) +

n∑
j=2

c
(k)
j,we

λkjγt, w ∈ V, t > 0 , (5)

where 0 = λk1 > λk2 ≥ · · · ≥ λkm are the eigenvalues associated with Qk(γ)/γ where Qk(γ) is the

infinitesimal generator associated with the random walk with parameter γ on the graph with adjacency

matrix Ak, and {c(k)
j,w} are vectors related to the j-th eigenvector of the random walk and the initial

condition that the walker begins at node w.

Theorem 3.2 If the graph process Ψ is T-connected, stationary, ergodic, and the configurations are

always connected, then in the limit as γ →∞, the stationary distribution π of the random walk is given

by

π =

m∑
k=1

σkπ
(k). (6)

Proof. We show that the walker steady state distribution π(γ)→ π as γ →∞ where π is given in (6).

We focus on the i-th graph configuration, Xi, i ≥ 0. To simplify our proof we shall assume P [T0 = 0] = 1,

where T0 is as defined in (1). Let F
(k)
i (x) = P (Si ≤ x|Xi = Ak) and define η

(k)
i (γ) to be the stationary

distribution of the CTRW while the graph is in state Xi = Ak. Let Pi,w(γ) denote the initial walker

distribution when the process first enters graph configuration Xi. η
(k)
i (γ) is defined as

η
(k)
i (γ) =

∑
w∈V

Pi,w(γ)

∫ ∞
0

1

t

∫ t

0

π(k)(γ, x, w)dx dF
(k)
i

= π(k) +
∑
w∈V

Pi,w(γ)

∫ ∞
0

1

t

∫ t

0

n∑
j=2

c(k)
w eλkjγxdx dF

(k)
i ,

where the second equality follows from (5). We focus on the second term, henceforth denoted as Cγ ,

which we show goes to zero as γ →∞. We focus first on the singularity of the 1/t term due to the first

integral starting from zero,

|Cγ | < F
(k)
i (γ−1/4)e +

∑
w∈V

Pi,w(γ)

∫ ∞
γ−1/4

1

t

∫ t

0

n∑
j=2

|c(k)
w |eλkjγxdx dF

(k)
i ,

where |c| is the vector whose components are the absolute values of the components of c and e is a vector
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of all ones. Evaluating the second integral and recognizing that 1/t ≤ γ1/4 for t ≥ γ−1/4 yields

|Cγ | < F
(k)
i (γ−1/4)e + γ1/4

∑
w∈V

Pi,w(γ)

n∑
j=2

∫ ∞
γ−1/4

|c(k)
w |

λkjγ
(eλkjγt − 1)dF

(k)
i

≤ F
(k)
i (γ−1/4)e +

1

γ3/4

∑
w∈V

Pi,w(γ)

n∑
j=2

∫ ∞
γ−1/4

|c(k)
w |

(−λkj)
dF

(k)
i

≤ F
(k)
i (γ−1/4)e +

1

γ3/4

∑
w∈V

Pi,w(γ)

n∑
j=2

−|c
(k)
w |
λkj

(1− F (k)
i (γ−1/4)) .

Both terms go to zero as γ →∞. Consequently Cγ → 0 and

lim
γ→∞

η
(k)
i (γ) = π(k), ∀k

This holds for all i; therefore it holds when the graph is in steady state and removal of the conditioning

on the graph configuration yields (6). �

We now focus on the case where one or more of the graph configurations consists of disconnected com-

ponents. We relabel the nodes in each graph configuration in order to easily identify the disconnected

components. For each of the original m adjacency matrices, Ak, we rearrange the n nodes into subsets

of connected components. In other words, consider graph configuration Gk associated with adjacency

matrix Ak. Partition the set of nodes in Gk into ok sets, each containing only connected nodes. The ok

sets correspond to ok adjacency matrices, {Ak,1, . . . , Ak,ok} and graph configurations {Gk,1, . . . , Gk,ok}.
Let Vk,l denote the set of nodes in configuration Gk,l.

Let ψ(γ) = (ψ1,1(γ), . . . , ψm,om(γ)) denote the vector of stationary probabilities that the walker is in

the different components of all of the configurations when the rate parameter is γ. Because the CTRW

process is ergodic, this vector exists and is given by

ψk,l(γ) = lim
t→∞

1

t

∫ t

0

∑
v∈Vk,l

1{A(s)=Ak,U(s)=v}ds, ∀k, l .

Define

ψ = lim
γ→∞

ψ(γ) . (7)

We will describe conditions under which ψ can be computed later. In what follows we show that if ψ

exists then we obtain the stationary distribution π of the random walk in the limit as γ →∞.

Let π(k,l) be the steady state distribution of a random walk on the undirected graph with adjacency

matrix Ak,l. Similar to equation (4)1,

π(k,l)
v =

dk,v/βk,v∑
j∈Vk,l dk,j/βk,j

, v ∈ Vk,l,

1If the denominator is zero (i.e., there are isolated nodes) we simplify our notation assuming the ratio 0/0 = 1.
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and k = 1, . . . ,m, l = 1, . . . , ok.

We let π(k) be the concatenation of vectors π(k,l), that is, π(k) = (π(k,1)‖ . . . ‖π(k,ok)) and

π̂(k) = (ψk,1π
(k,1)‖ . . . ‖ψk,okπ(k,ok)).

Note that vectors π̂(k) for all 1 ≤ k ≤ m have the same cardinality.

We have the following result.

Theorem 3.3 If the graph process Ψ is T-connected, stationary, and ergodic, and ψ exists, then in the

limit as γ → ∞, the stationary distribution π of the random walk when graph configurations may be

disconnected is given by

π =

m∑
k=1

π̂(k). (8)

Proof. The proof is similar to that for the case where all graphs are connected. �

In general ψ is difficult to compute. The difficulty here lies in that the walker state at time t0 can now

depend on {A(t)}t00 , something that was not possible when all configurations were connected. However,

ψ is easily characterized when the underlying transitions between configurations are described by a

Markov chain and the times that the graph remain in a configuration correspond to mutually independent

sequences of iid random variables; one sequence for each configuration. Let P = [pij ] denote the m×m
transition probability matrix for the graph configurations at the time of transitions between graphs and,

with an abuse of notation, let {Sk,i}∞0 , k = 1, . . .m, denote the mutually independent iid sequences of

configuration holding times for the graph configurations.

We focus now on transitions that the walker makes between connected components in two different

graph configurations, say the j1-th connected component in configuration Gk1 and the j2-th connected

component in configuration Gk2 . We define a transition probability matrix P̂ = [p̂k1,j1;k2,j2 ] as follows

p̂k1,j1;k2,j2 = pk1,k2

∑
v∈Vk1,j1∩Vk2,j2

dk1,v/βk1,v∑
w∈Vk1,j1

dk1,w/βk1,w
. (9)

The first term accounts for transitions between graph configurations and the second term accounts for

the walker dynamics. Here P̂ can be thought of as the transition probability matrix for a discrete time

Markov chain that characterizes the subgraphs visited by a random walk at graph transitions in the limit

as γ → ∞. This chain is irreducible provided the graph is T-connected. Let ψ∗ = (ψ∗1,1, . . . , ψ
∗
m,lm

)

denote the stationary distribution of this MC. The earlier introduced probability distribution ψ can be

expressed in terms of ψ∗ as follows

ψk,l =
ψ∗k,lE[Sk]∑m

i=1

∑oi
j=1 ψ

∗
i,jE[Si]

, Ak ∈ A; l = 1, . . . , ok , (10)
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Note that the above characterization depends on the independence and identical distribution assumptions

of the configuration holding times. This, along with (8) fully characterizes the stationary distribution of

the walker in the fast walker regime for the Markovian environment.

3.1.2 The Slow Walker

In this section we consider the walker stationary distribution, π, at the other timescale decomposition,

namely where the graph dynamics speed up relative to the walker. Consider a walker with the set of walker

rates Γ

walking a dynamic graph Ψ. We consider the RMPP Ψ(a) = {(Xi, aSi)}i∈Z that is a speed up of

the RMPP Ψ by a factor of a, 0 < a < 1, and characterize the CTRW on Ψ(a) as a → 0. We denote

by A(a)(t) the state at time t of the dynamic graph corresponding to the RMMP Ψ(a). We do this in

two steps. We first consider an observer of Ψ(a), who makes observations according to a renewal process

with the property that it has a continuous non-increasing probability density function with finite mean.

We then determine conditions under which the observer is guaranteed to observe independent instances

of the graph with probability given by the stationary distribution of the graph. Finally, we consider a

Poisson observer and couple the walker with it in order to characterize the stationary distribution of the

walker.

We introduce a renewal process {Wj}∞1 where Wj denotes the time between the (j − 1)-th and j-th

observations with CDF G(x) (with PDF g(x)) satisfying the following assumption.

Assumption 3.1 The pdf g(x) := dP (Wi < x)/dx is differentiable with g′(x) = dg(x)/dx, non-

increasing, nonnegative, with (i) g(0) <∞, (ii)
∫∞

0
g(x)dx = 1 and (iii) E[Wj ] =

∫∞
0
xg(x)dx := D <∞.

As a consequence of the previous assumptions (iv)
∫∞

0
xg′(x)dx = −1 (Hint: use an integration by part

and note that limx→∞ xg(x) = 0 thanks to (iii)).

Assumption 3.1 holds if Wi is exponentially distributed with parameter γ < ∞. It also holds if Wi has

a Pareto distribution with Pareto index strictly larger than one. We will now observe the graph at the

renewal instants
∑j
k=1Wk, j ≥ 1.

We denote by A(a)(t) the state at time t ∈ R of the graph associated with the RMPP Ψ(a), namely,

A(a)(t) =

∞∑
i=−∞

Xi1(aTi ≤ t < aTi+1), (11)

so that A(a)(t) = A(t/a) for all t ∈ R, where Ti is as defined in (1). We denote by A
(a)
(j) = A(a)(W1 +

· · ·+Wj) the graph configuration of A(a)(t) at the j-th renewal instant (j ≥ 1).
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Lemma 3.1 Let Ψ(a) be the RMPP associated with the stationary and ergodic dynamic graph Ψ. If the

observation process satisfies Assumption 3.1, then for any i ≥ 1, k = 1, . . . ,m,

lim
a→0

P
(
A

(a)
(i+1) = Ak |A(a)

(j) = Alj , j = 1, . . . , i
)

= σk. (12)

Proof. Throughout i ≥ 1 is fixed and so are k, l1, . . . , li ∈ {1, . . . ,m}. Define the set Ii = {1, . . . , i}
and let ga(x) := ag(ax).

Conditioning on Wj = yj for j ∈ Ii and Wi+1 = x and using the independence assumption between the

process {A(t)} and the iid rvs (Wj)j with pdf g(·), gives

P
(
A

(a)
(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk

=

∫
[0,∞)i

∫ ∞
x=0

(P (A((xi + x)/a) = Ak |A(xj/a) = Alj , j ∈ Ii)− σk)g(x)dx
∏
j∈Ii

g(yj)dyj

=

∫
[0,∞)i

∫ ∞
x=0

(P (A(xi + x) = Ak |A(xj) = Alj , j ∈ Ii)− σk)ga(x)dx
∏
j∈Ii

ga(yj)dyj

=

∫
[0,∞)i

∫ ∞
x=0

(P (A(x) = Ak |A(xj − xi) = Alj , j ∈ Ii)− σk)ga(x)dx
∏
j∈Ii

ga(yj)dyj (13)

with xj :=
∑j
l=1 yj , j ∈ Ii, where we have used the stationarity of the process {A(t)}∞−∞ to derive (13).

Define

xi := (x1, . . . , xi),

f(u,xi) := P (A(u) = Ak |A(xj − xi) = Alj , j ∈ Ii))− σk ,

F (x,xi) :=

∫ x

0

f(u,xi)du.

Note that |f(u,xi)| ≤ 1 for any u,xi so that |F (x,xi)| ≤ x for any x,xi. In this notation (13) rewrites

P
(
A

(a)
(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk =

∫
[0,∞)i

∫ ∞
x=0

f(x,xi)ga(x)dx
∏
j∈Ii

ga(yj)dyj . (14)

Integrating by parts and using the definition of ga(x) and Assumption 3.1 yields∫ ∞
0

f(s,xi)ga(x)dx =
[
ga(x)F (x,xi)

]∞
0
−
∫ ∞

0

F (x,xi)g′a(x)dx

= lim
x↑∞

ga(x)F (x,xi)− a2

∫ ∞
0

F (x,xi)g′(ax)dx (15)

= −a2

∫ ∞
0

F (x,xi)g′(ax)dx , (16)

12



where the limit in (15) is zero since 0 ≤ ga(x)F (x,xi) ≤ ga(x)x and limx→∞ xg(x) = 0 (see Assumption

3.1). Combining (14) and (16) gives

P
(
A

(a)
(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk = −a2

∫
[0,∞)i

∫ ∞
x=0

F (x,xi)g′(ax)dx
∏
j∈Ii

ga(yj)dyj . (17)

Fix ε > 0. By Prop. 2.2 we know that there exists 0 < Tε <∞, denoted as T from now on, such that for

all x > T , |F (x,xi)/x| < ε/2, uniformly in xi or, equivalently, uniformly in y1, . . . , yi ∈ [0,∞). We have

(Hint: use Assumption 3.1 and inequality |F (x,xi)| ≤ x)∣∣∣∣∫ ∞
0

F (x,xi)g′(ax)dx

∣∣∣∣ ≤ −
∫ T

0

F (x,xi)g′(ax)dx−
∫ ∞
T

∣∣∣∣F (x,xi)

x

∣∣∣∣xg′(ax)dx

≤ −T
∫ T

0

g′(ax)dx− ε

2

∫ ∞
T

xg′(ax)dx

≤ −T
∫ ∞

0

g′(ax)dx− ε

2

∫ ∞
0

xg′(ax)dx

=
Tg(0)

a
+

ε

2a2
(18)

so that, from (17),∣∣∣P (A(a)
(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk

∣∣∣ ≤ (
aTg(0) +

ε

2

)∫
[0,∞)i

∏
j∈Ii

ga(yj)dyj

= aTg(0) +
ε

2
. (19)

We observe from (19) that ∣∣∣P (A(a)
(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk

∣∣∣ < ε

for any 0 < a < ε/(2Tg(0)), which completes the proof since ε is arbitrary. �

Application of the chain rule yields the following result.

Proposition 3.1 As a → 0 the sequence {A(a)
(j)}j≥1 converges to an iid sequence with distribution

P
(
A

(a)
(j) = Ak

)
= σk, k = 1, . . . ,m.

It is now straightforward to describe the behavior of a constant rate walker. Take the observation

process to be Poisson with rate γ′ > γ (recall that γ is the walker rate of our constant rate walker),

namely P (Wj < x) = 1 − e−γ′x. Consider the dynamic graph {A(a)(t)}t∈R associated with the RMPP

Ψ(a) (see (11)). We embed the times that the walker takes a step into the observation process. At

each observation the walker takes a step with probability γ/γ′; otherwise it does not with probability

13



(γ′−γ)/γ′. Let U
(a)
j ∈ {1, . . . , n} denote the position of the walker immediately after the j-th observation

of the observation process (j ≥ 1), and let U
(a)
0 be the walker position at time t = 0. We assume that

lima→0 P (U
(a)
0 = v) exists for all v = 1, . . . , n. This is the case, for instance, if U

(a)
0 is constant for any

a > 0.

The following equation describes the behavior of π
(0)
j (v) = lima→0 P (U

(a)
j = v), the fraction of observa-

tions after which the walker resides at node v ∈ V . Assume first that this limit exists for any j ≥ 1 and

v = 1, . . . , n. Let P := [P(u, v)] be an n-by-n stochastic matrix with (u, v)-entry given by

P(u, v) =


γ
γ′

∑m
k=1 σk

Ak(u,v)
dk,u

, if dk,u > 0, u 6= v,

γ′−γ
γ′ + γ

γ′

∑m
k=1 σk1{dk,u=0} , if u = v ,

0 , otherwise,

(20)

u, v = 1, . . . , n. We have

π
(0)
j (v) = lim

a→0

n∑
u=1

m∑
k=1

P
(
A

(a)
(j) = Ak, U

(a)
j−1 = v

)
× σk

(
Ak(u, v)

dk,u
1(dk,u > 0) + 1(u = v)1(dk,u = 0)

)

=

n∑
u=1

m∑
k=1

lim
a→0

P
(
A

(a)
(j) = Ak

)
lim
a→0

P
(
U

(a)
j−1 = v

)
σk

(
Ak(u, v)

dk,u
1(dk,u > 0) + 1(u = v)1(dk,u = 0)

)

=

n∑
u=1

P(u, v)π
(0)
j−1(u), (21)

for j ≥ 1 and v = 1, . . . , n, where dk,u is the degree of node u ∈ V in graph configuration Ak and Ak(u, v)

is the (u, v)-entry of the adjacency matrix Ak (i.e. Ak(u, v) = 1 if there is a link between vertices u and

v in configuration k and zero otherwise). The second and third equalities follow from Proposition 3.1.

The existence of lima→0 P (U
(a)
j = v) for all j ≥ 1 and v = 1, . . . , n can be shown by induction on j based

on (21).

Define π
(0)
j := (π

(0)
j (1), . . . , π

(0)
j (n)). With these definitions (21) rewrites in the following matrix form

π
(0)
j = π

(0)
j−1P, j ≥ 1,

with π
(0)
0 the n-dimensional vector where all entries are equal to zero except entry U

(a)
0 that is equal to

1. To show that π(0) is unique, we prove that P is irreducible. The definition of T-connectivity and the

fact that σk > 0, k = 1, . . . ,m imply that P is an adjacency matrix of a strongly connected directed

graph and strong connectivity of this graph is equivalent to the irreducibility of P [8, Theorem 6.2.24],

the details of this proof are found at Appendix D. As P is also aperiodic, as the diagonal elements of P

are non-zero, then the associated discrete-time Markov chain is ergodic since the state-space is finite so

that, by Markov chain theory, the limit π(0) = limj→∞ π
(0)
j exists and is given by the unique solution of

π(0) = π(0)P,

n∑
u=1

π(0)(u) = 1.

14



Because of the PASTA property the steady state probability π(0) = limj→∞ π
(0)
j on the observation events

is also the distribution in time, i.e., in the limit as a→ 0, π = π(0).

The case where the walker rate depends on the node and graph configuration in which the walker resides

yields a similar characterization.

Proposition 3.2 Let Ψ be a stationary, ergodic, and T-connected dynamic graph and let {(A(t), U(t))}t≥0

be an associated CTRW with walker rates Γ = {βk,v : k = 1, . . . ,m, v ∈ V }. Let βmax > sup(Γ). Then,

in the limit as a→ 0, the stationary walker position distribution π satisfies

π = πP ,

where

P(u, v) =


∑
k σk

βk,v
βmax

Ak,vu
dk,v

, dk,u > 0,

v 6= u∑
k σk

(
1− βk,v

βmax
+

βk,v
βmax

1{dk,u=0}
)
, v = u .

(22)

The proof is similar to that given for the constant rate walker case and is omitted. The assumption

that βmax > sup(Γ) ensures that P is aperiodic and the assumption of T-connectivity ensures that P is

irreducible.

Proposition 3.2 shows, as a→ 0, the steady state distribution of a walker with state dependent rates to

be just a function of σ (the stationary distribution of {A(t)}t≥0), the set of configurations A, and the

walker rates ~β, regardless of the graph dynamics.

3.2 Time-scale Invariant Stationary

Distribution

In this section we turn our attention to a sufficient condition where the CTRW stationary distribution is

invariant to the walker time scale γ. Consider a CTRW {(A(t), U(t))}t≥0 with non-zero walker rates on

a stationary, ergodic, and T-connected graph Ψ.

The key insight into our sufficient condition is the following: If there exists a π that is the CTRW station-

ary distribution given any (static) configuration A1, . . . , Am, then once the CTRW reaches distribution

π it remains with distribution π independent of the graph dynamics. The key challenge is to show that

the CTRW always converges to distribution π, irrespective of the graph dynamics. We see that this is

true if Ψ is stationary, ergodic, and T-connected. However, we also believe that the following results can

be extended to some families of non-stationary dynamic graphs.
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We first present the notation used in this section. It will be useful to describe the walker rates as a row

vector ~γ(γ) = (γβk,v)v∈V,k=1,...,m.

The CTRW confined to a given configuration Ak is a Markov chain, k = 1, . . . ,m. Let

Q(Ak, ~γ(γ)) =

Ak(i, j)γβk,i/dk,i , if i 6= j ,

−
∑
j∈V Ak(i, j)γβk,i/dk,i , if i = j ,

where Ak(i, j) is the element (i, j) of Ak, be the infinitesimal generator of {U(t)}t≥0 given configuration

Ak.

Assumption 3.2 (Fixed point π?) Let A be the set of graph configurations of Ψ and ~γ be a set of

walker rates such that there exists a π? ∈ [0, 1]n,
∑
v∈V π

?(v) = 1, that is a fixed point solution to

0 = π?Q(M,~γ) , ∀M ∈ A . (23)

In what follows we show that if A and ~γ satisfy Assumption 3.2, then limt→∞ P [U(t) = v] = π?(v),

∀v ∈ V . Moreover, we show that π? is independent of γ. We are now ready for the main result of this

section.

Theorem 3.4 Let graph process Ψ be a stationary, ergodic, and T-connected graph with configuration

set A. Let {(A(t), U(t))}t≥0 be a CTRW on the dynamic graph {A(t)}t∈R associated with Ψ. The CTRW

has walker rates ~γ(γ) = {γβk,v}, v ∈ V, k = 1, . . . ,m, γ > 0. If A and ~γ(1) satisfy Assumption 3.2, then

lim
t→∞

P [U(t) = v] = π?(v) , ∀v ∈ V,

where π? solves (23). Moreover, π? does not depend on γ.

Proof. For now assume γ = 1. Let Π(t) = (P [U(t) = v])v∈V . The Kolmogorov forward equation gives

dΠ(t)

dt
= Π(t)Q(A(t), ~γ(1)). (24)

From Assumption 3.2 there exists π? is that is a solution to (23). Hence, Π(t) = π? is also a solution

to (24) where dΠ(t)/dt = 0. It follows from Theorem 3.1 that there is no other solution to (24) and

therefore limt→∞ P [U(t) = v] = π?(v), ∀v ∈ V . To show that π? does not depend on γ, note that for

any α > 0 and k = 1, . . . ,m

0α = π?Q(Ak, ~γ(1))α = π?Q(Ak, ~γ(α)).

�

Examples of adjacency matrix sets A = {Ak : k = 1, . . . ,m} that satisfy Assumption 3.2 for a constant

rate walker, ~γ(γ) = (γ, . . . , γ) include:
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• Regular graphs: Ai, i = 1, . . . ,m, consists of Ci ≥ 1 connected components where the j-th

connected component (j = 1, . . . , Ci) is a d
(i)
j -regular graph (d

(i)
j >= 0).

• Nodes v ∈ V alternate between isolated and connected with constant degree, i.e.,

dk(v) ∈ {0, d(v)}, d(v) > 0, k = 1, . . . ,m. Figure 1 illustrates a dynamic graph that satisfies these

requirements.

Conditions imposed on the walker rates ~γ(γ) can also guarantee that Assumption 3.2 is valid for any set

of graph configurations A, as long as {A(t)}t∈R is T-connected. Consider the coupled CTRW and graph

dynamics that satisfies Assumption 3.2 in the following proposition, stated without a proof:

Proposition 3.3 (Degree proportional walker) Let A = {Ak : k = 1, . . . ,m} be a set of graph

configurations. If the walker rates are ~γ(γ) = (γdk,v)v∈V,k=1,...,m, where dk,v is the degree of node v at

configuration k. Then Theorem 3.4 is satisfied. Moreover, π? = ( 1
n , . . . ,

1
n ).

Proposition 3.3 has an interesting application. We can uniformly sample nodes (in time) without knowing

the underlying topologies, A, or graph dynamics, {A(t)}t∈R, as long as {A(t)}t∈R is stationary, ergodic,

and T-connected. So far we have focused on conditions that allow us to obtain the stationary distribution

of the walker. In what follows we present some case studies solved numerically.
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Figure 1: Illustration of a dynamic graph whose node degrees are either kept constant in all graph configurations

or there are isolated nodes. We make no assumption about the holding times of each graph configuration except

that the graph is T-connected.

4 Case Studies

In previous sections we characterized the stationary behavior of an RW on a broad class of dynamic

graph processes {(Xi, Si)}i≥Z. In this section, we focus mostly on random walks on Markovian dynamic

graphs where {Xi}i≥0 forms a Markov chain and {Si}i≥0 is a sequence of independent and exponentially

distributed random variables. Note that this model allows state dependent graph holding times to be

taken into account in the Markov chain {Xi}i≥0. In what follows we provide several examples and
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numerical evaluations. Later in the section, we also show how the proposed framework can be applied to

a Delay-Tolerant Network (DTN) scenario.

4.1 Markovian dynamic graph examples

In this section we present numerical results for some toy Markovian dynamic graph examples, that

illustrate the non-trivial behavior of random walks on dynamic graphs and that support our theoretical

findings.

4.1.1 Star-circle example

(a) The star-circle graph dynamics.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-2 -1 0 1 2 3 4

W
a
lk

e
r 

d
is

tr
ib

u
ti
o
n

Walker rate (10
x
)

W=8
W=9

W=10
W=1
W=2
W=3
W=4

(b) Steady state distribution of walker as a function of walker rate

(nodes 5, 6 ,7 not shown for clarity).

Figure 2: The star-circle graph dynamics and behavior of CTRW as a function of walker rate.

We begin by considering a very simple model, consisting of just two graph snapshots: a star and a circle,

as illustrated in Figure 2a. The graph transits from one snapshot to another with rates λ12 = λ21 = 1.

Thus, the average time in each graph is 1/2. Note however, that edges (1,2) and (1,10) are always present,

since they exist in both configurations.

We investigate the steady state solution of the CTRW on this dynamic graph. Figure 2b shows the

steady state distribution of the random walk as a function of the walker rate (for clarity, only a subset
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of the states are shown). Note that the stationary distribution of the walker depends on the walker

rate and converges to different distributions as the walker moves faster or slower. Indeed, the numerical

results obtained are in agreement with the theoretical distributions for the fast and slow walker given in

Sections 3.1.1 and 3.1.2, respectively. Finally, we note that in a graph with n nodes, node one alternates

between degrees n− 1 and two. As n increases the dependence on the walker speed is magnified.

4.2 Edge Markovian model and examples

In this section we consider some particularities of random walks on a special class of dynamic graphs

called edge Markovian graphs. Start with a fixed adjacency matrix A and attach an independent On-Off

process to each edge with exponentially distributed holding times. In edge Markovian graphs, edges

alternate between being present and absent from the graph according to independent On-Off processes.

Let E be the set of edges in the graph described by A. Let Λ0(e) and Λ1(e) denote the rate at which

edge e ∈ E changes from the On to the Off state and from the Off to the On state, respectively, which

can vary from edge to edge.

A few observations on the model follows. Let Ak be a particular configuration of the dynamic graph model.

In particular, the edge Markovian model induces a total of m = 2|E| configurations, which represent all

possible labeled subgraphs over an edge set with |E| edges. Moreover, consider any transition between

two configurations induced by the model. The graphs corresponding to these two configurations differ by

exactly one edge, since the on-off processes associated with the edges are continuous in time. Moreover,

the rate associated with this graph transition is given by the corresponding rate of the edge (either its

On rate or Off rate).

Let quv denote the stationary fraction of time that edge (u, v) ∈ E is On, which is simply given by

quv = Λ1(u, v)/(Λ0(u, v) + Λ1(u, v)).

Let σk denote the steady state fraction of time that the edge Markovian model spends in configuration

Ak, k = 1, . . . , 2|E|. In particular, we have

σk =
∏

(u,v)∈E

1{Ak(u, v)}quv + (1− 1{Ak(u, v)})(1− quv) (25)

Note that σk is given by the product of the probabilities the egdes that define Ak are present while all

other edges are absent. Since all edges are independent, this is trivially obtained as shown above. Edge

Markovian graphs are of interest due to their simple description and structure. However, as we will soon

see in our numerical results, the steady state distribution of a constant rate random walk on this model

depends on the walker rate. It is an open problem whether the walker steady state distribution can be

obtained in closed form.
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4.2.1 Edge Markovian: n = 3

Consider the edge Markovian graph model over a complete graph with 3 nodes. The number of different

configurations is 23 = 8, out of which 4 have at least one isolated vertex (graph not connected). Moreover,

let Λ1(1, 2) = Λ0(1, 2) = 104, Λ1(1, 3) = Λ0(1, 3) = 1, Λ1(2, 3) = Λ0(2, 3) = 1. Thus, pe = 0.5 for every

edge (i.e., all edges have the same time average), and thus, all configurations have the same time average

probability of 1/8, as given by equation (25).

Figure 3a shows the exact steady state distribution of the random walk as a function of the walker

rate. Interestingly, while all edges have the same time average and all configurations Ak, k = 1, . . . , 2|E|,

have the same σk, the walker steady state distribution still depends on the walker rate. Moreover, the

behaviors of the fast and slow walkers differ. While the slow walker converges to a uniform distribution

over the nodes, the fast walker always favors node 3, the node not incident to the fastest changing edge

(1, 2). Despite the relatively small differences in the walker distribution (P [W = 3] varies by 7%), the

point of this example is to illustrate that such differences can arise even in small and simple models.
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Figure 3: Characteristics of random walks on a K3 edge Markovian graph model.

Figure 3b also shows the maximum absolute difference between our theoretical results for the fast and

slow walker and the actual distribution obtained exactly. In particular, we present the total variation

distance between the two distributions, defined as maxi=1,...,n |π(i)− π′(i)|, where π is the exact walker

distribution and π′ is either the fast or slow walker distribution, and n is the number of nodes in the

graph. For walker rates greater than one, the theoretical results for the fast walker were used (π′ as

defined in Section 3.1.1), while for rates smaller than one the results for the slow walker were used (π′ as

defined in Section 3.1.2). Note that as the walker slows down or speeds up, the total variation decreases

(graph in log-log scale). Our numerical results indicate that the fast and slow walker become close to our
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asymptotic results as their rates increase and decrease, respectively. When the timescales of the walker

and graph dynamics are similar, the total variation distance between the asymptotic cases and the steady

state distribution is relatively larger, as expected.

Moreover, if we consider the “degree-time distribution” of a given node, namely, the fraction of time

that node v ∈ V has degree 0, 1, . . ., we note that all three nodes have identical degree-time distributions

but the fraction of time the walker spends on each node varies. This indicates that the degree-time

distribution is insufficient to characterize the walker steady state. This is also like true for transient

metrics as well.

4.2.2 Edge Markovian: 6-node kite

Now consider an edge Markovian process over the “kite graph” illustrated in Figure 4a. In particular, let

all thin edges e have On-Off rates Λ1(e) = Λ0(e) = 1. Similarly, let all thick edges e′ have On-Off rates

Λ1(e′) = 100,= Λ0(e′) = 10. Note that locally all nodes are connected through identical and independent

On-Off processes, two thin edges (On-Off rates equal to one) and one thick edge (On-Off rates equal to

one hundred). Thus, in some sense, “locally” all nodes are indistinguishable. Surprisingly, even in this

case the behavior of the walker depends on its rate, as shown in Figure 4b. Clearly, the structure of

the graph plays an important role, as illustrated in this example, as the fast and the slow walkers have

different time stationary distributions for different nodes. This indicates the difficulty of characterizing

the exact behavior of random walks in general graph dynamics, even if we limit ourselves to the class of

edge Markovian graphs.
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Figure 4: Characteristics of random walks on a 6-node kite edge Markovian graph model.
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4.3 A simple vehicular DTN

In this section we consider an application of our modeling framework to a simple vehicular disruption-

tolerant networks (DTN) model. Our model captures some essential characteristics of DTNs. Consider a

set of buses equipped with wireless routers moving around according to their routes. Two buses establish

communication when they are within the coverage radius of the wireless routers. Buses belonging to the

same line (route) move from one bus stop to another following a predefined sequence of stops in a circular

fashion. The following notation is used to describe the model: S = {s1, . . . , so} is the set of bus stops

across all bus lines, where o is the number of different stops; Li ∈ Sni is a vector with the sequence of

stops for bus line i, and ni is the number of stops at bus line i; l denotes the number of different bus lines

and bi is the number of different buses operating in line i = 1, . . . , l; Assume that both ξik, the amount

of time line i bus stays at stop k, and ζikl, the amount of time it takes line i bus to move from stop k to

l, are exponentially distributed random variables, but can have different parameter values for any i, k, l.

In addition, buses move independently of each other, including those in the same line.

The bus routes and the coverage radius of the wireless router allow two or more buses to exchange

information when buses are at the same stop. Thus, if two or more different bus lines share at least

one bus stop in their route, then buses from these lines will be able to communicate at the shared bus

stops. Moreover, two or more buses from the same line can communicate in any stop of their line, as

they can always meet at these stops. Finally, we assume that the communication radius is smaller than

the distance between bus stops, such that buses only communicate when located at a shared bus stop.

Figure 5a shows an example with 11 bus stops, three bus lines (l = 3), defined by L1 = (s1, s2, s3, s4, s5),

L2 = (s3, s4, s6, s7, s8) and L3 = (s7, s9, s10, s11), and four buses: b1 = 1, b2 = 1, b3 = 2 (line three has

two buses). Note that lines 1 and 2 share two bus stops (s3 and s4) and that lines 2 and 3 share one bus

stop (s7).

s2 s3

s4s5

s8

s6

s1

s9

s7 s
10

s
11

1 1 2

L1

L2

L3

(a) Example of a vehicular DTN with eleven bus stops,

three bus lines and four buses (line 3 has 2 buses).
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b1 b2
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(b) Connectivity graphs and transitions between them

according to the bus system illustrated in Figure 5a.

Figure 5: Example of a simple bus system (a) and the induced dynamic graph model (b).
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Consider a continuous-time random walker (CTRW) moving around the buses with rate γ. The goal is

to determine the fraction of time that the walker spends in each bus or in each bus line. This problem

can be formulated and solved using the modeling framework proposed in this paper. The first step is

to construct a dynamic connectivity graph model from the movement of the buses in their respective

lines. In particular, each bus is a node in the graph, since this corresponds to a possible location for the

random walk. Moreover, each possible configuration of buses on their stops will define a connectivity

graph, where nodes (buses) in the same stop are all within communication radius of one another. Note

that each connectivity graph is composed of connected components that are all cliques (fully connected

subgraph), since all buses in the same stop can communicate.

Consider the example in Figure 5a and the possible connectivity graphs that can be created, which are

illustrated in Figure 5b. The connectivity graph has four nodes, corresponding to the four buses. Each

bus can be in a different stop, thus yielding a connectivity graph with no edges. Also, bus in line 2 can be

at stop s7 at the same time as the two buses from line 3, yielding a connectivity graph where these three

buses are all connected. Finally, note that not all graphs with four nodes are possible, since different

lines may not have stops in common such as lines 1 and 3, for instance.

The transitions between graph configurations are shown in Figure 5b. In our model, buses cannot

simultaneously leave a stop. As a consequence, the number of allowed transitions is reduced. Once the

dynamic graph model is constructed, we can obtain the state holding times for each graph configuration.

This is possible if the holding times at bus stations and the amount of time it takes a bus to move from

a station to another are exponentially distributed. However, this is non-trivial in the general case, since

buses can move along their routes without changing the connectivity graph. Moreover, totally different

bus configurations over the set of stops can lead to the same connectivity graph. Since our modeling

framework makes no assumption on the state (static graph) holding times of the dynamic graph model

we can extend the exponential assumption considering general distributions for the holding times at each

graph configuration, assuming only that the expected holding time is finite for all static graphs and that

dynamic graph process is stationary, ergodic and T-connected.

The model constructed from this scenario matches the case studied in Section 3.2 in which the stationary

distribution of the random walk is time-scale invariant and uniform over the set of nodes in the graph,

independent of graph dynamics (see Theorem 3.4). This occurs since every connected component of every

possible graph configuration is a clique, thus, having identical degree within each component. Therefore,

the fraction of time the walker spends in any given bus is simply 1/
∑
j bj , while the fraction of time

spent in bus line i is simply bi/
∑
j bj . Thus, CTRWs could find applications in searching for information

or sampling properties in such systems, as its steady state does not depend on the graph dynamics.
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5 Related work

Random walks have been widely used to understand and characterize graphs due to their well understood

steady state behavior. By leveraging the steady state distribution of random walks, principled mechanisms

for characterizing and estimating vertex-related properties have been devised [6, 11, 13, 15, 16].

It follows that random walks can potentially be used to understand and characterize dynamic graphs.

In fact, efforts in this direction concerning time-independent dynamic graphs (i.e., each snapshot is

independent of the previous) have appeared in the literature [4, 7, 9, 14], mainly in the context of

determining upper and lower bounds for the cover time of random walks. More recently, proposals to

define time-dependent dynamic graph models as well as characterize random walks in them have also

appeared in the literature [1, 2, 3]. However, these efforts have focused on discrete-time dynamic graph

models with a goal of computing the cover time of random walks either in special graph structures [2],

in specific dynamic graph models [3], or through numerical evaluations [1]. Our work differs from these

in the sense that we consider continuous-time dynamic graph models and continuous-time random walks

with the goal of analytically characterizing the steady state behavior of the walker. Moreover, our prior

work on this topic considered only Markovian dynamics and characterized the steady state behavior of

the walker only under time-scale separation [17].

Finally, random walks have also been used as a sampling mechanism to estimate characteristics of vertices

(e.g., fraction of vertices of a particular kind) in large static graphs [6, 11, 16]. More recently, efforts

to measure characteristics of vertices in dynamic graphs have also appeared in the literature [15, 20].

However, these are mostly preliminary and exploratory papers, indicating potential pitfalls and biases

introduced by fast changing dynamic graphs. In contrast, our works is a first step at providing a theoretical

foundation that can then be applied to estimate characteristics of vertices in dynamic graphs.

6 Conclusion

Understanding the long-term behavior of CTRW over dynamic graphs is an important step towards a

comprehensive study of dynamic graphs. Since the steady state distribution of random walks on static

graphs is arguably the most important characteristic of these processes, it is of vital importance to

characterize the CTRW steady state distribution for a broad class of dynamic graph processes. Unlike

random walks on static graphs, CTRWs on dynamic graphs have a non-trivial behavior. The walker

rate as well as the process that governs the graph dynamics both impact the asymptotic time stationary

distribution of the walker (the amount of time a walker spends on each node).

Our main results assume the graph process to be asymptotically stationary, ergodic and T-connected.

We make no independence assumptions concerning the times the process resides in each of the graph
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configurations or the particular distribution of these residence times. In other words, the time spent

in a given graph configuration can be dependent on the residence time at other configurations and, in

addition, the distribution of the time the network spends in a configuration can be general. Moreover, the

dynamic graph can have temporarily disconnected nodes as long as the dynamic graph is T-connected.

Under this general scenario, we have obtained the steady state distribution of cases in which the walker

is either much faster or much slower as compared to the rate of changes in graph configurations. We

have obtained a sufficient condition for the CTRW stationary distribution to be invariant to the walker

rate and presented examples that illustrate models in which these results are applicable. In this context,

additional application examples for the constant degree constraint can be found in P2P networks where

peers maintain a nearly fixed number of connections. Hence, Theorem 3.4 helps explain why sampling

these dynamic networks using random walks leads to meaningful results [20].

The examples in this paper serve mainly for illustrative purposes. However, we believe that the theory

we developed will find applications in many important areas. Examples of promising application areas

are in sampling DTN and P2P networks.
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Appendices

A Proof of Proposition 2.1

From a classical construction of ergodic theory (see e.g. [18, Prop. 11.4]), we know that there exist a

probability space (Ω,F , P ) and ergodic endomorphisms (θt)t∈R, θt : Ω → Ω - called a flow - on this

probability space on which the stationary sequence Ψ = {Xn, Sn}n∈Z is defined, such that

Sn = S o θ̂n, Xn = X o θ̂n, n ∈ Z, (26)

with (S,X) rvs distributed as (Sn, Xn) and θ̂ := θS0 .

Observe that the stationary sequence defined in (26) satisfies

lim
N→∞

1

N

N∑
n=1

f(Xn, Sn) = lim
N→∞

1

N

N∑
n=1

f(X,S) o θ̂n = E[f(X,S)] a.s. (27)

for any nonnegative measurable mapping f on Ω, that is, it is an ergodic sequence. The second equality

in (27) follows from the ergodicity of the flow (θt)t∈R.
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Furthermore, for any n ∈ Z, ω ∈ Ω,

Tn(θs(ω)) = Tn+k(ω)− s, (28)

where k is the unique integer such that Tk(ω) ≤ s < Tk+1(ω).2 A more compact notation for (28) is

Tn o θs = Tn+k − s if Tk ≤ s < Tk+1.

We are now in position to prove the stationarity of {A(t)}t∈R.

Recall that A(t) =
∑
n∈Z Xn1(Tn ≤ t < Tn+1). We have

A(t) o θs =
∑
n∈Z

Xn1(Tn o θs ≤ t < Tn+1 o θs).

If Tk ≤ s < Tk+1, by (28),

A(t) o θs =
∑
n∈Z

Xn1(Tn+k ≤ t+ s < Tn+1+k)

=
∑
n∈Z

Xn−k1(Tn ≤ t+ s < Tn+1)

= θTk
∑
n∈Z

Xn1(Tn ≤ t+ s < Tn+1)

= θTk o A(t+ s),

where we have used the relation Xn−k = Xn o θTk . The above can be rewritten as

A(t) o θs = A(t+ s) o
∑
k∈Z

θTk1(Tk ≤ s < Tk+1)

or, equivalently,

A(t+ s) = A(t) o
∑
k∈Z

θs−Tk1(Tk ≤ s < Tk+1).

This shows that {A(t)}t is stationary since

P (A(t+ s) ∈ C) = P

(∑
k∈Z

A(t) o θs−Tk1(Tk ≤ s < Tk+1) ∈ C

)
=

∑
k∈Z

P (A(t) o θs−Tk ∈ C,1(Tk ≤ s < Tk+1))

=
∑
k∈Z

P (A(t) ∈ C,1(Tk ≤ s < Tk+1))

= P (A(t) ∈ C).

2In words, (28) says that for ω = (sn, sn)n∈Z ∈ Ω, the nth point of the point process (tn)n∈Z (with tn+1 − tn = sn)

to the right (resp. left) of t = 0 when the trajectory is shifted by s (i.e. xn is replaced by xn − s for every n ∈ Z) is the

(n + k)-th point to the right (resp. left) of t = 0 if tk ≤ s < tk.
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In particular,

A(s) = A(0) o
∑
k∈Z

θs−Tk1(Tk ≤ s < Tk+1).

B Proof of Proposition 2.2.

Fix ε > 0. All rvs are defined on the probability space (Ω,F , P ). By Egorov’s theorem3 [10, pg. 43,

Theorem 2] we know that there exists a Borel set Cε ⊂ F with P (Cε) < ε, such that the convergence

in Theorem 2.1 is uniform on Ω − Cε, namely, there exists Tε such that (we write A(x, ω) for A(x) to

emphasize that A(x) is a P-measurable rv)

σk − ε <
1

t

∫ t

0

1{A(x,ω)=Ak}dx < σk + ε (29)

for all t > Tε and for all ω ∈ Ω− Cε.

Let B ∈ F with P (B) > 0. Integrating w.r.t. dP (ω) for w ∈ B − Cε in (29) gives

(σk − ε)P (B − Cε) <
∫
B−Cε

dP (ω)
1

t

∫ t

0

1{A(x,ω))=Ak}dx < (σk + ε)P (B − Cε) (30)

for all t > Tε and for all ω ∈ B − Cε.

By Fubini’s theorem∫
B−Cε

∫ t

0

1{A(x,ω)=Ak}dxdP (ω) =

∫ t

0

∫
Ω

1ω∈B−Cε1{A(x,ω)=Ak}dP (ω)dx

=

∫ t

0

P (A(x) = Ak ∩ (B − Cε))dx. (31)

Since

P (A(x) = Ak ∩ (B − Cε)) = P (A(x) = Ak ∩ B)− P (A(x) = Ak ∩ Cε)

= P (A(x) = Ak|B)P (B)− P (A(x) = Ak|Cε)P (Cε), (32)

we obtain from (30)-(32) that

(σk − ε)P (B − Cε) + P (Cε)f(t, ε) <
P (B)

t

∫ t

0

P (A(x)) = Ak|B)dx

< (σk + ε)P (B − Cε) + P (Cε)f(t, ε) (33)

3Egorov’s theorem applies here since Ω has a finite measure w.r.t. P as P (Ω) = 1.
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for all t > Tε, with f(t, ε) := (1/t)
∫ t

0
P (A(x) = Ak|Cε)dx.

Dividing (33) by P (B) (recall that P (B) > 0) gives

(σk − ε)
P (B − Cε)
P (B)

+
P (Cε)
P (B)

f(t, ε) <
1

t

∫ t

0

P (A(x) = Ak|B)dx

< (σk + ε)
P (B − Cε)
P (B)

+
P (Cε)
P (B)

f(t, ε). (34)

As ε → 0, (i) P (Cε)
P (B) f(t, ε) → 0 since 0 ≤ P (Cε)

P (B) f(t, ε) < ε
P (B) from the definition of Cε and the fact

that 0 ≤ f(t, ε) ≤ 1. On the other hand, (ii) both terms (σk ± ε)P (B−Cε)
P (B) go to σk as ε → 0 since

limε→0 P (B − Cε)/P (B) = limε→0(P (B) − P (Cε))/P (B) = 1. Since Tε → ∞ as ε → 0 we conclude from

(i)-(ii) above and from (34) that limt→∞(1/t)
∫ t

0
P (A(x) = Ak)|B)dx = σk for all Borel sets B such that

P (B) > 0.

C Proof: T is finite

The graph process {A(t)}t∈R is time stationary and ergodic. It follows from Proposition 2.2 that there

exists Tk > 0 s.t.
1

t

∫ x+t

x

1(A(s) = Ak)ds > σk/2 , x ≥ 0, t ≥ Tk

independent of x. Choose k0 = argmink{σk} and T ′ = max{Tk}. Thus

1

T ′

∫ x+T ′

x

1(A(s) = Ak)ds > σk0/2 , x ≥ 0.

Consequently the graph process spends at least σk0T
′/2 units of time in configuration k during interval

[x, x + T ′) regardless of the state of the graph process at t = x. Now consider the situation where

U1(x) = u, U2(x) = w, and A(x) = Ak. Let Ak = Al1 , Al2 , . . . , Alj be a sequence of graphs such that

there is a temporal path between u in Al1 and w in Alj . This requires that there be paths within each

graph configuration, pi = (vi,0, vi,1, . . . , vi,ni) that satisfy v1,0 = u, vi+1,0 = vi,ni , i = 1, . . . , j − 1, and

vj,nj = w. Let hu,w denote the number of physical hops on this path and j = Hu,w the number of

configurations in the sequence. We focus now on the event that walker 1 progresses from node u to node

w in the interval [x, x+ jT ′) jT ′ by progressing across path pi during [x+ (i− 1)T ′, x+ iT ′) while walker

2 remains at node w. The probability of this event, pu,w is bounded from below by

pu,w ≥ e−γmaxHmaxT
′
e−γmaxHmaxT

′(1−σk0/2)

×
( 1

dmax

)hmax

j∏
i=1

P
(ni−1∑
`=0

Zi,v` < T ′σk0/2 ≤
ni∑
`=0

Zi,v`
)
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Here Hmax = maxu,wHu,w, hmax = maxu,w hu,w, and Zi,v denotes the time between a walker arriving

to node v in configuration Ali and taking its next step. This time is exponentially distributed with rate

γli,v and there exists some q > 0 such that

P
(ni−1∑
`=0

Zi,v` < T ′σk0/2 ≤
ni∑
`=0

Zi,v`
)
> q

for all u,w. Hence

pu,w ≥ p0 ≡ e−2γmaxHmaxT
′( 1

dmax

)hmax
q

Last, T0 ≡ HmaxT
′.

D Irreducibility of P

Consider P as defined in (20) to be the adjacency matrix of a weighted directed graph G with self-edges.

Then by [8, Theorem 6.2.24] P is irreducible if G is strongly connected (as the elements of P are finite,

i.e., ‖P‖∞ <∞). What we need to show is that G is strongly connected. Let

ε =
γ

γ′
min

k=1,...,m, ∀u∈V

(
σk
dk,u

)
,

where γ and γ′ as defined in (20). Clearly ε > 0. Now decompose P into two parts: P = ε
∑m
k=1Ak + Ξ.

From the definition of P, (20), it is clear that Ξ ≥ 0. By the definition of T-connectivity (Definition 2.2)

the (undirected weighted) graph with adjacency matrix A =
∑m
k=1Ak is connected. Thus, the graph

with adjacency matrix Aε = ε
∑m
k=1Ak (remember that ε > 0) must also be connected. As the adjacency

matrix of G can be written as Aε + Ξ, Ξ ≥ 0, then G is strongly connected, finishing our proof.
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