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Abstract
Modern architectures have made program behavior brittle
and unpredictable, making software performance highly de-
pendent on its execution environment. Even apparently in-
nocuous changes, such as changing the size of an unused
environment variable, can—by altering memory layout and
alignment—alter performance by 33% to 300%. This unpre-
dictability makes it difficult for programmers to debug or un-
derstand application performance. It also greatly complicates
the evaluation of performance optimizations, since slight
changes in the execution environment can have a greater
impact on performance than a typical optimization.

We present STABILIZER, a compiler and runtime system
that enables statistically rigorous performance evaluation.
STABILIZER eliminates measurement bias by comprehen-
sively and repeatedly randomizing the placement of functions,
stack frames, and heap objects in memory. Random place-
ment makes anomalous layouts unlikely and independent of
the environment, and re-randomization ensures they are short-
lived when they do occur. We demonstrate that applications
compiled with STABILIZER deliver normally-distributed exe-
cution times, enabling the use of standard statistical tools for
hypothesis testing. We demonstrate its use by testing the ef-
fectiveness of standard optimizations used in the LLVM com-
piler; we find that, across the SPEC CPU2000 and CPU2006
benchmark suites, the effect of the -O3 optimization level
versus -O2 is indistinguishable from noise.

1. Introduction
Modern architectures have made program behavior brittle
and unpredictable. Multi-level cache hierarchies and deeply

[Copyright notice will appear here once ’preprint’ option is removed.]

pipelined architectures can cause execution times of indi-
vidual instructions to vary over two orders of magnitude.
Application performance is greatly affected by subtle details
of individual chips, such as the size or implementation of
caches and branch predictors. Even apparently innocuous
changes, such as changing the size of an unused environment
variable or the link order of object files, can dramatically alter
application performance. Mytkowicz et al. demonstrate that
such changes can alter performance by 33% to 300% [14].
This sensitivity of application performance to its environ-
ment, known as measurement bias, has numerous serious
consequences.

Environmental sensitivity makes it difficult for program-
mers to understand the performance of their applications.
Even inserting a single non-executed printf statement can,
by changing program layout, unexpectedly alter application
performance. In addition, since even a slight change in the
environment can have a greater impact on performance than
a typical optimization, it is difficult for developers or re-
searchers to judge the effectiveness of performance optimiza-
tions with any degree of confidence.

Contributions
This paper presents STABILIZER, a system that enables
the rigorous performance analysis of C/C++ programs by
eliminating measurement bias.

STABILIZER consists of a compiler and runtime library
that repeatedly randomize the placement of globals, functions,
stack frames, and heap objects during execution. Intuitively,
STABILIZER makes it unlikely that object and code layouts
will be especially “lucky” or “unlucky”. By periodically
re-randomizing, STABILIZER further reduces these odds.
We note in passing that STABILIZER often operates with
sufficiently low overhead that it could be used in deployment
to reduce the risk of performance outliers.

We show analytically and empirically that STABILIZER’s
use of re-randomization makes program execution indepen-
dent of the execution environment and imposes a normal
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distribution on execution time, enabling significance testing
using standard statistical approaches.

By generating a normal distribution of execution times,
STABILIZER makes it possible to perform rigorous and statis-
tically sound performance analyses. STABILIZER provides a
push-button solution that allows developers and researchers
to answer the question: does a given change to a program
truly improve its performance, or is it indistinguishable from
noise?

We use STABILIZER to assess the effectiveness of com-
piler optimizations in the LLVM compiler [11]. Across both
the SPEC CPU2000 and SPEC CPU2006 benchmark suites,
we find that the -O3 compiler switch (which includes argu-
ment promotion, dead global elimination, global common
subexpression elimination, and scalar replacement of aggre-
gates) does not yield statistically significant improvements
over -O2.

Outline
The remainder of this paper is organized as follows. Section 2
provides an overview of STABILIZER’s operation and statisti-
cal guarantees. Section 3 discusses related work. Section 4
describes the implementation of STABILIZER’s compiler and
runtime components, and Section 5 gives an analysis of STA-
BILIZER’s statistical guarantees. Section 6 demonstrates STA-
BILIZER’s avoidance of measurement bias, and Section 7
demonstrates the use of STABILIZER to rigorously evaluate
the effectiveness of LLVM’s standard optimizations. Finally,
Section 8 presents planned future directions and Section 9
concludes.

2. STABILIZER Overview
This section provides an overview of STABILIZER’s oper-
ation, and how it leads to statistical properties that enable
predictable and analyzable performance.

Environmental sensitivity both undermines predictability
and rigorous performance evaluation because of a lack of
independence. Any change to a program’s code or execution
environment can lead to a different memory layout. Prior
work has shown that small changes in memory layout alter
degrade performance by as much as 300% [14], making it
impossible to evaluate any particular change in isolation.

2.1 Comprehensive Layout Randomization
By randomizing program layout dynamically, STABILIZER
makes layout independent of changes in code or execution
environment. STABILIZER performs extensive randomization,
dynamically randomizing the placement of a program’s
functions, stack frames, heap objects, and globals. Code
is randomized at a function granularity, and each function
executes on a randomly-placed stack frame. STABILIZER also
periodically re-randomizes code at runtime.

2.2 Normally-Distributed Execution Time
STABILIZER’s randomization of memory layouts not only
avoids measurement bias, but also makes performance pre-
dictable and analyzable by inducing normally distributed
execution times.

At a high level, STABILIZER’s randomization strategy
leads to normally-executed distributions as follows. Each
random layout contributes to the total execution time. Total
execution time is thus proportional to the average over many
different layouts. The central limit theorem states that “the
mean of a sufficiently large number of independent random
variables . . . will be approximately normally distributed” [6].
As long as STABILIZER re-randomizes layout a sufficient
number of times, and each layout is chosen independently,
then execution time will be normally distributed. Section 5
provides a more detailed analysis. Ensuring that execution
time conforms to the normal distribution bounds the likeli-
hood of outliers; the chance of a normally-distributed random
value (here, execution time) falling within two standard devi-
ations of the mean is 95%.

2.3 Sound Performance Analysis
Normally distributed execution times allow researchers to
evaluate performance using powerful parametric hypothesis
tests, which rely on the assumption of normality. These tests
are “powerful” in the sense that they more readily reject
false hypotheses than more general (non-parametric) tests
that make no assumptions about distribution.

2.4 Evaluating Code Modifications
To test the effectiveness of any change (known in statistical
parlance as a treatment), a researcher or developer runs
a program with STABILIZER, both with and without the
change. Given that execution times are normally distributed,
we can apply the Student’s t-test [6] to determine whether
performance varies across the two treatments. The t-test,
given a set of execution times, tells us the probability of
observing the given samples if both treatments result in the
same distribution. If this probability is below a specified
confidence (typically 5%), we say that the null hypothesis
has been rejected—the distributions are not the same, so the
treatment had a significant effect.

2.5 Evaluating Compiler and Runtime Optimizations
To evaluate a compiler or runtime system change, we instead
use a more general technique: analysis of variance (ANOVA).
ANOVA takes as input a set of results for each combination
of benchmark and treatment, and partitions the total variance
into components: the effect of random variations between
runs, and the effect of each treatment [6]. Section 7 presents
the use of STABILIZER and ANOVA to evaluate the effective-
ness of compiler optimizations in LLVM.
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Base Randomization ASLR TRR ASLP Addr. Obfuscation Dyn. Offset B.S.DV [4] DieHard STABILIZER

code X X X X X
stack X X X X X X
heap X X X X X X

Full Randomization
code X X X* X X
stack X* X* X
heap X X

Implementation
recompilation X X X X
dynamic X X X X* X X X X
re-randomization X X

Table 1. Prior work in layout randomization includes varying degrees of support for the randomizations implemented in
STABILIZER. The features supported by each project are marked by a checkmark. Asterisks indicate limited support for the
corresponding randomization.

3. Related Work
Randomization for Security. Nearly all prior work in lay-
out randomization has focused on security concerns. Random-
izing the addresses of program elements makes it difficult
for attackers to reliably trigger exploits. Table 1 gives an
overview of prior work in program layout randomization.

The earliest implementations of layout randomization,
Address Space Layout Randomization (ASLR) and PaX,
relocate the heap, stack, and shared libraries in their en-
tirety [12, 17]. Building on this work, Transparent Runtime
Randomization (TRR) and Address Space Layout permuta-
tion (ASLP) have added support for randomization of code
or code elements (like the global offset table) [10, 21]. Un-
like STABILIZER, these systems relocate entire program seg-
ments.

Fine-grained randomization has been implemented in a
limited form in the Address Obfuscation and Dynamic Off-
set Randomization projects, and by Bhatkar, Sekar, and Du-
Varney [3, 4, 20]. These systems combine coarse-grained
randomization at load time with finer granularity randomiza-
tions in some sections. These systems do not re-randomize
programs during execution, and do not apply fine-grained ran-
domization to every program segment. STABILIZER random-
izes all code and data at a fine granularity, and re-randomizes
during execution.

Heap Randomization. DieHard uses heap randomization
to prevent memory errors [2]. Placing heap objects randomly
makes it unlikely that use after free and out of bounds
accesses will corrupt live heap data. DieHarder builds on this
to provide probabilistic security guarantees [15]. STABILIZER
uses DieHard as its allocation substrate.

Predictable Performance. Quicksort is a classic example
of using randomization for predictable performance [8].
Random pivot selection drastically reduces the likelihood

of encountering a worst-case input, and converts a O(n2)
algorithm into one that runs with O(n log n) in practice.

Randomization has also been applied to probabilistically
analyzable real-time systems. Quiñones et. al show that a
random cache replacement policy enables probabilistic worst-
case execution time analysis, while still providing good per-
formance. This probabilistic analysis is a significant improve-
ment over conventional hard real-time systems, where analy-
sis of cache behavior relies on complete information.

Rigorous Performance Evaluation. Mytkowicz et al. ob-
serve that environmental sensitivities can degrade program
performance by as much as 300% [14]. While Mytkowicz
et al. show that layout can dramatically impact performance,
their proposed solution, experimental setup randomization
(the exploration of the space of different link orders and envi-
ronment variable sizes), is substantially different.

Experimental setup randomization requires far more runs
than STABILIZER, and cannot eliminate bias as effectively.
For example, varying link orders only changes inter-module
function placement, so that a change to the size of a function
still affects the placement of all functions after it. STABI-
LIZER instead randomizes the placement of every function
independently. Similarly, varying environment size changes
the base of the process stack, but not the relative addresses
of stack slots. STABILIZER randomizes each stack frame
independently.

In addition, any unrandomized factor in experimental
setup randomization, such as a different shared library ver-
sion, could have a dramatic effect on layout. STABILIZER
does not require a priori identification of all factors. Its use of
dynamic re-randomization also leads to normally-distributed
execution times, enabling rigorous statistical testing.

Alameldeen and Wood find similar sensitivities in pro-
cessor simulators, which they also address with the addition
of non-determinism [1]. Tsafrir, Ouaknine, and Feitelson re-
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Figure 1. The process for building an application with
STABILIZER (Section 4).

port dramatic environmental sensitivities in job scheduling,
which they address with a technique they call “input shak-
ing” [18, 19]. Georges et al. propose statistically rigorous
techniques for Java performance evaluation [7]. While prior
techniques for rigorous performance evaluation require many
runs over a wide range of (possibly unknown) environmental
factors, STABILIZER enables efficient, rigorous performance
evaluation by breaking the dependence between experimental
setup and program layout.

4. STABILIZER Implementation
STABILIZER fully randomizes the layout of its host applica-
tion. This randomization dynamically randomizes the layout
of heap objects, code, stack frames, and globals. Each ran-
domization consists of a compiler transformation and runtime
support. Figure 1 shows the process for building a program us-
ing STABILIZER. Each source file is first compiled to LLVM
bytecode using the llvmc compiler driver. The resulting byte-
code files are linked and processed with LLVM’s opt tool run-
ning the STABILIZER compiler pass. The resulting executable
is then linked with the STABILIZER runtime library, which
performs dynamic layout randomization. The following sec-
tions describe the implementation of each randomization in
detail.

4.1 Heap Randomization
STABILIZER applies heap randomization using the DieHard
memory allocator [2, 16], a bitmap-based allocator that fully
randomizes individual object placement across a heap that
is some factor M larger than required (in Stabilizer, we
set M to 4/3). Figure 2, taken from Novark et al. [16],
presents an overview of DieHard’s internals. The following
two paragraphs are adapted from that paper:

DieHard allocates memory from increasingly large chunks
that we call miniheaps. Each miniheap contains objects of
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Figure 2. The DieHard memory allocator’s heap layout
(diagram from Novark et al. [16]); STABILIZER uses DieHard
as a source of random objects for the heap, code, and stack
frames.

exactly one size. DieHard allocates new miniheaps to ensure
that, for each size, the ratio of allocated objects to total objects
is never more than 1/M . Each new miniheap is twice as large,
and thus holds twice as many objects, as the previous largest
miniheap.

Allocation randomly probes a miniheap’s bitmap for the
given size class for a 0 bit, indicating a free object available
for reclamation, and sets it to 1. This operation takes O(1)
expected time. Freeing a valid object resets the appropriate
bit, which is also a constant-time operation.

Unlike conventional allocators, DieHard does not cache
and reuse recently freed heap memory, but instead selects
from the full range of available heap memory on every
allocation, making each allocation’s placement independent
of the last.

STABILIZER’s compiler pass rewrites calls to malloc and
free (exposed in LLVM IR) to target the DieHard heap. Note
that STABILIZER cannot move heap-allocated objects during
execution because this is not permitted by C/C++.

4.2 Code Randomization
STABILIZER randomizes code at the function granularity.
Every transformed function has a relocation table (see Fig-
ure 3), which is placed immediately following the code for the
function. The relocation table contains a users counter that
tracks the number of active users of the function, followed by
the addresses of all globals and functions referenced by the
relocated function.

Every function call or global access in the function is
indirected through the relocation table. Relocation tables are
not present in the program binary but are created on demand
by the STABILIZER runtime.

Pointers to entries in the relocation table actually point
into the following function. Each function refers to its own
adjacent relocation table using relative addressing modes, so
two randomly located copies of the same function do not
share a relocation table. STABILIZER adds code to each func-
tion to increment its users counter on entry and decrement
it on exit.
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Figure 3. STABILIZER adds a relocation table to the end of
each function, making every function independently relocat-
able. White boxes contain code and shaded boxes contain
data.

Initialization. During startup, STABILIZER overwrites the
first byte of every relocatable function with a software break-
point (the int 3 x86 opcode, or 0xCC in hex). When a func-
tion is called, STABILIZER intercepts the trap and relocates
the function. Every random function location has a corre-
sponding function location object, which is placed on the
active locations list.

Relocation. Functions are relocated in three stages: first,
STABILIZER requests a sufficiently large block of memory
from the DieHard heap and copies the function body to this
location. Next, the function’s relocation table is constructed
next to the new function location with the users counter
set to 0. Finally, STABILIZER overwrites the beginning of
the function’s original base address with a static jump to the
relocated function.

Re-randomization. STABILIZER re-randomizes functions
at regular time intervals. When a timer signal is delivered, all
running threads are interrupted. STABILIZER then processes
every function location in the active locations list. The
original base of the function is overwritten with a breakpoint
instruction, and the function location is added to the defunct
locations list. This list is scanned on every timer interrupt, and
any locations with no remaining users are freed. The users
counter will never increase for a defunct function location
because future calls to the function will execute in a new
location with its own users counter.

4.3 Randomization of Globals
STABILIZER randomizes the locations of global objects by al-
locating them on the DieHard heap at startup. If code random-
ization is also enabled, globals are already accessed indirectly
through the function relocation table. In this case, the new
random address for the global replaces the default location in
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Figure 4. STABILIZER makes the stack non-contiguous.
Each function has a frame table, which stores a frame for
each recursion depth.

the relocation table. If code randomization is disabled, STA-
BILIZER rewrites accesses to globals to be indirected through
a pointer global variable that holds the random address of the
global. As with heap objects, STABILIZER does not relocate
globals after startup.

4.4 Stack Randomization
STABILIZER randomizes the stack by making it non-contiguous:
each function call moves the stack to a random location.
These randomly placed frames are also allocated via Die-
Hard, and STABILIZER reuses them for some time before
they are freed. This bounded reuse improves cache utilization
and reduces the number of calls to the allocator while still
enabling re-randomization.

Every function has a per-thread depth counter and frame
table that maps the depth to the corresponding stack frame.
The depth counter is incremented at the start of the function an
decremented just before returning. On every call, the function
loads its stack frame address from the frame address array
(frame table[depth]). If the frame address is NULL, the
STABILIZER runtime allocates a new frame.

External functions. Special handling is required when a
stack-randomized function calls an external function. Be-
cause external functions have not been randomized with STA-
BILIZER, they must run on the default stack to prevent over-
running the randomly located frame. STABILIZER returns the
stack pointer to the default stack location just before the call
instruction, and returns it to the random frame after the call
returns. Calls to functions processed by STABILIZER do not
require special handling because these functions will always
switch to their randomly allocated frames.

Re-randomization. At regular intervals, STABILIZER inval-
idates saved stack frames by setting a bit in each entry of the
frame table. When a function loads its frame from the frame
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table, it checks this bit. If the bit is set, the old frame is freed
and a new one is allocated and stored in the table.

4.5 Architecture-Specific Implementation Details
STABILIZER runs on the x86, x86 64 and PowerPC architec-
tures. Most implementation details are identical, but STABI-
LIZER required modifications for specific platforms.

x86 64
Supporting the x86 64 architecture introduces two complica-
tions for STABILIZER. The first is for the jump instructions:
jumps, whether absolute or relative, can only be encoded with
a 32-bit address (or offset). STABILIZER uses mmap with the
MAP 32BIT flag to request memory for relocating functions,
but on some systems (notably, Mac OS X), this memory is
extremely limited.

To handle cases where functions must be relocated more
than a 32-bit offset away from the original copy, STABILIZER
simulates a 64-bit jump by pushing the target address onto
the stack and issuing a return instruction. This form of jump
is much slower than a 32-bit relative jump, so high-address
memory is only used if low-address memory is exhausted.

PowerPC
PowerPC instructions use a fixed-width encoding of four
bytes. Jump instructions use 6 bits to encode the type of
jump to perform, so jumps can only target sign-extended 26
bit addresses (or offsets, in the case of relative jump). This
limitation results in a memory hole that cannot be reached
by a single jump instruction. To ensure that code is never
placed in this hole, STABILIZER uses the MAP FIXED flag
when initializing the code heap to ensure that all functions
are placed in reachable memory.

4.6 Optimizations
STABILIZER performs a number of optimizations that reduce
the overhead of randomization. The first addresses the cost
of software breakpoints. Frequently-called functions incur
the cost of a software breakpoint after every function relo-
cation. Functions that were called in 3 consecutive random-
ization periods are marked as persistent. The STABILIZER
runtime preemptively relocates persistent functions at instead
of on-demand with a software breakpoint. STABILIZER oc-
casionally selects a persistent function at random and resets
it to on-demand relocation to ensure that only actively used
functions are eagerly relocated.

The second optimization addresses inadvertent instruction
cache invalidations. If relocated functions are allocated near
randomly placed frames, globals, or heap objects, this could
lead to unnecessary instruction cache invalidations. To avoid
this, functions are relocated using a separate randomized heap.
For x86 64, this approach has the added benefit of preserving
low-address memory, which is more efficient to reach by
jumps. Function relocation tables pose a similar problem:
every call updates the users counter, which could invalidate

the cached copy of the relocated function. To prevent this, the
relocation table is located at least one cache line away from
the end of the function body.

5. STABILIZER Statistical Analysis
This section presents an analysis that demonstrates that, for
programs that meet several basic assumptions described
below, STABILIZER’s randomization results in normally-
distributed execution times. Section 6 empirically verifies
this analysis.

The analysis proceeds by first assuming programs with a
trivial structure (running in a single loop), and successively
weakens this assumption to handle increasingly complex
programs.

Base case: a single loop. Consider a small program that
runs repeatedly in a loop. The space of all possible layouts l
for this program is the population L. For each layout, an
iteration of the loop will have an execution time e. The
population of all iteration execution times is E. Clearly,
running the program with layout l for 1000 iterations will
take time:

Trandom = 1000 ∗ e

When this same program is run with STABILIZER, every
iteration is run with a different layout li with execution
time ei. Running this program with STABILIZER for 1000
iterations will have total execution time:

Tstabilized =

1000∑
i=1

ei

The values of ei comprise a sample set x from the popula-
tion E with mean:

x̄ =

∑1000
i=1 ei
1000

The central limit theorem tells us that x̄ must be normally
distributed (30 samples is sufficient for normality. We have
1000). Interestingly, the value of x̄ is only different from
Tstabilized by a constant factor. Multiplying a normally dis-
tributed random variable by a constant factor simply shifts
and scales the distribution. The result remains normally dis-
tributed. It should be easy to see that for this simple program
STABILIZER leads to normally distributed execution times.
Note that the distribution of E was never mentioned—the
central limit theorem guarantees normality regardless of the
sampled population’s distribution.

The above argument relies on two conditions. The first is
that STABILIZER runs each iteration with a different layout.
STABILIZER is not coupled to iterations in programs, so this is
clearly not true. However, it is easy to see that if STABILIZER
re-randomizes every n iterations, we can simply redefine an
“iteration” to be n passes over the same code.

6 2012/4/14



0.0	
  
0.5	
  
1.0	
  
1.5	
  
2.0	
  
2.5	
  

am
mp
	
  	
  

art
	
  	
  

ast
ar	
  
	
  

bz
ip2
	
  	
  

eq
ua
ke
	
  	
  

gcc
	
  	
  

go
bm
k	
  	
  

gzi
p	
  	
  

h2
64
ref
	
  	
  

hm
me
r	
  	
  

lbm
	
  	
  

lib
qu
an
tum

	
  	
  
mc
f	
  	
  

mi
lc	
  	
  

na
md
	
  	
  

pa
rse
r	
  	
  

pe
rlb
en
ch
	
  	
  

sje
ng
	
  	
  

sp
hin
x3
	
  	
  

tw
olf
	
  	
  

vo
rte
x	
  	
   vp

r	
  	
  Ru
n$

m
e	
  
re
la
$v

e	
  
to
	
  

un
ra
nd

om
iz
ed

	
  e
xe
cu
$o

n	
  
Overhead	
  of	
  Stabilizer	
  

default	
   stabilizer	
  (code)	
   stabilizer	
  (code,	
  stack)	
   stabilizer	
  (code,	
  stack,	
  heap,	
  globals)	
   stabilizer	
  (large	
  pages)	
  

Figure 5. Overhead of STABILIZER relative to unrandomized execution. With all randomizations enabled, ammp, equake, and
gcc have overheads of 2.78, 4.5, and 3.22, respectively. Large page support reduces overhead substantially, leaving only equake

off the scale with a value of 4.12. For a majority of benchmarks, STABILIZER imposes below 15% overhead, and in four cases
slightly improves performance.

Programs with phase behavior. The second condition is
that the program is simply a loop repeating the same code
over and over again. In reality, programs have more complex
control flow and may even exhibit phase-like behavior. The
net effect is that for one randomization period, where STABI-
LIZER maintains the same random layout, one of any number
of different portions of the application code could be running.
However, the argument still holds.

This program can be decomposed into subprograms, each
equivalent to the trivial looping program described earlier.
These subprograms will each comprise some fraction of
the program’s total execution, and will all have normally
distributed execution times. The total execution time of the
program is a weighted sum of all the subprograms. The
sum of two normally distributed random variables is also
normally distributed, so the program will still have a normally
distributed execution time. This decomposition also covers
the case where STABILIZER’s re-randomizations are out of
phase with the iterations of the trivial looping program.

5.1 Assumptions
STABILIZER can only guarantee normality when a program
is randomized a sufficient number of times. Code layout
randomization is performed at function granularity, so a
program with a single function will not be re-randomized.
This situation could arise in large programs if aggressive
inlining eliminates most of the program’s function calls.
Most programs have a large number of functions, which
allows STABILIZER to re-randomize code frequently enough
to guarantee normality.

STABILIZER supports unmanaged languages, so live heap
objects are not relocated. Every allocation returns a randomly
selected heap address, so programs with a sufficiently large
number of short-lived heap objects will be effectively re-
randomized. This requirement corresponds to the genera-

tional hypothesis for garbage collection, which has also been
shown to be true in unmanaged environments [5, 13].

6. STABILIZER Evaluation
We evaluate STABILIZER in two dimensions. First, we test
the claim that STABILIZER eliminates the impact of execution
environment on program performance and leads to normally
distributed execution times. Next, we quantify the overhead of
running programs with STABILIZER relative to unrandomized
execution.

All evaluations were performed on an dual-socket 6-core
Intel Xeon X5650 running at 2.67GHz equipped with 24GB
of RAM. Each core has 32KB of data L1 cache, 32KB of
instruction L1 cache, and 256KB of unified L2 cache. Each
socket has a single 12MB L3 cache shared by all cores. The
system runs version 2.6.32 of the Linux kernel (unmodified).
All programs (with and without STABILIZER) were built
using version 2.9 of the LLVM compiler with the GCC 4.2
front-end using -O2 optimizations unless otherwise specified.

Benchmarks. We evaluate STABILIZER on the SPEC
CPU2006 and CPU2000 benchmark suites. From SPEC CPU
2006, we ran astar, bzip2, gcc, gobmk, h264ref, hmmer,
lbm, libquantum, mcf, milc, namd, perlbench, sjeng,
and sphinx3. We were unable to run omnetpp, xalancbmk,
dealll, soplex, povray, and all the Fortran benchmarks;
LLVM does not support the Fortran front-end, and STABI-
LIZER currently does not support C++ exceptions. All SPEC
CPU2006 benchmarks were run with train inputs.

We also ran the ammp, art, crafty, equake, gzip,
parser, twolf, vortex, and vpr benchmarks from SPEC
CPU2000. We excluded benchmarks that have more recent
versions in SPEC CPU2006 (gcc, mcf, and perlbmk). We
were unable to run gap and mesa because they would not
build on our 64-bit machine. eon uses exceptions, which
STABILIZER does not yet support. All SPEC CPU 2000
benchmarks were run with ref inputs.
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Figure 6. Speedup of -O3 over the -O2 optimization level in LLVM. Error bars indicate the p-values for the T-test comparing
-O2 and -O3. Benchmarks with dark bars showed a statistically significant change with -O3 relative to -O2. Despite these
individual results, the data do not indicate significance across the entire suite of benchmarks (see Section 7.1).

6.1 Performance Isolation
We evaluate the claim that STABILIZER results in normally
distributed execution times across the entire benchmark suite.
Using the Shapiro-Wilk test for normality, we can check if the
execution times of each benchmark are normally distributed
with and without STABILIZER. Every benchmark was run
10 times, adding a random number of bytes (between 0 and
4096) to the shell environment variables on each run.

Without STABILIZER, 10 benchmarks exhibit execution
times that are not randomly distributed with 95% confidence:
ammp, astar, gzip, lbm, libquantum, mcf, milc, namd,
vortex, and vpr. Running each of these benchmarks with
STABILIZER leads to normally distributed execution times.

Figure 7 shows the distributions of four benchmarks
using quantile-quantile (QQ) plots. QQ plots are useful for
visualizing how close a set of samples is to a distribution
(or another set of samples). The quantile of every sample is
computed. Each data point is placed at the intersection of the
sample and reference distributions’ quantiles. If the samples
come from the reference distribution (modulo differences in
mean and variance), the points will fall along a straight line
in the diagonal.

Result: These figures demonstrate that STABILIZER im-
poses normally distributed execution times. This normality
holds even for programs with execution times that were not
originally normally distributed (that is, without STABILIZER).

6.2 Efficiency
Figure 5 shows the overhead of STABILIZER relative to un-
randomized execution. Each benchmark was run 10 times
for each configuration. The results show that for most bench-
marks, code and stack randomization add under 13% over-
head. With all randomizations enabled, STABILIZER adds
a median overhead of 16.1%. With large page support (dis-
cussed in Section 6.2) median overhead is decreased to 15.6%,
but the overhead for large outliers is significantly reduced.

Overhead
The overhead added by STABILIZER is mostly attributable
to the reduced locality of a randomized program. Code and
stack randomization both add additional logic to function in-
vocation, but in practice this extra work does not significantly
degrade performance. Programs run with STABILIZER use a
larger portion of the virtual address space, putting additional
pressure on the TLB. Randomly placed code and data are
sparse across this increased virtual memory range, reducing
cache utilization. In most cases, the added overhead is mod-
est, but for larger programs (gcc, gobmk, perlbench, sjeng,
and vortex), it can measurably degrade performance.

The added TLB pressure from the large address space can
be reduced with large pages. Large pages on x86 64 are 2
megabytes rather than 4 kilobytes standard pages. Figure 5
shows the overhead of STABILIZER with larges pages enabled.
In every case where STABILIZER adds at least 20% overhead,
the use of large pages reduces overhead dramatically.

With all randomizations enabled, STABILIZER adds sig-
nificant overhead for six benchmarks: ammp, art, equake,
gobmk, perlbench and vortex. The majority of this over-
head is due to startup costs with global randomization and the
increased cost of heap allocations. Global randomization is
not performed lazily, so for some short running benchmarks
with many globals (art, gobmk, perlbench, and vortex)
startup time contributes a large fraction of the overhead. This
overhead could be reduced by randomizing globals lazily,
which we leave for future work.

Note that STABILIZER’s overhead does not affect its
validity as a tool for measuring the impact of (non-layout
based) performance optimizations. If an optimization has
a statistically-significant impact, STABILIZER can detect it:
because STABILIZER provides normal distributions, it can
always be used to perform hypothesis testing.
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Performance Improvements
In some cases, STABILIZER improves the performance of
benchmarks. Benchmarks are unlikely to exhibit cache con-
flicts and branch aliasing for repeated random layouts. Two
programs (mcf and hmmer) show improved performance only
when global and heap randomization are enabled. Stack ran-
domization improves the performance of two more bench-
marks (lbm and libquantum). Code randomization slightly
improves the performance of lbm and libquantum; we at-
tribute this to the elimination of branch aliasing [9].

7. Sound Performance Analysis
The goal of STABILIZER is to enable rigorous performance
evaluation. We demonstrate STABILIZER’s use here by eval-
uating the effectiveness of LLVM’s -O3 optimization level.
Figure 6 shows the speedup of -O3 over -O2 for all bench-
marks. Running benchmarks with STABILIZER guarantees
normally distributed execution times, so we can apply rigor-
ous statistical methods to determine the effect of -O3 versus
-O2.

LLVM’s -O2 optimizations include basic-block level
common subexpression elimination, while -O3 adds argu-
ment promotion, global dead code elimination, increases
the amount of inlining, and adds global (procedure-wide)
common subexpression elimination.

We first apply the two-sample t-test to determine whether
-O3 provides a statistically significant performance improve-
ment over -O2. With a 95% confidence level, we determined
that there is a statistically significant difference between -O2

and -O3 for 13 of 23 benchmarks. While this result may sug-
gest that -O3 does have an impact, this result comes with a
caveat: gzip and perlbench show a statistically significant
increase in execution time with the added optimizations.

7.1 Analysis of Variance
Evaluating optimizations with pairwise t-tests is error prone.
This methodology runs a high risk of erroneously rejecting
the null hypothesis. In this case, the null hypothesis is that
-O2 and -O3 optimization levels produce execution times with
the same distributions. Using analysis of variance, we can
determine if -O3 has a significant effect over all the samples.

We run ANOVA with the complete set of benchmark runs
at both -O2 and -O3 optimization levels. For this config-
uration, the optimization level and benchmarks are the in-
dependent factors (specified by the experimenter), and the
execution time is the dependent factor.

ANOVA takes the total variance in execution times and
breaks it down by source: the fraction due to differences be-
tween benchmarks, the impact of optimizations, interactions
between the independent factors, and random variation be-
tween runs. Not surprisingly, 99.9% of the variance in our
experiment is due to differences between benchmarks. Of
the remaining variance, 46.5% is due to the interaction be-

tween specific benchmarks and -O3, 47.5% is due to random
variation, and just 6.0% is due to the -O3 optimizations.

Result: Using the F-test, we can determine if the variances
are statistically significant [6]. We fail to reject the null hy-
pothesis, and must conclude that versus -O2, -O3 optimiza-
tions are not statistically significant with 95% confidence.

8. Future Work
We plan to extend STABILIZER to randomize code at finer
granularity. Instead of relocating whole functions, STABI-
LIZER can relocate individual basic blocks at runtime. This
finer granularity would allow for branch-sense randomization.
Randomly relocated basic blocks can appear in any order, and
STABILIZER can randomly swap the fall-through and target
blocks during execution. This approach would effectively
randomize the history portion of the branch predictor table,
addressing another source of potential performance outliers.

In addition, DieHard may not be the best fit for the
randomization of large, fixed-size functions and stack frames.
Its power-of-two size classes lead to increased demand for
virtual address space, placing unneeded pressure on the TLB.
We plan to implement a specialized allocator that reduces the
cost of STABILIZER’s code and stack randomization.

9. Conclusion
Modern processor architectures are highly dependent on pro-
gram layout. Layout can be affected by input, code changes,
program link order, optimizations, shared library versions,
and even shell environment variables. These dependencies
lead to highly unpredictable performance, complicating per-
formance evaluation and optimization.

This paper presents STABILIZER, a compiler and run-
time system for comprehensive layout randomization. STA-
BILIZER dynamically relocates functions, stack frames, heap
objects, and globals on every execution, and repeatedly relo-
cates code and stack during execution. STABILIZER makes
performance outliers statistically unlikely, and makes execu-
tion times conform to a normal distribution. Normally dis-
tributed execution times enable a wide range of statistical
techniques for performance evaluation. We use STABILIZER
to rigorously evaluate the effectiveness of LLVM’s -O3 op-
timization level across the SPEC CPU2000 and CPU2006
benchmark suites, and found no statistically significant im-
provement versus -O2.

We encourage researchers to download STABILIZER to use
it as a basis for sound performance evaluation: it is available
for download at http://www.stabilizer-tool.org.
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Figure 7. Immunity from measurement bias: Quantile-quantile plots comparing the distribution of execution times for three
benchmarks to the normal distribution. The solid line indicates where points drawn from a normal distribution will fall. In the
first three cases, unrandomized execution times fall well outside of the range for normality, while runs with STABILIZER closely
match the normal quantile line. The figure for art shows normally distributed execution times with and without randomization.
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