Exploiting Mobile Sensing to Enable Automated
Crowdsourced Parking Availability Sharing

Tingxin Yan?,

Baik Hohf,

Deepak Ganesan?

$Dept. of Computer Science, University of Massachusetts, Amherst MA 01003
TNokia Research Center, Palo Alto CA 94304
{yan, dganesan}@cs.umass.edu?, {baik.hoh}@nokia.comf

ABSTRACT

Limited parking resource in urban areas causes severe problems
including traffic congestion, environmental pollution, driver anx-
iety, and many others. These concerns would be significantly
alleviated had real time parking availability information were
available to drivers. Compared with expensive infrastructure-
based approaches, crowdsourcing-based parking availability sys-
tems, which exploits smartphone users to report available park-
ing spots, has begun to attract attention from both academia and
industry due to its large scale, agility, and low cost. However, ex-
isting crowdsourced parking information systems rely on manual
reports from participants, which suffers from cumbersome manual
operations as well as inaccurate reports due to human errors.

In this paper, we present SENPARK, a mobile platform that
combines crowdsourcing and mobile sensing together to enable
accurate and automated available parking information reporting
from mobile users. Compared with existing crowdsourced parking
availability platforms, SENPARK has two significant contributions.
First, it presents a parking detection algorithm that enables users
to check in parking locations automatically. Second, it presents a
leaving time estimation algorithm that enables users to automat-
ically report their leaving events a few minutes ahead.

With real-world experiments consisting of 5 participants over
2 months, we show that SENPARK can 1) report parking events of
users with an accuracy of over 90%, 2) forecast leaving events
a couple minutes ahead with an accuracy of over 95%, and 3)
recognizing over 95% malicious users.

1. INTRODUCTION

Parking in crowded urban areas is a precious resource
and drivers spend substantial amounts of time locating
empty parking spots. Metropolitan cities, such as San
Francisco and New York City in particular, have a press-
ing problem due to limited parking in downtown areas,
both for street as well as garage parking [14]. Making
matters worse, information about parking availability is
typically unavailable to drivers. Studies by the US De-
partment of Transportation have reported that parking
patrons “often do not know where the best parking lo-
cations are”, and “most importantly, whether a parking
place will be available when they arrive” [12].

The chasm between demands versus supply of park-
ing spots causes a spectrum of environmental, health
and safety issues. Drivers who keep vehicles on the road
circling for parking could lead to lengthy queues of ve-
hicles causing severe traffic congestions. In addition,
the frequent switches between acceleration and braking

while circling not only generates significant amount of
automobile emissions [1], but increases the stress level
of drivers and has been reported to increase road rage
and accidents [4].

These concerns have led to significant efforts to design
online real-time parking information systems that can
provide accurate and real time information about park-
ing availability. For example, SFPark is a pilot project
to monitor real-time parking availability in San Fran-
cisco by deploying a massive network of sensors [13].
While such parking information systems can help direct
drivers to available parking locations, they are in their
pilot stages and face daunting scaling and budgetary
challenges given the vast volume of street parking in
U.S. cities. Continuous monitoring of street parking
requires installation of occupancy sensors on hundreds
of thousands of parking spots or parking meters, and
a vast wireless infrastructure to obtain and transmit
sensing data in a reliable manner.

The difficulties in deploying continuous-sensing based
parking infrastructure has led to increased interest in
the use of crowdsourcing using mobile phones. Several
mobile applications such as Google’s OpenSpot [8] and
PrimoSpot [2] were recently released, with the intent
of using general public to locate empty parking spots.
Compared with infrastructure-based approaches such
as SFPark [13], crowdsourcing-based approaches offer
higher agility, lower cost, and larger coverage. Recent
research has also shown that using distance sensors at-
tached to taxis [11] for obtaining parking availability in-
formation is promising, although it is a more expensive
and less scalable approach than using mobile phones.

A fundamental limitation in all these systems is that
they rely on mobile users to manually input parking
availability information. Dependency on human opera-
tions would not only degrade user participation, or in-
crease the incentives needed, due to the cost of human
operations, but incur inaccurate or error reports. For
example, mobile users are easily forget about pressing
certain buttons to report parking availability informa-
tion, or had some incorrect operations.

In this paper, we address this limitation of crowd-
sourced parking systems by designing SENPARK, a park-
ing availability sharing system for mobile users to report
available-now and available-soon parking spots with no
human operations. Mobile users can leave SENPARK run-
ning in the background, and the SENPARK service can
automatically detect parking events, predict the leav-
ing events of mobile users and broadcast available-soon
information, and detect pulling out events and confirm
available-now events.

Although the vision of automatic parking availabil-
ity report is intriguing, a practical realization of such
a system presents several hurdles. First, such a system
should accurately detect motion states of mobile users,
such as walking and driving, and reliably infer park-
ing or leaving events triggered by the change of motion
states. Second, such a system should be able to predict
that mobile users are coming back to parked spot to
forecast their leaving events accurately. Third, accurate
localization should be also supported since the system
needs to provide the location of available parking spots
without manual verification steps as well. Fourth, such
a system should be robust against malicious users whose
goal is solely to maximize their gain by masquerading
as fake participants.

SENPARK addresses these challenges by using a novel
combination of sensing and inference methods. We de-
veloped an activity recognition algorithm that uses only
accelerometer sensor to accurately detect the motion
state of mobile users. We also developed a geofence-
based location trace prediction algorithm that can fore-
cast leaving events of mobile users. We also proposed
an activity recognition based scheme to detect malicious
users in the system thus enhance the robustness of the
system. We show that:

e Our geofencing-based leaving events forecasting algo-
rithm can achieve 95% precision and recall.

e Our accelerometer-based parking events detection al-
gorithm can achieve 95% accuracy with 30 second
delay.

e Our sensing-based approach can detect malicious users
with close to 100% accuracy when they are pedestri-
ans and over 95% when they are motorists.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the overview of SENPARK and share our
motivation and challenges. Then we explain three core
building blocks to tackle these challenges in Sections 3,
4, and 5. In Section 6, we evaluate the performance of
SENPARK system and discuss its limitations. Finally we
summarize related work in Section 7 and conclude the
paper in Section 8.

2. SENPARK OVERVIEW

The goal of SENPARK is to provide a crowdsourcing
parking availability tool which allow mobile users to

: THU —— L Block 1 ——
08 FRI 08 Block 2
0.6 SAT —— 06

0.4 0.4

CCDF
CCDF

0.2 0.2

01 0.1
1 5 10 15 20 25 30 1 5 10 15 20 25 30

Available Time(minutes) Available Time(minutes)

(b) Spatial Behavior

(a) Temporal Behavior

Figure 1: Spatial and Temporal Dependency of
Parking Availability in San Francisco

provide accurate parking availability information with
minimized user operations.

The first question SENPARK addresses is the usefulness
of parking availability information. Existing crowd-
sourced systems, such as Google’s OpenSpot [8] and
PrimoSpot [2], allow mobile users to provide availabil-
ity of parking spots that are already empty. The key
disadvantage of such availability information is that the
life time of an empty parking spot is usually very short
in urban areas. We have conducted a field study in San
Francisco downtown area, where street-parking supply
is far less than parking demand. We monitored the
street parking spots in four blocks and recorded the
time when each parking spot is taken and released. Our
observation is shown in Figure 1(b) and Figure 1(a).
The availability of parking exhibits significant tempo-
ral and special dependency, and generally speaking, the
life time of an empty parking spot in SF downtown can
be less than five minutes in busy hours, which makes
the parking availability information provided by mobile
users very easy to be obsolete. This observation mo-
tivates us to seek parking availability information that
could last longer, and we argue that instead of providing
“available now” information, we could encourage mobile
users to provide “available soon” (or “leaving soon”) in-
formation, which indicates that a parking spot is about
to be available within a few minutes. The advantage
of “available soon” information is that it gives drivers
who receive this information more time to plan their
trip, thus the chance of getting a parking spot could be
better than only having “available now” information.

In SENPARK, users can be either a contributor who
generates parking availability information or a service
subscriber who consumes available parking information
provided by contributor. Contributors can receive in-
centives from sharing parking information, but the ac-
tual incentive scheme is out of the scope of this pa-
per. The process of how a contributor share the parking
availability information is shown in Figure 2. SENPARK
only requires a contributor to open the service and let it
running at the background. When a contributor parks
in a spot, SENPARK automatically recognize the park-
ing event and the location of the spot. When the con-

.

- ~

S M

i
Street
-
N A}
\

(2)Start o

Trajectory g

y Monitoring o

<

(1)Checkin 'y _E

. (3)Send <
(4)Checkout,send "~ Leaving Time

leaving now message "
s 8 Estimation

Geofences

Figure 2: Workflow of SENPARK leaving time es-
timation scheme

tributor walks back to the parking spot and prepares
to leave, SENPARK automatically estimated the leaving
time of the contributor and share an “available soon” in-
formation to subscribers. When the contributor leaves
the parking spot, SENPARK automatically recognize the
leaving event and share a “available now” information
to subscribers.

Although “available soon” information can greatly
prolong the life time of parking availability, how to col-
lect them from mobile user is still challenging. We en-
vision three core challenges in crowdsourcing “available
soon” from mobile users. First, how to accurately esti-
mate when a parking spot can be released; second, how
to reduce human operation into its minimum during
this process; and third, how to design robust systems
against malicious users. In Section 3, we describe a ge-
ofence based algorithm that can accurately estimate the
leaving time of a contributor. In Section 4, we describe
an activity recognition based algorithm to accurately
detect the parking and leaving events of contributors,
and in Section 5, we describe how we use activity recog-
nition to remove malicious users from our system.

3. GEOFENCE-BASED PARKING
AVAILABILITY FORECASTING

Available-soon information could greatly enhance the
usefulness of parking information, but estimating their
own leaving time (i.e., how soon contributors will va-
cate the spot) is not a trivial task for contributors.
Leisure activities such as shopping often have unpre-
dictable schedules because such activities can be eas-
ily interrupted by various factors such as chatting with
someone or being attracted by merchandises in a shop.

SENPARK proposes an automated leaving time estima-

tion algorithm by analyzing the GPS trajectory of con-
tributors when they are close to their parking spots.
The intuition behind our automated leaving time esti-
mation algorithm is that when users walk back to their
parking spots and prepare to leave, their trajectories
are usually “towards” the parking spot as opposed to
random ones that are common for shopping and wan-
dering.

The goal of our algorithm is to predict when contrib-
utors will leave (or vacate the parking spot) in advance
and forecast the leaving-soon information to surround-
ing drivers. First, the forecasting of a couple of minutes
in advance could increase the value of shared parking
information. Note that vacant spots in downtown are so
quickly taken (as shown in figure 1(a) and figure 1(b))
that available-soon parking lots can give more time for
drivers to prepare themselves than available-now ones.
Second, more importantly it gives our service consumers
a directed parking guidance such that their hopeless
cruising time could be greatly reduced.

Geofences

Before presenting our prediction algorithm, we first need
to carefully define what means “when users are close to
their parking spots” and what means “users walk to-
wards parking spots”. We use geofences to describe the
adjacency of contributors when they are close to park-
ing spots. Geofences are basically virtual perimeters
for real-world geographic areas. For example, a circle
around a shopping mall can be specified as a geofence
where only mobile users within the fence should receive
certain mobile ads. In SENPARK, we use geofences to
trigger our leaving time estimation.

Leaving Time Estimation

The first step of our algorithm is to establish three
circled geofences for each contributor, all of which are
centered with the geo-coordinates of the parking spot
where the contributor is currently parking the vehicle.
The first circle has a radius of 150 meters, which cor-
responds to a distance of two-minute walking distance
with an average speed of adult walking. The second
geofence has a radius of 225 meters, which corresponds
to three-minute walking distance, and 450 meters for
the third circle, or 6 minutes walking distance. These
three geofences are set up when a contributor checked
in, and the precise parking spot is recorded. For the
sake of simplicity the geofence radii are fixed in the fol-
lowing sections, but in our implementation we provide
users a feature to personalize the geofence with their
own paces.

After having three geofences established, SENPARK starts
to monitor the GPS location of each contributor. When
a contributor walks out of the third geofence, i.e., at
least 450 meters away from the parking spot, SENPARK

recognizes that the contributor is far enough from the
parking so that the GPS can be duty-cycled to save bat-
tery power. In other words, the third circle in SENPARK
is an energy fence where GPS sampling rate is much
lower outside the fence. In our implementation, we use
a duty cycle of 30 second wakeup time and two minute
sleep time.

Our leaving time estimation is triggered when our
system detects that there is an event of entering to the
third circle, i.e., the user has walked back and the dis-
tance to the parking spot is less than 450 meters. The
GPS sampling rate is increased to be continuous. If
the contributor keeps walking towards the parking spot,
there will be two more entering events for the second
and the first (inner-most) circle, respectively. When
these two events occurred, SENPARK system records the
intersection point between the contributor’s GPS trace
and the circle. Let us denote the two intersection points
are P and P, for first and second circle. Along with
the parking spot, denoted as P, the three points form
a triangle. If the contributor walks towards the park-
ing spot, the angle of Z(P;, Py, Py) should be small
enough, as illustrated in Figure 3(a). On the contrary,
if the contributor passes by the parking spot, the an-
gle of Z(Py, Py, P») can be large, as illustrated in Fig-
ure 3(b). In our algorithm, we set an upper bound for
angle Z(Py, Py, P») to be arccos(150/225), which is the
corner case where line (P, P1) is in perpendicular to
line (Py, Py). Only when the angle of Z(Py, Py, Ps) is
less then the upper bound, our algorithm thinks that
the contributor is walking towards the destination.

Our leaving time estimation finishes when the above
trajectory analysis is done. If our algorithm recognizes
that the contributor is returning back to the parking
spot, SENPARK system will trigger an “available-soon”
alert to all system consumers indicating the parking
spot will be available in around 2 minutes, which cor-
responds to the 150 meter radius of the first circle.

4. ACTIVITY RECOGNITION-BASED AU-

TOMATIC CHECK-IN AND CHECK-OUT

The first task of parking information sharing is to
determine the occupation status of a parking spot, in-
cluding when the spot is taken and released, and what
is the location of the spot. In this section, we propose
an activity recognition based scheme to automate the
process of determine the occupation status of parking
spots such that SENPARK contributors can share their
parking availability information without any cumber-
some manual operations.

SENPARK includes two steps towards automated oc-
cupation status recognition — check-in and check-out.
The main purpose of check-in step is to detect that a
contributor has parked, localize the precise location of
the parking spot, and initiate the leaving time estima-

tion algorithm that we described in the previous sec-
tion. The major goal of check-out step is to detect that
a contributor has left the parking spot and announce a
“leaving now” message to SENPARK service subscribers
that a parking spot is released.

The core of SENPARK automated check-in and check-
out are 1) an activity recognition engine that can accu-
rately detect the motion status of mobile users, and 2) a
localization engine for accurate parking spot locations.

Recognizing parking event for check-in

Determine that a contributor has parked the car is the
foremost task SENPARK needs to complete. SENPARK
takes advantages of existing activity recognition engines,
such as Jigsaw [10], to accurately detect the motion sta-
tus of contributors, and use the motion status to infer
whether the contributor is in parking state.

Existing activity recognition engines exploits a set of
on board sensors, such as accelerometer, compass, and
gyroscope sensor, to detect the motion status of humans
with high accuracy. For instance, Jigsaw [10] engine
claimed that it can distinguish a set of motion status
including driving, running, walking, and stationary by
primarily using accelerometer sensor. The advantage of
Jigsaw is that the energy consumption is very low if only
accelerometer is used. In our implementation, we use
a similar engine like Jigsaw as a background service to
detect the motion status of contributors continuously.
The accelerometer sampling process is duty cycled as
25 seconds active and 100 seconds sleep to reduce the
energy consumption. When the accelerometer is active,
it collects samples with a rate of 20Hz. We first align
the accelerometer to remove the gravity so that the ac-
celerometer data can be used to derive the actual speed
change of the user. Second, we set up a 25 seconds
time window of accelerometer readings to remove jit-
ters. Third, for the 25 seconds accelerometer data, we
apply low-pass filter and high-pass filter to get the low-
and high-frequency terms, which are useful to distin-
guish driving activity from others. We then use FFT
variance as the major feature for driving state detec-
tion. We collect the accelerometer data of the Android
smartphone for 7 different cars in driving, walking, and
stationary cases to build a training dataset. By using
a R45 clustering tree, we were able to classify driving
state, walking state, and stationary state with an accu-
racy of over 90%.

Based on the motion status detected by our activity
recognition engine, we use state transition to further
infer the parking state. When the activity recognition
engine detects a state transition from driving to sta-
tionary to walking, it is most likely to be a parking
event. SENPARK triggers a check-in message when the
state transition is captured, and also initiate localiza-
tion procedure to capture the accurate location of the

(a) True Example

(b) False Example

Figure 3: Geofence examples

parking spot, and leaving time estimation procedure to
predict the leaving time of the contributor.

Check-in with accurate parking spot Location

Accurate localization in city areas is a hard problem
due to the “urban canyon” effect. Our experiments in-
dicate that GPS localization accuracy in crowded down-
town area is highly related to the motion status of users.
When users are in moving state, no matter driving or
walking, the GPS accuracy is much better than that
when users are stationary, either sitting or standing.
Furthermore, when users are moving, geometry infor-
mation, such as road names, can be used to amend GPS
readings and improve localization accuracy.

We assume that the GPS is already on when con-
tributors are close to the parking spot. In our current
implementation, we specified a set of “hot zones” in San
Francisco downtown and use cellular tower positioning
to trigger the GPS when contributors enter one of the
hot zones. Owur envision is that SENPARK can be ul-
timately integrated with smartphone-based navigation
software, such as Nokia Navigation, and the GPS can
be always on to provide both navigation guidance as
well as accurate localization for parking.

Based on our observation, there is a “sweet window”
that can achieve the best localization accuracy for park-
ing spot, and the “sweet window” is the last a few sam-
ples when a user is about to park, and the first a few
samples when a user leaves the car and starts walk-
ing. In other words, we need to complete localization
as soon as a contributor is checked in. Any time before
and after the “sweet window” would leads to large dis-
tance between the location of the user and the actual
location of the vehicle.

Our localization algorithm takes the last three GPS
samples before check-in, and the first three samples
right after the walking state is detected, and compute
the centroid point from the six GPS locations. The cen-
troid point is used as the location of the parking spot.

Recognizing leaving event for check-out

The last step of SENPARK parking status recognition is
for contributors to leave the parking spot, and we call
it a check-out procedure. The check-out process repre-
sents reversed motion status change as check-in process.
When users leave the parking spot, the motion status
changes from walking to stationary for a short time, and
then change to driving state. We still use our activity
recognition engine for detecting the state changes, and
trigger a “leaving now” message when such changes are
detected.

The “leaving now” message is used to confirm the
“leaving soon” message that launched by our leaving
time estimation algorithm, and also used to indicate
that there is actually a parking spot released for SENPARK
subscribers. Although the life time of “leaving now”
message is short, it is still at least not harmful to share
such information with other drivers.

Handling recognition delay

Both activity recognition and localization has delays,
which may lead to inaccurate recognition or localization
results. SENPARK handles the delay of each modules as
follows.

Our activity recognition engine suffers from around
30 second delay in finalizing the parking and leaving
events. The delay can cause incorrect timing of GPS
sample polling in check-in step, which in turn leads to
inaccurate localization results. In our implementation,
we compensate the delay by polling back 30 seconds
for getting GPS samples from navigation software. The
delay can also cause inaccurate “leaving now” informa-
tion in check-out step. However, our observation is that
drivers often take more than 30 seconds to factually pull
out their car from a parking spot, which alleviate the
negative impact of the delay caused by activity recog-
nition.

S. ROBUSTNESS: ACTIVITY RECOGNITION

BASED MALICIOUS USER CHECKING.

Suppressing bogus reports from malicious users is a
key for securing the usefulness of crowdsourced park-
ing information. A malicious contributor whose goal
is solely to degenerate the quality of the SENPARK can
submit a large amount of incorrect parking information
to the system. Such dishonest contributors can greatly
degrade the experience of SENPARK subscribers and ad-
versely impact the viability of SENPARK.

We prevent malicious reports by using the activity
recognition that is used for automated check-in and
check-out procedures. The idea of our identification
is that contributors with normal behavior tend to fol-
low the expected motion state pattern between check-in
and check-out events, while malicious users need to in-
vest significant time and effort to pretend to be normal
users. (Note that normal users are not on driving state
between check-in and check-out events, but they should
be on driving state after check-out event) Throughout
our discussion, we simplify the robustness problem in
the manner where users can be compromised but the
phones are trustworthy. In other words, a malicious
user does not manipulate GPS coordinates, accelerom-
eter readings, and timestamps intentionally. There are
many other studies focusing on handling device manip-
ulations but they are out of the scope of the study.

Baseline schemes A few simple baseline mechanisms
can be used as a first-level filter for preventing mali-
cious contributors. First, the service provider can pre-
determine parking hotspots that are considered valu-
able to users and reject “leaving soon” information orig-
inating from other areas. Second, the service provider
can rate limit the number of “leaving soon” messages
per day. If a contributor generates more than the limit,
the service provider can place the contributor in a black-
list. The advantage of these approaches is that both
are easy to implement at the server side and require
no additional information from the phone. However,
these techniques cannot completely prevent malicious
contributors — hotspot areas can be easily guessed by
a malicious contributor, and rate limits typically need to
be set conservatively and a malicious contributor could
still provide considerable useless information once they
figure out the limit.

ActCheck using activity recognition on the phone
A second approach is to use activity recognition tech-
niques on the phone to detect if the activities performed
by the contributor is consistent with expectations, and
it is called ActCheck in our system. ActCheck expects
that a normal contributor should not in driving state
between check-in and check-out events, and in driving
state after check-out event. It is reasonable since by
definition the car should be parked between check-in
and check-out, and should be moving after check-out.
ActCheck consumes minimum energy since it only
reads the results from activity recognition engine. No

communication or manual operations from contributors
are needed. Besides, our activity recognition engine
only uses accelerometer sensor, which is very lightweighted
in terms of power consumption.

The major problem of ActCheck is that malicious
can manipulate their behavior to deceive the activity
recognition engine. There are two major ways: 1) mo-
torist in driving state pretending to be in walking state
by driving very slowly and steadily, and 2) pedestri-
ans pretending to be in driving state by vibrating and
shaking phones to generate accelerometer noises that
are common when driving. Our experience with activ-
ity recognition system indicates that such deception is
very hard to achieve in practice — malicious contribu-
tors need to perform a perfect combination of extremely
slow driving, usually less than 10 mph, throughout the
time between check-in and check-out, or shaking the
phone vigorously while walking to give the impression
of driving. Both of them require malicious users with
long time walking or tedious operations.

Another possible way to deceive our system is that a
malicious user takes public transportation to a parking
spot, walking out of our geofences, and return back to
the parking spot and leaving with public transportation.
Similarly, it requires a lot of time and effort for the
malicious users to walk for a long distance and take
public transportation tools.

Combining above approaches: While there are
several approaches, each of them has pros and cons.
The baseline schemes are the easiest to implement at
the server side, and provide a first-order filter against
malicious contributors. When the baseline schemes de-
tect a pattern, for example, a contributor who send a
large amount of parking information, ActCheck is trig-
gered. ActCheck provides a second-order filter to de-
tect if the activity pattern of the contributor follows
expected behavior.

6. EVALUATION

In this section we evaluate the performance of SENPARK
in two major aspects — the performance of leaving time
estimation, and the performance of activity recognition
based malicious user detection.

6.1 Performance of Leaving Time Estimation

We collected a walking trace dataset from five differ-
ent participants at San Francisco downtown area. We
specify five different parking spots, and allow them to
have free activity of 20 minutes for each parking lot.
We collect the GPS trace of the walking trajectory of
each participants, and run our leaving time estimation
algorithm against the trace dataset.

We measure the accuracy of leaving time estimation
on its precision and recall, and specifically we are inter-
ested in how precision and recall change as we tune the

V Radius =100
Radius = 200
A Radius =300

O Radius =150
< Radius =250

A

0.9 3
S 08
R
[&]
9] (o]
a 0.7

0.6

v
0.5
0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 4: Leaving Time Estimation Performance
when tuning geofence radius.

geofence radius settings. Here precision is defined as
the ratio of correctly forecasted events (i.e., users have
actually returned to the parking spots) out of all pre-
dictions, and recall is defined as the ratio of correctly
forecasted events out of all true events where partici-
pants are back to parking spots. Thus precision means
accuracy of forecasting while recall means sensitivity of
forecasting in more general terms.

Figure 4 shows the precision and recall when the first
circle radius varies from 100 meters to up to 300 me-
ters, and the radius of the second circle is always 75
meters larger than the first circle. Since the third cir-
cle is placed for saving energy, we do not consider here.
From this graph, we can conclude that our leaving time
estimation algorithm is quite sensitive to geofence ra-
dius. When the radius is around 100 meters, both pre-
cision and recall are above 90%, but when the radius is
increased to around 300 meters, the precision and recall
are reduced to around 50%. The result matches to our
life experience — when we are closer to a destination,
the route and schedule become more predictable and
less likely change than when we are far away from the
destination. Around 90% precision and recall also give
us enough confidence that our SENPARK service can pro-
vide reasonably accurate prediction of “leaving soon”
information with around 2 minutes advance. However,
if a service provider wants to put more weight on earlier
forecasting than accurate forecasting, he has to find a
larger radius in a trade-off relationship.

6.2 Performance of Malicious User Detection

Our second evaluation is about how accurately the
activity recognition engine can detect malicious contrib-
utors. We focus on two types of malicious contributors,

pedestrians and motorists. Throughout the remaining
discussion, we shortly call the malicious user detection
system (based on the activity recognition) ActCheck.
We first evaluate the case where malicious contributors
are unaware of ActCheck, and then evaluate the case
where malicious contributors are aware of ActCheck and
try to deceive it.

Malicious Users Unaware of ActCheck: We run
ActCheck after contributors send either “leaving soon”
message or “leaving now” message. For each case, we
tune the running time of ActCheck from one minute to
five minutes. Figure 5 shows the accuracy of ActCheck
in classifying normal users and malicious users. From
this figure, we find that the accuracy of ActCheck im-
proves significantly as the running time increases. When
ActCheck runs for five minutes, it can classify over 98%
normal users correctly, while less than 5% malicious
users can pass this classification filter. While the en-
ergy consumption of ActCheck increases with time, it
is still energy-efficient since it only uses an accelerome-
ter sensor [10].

Malicious Users Aware of ActCheck: In this
experiment, several participants are recruited to act
as malicious contributors to deceive ActCheck. Since
ActCheck expects that a contributor behave as a pedes-
trian after sending “leaving soon” message and behaves
as a motorist after sending “leaving now” message, we
tried two malicious behaviors in this experiment: 1) act
as a pedestrian in a moving vehicle, and 2) act as a
motorist when walking.

To act as a pedestrian in a moving vehicle, users
need to meet two conditions: acceleration (in x and
y axes) and high frequency vibration (caused by mov-
ing vehicles) should be kept small enough. To keep
the acceleration value small enough, users have to drive
smoothly and slow. To force the high frequency vi-
bration, users have to detach the phone from vibrating
objects (i.e., vehicle and drivers); users can throw and
catch the phone in vehicles. ActCheck can be deceived
if both conditions are met. However, the effort to per-
form such deception becomes harder particularly when
the running time of ActCheck is sufficiently long. To act
as a motorist when walking is much harder, since it is
difficult to mimic the high frequency vibration pattern
of vehicles.

7. RELATED WORK

Recently many researchers have leveraged mobile sens-
ing techniques for enhanced transportation experiences.
Most research efforts are focused on handling the chal-
lenges during travelling time, including traffic conges-
tion [7, 6], irregular public transit schedule [15], and
unexpected road conditions [5]. Unfortunately not a se-
rious attention has been paid on parking problem that
not only affects the overall travelling experience but also

‘O Normal Users
‘O Malicious Pedestrians
‘O Malicious Motorists

Probability as Normal User

1 2 3 4 5
ActCheck Running Time (Minutes)

Figure 5: ActCheck accuracy vs. running time.

causes traffic problems. For instance, Shoup et al has
observed that “about 30% of traffic is generated from
cruising vehicles searching for parking spaces in down-
town areas” [14]. Knowing available parking lots in ad-
vance can help drivers to best utilize various transporta-
tion modes as well as easing out stressful experiences.

An increasing number of mobile crowdsourcing ap-
plications allow users to share empty parking spot in-
formation. Examples include OpenSpot [8], Rodify [9],
and many others. Among all these applications, Rodify
is closest to us, as it allow users to share parking spots
that are both available now and available soon. How-
ever, none of these applications solve the challenges we
addressed in this paper, including inaccuracy, reduc-
ing manual operations, and detecting malicious users.
Another relevant recent project is ParkNet [11], which
installs ultra-sonic sensors on vehicles, and detects park-
ing availability when vehicles drive by. This approach
requires expensive infrastructure to be installed, and
suffers from the same limitation as other approaches in
that it only provides availability information and not
when a spot is taken, unlike our approach.

There have been a spectrum of participatory sens-
ing and personal sensing applications for mobile phones
that use onboard sensors for various applications, such
as obtaining images [3], activity patterns [10], predict-
ing bus arrivals [15], and monitoring traffic and road
quality [5, 6, 7]. Our work on SENPARK leverages mobile
sensing for parking problem, and our novelty lies in the
fact that we tailored activity recognition for detecting
status switches and malicious users, and we also present
trajectory analysis for leaving time estimation.

8. CONCLUSION
In this paper, we present SENPARK, which leverages

smartphone users to contribute available-soon parking
information accurately and with minimum manual op-
erations. To increase reporting accuracy and reduce
cumbersome manual operations, we propose a mobile
system that predicts the leaving time of contributors
such that available-soon information can be generated
and shared with other drivers who need a parking spot.
Furthermore, the presented activity recognition engine
suppresses bogus reports from malicious users to secure
the robustness and usefulness of crowdsourced parking
sharing system. Our experimental results on real traced
collected from San Francisco downtown area indicate
that SENPARK provides over 85% prediction accuracy of
leaving time with at least two minutes in advance.

Future directions: Our future research plans to ex-
pand SENPARK to address more real-world challenges in
parking. First, we plan to integrate our parking in-
formation sharing system to navigation software suites
to provide a better navigation experience that would
guide you until your car is parked. Second, we will fur-
ther study the data management issues in crowdsourced
parking information sharing, such as how to incentivize
participants, how to gather sufficient data, and how to
store and query the crowdsourced parking information
to provide efficient web service to consumers. Last but
not the least, we are also interested in identifying poten-
tial privacy compromise in crowdsourced parking sys-
tems.

9. REFERENCES

[1] R. Arnott and E. Inci. An integrated model of downtown
parking and traffic congestion. Journal of Urban Economics,
60:418-442, November 2006.

[2] N. Bilton. Finding That Prime Parking Spot With Primospot.
http://bits.blogs.nytimes.com/2009/12/03/
finding-that-prime-parking-spot-with-primospot/.

[3] N. Bulusu, C. Chou, and S. Kanhere. Participatory Sensing in
Commerce: Using Mobile Camera Phones to Track Market
Price Dispersion. In UrbanSense, 2008.

[4] J. V. Derbeken. Fatal stabbing over parking.
http://articles.sfgate.com/2006-09-19/bay-area/
17312921_1_parking-space-parking-spot-stabbed.

[5] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and
H. Balakrishnan. The pothole patrol: using a mobile sensor
network for road surface monitoring. In ACM MobiSys, 2008.

[6] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F.
Abdelzaher. Greengps: a participatory sensing fuel-efficient
maps application. In ACM MobiSys, pages 151-164, 2010.

[7] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C.
Herrera, A. Bayen, M. Annavaram, and Q. Jacobson. Virtual
trip lines for distributed privacy-preserving traffic monitoring.
In ACM Mobisys, 2008.

[8] J. Kincaid. Googles Open Spot Makes Parking A Breeze,
Assuming Everyone Turns Into A Good Samaritan.
http://techcrunch.com/2010/07/09/google-parking-open-spot/.

[9] N. Lamba. Social Media Tackles Traffic. http://www.wired.com/
autopia/2010/12/ibm-thoughts-on-a-smarter-planet-8/.

[10] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The jigsaw continuous sensing engine for mobile
phone applications. In ACM Sensys, November 3-5 2010.

[11] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran,

W. Xue, M. Gruteser, and W. Trappe. Parknet: drive-by
sensing of road-side parking statistics. In ACM MobiSys, 2010.

[12] U. D. of Transportation. Advanced parking management
systems: A cross-cutting study.
www.its.dot.gov/jpodocs/repts_te/14318_ files/14318.pdf.

[13] SFMTA. SFPark - About the Project.
http://sfpark.org/about-the-project/.

[14] D. Shoup. Cruising for parking. Transport Policy,
13(6):479-486, November 2006.

[15] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson.
Cooperative transit tracking using smart-phones. In ACM
Sensys, pages 85-98, 2010.

