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Abstract

We present an episodic risk-sensitive actor-critic algorithm that is suitable for
stochastic, continuous, and high-dimensional systems with policy-dependent cost
variance. We generalize the simple stochastic gradient descent update to the risk-
sensitive case, derive the minimum variance baseline, and show that, under certain
conditions, it leads to an unbiased estimate of the gradient of the risk-sensitive ob-
jective. We show that the local critic structure used in the update can be exploited
to interweave offline and online search to select local greedy policies or quickly
change risk sensitivity. Our experiments include learning to lift a heavy, liquid-
filled bottle with a dynamically balancing mobile manipulator and online learning
of stiffnesses for fall bracing after very large impacts.

1 Introduction

Suppose we have a humanoid robot that executes a gait specified by a set of parameters that we
wish to optimize with respect to some cost function that, e.g., accounts for total energy expenditure,
stability, and deviation from the desired walking trajectory. However, because of sensor noise,
actuator noise, and variations in terrain and initial conditions, the policy evaluations are stochastic
and we are unable to assign a single cost to a policy. How should we proceed? A reasonable thing
to do is simply minimize the expected value of the noisy cost signal. Indeed, the vast majority of
optimal control and reinforcement algorithms are designed to do exactly this.

Now suppose we intend to deploy our robot to the moon. Is average cost still an appropriate cri-
terion? In this case, it might be preferable to select predictable policies over policies with higher
cost variance, even if the average cost is slightly higher. A system that performs policy selection
by taking variance into account in this way is referred to as risk-sensitive, where the term risk is
equivalent to cost variance. A system that prefers low-variance policies, such as our hypothetical
moon robot, is therefore risk-averse. Of course, risk-sensitive systems could also be designed select
higher variance policies to, e.g., seek out rare high performance events. In general, a system need
not even have a fixed disposition toward risk for a particular task, but may vary risk sensitivity based
on context. Perhaps not surprisingly, this variable risk property has been observed in a variety of
animal species [1, 2].

We present an efficient risk-sensitive policy search algorithm based on stochastic gradient descent.
The algorithm shares several properties (such as scalability, local convergence, and sample effi-
ciency) with existing risk-neutral policy gradient algorithms that have been shown to perform well
in robot learning tasks [3, 4, 5]. We also show that the local critic used in the gradient descent update
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also supports efficient offline optimization to select policies consistent with different risk-sensitive
objectives on-the-fly without relearning. We describe experimental results on learning stiffness pa-
rameters for fall bracing and learning a dynamic heavy lifting behavior, both performed on a real
humanoid mobile manipulator. We also show how a learned policy can be adjusted at runtime to
produce policies with different spatial and energetic risk sensitivity.

2 Related Work

Early work in risk-sensitive control was aimed at finding solutions to discrete Markov decision pro-
cesses (MDPs) [6] and linear-quadratic-Gaussian problems [7, 8] with exponential utility functions.
More recent work from Borkar relaxes the assumption of a system model by deriving a variant of
the Q-learning algorithm for finite MDPs with exponential utility [9]. For continuous problems, Van
den Broek et al. [10] generalized path integral methods to risk-sensitive stochastic optimal control.
Recently, Kuindersma et al. [11] extended Bayesian optimization techniques for global model-free
policy search to the risk-sensitive case.

Other work in the discrete model-free RL setting has focused on algorithms for learning conditional
return distributions [12, 13, 14], which can be combined with policy selection criteria that take return
variance into account. Heger [15] derived a worst-case Q-learning algorithm based on a minimax
criterion. Mihatsch and Neuneier [16] developed risk-sensitive variants of TD(0) and Q-learning by
allowing the learning rate to be a function of the sign of the temporal difference error. Recently, this
algorithm was found to be consistent with behavioral and neurological measurements of humans
learning a decision task that involving risky outcomes [17].

Other related work in neuroscience has identified separate neural encodings for expected cost and
cost variance that are involved in risk-sensitive decision making [18, 19]. Recent motor control
experiments suggest that humans select motor strategies in a risk-sensitive way [20, 21, 22]. For
example, Nagengast et al. [22] show that control gains selected by human subjects in a noisy control
task are consistent with risk-averse optimal control solutions. There is also an extensive literature
on risk-sensitive foraging behavior in a wide variety of species [1, 2].

3 Problem Statement

We assume the system executes a (possibly stochastic) policy, πθ, that is parameterized by a vector,
θ. Executions of πθ yield a noisy signal of cost,

Ĵθ = Jθ + εθ, (1)

where Jθ is the expected cost of the policy, πθ, and the noise term, εθ ∼ N (0, r2θ), is a function
of the policy parameters. This policy-dependent variance is critical since, in general, the variance
of the cost signal will not be constant across the policy space. For example, for problems where
πθ is performing some type of stabilization (e.g., grasping, balancing), some settings of θ may only
succeed for a subset of the initial conditions, leading to high cost variance.

The optimal policy in the risk-sensitive setting is defined as

θ∗ = arg min
θ
F (θ, κ), where (2)

F (θ, κ) = Jθ + κrθ, (3)

and κ is a parameter that controls the systems sensitivity to risk: κ = 0 is risk-neutral, κ > 0 is
risk-averse, and κ < 0 is risk-seeking. For example, a subsystem at a nuclear power plant might
require κ > 0 since even rare high cost events could have significant practical impact. On the other
hand, a robot attached to a safety apparatus in the lab might set κ < 0 to seek out rare low cost trials
to, e.g., attempt to identify the initial conditions that lead to such events.

4 Episodic Risk-Sensitive Actor-Critic

Our goal is to perform the minimization in eq. (2) under the implicit constraint that observations
are costly to obtain. Stochastic gradient descent methods have been shown to be very efficient in
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solving episodic control tasks in the average cost setting [3, 23, 4], so we focus on extending this
approach to the risk-sensitive case.

We consider the following risk-sensitive stochastic gradient descent update:

∆θ = −η(Ĵθ+z + κr̃θ+z − b(θ))z, (4)

where η is a learning rate parameter, z ∼ N (0, σ2I) is a perturbation to the current policy param-
eters, θ, and r̃θ+z is an estimate of the cost standard deviation of πθ+z. The function b(θ) is an
arbitrary baseline function [24] of the policy parameters.

Substituting eq. (1) into eq. (4) and taking the first order Taylor expansion, we have

∆θ = −η (Jθ+z + εθ+z + κr̃θ+z − b(θ)) z

≈ −η
(
Jθ + z>∇Jθ + εθ + z>∇εθ + κr̃θ + κz>∇r̃θ − b(θ)

)
z, (5)

where∇fθ ≡ ∂f
∂θ

∣∣∣
θ

. In expectation, this update becomes

E[∆θ] = −ησ2 (∇Jθ + κ∇r̃θ) . (6)

Thus, eq. (4) is an estimator of the gradient of expected cost that is biased in the direction of the
estimated gradient of standard deviation to a degree specified by the risk sensitivity parameter, κ. If
the estimator of the cost standard deviation is unbiased, we have

E[∆θ] = −ησ2∇F (θ, κ), (7)

a scaled unbiased estimate of the gradient of the risk-sensitive objective.

4.1 Natural Gradient

From eq. (7) it is clear that the unbiasedness of the update is dependent on the isotropy of the sam-
pling distribution, z ∼ N (0, σ2I). However, as was shown by Roberts and Tedrake [4], learning
performance can be improved in some cases by optimizing the sampling distribution variance in-
dependently for each policy parameter, z ∼ N (0,Σ). In this case, our expected update becomes
biased:

E[∆θ] = −ηΣ∇F (θ, κ). (8)

However, eq. (8) is in the direction of the natural gradient [25]. To see this, recall that for proba-
bilistically sampled policies, the natural gradient is defined as ∇̃f(θ) = G−1∇f(θ), where G−1

is the inverse Fisher information matrix [25]. When the policy sampling distribution is mean-zero
Gaussian with covariance Σ, the inverse Fisher information matrix is G−1 = Σ.

4.2 Baseline Selection

The result given in eq. (6) is unaffected by the choice of the baseline function, b(θ), given that it
depends only on θ. However, the baseline does affect the variance of the update:

Var[∆θ] = η2σ2
(
b(θ)2 − 2Jθb(θ)− 2κr̃θb(θ) + J2

θ + 2κJθ r̃θ + κ2r̃2θ + r4θ

+σ2(∇J>θ ∇Jθ +∇Jθ∇J>θ ) + σ2κ(2∇J>θ ∇r̃θ +∇Jθ∇r̃>θ +∇r̃θ∇J>θ )

+σ2r2θ(∇r>θ ∇rθ + 2∇rθ∇r>θ ) + σ2κ2(∇r̃>θ ∇r̃θ +∇r̃θ∇r̃>θ )
)
. (9)

It is straightforward to show that the baseline that minimizes eq. (9) is b(θ) = Jθ + κr̃θ. However,
since Jθ is unknown, we set b(θ) = J̃θ + κr̃θ. The resulting increase in variance over the optimal
baseline is proportional to the squared error of the expected cost estimate. The update then becomes

∆θ = −η(Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ))z. (10)

Intuitively, eq. (10) reduces to the classical stochastic gradient descent update when either the system
has a neutral attitude toward risk (κ = 0) or when the estimate of the cost standard deviation is
locally constant: ∇r̃θ = 0 ⇒ r̃θ+z − r̃θ = 0, for small z such that the linearization holds. In
implementation, we typically divide the learning rate by r̃θ so the update maintains scale invariance
to changing noise magnitude.
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4.3 Critic Representation

The update equation (10) requires a local model of the cost distribution in the neighborhood of θ. We
refer to this model as a critic because its role is similar to that played by the critic structure in actor-
critic algorithms [26, 27]. The problem of constructing the critic in this setting can be viewed as a
regression problem with input-dependent noise. There are many algorithms suitable for solving such
problems [28, 29, 30, 31, 32]. In our experiments, we used the Variational Heteroscedastic Gaussian
Process (VHGP) model [33], which extends the standard Gaussian process model to capture input-
dependent noise (or heteroscedasticity) in a way that maintains tractability of the mean and variance
of the predictive distribution. In general, the hyperparameters of the model are not known exactly, so
model selection is performed efficiently by maximizing a tractable lower bound on the marginal log-
likelihood. For details regarding the VHGP model, we direct the reader to the original paper [33].

The critic is updated after each policy evaluation by recomputing the predictive cost distribution
using previous observations near the current parameterization, θ. The nearest neighbor selection
can be performed efficiently by storing observations in a KD-tree data structure and using, e.g., a k-
nearest neighbors or an ε-ball criterion. The episodic risk-sensitive actor-critic (ERSAC) algorithm
is outlined in Algorithm 1.

The local critic can also be used to perform efficient offline optimization of F̃ (θ, κ) = J̃θ + κr̃θ
using standard nonlinear optimization algorithms, such as sequential quadratic programming (SQP).
This is particularly useful when κ is varied online to adjust risk based on the current operating
context. In our experiments in Section 5, we show that this optimization can be used to make
runtime changes to the policy parameters that lead to significant performance improvements under
changing optimization criteria.

Algorithm 1 Episodic risk-sensitive actor-critic
1. Input: η, κ, σ,M, ε,θ,X,y

(a) for i := 1 : M

i. Sample perturbation: z ∼ N (0, σ2I)

ii. Execute θ + z, record cost Ĵθ+z

iii. Update data:
X,y = [X;θ + z], [y; Ĵθ+z]
Xloc,yloc = NearestNeighbors(X,y,θ, ε)

iv. Compute posterior mean and variance:
J̃θ = E[Ĵθ | Xloc,yloc]

r̃2θ = Var[Ĵθ | Xloc,yloc]

r̃2θ+z = Var[Ĵθ+z | Xloc,yloc]
v. Update policy parameters:

∆θ := − η
r̃θ

(
Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ)

)
z

θ := θ + ∆θ

(b) Return X,y,θ

5 Experiments

5.1 Bracing for Falls

We performed learning experiments with the uBot-5, an 11-DOF humanoid robot that balances on
two wheels attached at the hip in a differential drive configuration. It has a mass of 19 kg and stands
approximately 60 cm from the ground to its shoulder. Balancing is achieved using a linear-quadratic
regulator (LQR) with feedback from an onboard inertial measurement unit (IMU).

In the first experiment, we consider the problem of bracing for a fall in response to very large
impact perturbations. Impacts were generated by a swinging 3.3 kg mass affixed to the ceiling with
rope. The drop height was varied randomly so the momentum prior to impact was approximately
14 ± 2 Ns. This is a significantly larger perturbation than was considered by Kuindersma et al. in
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balance recovery experiments with the same apparatus [34, 11] and under no circumstances have we
observed successful recovery from these high impacts.

The class of feasible bracing policies was strongly constrained by the physical limitations of the
robot. For example, time between impact onset and arm contact with the ground was approximately
1/4 second. Given this short time duration and the robot’s actuator velocity limitations, the range of
kinematic configurations of the arms for ground contact was very limited. Additionally, torque must
be minimized for a subset of the arm joints that are driven with rubber belts, since these can slip and
fail to absorb the ground impact. Thus, the optimization problem we designed involved selecting the
joint stiffnesses for ground contact given the bracing arm configuration that satisfied the constraints
of the system.

The joint stiffnesses were governed by a parameter θ ∈ [0, 1] that was optimized with respect to the
cost function

J(θ) = h(x(T ))

∫ T

t=0

(0.1α̈(t)2 + 5I(t)V (t))dt, (11)

where T = 2.0 sec, α̈(t) is the body acceleration at time t, and I(t) and V (t) are the motor currents
and voltages for all arm joints, respectively. We set h(x(T )) = 10 if hardware is damaged as a result
of the bracing trial, and h(x(T )) = 0 otherwise. In our experiments, all observed hardware failures
were broken steel pulley cables at the elbow joints.

We performed risk-averse κ = 2 gradient descent using the ERSAC algorithm with η = 0.7, σ =
0.05, ε = 4σ, η/r̃θ ∈ [0.01, 0.5]. The VHGP algorithm with fixed hyperparameters was used to
capture the cost distribution. Snapshots of the learning sequence are shown in Figure 1. Initially,
the robot started with a low-stiffness policy and gradually adjusted the policy to increase the bracing
stiffness. Although high-stiffness policies have low average cost since they often produce lower
body accelerations, they run the risk of causing hardware damage due to increased strain on the
arm joints. Thus, high-stiffness policies have high risk and the risk-averse optimization settled on a
slightly higher expected cost, but lower risk policy. We collected 52 additional samples of randomly
selected policies to verify that the learned policy is near-optimal for the k = 2 criterion (Figure 2).
An example run of the learned policy is shown in Figure 3.

Figure 1: Snapshots of the learning sequence for risk-averse bracing. From left to right, N =
5, 15, 35, and 45. The vertical blue line indicates the nominal policy and the red data point indicates
a hardware failure.

5.2 Dynamic Heavy Lifting

The next task we considered was lifting a 1 kg, partially-filled laundry detergent bottle from the
ground to a height of about 120 cm. This problem is challenging for several reasons. First, the bottle
is heavy, so most arm trajectories from the starting configuration to the goal will not succeed because
of the limited torque generating capabilities of the arm motors. Second, the upper body motions act
as disturbances to the LQR and violent lifting trajectories will cause the robot to destabilize. Finally,
the bottle itself has significant dynamics because the heavy liquid sloshes as the bottle moves. Since
the robot has only a simple claw gripper and we made no modifications to the bottle, the bottle
moves freely in the hand, which we observed to have a significant effect on the stabilized system.

The policy was represented as a cubic spline trajectory in arm joint space with 7 open parameters that
were learned by the algorithm. The parameters included 4 shoulder and elbow waypoint positions
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Figure 2: The cost distribution for bracing fit using 97 data points: 45 from the learning sequence
(bold) and 52 from randomly selected policies. The vertical blue line indicates the final policy after
45 episodes of risk-averse (κ = 2) gradient descent. The red points indicate hardware failures.

Figure 3: Bracing policy execution after a large impact perturbation. Total duration of the above
sequence is 0.7 seconds.

and 3 time parameters. Joint velocities at the waypoints were computed using the tangent method.
The initial policy was a hand selected smooth and short duration motion to the goal configuration,
such as a motion planner without detailed knowledge of the bottle might have produced. The initial
policy succeeded only a fraction of the time, with most trials resulting in a failure to lift the bottle
above the shoulder. The cost function was defined as

J(θ) =

∫ T

t=0

(
x(t)>Qx(t) + 0.01I(t)V (t)

)
dt, (12)

where T = 6 sec, x = [xwheel, ẋwheel, αbody, α̇body, herror]
>, I(t) and V (t) are total motor current

and voltage for all motors at time t, and Q = diag([0.001, 0.001, 0.5, 0.5, 0.05]). A trial ended when
either t > T or the robot reached the goal configuration with maintained low wheel velocity. The
ERSAC parameter values in our experiments were η = 0.5, σ = 0.075, ε = 3.5σ, and η/r̃θ ∈
[0.01, 0.5].

5.2.1 Risk-Neutral Learning

In the first experiment, we ran ERSAC with κ = 0. The VHGP model was used to locally construct
the critic and model selection was performed using the NLOPT [35] implementation of SQP. A
total of 30 trials were performed and a reliable, low expected cost policy was learned. Figure 4
illustrates the reduction in expected cost via empirical measurements taken at discrete times during
learning. Interestingly, the learned policy exploits the dynamics of the liquid in the bottle by timing
the motion such that the shifting bottle contents coordinate with the LQR response to correct the
angular displacement of the body. Figure 5(a) shows an example run of the learned policy.

5.2.2 Variable Risk Control

Given that we can learn a low average cost policy in a small number of trials, we next examined
the extent to which the policy could be adjusted on-the-fly to reflect different risk sensitivity. In
particular, our experiments were aimed at generating translation-averse and energy-averse policies.
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Figure 4: Data collected from 10 test trials executing the initial lifting policy, the policy after 15
episodes of learning, and the final policy after 30 episodes of learning.

(a)

(b)

Figure 5: The learned risk-neutral policy (a) exploits the dynamics of the container to reliably per-
form the lifting task. With no additional learning trials, a risk-averse policy (b) is selected offline
that reliably reduces translation. The total time duration of each of the above sequences is about 3
seconds.

Intuitively, these cases might correspond to when the robot’s workspace is small, requiring that
the policy that has a small footprint with high certainty, and when the battery charge is very low,
requiring that the policy uses little energy with high certainty.

We represented a change in risk context by a reweighting of cost function terms. For example, to
capture the low battery charge context, we simply increase the relative weight of the motor power
term in eq. (12). We then recompute the cost of previous trajectories under this transformed cost
function, Ĵen(θ), and use SQP to minimize F̃en(θ, 2).

The result of applying offline policy selection for translation aversion is shown in Figure 6(a). With
no additional trials, the system selects a policy that significantly reduces cumulative translation. An
example run of the selected policy is shown in Figure 5(b). Using the translation-averse policy as a
starting point, we performed an additional 5 episodes of risk-averse gradient descent. The result of
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this short learning process was a very low average cost and low variance policy (see Figure 6(a)).
We repeated this experiment for the energy-averse case and the result was very similar: the offline
selected policy significantly increased performance with respect to the energy-averse criterion and
5 additional episodes of risk-averse online learning further increased performance leading to a very
good policy (see Figure 6(b)).
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(a) Translation-averse
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)

(b) Energy-averse

Figure 6: Data from test runs of the prior learned policy, the offline selected risk-averse policy,
and the policy after 5 episodes of risk-averse gradient descent. The solid magenta line corresponds
to µ̃ + 2σ̃ computed using the test sample. A star at the top of a column signifies a statistically
significant reduction in the mean compared with the previous column (Behrens-Fisher, p < 0.01)
and a triangle signifies a significant reduction in the variance (Chi-squared, p < 0.01).

6 Conclusion

We presented an episodic policy search algorithm that efficiently descends the (natural) gradient of
a risk-sensitive objective. Although the performance of the algorithm is not dependent on the state
dimensionality, it is dependent on the dimensionality of the policy parameter space (as is generally
the case with parameter perturbation algorithms [4, 5]). Thus, the expressiveness of a policy param-
eterization should be balanced with its parsimony to ensure the number of trials needed to find a
suitable policy remains small.

We also showed that the local critic structure used in the update equation can be exploited to perform
local offline policy optimization to rapidly change risk sensitivity in a completely model-free way.
Most algorithms that could be used to model the local cost distribution require that assumptions be
made regarding the smoothness of the expected cost and cost variance functions. Thus, care should
be taken when selecting a critic structure so that, e.g., non-stationarity in the cost distribution is
not overlooked. Our experiments suggest that the ERSAC algorithm is well suited for problems
involving significant nonlinear dynamics and policy dependent noise, which may be large relative to
the total magnitude of the cost.
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