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Abstract

We show that two popular discounted re-
ward natural actor-critics, NAC-LSTD and
eNAC, follow biased estimates of the natu-
ral policy gradient. We derive the first unbi-
ased discounted reward natural actor-critics
using batch and iterative approaches to gra-
dient estimation and prove their convergence
to globally optimal policies for discrete prob-
lems and locally optimal policies for contin-
uous problems. Finally, we argue that the
bias makes the existing algorithms more ap-
propriate for the average reward setting.

1. Introduction

We show that two popular discounted reward natural
actor-critics, NAC-LSTD and eNAC (Peters & Schaal,
2008), do not produce unbiased estimates of the nat-
ural policy gradient as purported. We prove that, for
a set of Markov decision processes, these biased dis-
counted reward natural actor-critics are actually unbi-
ased average reward natural actor-critics, even though
they use estimates of discounted reward value func-
tions.

Another algorithm, INAC (Degris et al., 2012), which
is a variant of the NTD algorithm (Morimura et al.,
2005), was originally presented as a biased discounted
reward algorithm. We suggest that it is more appro-
priate to think of it as an average reward algorithm.

We derive the unbiased discounted reward NAC-
LSTD, eNAC, and NAC-S algorithms, where NAC-S is
a linear-time algorithm similar to NTD and INAC. We
prove that unbiased policy gradient and natural policy
gradient algorithms, like those presented, are conver-
gent to globally optimal policies for discrete problems.
However, the unbiased discounted reward algorithms
suffer from updates that rapidly decay to zero, which
causes poor data efficiency.

2. Problem

We are interested in the problem of finding optimal
decision rules or policies for sequential decision tasks
formulated as Markov decision processes (MDPs). An
MDP is a tuple, M = (S, A,P,R,dy,v). S and A
denote the sets of possible states and actions, which
may be countable (discrete), or uncountable (con-
tinuous).! P is called the transition function, where
P2, = Pr(sip1=5'|si=s,a;=a), where t € N° denotes
the time step, s,s’ € S and a € A. R is the reward
function, where R% = r;, where s; € S, a; € A, and
Tt € [~Tmaz, "maz] for some uniformly bounding con-
stant r,,4,. The initial state distribution is dgy, where
do(s) = Pr(sp=s), and = is a discount factor.

A policy or stochastic policy, m € 11, is a distribution
over actions given a state: 7(s,a) = Pr(a;=als;=s),
where IT is the set of all possible policies. A parame-
terized policy p with parameters § € R™ is a function
that maps its parameters to policies, i.e., p : R® — II
and u(6)(s,a) = Pr(a;=als;=s, 0;=0). For brevity, we
write pg for p(6). We assume that, for all s, a, and 6,
1o (s, a) is differentiable with respect to 6.

The state wvalue function, V7, for policy m, is a
function mapping states to the expected sum of
discounted reward (or expected return) that would
be accrued therefrom if m were executed on M.
That is, V™(s) = E[> =, 7're[so=s,m, M].? Simi-
larly, the state-action wvalue function is Q™(s,a) =
EY 2o rlso=s,ap=a,m, M|. The discounted state
distribution, d™, gives the probability of each state un-
der policy m, with a discount applied to states that
occur at later times: d™(s) = (1 — ) Y.;20 7 Pr(s; =
s|so, m, M). The objective functional, J, gives the ex-
pected discounted return for running the provided pol-
icy on M for one episode: J(m) = E[Y_72 y're|m, M],
where an episode is one sequence of states, actions,

'We abuse notation by writing summations and prob-
abilities over S and A. If these sets are continuous, the
summations and probabilities should be replaced with in-
tegrals and probability densities.

2To avoid clutter, we may suppress functions’ depen-
dencies on M. For example, V™ is a function of M.
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and rewards, starting from a state sampled from dj
and following the dynamics specified by P and R.

We call an MDP episodic if there is one or more state
in which the process terminates, and, for all policies,
every episode reaches a terminal state within a finite
number of steps. To model episodic MDPs in a unified
manner with non-episodic MDPs, we follow the for-
mulation specified by Sutton & Barto (1998), in which
only one action is admissible in terminal states, and
it causes a transition to an absorbing state with zero
reward, which we call a post-terminal absorbing state.
This absorbing state also has only one admissible ac-
tion, which causes a self-transition with zero reward.
We allow v € [0,1], where v = 1 only when the MDP
is episodic.?

If S and A are countable, then the goal is to find an op-
timal policy, 7*, which maximizes the objective func-
tional: 7* € argmax e J(m). If S or A is continu-
ous, we search for locally optimal policy parameters,
0*, that is, parameters satisfying V.7(6*) = 0, where
J = J o u, and where we assume J is Lipschitz.

3. Policy Gradient

Gradient ascent algorithms for maximizing the objec-
tive functional are called policy gradient algorithms.
Their basic update is 0;11 < 6; + VT (0;), where
{a:} is a scalar step size schedule. Policy gradi-
ent methods may also use unbiased estimates of the
gradient, making them stochastic gradient ascent al-
gorithms. Stochastic gradient ascent is guaranteed
to converge to a local maximum if 7 is Lipschitz,
Yoo =00, and Y o, af < oo (Bertsekas & Tsit-
siklis, 2000). We assume that all step size schedules
hereafter satisfy these constraints.

The policy gradient, V.J(#), is the direction A#
that maximizes J (6 + Af) under the constraint that
|AG]|? = €2, for a sufficiently small €, where || - | de-
notes the Euclidean (L?) norm. Amari (1998) sug-
gested that Riemannian distance may be a more ap-
propriate metric than Euclidean distance for parame-
ter space. He calls the direction satisfying this mod-
ified constraint the natural gradient. Kakade (2002)
suggested the application of natural gradients to pol-
icy gradients to get the natural policy gradient. Bagnell
& Schneider (2003) then derived a proper Reimannian
distance metric,* based on Amari and Kakade’s work,

3If v = 1, every episode reaches a terminal state within
some finite time, T', so d™(s) sums to 7.

4Recent work has proposed the use of a different metric
that accounts not only for how the distribution over actions
(the policy) changes as the parameters change, but also
for how the state distribution changes as the parameters

and showed that the natural policy gradient is covari-
ant. Bhatnagar et al. (2009) built on this foundation
to create several provably convergent policy gradient
and natural policy gradient algorithms for the average
reward setting.

At this point, it was known that if

ST d7(s) S pua(s. a)x (1)

1o B 0fx(s,a)

Q0 (s5,)  fuls, ) P22 g
where f(s,a) is a linear function approximator with
parameter vector w = [w',v"]T, |w| = |6], feature
vector g, = [(% log p1g(s,a)) ", ¢(s)"]", for arbitrary
uniformly bounded ¢, and f5(s,a) = @54, then the
natural policy gradient is V.7(f) = w (Sutton et al.,
2000; Kakade, 2002).% The challenge was then to de-
vise a method for finding w satisfying Equation 1.

4. Finding w

To satisfy Equation 1, Sutton et al. (2000), working in
the |v| = 0 setting, suggest letting f : S x A — R
be an approximation to Q*¢ with parameter vector
w = w. They claim that learning f, by follow-
ing pg and updating w by a rule such as Aw;
2 [Q" (81, ar) — [ (st, ar)]?, where Q" (s, a) is some
unbiased estimate of Q" (s, a), will result in satisfac-
tory w. However, this is only true for the average re-
ward setting or the discounted setting when v = 1 be-
cause, in the discounted setting, d™ in Equation 1 is the
discounted weighting of states encountered, whereas
the states observed when merely following py come
from the undiscounted state distribution.

Peters & Schaal (2006; 2008) observed that the scheme
proposed by Sutton et al. (2000) is a forward TD(1)
algorithm. Because forward and backward TD(\)
are approximately equivalent, they suggest using least
squares temporal difference (LSTD), a backwards
TD(A) method, to approximate Q"¢ with f, where
A = 1. They call the resulting algorithms the
natural actor-critic using LSTD (NAC-LSTD) and
the episodic natural actor-critic (eNAC). Because the
scheme proposed by Sutton et al., and thus TD(1),
does not incorporate the 4* weighting in the discounted
state distribution, this results in w that do not satisfy

change (Morimura et al., 2009).

"Notice that if |¢(s)] = 0, we can drop v from
Equation 1 to get the exact constraint specified by Sut-
ton et al. (2000). Equation 1 follows immediately since
> ug(s,a)quﬁ(s)wgig’@ =0 for all s, g, ¢, w and M.
Also, for simplicity later, we assume that ¢(s) = 0 for the
post-terminal absorbing state.
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Equation 1, and thus bias in the natural policy gradi-
ent estimates.

One solution would be to convert the discounted MDP
into an equivalent undiscounted MDP, as described in
Section 2.3 of Bertsekas & Tsitsiklis (1996). To do
this, each observed trajectory must be truncated after
each transition with probability 1 — . Notice that
NAC-LSTD is not biased when v = 1 because then
the discounted and undiscounted state distributions
are identical.® So, after the trajectories are truncated,
the existing NAC-LSTD algorithm could be used with
v =1 to find a policy for the original MDP. However,
this approach may discard significant amounts of data
when truncating episodes. Instead, we propose the use
of all of the observed data with proper discounting in
order to produce unbiased gradient estimates.

We present a new objective functional, H, and prove
that the local minima of this objective give w satisfying
Equation 1. We then provide the stochastic gradient
ascent updates for this objective.

When following g, the discounting from the dis-
counted state distribution can be shifted into the ob-
jective functional in order to properly satisfy Equation
1. We select a w that is a component of a local mini-
mum for the objective functional H:

H(w) = i ZPr (s¢ = s|M, pp) Zug(s,a)x
7 (@ (5,0) = fa(s,0))%] (2)
:iE [vt (@ (s.0) - fw(s7a)>2] .

The objective functional is always finite because either
v < 1 or the MDP is episodic. If the MDP is episodic,
it must enter the post-terminal absorbing state within
a finite number of steps. In this state, 15, = 0,
and Q™(s,a) = 0 for all 7 and the one admissible a,
s0 3, po(s, )y (Q(s,a) — fo(s,a))® = 0 for all w.
Hence, if the MDP is episodic, only a finite number of
terms in the infinite sum will be non-zero.

We propose performing stochastic gradient descent on
H to obtain a local minimum where %H(w) =0, so

ZZWt Pr(sy = s|M, po) Zua(S,a)x
s t=0 a
[Q#e(s’a) - fw(s,a)] W = 0. (3)

51t is unclear whether eNAC would be unbiased in this
situation, as described in Section 7.

By the definition of d™, this is equivalent to Equation
1. Hence, when gradient descent on H has converged,
the resulting w component of w satisfies Equation 1.

Notice that the expectation in Equation 2 is over the
observed probabilities of states and actions at time ¢
if executing pug on M. Hence, we can update w via
stochastic gradient descent:

w <—w+77>< (4)
3 ot (@) - Solon0)] 2=,

where Q"¢ is an unbiased estimate of Q"¢ and 7 is
a step size satisfying the typical decay constraints.
The substitution of Q“" for Q"¢ does not influence
convergence (Bertsekas & Tsitsiklis, 2000). Because
Ofw(s,a)/0w is zero for terminal states and the post-
terminal absorbing state, the above update need only
be performed for the pre-terminal states. With |v| = 0,
this differs from the method proposed by Sutton et al.
(2000) only by the sum over time and the ' term.

5. Algorithms

A simple algorithm to find w would be to exe-
cute episodes and then perform the update in Equa-
tion 4 using the Monte Carlo return, Q* (st,a¢) =
>0 0V Titr, as the unbiased estimate of Q"¢ (s, ay).
This is a forward TD(1) algorithm, with an additional
discount applied to updates based on the time at which
they occur. However, this algorithm requires that en-
tire trajectories be stored in memory. To overcome
this, we can derive the equivalent backwards update
by following Sutton and Barto’s derivation of back-
wards TD(A) (Sutton & Barto, 1998). The resulting
on-policy backwards algorithm for estimating Q"¢ for
a fixed pyg is:

tafw<5t;at)

€i41 =YAep + G (5)
0 =1 + wa(8t+17 at+1) - fw(8t7 at) (6)
Wiyl =Wt + Ne0rert1, (7)

where ) is a decay parameter for eligibility traces as in
TD()) and s;, at, and r; come from running py on M.
Although the backwards and forward algorithms are
only approximately equivalent (Sutton & Barto, 1998),
their convergence guarantees are the same (Bertsekas
& Tsitsiklis, 1996). Hence, if A = 1 and 7n; is de-
cayed appropriately, the modified backwards TD())
algorithm above will produce w satisfying Equation
1. The only difference between this algorithm and
Sarsa()) is the 7' in Equation 5. One can then re-
produce the work of Bradtke & Barto (1996) to create
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LSTD in this new setting, which approximates V¢ in
a least squares manner. This can be extended along
the lines of Lagoudakis & Parr (2001) to create LSQ),
which approximates Q"¢ in a least squares manner.
The resulting LSQ algorithm in Peters and Schaal’s
NAC-LSTD changes only by the introduction of a ~¢
term: 211 = Az + fytqgt. We omit the complete pseu-
docode for NAC-LSTD due to space constraints.

To create an episodic algorithm, we convert Equation
1 into a system of linear equations using the assump-
tion that all episodes terminate within T steps, for
some finite number T'. We rewrite Equation 1 by re-
placing the infinite sum in d™ with a finite one because
Of=(s,a)/0w is zero for absorbing states:

Z Z Pr(s; = s) Z po(s,a)y x (8)

(QH@ (87 CL) —w- ’@[Jsa) wsa =0.

By collecting the terms with @ on the left and the
others on the right, we get

T
Z Z Pr(s; = s) Z po(s,a)7 satp ) =b,  (9)

s t=0 a

where b= 3", , ZtT:O Pr(s;=s)ug(s,a)y Q" (s, a)1sq.

If we let A = >, St Pr(si=s)pa(s, a)Y"sath iy,
then we get the system of linear equations: Aw = b,
where A is a |95, | by |1sa| square matrix. We can then
generate unbiased estimates of A and b from sample
trajectories. As the number of observed trajectories
grows, our estimates of A and b converge to their true
values, giving an unbiased estimate of the natural gra-
dient. The resulting episodic natural actor-critic algo-
rithm, eNAC2, is presented in Algorithm 1.

For both algorithms presented, the user must select ei-
ther TYPEL or TYPE2 updates. In the former, which
emulates the update scheme proposed by Peters &
Schaal (2008), the policy is updated when the gradient
estimate has converged, while in the latter, which em-
ulates the two-timescale update scheme proposed by
Bhatnagar et al. (2009), the policy is updated after a
constant number of time steps. The user must also se-
lect f(t) = v to get the unbiased algorithm or f(t) = 1
to get the biased algorithm. The unbiased algorithms
are only truly unbiased when A = 1, 8 = 0 (if 8 is
present), and € — 0 (TYPEL) or k — oo (TYPE2), in
which case they compute and ascend the exact natural
policy gradient.

NAC-LSTD and eNAC2 have computational complex-
ity proportional to |w|? per time step just to update
statistics, and |@|? to compute the natural policy gra-
dient estimate for policy improvement steps. This

Algorithm 1 episodic Natural Actor Critic 2—eNAC2

1: Input: MDP M, parameterized policy pe(s,a) with
initial parameters 6, basis functions ¢(s) for the state-
value estimation, update frequency parameter k, dis-
count parameter -y, decay constant (3, learning rate
schedule {7}, and maximum episode duration 7'
A—0; b0, 7«0
for ep =0,1,2,... do
Run an episode and remember the trajectory,
{St, Aty St41, 7"15}, t e [O, T— 1]
Update Statistics:
A=A+ FO)Ysiartda,
b= b+ g F(O)siar i 7T
[wlhyvd]T = (ATA) " ATb; // If TYPE2, this
need only be done every k episodes.
Update Actor (Natural Policy Gradient):
10: if ( TYPEL, ep—k > 0, and £ (Wep, Wep—k) < € )or

©

11: (TYPE2 and (ep+1) mod k=0 ) then
12: 0 0+ iy
13: T=7+1, A<+ LA; b+ b

complexity can be improved to linear by using the
modified Sarsa(A) algorithm in place of LSTD to find
w satisfying Equation 1. We call the resulting al-
gorithm the Natural Actor-Critic using Sarsa(X), or
NAC-S. Notice that some mean zero terms can be re-
moved from the Sarsa(\) update and the resulting al-
gorithm, provided in Algorithm 2, can be viewed as
the discounted reward and eligibility trace extensions
of the Natural-Gradient Actor-Critic with Advantage
Parameters (Bhatnagar et al., 2009).” NAC-S can
also be viewed as INAC (Degris et al., 2012) or NTD
(Morimura et al., 2005) corrected to include the ~*
term and with the option of computing exact gradient
estimates or using two-timescales.

Notice that in all algorithms presented in this paper,
the natural gradient is normalized. This normalization
is optional. It may void convergence guarantees and
it often makes it difficult to achieve empirical conver-
gence. However, in practice we find it easier to find
fixed step sizes that work on difficult problems when
using normalized updates to §. Amari defined the nat-
ural gradient as only a direction and even discarded
scaling constants in his derivation of a closed form for
the natural gradient (Amari, 1998).

6. Convergence

The natural actor-critics compute and ascend the nat-
ural gradient of 7, and thus will converge to a locally

optimal policy, at which point V7(0) = 0, assum-

"To get Bhatnagar’s algorithm, select TYPE2 updates
with £ =1, f(¢) = 1, and replace the discounted TD error
with the average reward TD error.
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Algorithm 2 Natural Actor Critic using Sarsa(\)—
NAC-S())

1: Input: MDP M, parameterized policy pe(s,a) with
initial parameters 6, basis functions ¢(s) for the state-
value estimation, update frequency parameter k, dis-
count parameter -, eligibility decay rate A, and learn-
ing rate schedules {3}, {af'} and {n.}.

2: wo < 0; v+ 0; count <+ 0

3: for episode =0,1,2,... do

4:  Draw initial state so ~ do(-)

5 e?=0; e27=0; 71=0; ==0

6: fort=0,1,2,...do

T ai ~ po(se,7);  Se41 ~ Pse,ae,0); 1 RS

8: count < count + 1

9: Update Critic (Sarsa):
10: 515 =1r+ YUt - ¢(St+1) — Ut * d)(St)
11: e’ = ey + f(t)[ 55 1og po(se, ar)]
12: el =yXey_1 + f(t)P(se)
13: Wer1 = Wi’ o, [de—wy - [% log po(se, ar)]]er’
14: Vip1 = vy + af_,, Oref
15: Update Actor (Natural Policy Gradient):
16: if ( TypEl, t — k > 0, and L(ws,wi—x) <€ ) or
17: (TYPE2 and (count mod k = 0) ) then
18: 9<—9+7IT2H;‘?ﬁ§ T1=1 T2=T2+1
19: if 141 terminal then break out of loop over ¢

ing the step size schedules are properly decayed and
that the natural actor-critic’s estimates of the natural
gradient are unbiased (Amari, 1998). As stated previ-
ously, when A =1, 8 =0 (if 8 is present), and € — 0
(TYPEL) or k — oo (TYPE2), the natural gradient es-
timates will be exact. In practice, large k or small €
and small fixed step sizes usually result in convergence.

Policy gradient approaches are typically purported to
have one significant drawback: whereas @)-based meth-
ods converge to globally optimal policies for problems
with discrete states and actions, policy gradient algo-
rithms can become stuck in arbitrarily bad local op-
tima (e.g., Peters & Bagnell, 2010; Peters, 2010). We
argue that with assumptions similar to those required
by @-learning and Sarsa, ascending the policy gradi-
ent results in convergence to a globally optimal policy
as well.® First, we assume that S and A are countable
and that every state-action pair is observed infinitely
often. Second, we assume that for all 6, all states s,
and all actions a and @, where a # a, there is a direc-
tion df of change to 6 that causes the probability of a
in state s to increase while that of a decreases, while
all other action probabilities remain unchanged. These
two assumptions are satisfied by policy parameteriza-
tions such as tabular Gibbs softmax action selection
(Sutton & Barto, 1998). We argue that at all sub-
optimal 8, the policy gradient will be non-zero. For

8Notice that this applies to all algorithms that ascend
the policy gradient or natural policy gradient.

any policy that is not globally optimal, there exists
a reachable state for which increasing the probability
of a specific action a while decreasing the probabil-
ity of a& would increase J (see Section 4.2 of Sutton
& Barto (1998)). By our first assumption, this state-
action pair is reached by the policy, and by our second
assumption, there is a direction, df, of change to 6
that can make exactly this change. So, the directional
derivative of J at 6 in the direction df is non-zero and
therefore the gradient of J at 6 must also be non-zero.
Hence, 6 cannot be a local optimum.

Policy gradient is typically applied to problems with
continuous state or action sets, in which case the as-
sumptions above cannot be satisfied, so convergence
to only a local optimum can be guaranteed. However,
the above argument suggests that, in practice and on
continuous problems, local optima can be avoided by
increasing exploration and the representational power
of the policy parameterization. However, if one de-
sires a specific low-dimensional policy parameteriza-
tion, such as a proportional-derivative controller with
limited exploration, then increasing the exploration
and representational power of the policy may not be
an acceptable option, in which case local optima may
be unavoidable.

7. Analysis of Biased Algorithms

In this section we analyze how the bias changes per-
formance. Recall that, without the correct discount-
ing, w are the weights that minimize the squared error
in the Q"¢ estimate, with states sampled from actual
episodes. With the proper discounting, states that are
visited at later times factor less into w. Because w will
be the change to the policy parameters, this means
that in the biased algorithms the change to the policy
parameters considers states that are visited at later
times just as much as states that are visited earlier.
This suggests that the biased algorithms may be opti-
mizing a different objective functional similar to

TO) =1 —=7) D d"(s)V"(s), (10)

where d™ is the stationary distribution of the Markov
chain induced by the policy w. More formally, we as-
sume d” (s) = lim;_, o, Pr(s; = s|sg, 7, M) exists and is
independent of sq for all policies. Notice that J is not
interesting for episodic MDPs since, for all policies,
d™(s) is non-zero for only the post-terminal absorbing
state. So, henceforth, our discussion is limited to the
non-episodic setting. For comparison, we can write
J in the same form: J(0) = ), do(s)V*?(s). The
original objective functional, 7, gives the expected re-
turn from an episode. This means that for small -,
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Figure 1. The optimal policy (optimal), the action selected
by the biased NAC-LSTD, eNAC2, and INAC (biased),
the action selected by the unbiased NAC-LSTD, eNAC2,
NAC-S, as well as a random restart hill-climbing algorithm
(unbiased), and the action selected by eNAC (eNAC).

it barely considers the quality of the policy at states
that are visited late in a trajectory. On the other hand,
J considers states based on their visitation frequency,
regardless of when they are visited. Kakade (2001)
showed that 7, which includes discounting in V¢, is
the typical average reward objective functional.

To see that the biased algorithms appear to optimize
something closer to this average reward objective, con-
sider an MDP with & = [0, 1], where so =0, s = 1 is
terminal, s;y1 = s; + 0.01, and R¢ = —(a — s)%. The
optimal policy is to select a; = s;. We parameterize
the policy with one parameter, such that ug selects
action a; ~ N'(0,0?) for all states, where A is a nor-
mal distribution with small constant variance, o2. If
~v = 1, the optimal parameter, *, is 6* = 0.5. Both
the biased and unbiased algorithms converge to this
0*. However, when v = 0.995 or v = 0.5, the optimal
0* decreases in order to receive more reward initially.
We found that the unbiased natural actor-critics prop-
erly converge to the new optimal 6*, as does a simple
hill-climbing algorithm that we implemented as a con-
trol. However, the biased algorithms still converge to
0* ~ 0.5.” We found that eNAC converges to 6 that
differ from those of all other algorithms when ~ # 1,
which suggests that eNAC, but not eNAC2, may have
additional bias. These results are presented in Figure
1.

This difference raises the question of whether the bi-
ased algorithms actually compute the natural policy
gradient in the average reward setting. In the remain-
der of this section, we prove that they do whenever

(04" (5) _
ES:V () =55~ =0, (11)

To derive Equation 11, we first review results concern-
ing the average reward natural policy gradient. The

9We used random restarts for all methods and observed
no local optima.

typical objective for average reward learning is
_ 1
f) = lim — E M. 12
T0) =l o3 Elrluo M. (1)

As mentioned previously, Kakade (2001) showed that
this is equivalent to the definition in Equation 10. The
state-action value function is defined as

Q" (s,a) =Y Elri — J(0)|s0 = s,a0 = a, g, M].

t=0

Kakade (2002) stated that if

ST a7 (s)S pols,a) (14)

[QHG (s,a) - fw(S,a)} W — 0

then the natural gradient of 7 is
VI (6) = w. (15)

Thus, the unbiased average reward natural policy gra-
dient is given by w satisfying Equation 14.

The biased algorithms perform stochastic gradient de-
scent according to the scheme proposed by Sutton
et al. (2000). They sample states, s, from d*¢ and
actions, a, from pp and perform gradient descent on
the squared difference between Q*¢ (s, a) and f(s,a).
Thus, they select w satisfying

ZJ”(S) Z,ug(s,a)x (16)

Ofw(s,a)

o 0.

[Q#B (57 (l) - fw(sr a)}
Notice that Equation 16 uses the discounted state-
action value function while Equation 14 uses the aver-
age reward state-action value funciton.

To determine if and when the biased algorithms com-
pute V.J(6), we must determine when a constant mul-
tiple of the solutions to Equation 16 satisfy Equation
14. To do this, we solve Equation 16 for w and substi-
tute a constant, k > 0, times these w into Equation 14
to generate a constraint that, when satisfied, results
in the biased algorithms producing the same direction
(but not necessarily magnitude) as the average reward
natural policy gradient. When doing so, we assume
that v = 0, since it does not influence the solutions
to either equation. First, we must establish a lemma
that relates the policy gradient theorem using the av-
erage reward state distribution but discounted reward
state-action value function (left hand side of Lemma
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1) to the derivative of J without proper application
of the chain rule:

Lemma 1

- O (,a) u, B oy OVHO
S () 20D o ay = (1) S () 0

s,a s

for all 8, u, and M. For a proof of Lemma 1, see the
appendix.

Solving Equation 16 for w, which gives the direction
of the biased algorithms, we get

w = (Z d"(s)> " (s, a)QH <s,a>¢<sa)> x (17)
(Z d"(s) Z,ug(s, a)w(sa)z/)(sa)T> .

Notice that the second term is the inverse (aver-
age) Fisher information matrix (Bagnell & Schneider,
2003). Substituting k times this w into Equation 14 for
w and canceling the product of the Fisher information
matrix and its inverse gives

0=> _d"> pg(s,a)Q"(s,a)thsa— (18)

k Z dre Z Lo (s, a)QM (s,a)sq

_oJ e OV (s
aé) )Z:dl (=) ao( !

— k(1 -

by substitution of the policy gradient theorem (Sutton
et al., 2000) and Lemma 1. Thus, when, for some k,

07 (0) V""( )

Bk e )

the biased algorithms produce the direction of the un-
biased average reward natural policy gradient. If we
let £ =1, we will still get a constraint that results in
the two directions being the same, although if the con-
straint is not satisfied, it does not mean the two are
different (since a different & may result in Equation
19 being satisfied). Setting & = 1 and substituting

Equation 10 for J(6), we get:
Z d’”’ Z d’“’
- GV“" (s) od"e(s) _ - ovHe(s)
D) g+ g V) = 2 ) g
Z VMB

8d o( )
We have shown that when Equation 11 holds, the
biased algorithms compute the average reward natural
policy gradient.

(19)

VHG _ avue )

s

=0.

(20)

8. Discussion and Conclusion

We have shown that NAC-LSTD and eNAC produce
biased estimates of the natural gradient. We argued
that they, and INAC and NTD, act more like aver-
age reward natural actor-critics that do not properly
account for how changes to 6 change the expected re-
turn via d"¢. We proved that in certain situations
the biased algorithms produce unbiased estimates of
the natural policy gradient for the average reward set-
ting. The bias stems from improper discounting when
approximating the state-action value function using
compatible function approximation. We derived the
properly discounted algorithms to produce the unbi-
ased NAC-LSTD and eNAC2, as well as the biased and
unbiased NAC-S, a linear time complexity alternative
to the squared to cubic time complexity NAC-LSTD
and eNAC2. However, the unbiased algorithms have a
critical drawback that limits their practicality.

The unbiased algorithms discount their updates by ~*.
For small v, the updates will decay to zero rapidly,
causing the unbiased algorithms to ignore data col-
lected after a short burn-in period. Consider an MDP
like the one presented earlier, where the set of states
that occur early and those that occur later are disjoint.
In this setting, the discounted reward objective man-
dates that data recorded late in trajectories must be
ignored. In this situation, the rapid decay of updates is
a curse of the choice of objective function. However, if
the states that are visited early in a trajectory are also
visited later in a trajectory, off-policy methods may be
able to take advantage of data from late in an episode
to provide meaningful updates even for the discounted
reward setting. They may also be able to properly use
data from previous policies to improve the estimates
of the natural policy gradient in a principled manner.
These are possible avenues for future research.

Another interesting extension would be to determine
how v should be selected in the biased algorithms. Re-
call that Equation 10 is the average reward objective,
for all . This suggests that in the biased algorithms
~ may be selected by the researcher. Smaller values
of v are known to result in faster convergence of value
function estimates (Szepesvari, 1997), however larger
~ typically result in smoother value functions that may
be easier to approximate accurately with few features.

Lastly, we argued that, with certain policy parame-
terizations, policy gradient methods converge to glob-
ally optimal policies for discrete problems, and sug-
gested that local optima may be avoided in continuous
problems by increasing exploration and the policy’s
representational power. Future work may attempt to
provide global convergence guarantees for a subset of
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the continuous-action setting by intelligently increas-
ing the representational power of the policy when it
becomes stuck in a local optimum.
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Appendix: Proof of Lemma 1

o % S ol )@ 5, (21)

_ Z [
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to(s, a)a% <R§ + Y PV (S’)> ]
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@ 5, 4 o(s,0) 35" (5,0)|

« O
9(57 a) Z 'PSS/,Y%VI"Q (8/):| .
Solving for WQ”" (s, a) yields

Z Lbea(;’ @) Q" (s,a) = (22)
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Summing both sides over all states weighted by d"¢ gives
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