
A Network Calculus for Cache Networks
Elisha J. Rosensweig

Department of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003–9264
Email: elisha@cs.umass.edu

Jim Kurose
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003–9264

Email: kurose@cs.umass.edu

Abstract—Over the past few years Content-Centric Network-
ing, a networking architecture in which host-to-content communi-
cation protocols are introduced, has been gaining much attention.
A central component of such an architecture is a large-scale
interconnected caching system. To date, the way these Cache
Networks operate and perform is still poorly understood.

Following the work of Cruz on queueing networks, in this
paper we develop a network calculus for bounding flows in LRU
cache networks of arbitrary topology. We analyze the tightness of
these bounds as a function of several system parameters. Also, we
derive from it several analytical results regarding these systems:
the uniformizing impact of LRU on the request stream, and the
significance of cache and routing diversity on performance.

I. INTRODUCTION

Today’s Internet has become increasingly oriented towards
content delivery. As a result, there has been growing interest in
content-centric networks (CCNs) - networks in which content
is addressable and host-to-content (rather than host-to-host)
interaction is the norm [1]–[5]. In many CCN architectures,
widespread caching plays a central, integrative role. While
stand-alone caches have traditionally been used to bring pop-
ular content closer to content consumers (see [6]–[9] for a
small sample of such discussions), the design, analysis and
management of widely-deployed, tightly-connected, heteroge-
nous Internet-scale networks of caches – referred to here
Cache Networks and abbreviated “CNs” – is an important,
yet relatively uncharted, field.

Analyzing the performance of cache networks is a daunting
task. Individual caches have been relatively well-studied in
isolation, and researchers have recently developed approxi-
mate performance models of cache hierarchies [8], [10], [11].
However, in the general case, content requests can flow in both
directions along a link, and requests for different content may
be routed differently, resulting in the merging and splitting
of request streams and a consequently complex stochastic
request-arrival process at each cache. The analysis of such
general cache networks has only just begun [26].

In this paper, we develop a deterministic network calculus
for computing bounds on the flows of content requests that
arrive at, and depart from (in the case of a cache miss), caches
in a general network of caches. We show how these flow
bounds can then be used to calculate performance bounds for
metrics such as the cache miss rate for a given piece of content
at a given network cache. Our work is inspired by Cruz’s
pioneering network delay calculus [12] for deterministically

bounding flows in general queueing networks, which later led
to new bounding techniques [13]–[16] and found use in fields
beyond classic queueing networks, including sensor networks
[17], [29], smart grids [28] and anomaly detection [18]. While
flows in a network delay calculus represent units of work
routed among queues, flows in a cache network represent
content requests rounted among caches. Here, a request may
either be satisfied at a cache (and the content subsequently
stored at downstream caches as requested content is returned
to the requestor) or forwarded upstream to another cache in the
event of a cache miss. Queueing networks and cache networks
thus have many fundamental differences.

Our work makes several important contributions.

1) We define an upper-bound characterization of a stream
of requests at a cache, and highlight differences between
cache networks and queueing networks.

2) We develop a calculus for computing bounds on the miss
stream of an LRU cache, given bounds on the incoming
request stream. We show that these bounds are tight and
consistent, i.e., that the upper bound can be realized for
all files simultaneously.

3) We use this calculus to gain analytical insights into the
behavior of LRU caches in isolation, and in networks.
We identify the uniformizing effect of LRU on the
request stream, and the impact of cache and topology
diversity on system performance.

4) Using an iterative fixed-point procedure, we use this
calculus to study LRU replacement in non-hierarchical
cache networks. Our results indicate that these bounds
can be close-to-tight for realistic network scenarios.

More generally, we believe our work represents an important
step forward in developing performance models for emerging
content-centric networks, as well as other systems in which an
interconnected network of caches provides efficient, scalable
content distribution.

The remainder of this paper is organized as follows. In
Section II we discuss our network and flow models, and
define the notion of bound tightness. In Section III we present
theorems on bounding the number of cache misses over a finite
window, and formulate theorems bounding the miss stream
in Section IV. These theorems reveal analytical properties of
LRU’s impact on request flows. In Section V we use our
calculus to study the performance of cache networks and

2

evaluate bound tightness. We conclude with a review of related
work and a summary of our results and discussion of future
work.

II. A (ρ, σ) MODEL FOR CACHE NETWORKS

In this section we discuss the models we use here for cache
networks (§II-A) and flow bounding (§II-B). We define the
concept of tight bounds as used in this paper (§II-C), and
conclude with an expositional example of bounds on the miss
stream (§II-D).

A. Cache and Network Operation Model

We consider a network of nodes V inter-connected by edges,
each node equipped with a cache for storing content passing
through the node. Users connect to and send requests for
content into the network. When the content is located, it is
sent back to the requesting user, and stored in all the caches
along the download path. We assume here that these pieces of
content are of constant size (e.g., chunks of a file), and thus
cache sizes are specified in terms of the number of pieces
which the cache can store at any given moment. In this work,
we shall refer to these content pieces as files.

We now discuss network operation in greater detail. Let
F = {f1, ..., fN} be the set of files users can request. A user
that wants to retrieve a file fj ∈ F sends a request qj into the
network. The request then traverses the nodes of the network
along a path that ends at a content custodian for fj - a location
which stores the content permanently, such as a content server.
This path, termed the search path, is constructed according
to some predefined routing policy. In what follows, we shall
assume that every search path must eventually end up at a
content custodian. As a result, content download is ensured
within a finite amount of time.

When a request qj arrives at v, the contents of v is inspected.
If fj /∈ v, v logs the direction where the request arrived from,
and if this is the only such entry for this content, forwards
the request towards the content custodian. If this is not the
only such entry, the request is not forwarded on, and when
eventually the content passes through v, it is forwarded to all
such logged directions and deletes the corresponding entries.
In such a way content is forwarded along the reverse search
path that each qj used, until arriving at a requesting user.
Along this path, it is cached in the caches along the way.

This architecture corresponds to that proposed for leading
CCN architectures [3]. From an engineering standpoint, this
architecture can be efficient, since other requests following
the same request path will be satisfied sooner as the content
is already being sent in their direction. From an analytical
standpoint, this architecture ensures a one-to-one correspon-
dence between the request and file flows at each v: for each
request qj leaving v there is a matching fj that will arrive at
v at some future point. Furthermore, when caches are full,
for every forwarded cache miss there will eventually be a
corresponding file eviction at v. The reason for this is that
if qj generates a miss, fj will eventually be downloaded to v,
which will evict some other file fh ∈ v to make room for fj .

Note that the next qh arriving after this download takes place
will result in a cache miss.

This last point highlights an important difference between
queueing and cache networks. While with the former the
number of packets leaving a node sums up to the number
arriving (if we exclude dropped packets), in the latter the
number of requests in the miss stream is strongly dependant
on the traffic makeup of requests for other files. In this work
we bound the degree to which this inter-file effect takes place.

Finally, we consider the issue of download delay. In real
caching systems there is a time lag between when a cache miss
occurs at v and when the requested file arrives at v, forcing
an eviction. However, in the caching literature it is common
to assume this download delay is negligible, and adopt a zero-
download delay model, which we abbreviate here as ZDD [8],
[19], [20]. This assumption is used in many works to achieve
analytical tractability of the system. In this paper, we adopt
this model as well; However, in Section III-C we argue that
the bounds we compute for ZDD hold also when ZDD does
not hold, making our results applicable to real systems.

Combining ZDD with downloading along the reverse search
path, we know that files arrive at v in the same order in
which their misses took place. As a result, with deterministic
replacement policies (such as LRU), the order of requests
arriving at the cache determines the miss stream at that cache.
This observation is the basis for the analysis in the following
sections.

B. Bounding Model

In this work we adopt the flow model proposed by Cruz
[12]. For a stream of events over time let R(t) be the number
of events that took place at time slot t. These events can be
jobs or packets in queueing networks, or content requests in
cache networks. In this work, we consider the latter. For a
stream R(t), (ρ, σ) is a deterministic bounding representation
of a stream, if for any interval [t1, t2), 0 ≤ t1 ≤ t2 ∈ R,∫ t2

t1

R(t) ≤ dρ(t2 − t1) + σe (1)

Note that we take the ceiling of the bound since arrivals are
binary in nature - a request either arrives or does not arrive
during some window, yet ρ(t2−t1)+σ can be any real number.

In queueing networks, the standard interpretation of ρ is
the average arrival rate per time unit, and σ indicates the
“burstiness” component of the stream, as the bounds allow
σ packets to arrive irrespective of the size of the window.
In Cruz’s work [12] this bounding property was denoted
R ∼ (σ, ρ). However, as we shall see later on, cache networks
differ from queueing networks in that the rate component
dominates the impact on the miss stream. We express this by
modifying the notation slightly, and use instead R ∼ (ρ, σ).

The key result in [12] for queueing networks is that if each
input flow j (corresponding to a source-destination node pair
in a queueing network) has a (ρj,in, σj,in) characterization,
then its output flow has a (ρj,out, σj,out) characterization that
can be computed as a function of the input characterizations

3

at that node, {(ρk,in, σk,in)}Nk=1 for N input flows. These
output flows are then the input flows at the subsequent network
nodes, and in this manner, per-flow bounding characterizations
can be “pushed” through feed-forward networks. For non-
feedforward networks, a system of simultaneous equations
can be established and solved. Here we extend this calculus
to cache networks, specifically those employing LRU caches,
which is the policy of choice for many CCN architectures.

C. Bound tightness

Next, we address how to select the bound for a given
stream. Since (ρ, σ) is only an upper bound, there are an
infinite number of bounds for any given stream: for example,
if (ρ, σ) is a bound for R(t), then for any positive ∆ρ,∆σ

also (ρ + ∆ρ, σ + ∆σ) is a bound for R(t). Thus, we define
the following concept of bound tightness:

Definition 1. For a given (ρj , σj) bound for fj requests we
will say that it is globally-tight if (a) 1

t

∫ t
t′=0

Rj(t
′)→t→∞ ρj

, i.e., if ρj is the average rate of requests, and (b) if dσje ≥ 0
is minimized given that ρj .

Lemma 2. ρ is minimized over all bounds when the bound is
globally-tight.

Proof: Let (ρg, σg) be the globally-tight bound,
and (ρ, σ) any other bound for R(t). By construction,
1
t

∫ t
t′=0

R(t′) →t→∞ ρg . Additionally, using equation 1 we
conclude our proof:∫ t

t′=0

R(t′) ≤ dρt+ σe ≤ ρt+ σ + 1

lim
t→∞

1

t

∫ t

t′=0

R(t′) ≤ lim
t→∞

ρ+
σ + 1

t
ρG ≤ ρ

In what follows we shall prove that globally-tight bounds
always exists for boundable flows, and these are the bounds we
shall compute. We select these bounds because they support
the interpretation of ρ as the long-term mean arrival rate,
which is convenient in several contexts. For example, for a
given arrival stream characterization, we can compute ρ by
computing the mean arrival rate. Also, globally-tight bounds
minimize the ρ component, yielding a tighter bound for large
windows.

D. Bounds at work: an example

We conclude this section with a simple example of bounding
a miss stream, to give the reader some intuition regarding the
impact of caches on request streams, specifically w.r.t. how
these streams are characterized using the (ρ, σ) model. We
use this example to draw distinctions between the manner in
which queueing networks and cache networks behave.

Consider a cache of size 1, and N arrival streams bounded

as follows:

R1,in ∼ (ρ1,in, 0), ρ1,in > 0

∀2 ≤ j ≤ N Rj,in ∼ (0, σj,in), σj,in > 0

Aside from the f1 flow, the rest of these streams will consist
of a finite number of requests over an infinite window of time.
The miss stream is maximized for all request streams when
the arrival stream is an alternating sequence of requests, i.e.,

f1, f6=1, f1, f6=1, f1, f6=1, ...

In this sequence, all qj for j 6= 1 will generate a miss,
and we will also have

∑N
j=2 σj,in + 1 misses for fj (we add

the 1 for the first request of f1). After all these misses take
place, all requests for f1 will generate cache hits. Thus, we
move from arrivals R1,in ∼ (ρ1,in, 0) to misses R1,out ∼
(0,
∑N
j=2 σj,in + 1).

We glean several insights from this example. First, note that
the ρ component has disappeared in the miss stream, and that
a σ component (that did not exist in the input stream) has
appeared instead. Thus, there is no conservation of flows in
this model, nor is there no conservation of ρ or σ individually.

Another point is that the miss stream of f1 is bounded by the
combined arrival streams for the other files. A cache miss for
f1 occurs only if requests for other files caused f1 to be evicted
from v before the next f1 request arrived. This underscores
the difference between queueing and cache networks. In the
former, an increase in traffic of flow i might decrease the rate
of flow j by causing flow j packets to be dropped; In the
latter, an increase in flow i can have the opposite effect, by
causing evictions of fj and subsequent additional misses.

One final and critical insight here is regarding the interpre-
tation of σ. In the context of a queue, the worst case usually
occurs when a large burst of jobs arrives at the queue at the
same time. Thus, in queueing networks, the σ component is
commonly referred to as the burstiness component. However,
in the example we show here, the worst case is when the
σj,in requests for fj arrive spaced out, to generate maximum
misses at the cache w.r.t. f1 and fj . Additionally, note that
the miss stream of f1 has a positive σ component, despite the
fact that the miss stream is only a thinning of the non-bursty
arrival process. Thus, in cache networks a more convenient
way to think of the σ component is as a set of requests, each
of which can arrive at any time for any given window, without
positioning constraints. Despite this change, in what follows
we shall stick with the conventional terms and refer to ρ and
σ as the rate and burstiness components, respectively.

III. COMPUTING WORST-CASE BOUNDS FOR FINITE
WINDOWS

In this section, we describe how to bound the miss stream
for each file over a window w = [s, t). For each file we are
given the number of requests that arrive during w, and then
we compute a bound on the number of misses per file during
w.

4

fj/qj jth file / request for jth file
c,N cache size and # of files
Tj fj request stream
T combined arrival stream
I(w, j) num. of arriving qj ’s during window w for T
O(w, j) num. of qj misses during window w for T
Mw,j max. num. of miss sets for fj during w
Mw max. num. of miss sets during w

M̂j max. miss rate for fj

Table I
TABLE OF NOTATION

A. Notation and Preliminaries
We begin with notation, as summarized in Table I:
• fj is the jth file, and qj is a request for fj . The cache

size is c and the number of unique files is |F | = N .
• Tj = (tj,1, tj,3, tj,3...) is a (possibly infinite) monotoni-

cally increasing sequence of times for fj requests.
• T denoted a sequence of file requests arriving at a specific

cache. Formally, T = {Tj}Nj=1.
• The outcome of a request for fj at time t is a hit if at

that time fj ∈ v, and a miss otherwise.
• For a window w and request sequence T, let I(w, j)

be the number of qj’s in w, and O(w, j) the number
of misses. Note that for deterministic cache replacement
policies, the misses can be computed as a function of
cache contents at the outset of w and T.

Definition 3. For any file fj , requests for fi where j 6= i are
said to be interfering with respect to fj .

Definition 4. A miss set s ⊆ F for a cache of size c is a
multi-set of requests for at least c + 1 unique files, where we
omit the dependence of s on c for notational convenience. A
miss sequence −→s is an ordered miss set. A miss sequence for
fj
−→sj is a miss sequence containing one or more requests qj ,

such that these requests make up the sequence suffix. (e.g.,
(q1, q2, q3, q3) is a miss sequence for f3 when c = 2, but not
(q1, q3, q2, q3)).

A miss sequence for fj is so named for the following reason.
For a window w, if the arrivals during w form a miss sequence,
there is a single miss for fj which occurs at the first qj in w.
Since a miss set is a multi-set, it has the following property:

Property 5. After adding requests or removing duplicate
requests from a miss-set X , it remains a miss-set.

B. Bounds over window w

We begin with bounding O(w, j), given T. For a given
window w, denote with W a partition of w, W = {w1, ..., wl}
s.t. w = w1|w2|...|wl. (| indicates concatenation).

Lemma 6. For a given request sequence T and window w,
O(w, j) equals the maximal number of wk ∈ W for any
partition W s.t. the requests in wk form a miss sequence for
fj .

Proof: With LRU, a cache miss occurs for fj iff c
interfering requests for pairwise-different files arrive at the

cache between two consecutive requests for fj . Including the
first qj request at the end of this sequence, we get a miss
sequence, and any additional requests for fj at the end of the
sequence retain the definition as a miss sequence, yet generate
only hits.

Note that any partition of w defines also a partition of the
arrivals over w into disjoint sets. In what follows, we will say
that miss-sets are disjoint if each is contained in a different
window in some partition of w. We next consider the case
where the exact sequence T is unknown, and we are only given
the number of arrivals I(w, j) over w for all 1 ≤ j ≤ N . Then,
for each arrangement of these arrivals, the miss sequence can
be different. Denote
• Mw,j as the maximum number of disjoint miss-sets for
qj in any arrangement and partition of arrivals over w.

• Mw as he maximum number of disjoint miss-sets in any
arrangement and partition of arrivals over w.

Note that Mw is not necessarily equal to maxjMw,j . To see
this, consider a case where c = 2 and a sequence of requests
over w consisting of a single request for each of f1, ...f9. In
this scenario, Mw = 3, while for all j Mw,j = 1.

Using these definitions, the following corollary of Lemma
6 follows immediately:

Corollary 7. Given I(w, j) for all 1 ≤ j ≤ N , O(w, j) ≤
Mw,j , and there exists a sequence T for which this bound is
reached.

Proof: From Lemma 6 we have an equality between the
number of misses and the number of miss sequences for the
given arrival sequence. Since Mw,j is the maximal number of
miss sequences for fj in any arrival sequence, Mw,j bounds
the misses for fj and is reachable for some sequence.

Next, in the main result of this section, we quantify Mw,j :

Theorem 8.

Mw,j = min{I(w, j),Mw} (2)

Proof: Assume there is an arrangement and partition for
which there are Mw miss-sets. If I(w, j) ≤ Mw, from the
pigeonhole principle we can move qj’s so that each is in a
different miss-set. If there is a miss-set with duplicates, from
Property 5 it can be moved to a set with no qj without chang-
ing the number of miss-sets. Thus we get Mw,j = I(w, j).
Otherwise I(w, j) > Mw, and using the same argument we
can move qj’s between sets until each has at least one qj , in
which case Mw,j = Mw, which concludes our proof.

C. The (lack of) impact of download delay

In Section II-A we mentioned the ZDD assumption we rely
on in this paper. In this section we prove that this assumption
- that download after a cache miss is instantaneous - does not
impact the generality of the bounds we compute here.

Theorem 9. The upper-bound on the miss stream for a ZDD
system is also a bound on the miss stream for non-ZDD
systems.

5

Proof: For a non-ZDD system, consider a sequence T
arriving over a window w1, and let w = w1|w2 be the time
from when the requests arrived until all files requested in w1

were downloaded. Note that between an outstanding request
and corresponding download, requests for the same file have
no impact on the miss stream (as they are not forwarded),
so we ignore these intermediate requests temporarily. We
therefore associate each forwarded miss with a corresponding
subsequent file download.

Next, if we keep the file arrival sequence as-is but shift the
misses forward in time to their corresponding file download
time in w, this has no impact on the number of misses taking
place during w. This is clear since with LRU cache state is
only affected by file arrivals and cache hits, but not cache
misses.

This new configuration generates the same number of misses
for the requests originally arriving in w1, while abiding by
ZDD. From Lemma 10 (see below) we know that including
the misses we ignored earlier cannot decrease the number
of misses over w. Thus, the miss stream of this cache does
not decrease as a result of abiding by ZDD. Furthermore,
increasing the number of misses for this cache will cause
an increase in arrivals at neighboring caches, which again
by Lemma 10 does not result in lower miss bounds, which
concludes our proof.

IV. COMPUTING (ρ, σ) BOUNDS ON THE MISS STREAM

In this section we leverage the bounding techniques for finite
windows to generate (ρ, σ) bounds on the miss stream, given
bounds on the incoming stream. From the following lemma,
we know we can generate the worst-case miss process when
the arrival process is tight with the bounds over w:

Lemma 10. For all 1 ≤ i, j ≤ N , Mw,i monotonically
increases with I(w, j).

Proof: Increasing I(w, j) can only increase the number of
disjoint miss sets that can be constructed. So, from Equation
2 we get that Mw,i = min{I(w, i),Mw} monotonically
increases.

We will therefore assume that I(w, j) equals the bounds
over w, and say that the bounds are tight over w. Let M̂w be
Mw when for all 1 ≤ j ≤ N , I(w, j) is tight over window
w, and similarly regarding M̂w,j . Since we assume the bounds
are tight, and from Equation 1 the only parameter that impacts
the bounds is the window size, the following lemma directly
follows:

Lemma 11. If |w| = |w′|, M̂w = M̂w′ and M̂w,j = M̂w′,j .

A. Bounding ρj,out
To compute bounds on ρj,out, we first show that the
{σi,in}Ni=1 parameters do not impact ρj,out, as they constitute
only a finite number of requests:

Theorem 12. Let T, T′ be two request streams with corre-
sponding sets of globally-tight bounds, {(ρj,in, σj,in)}Nj=1 and

{(ρ′j,in, σ′j,in)}Nj=1, such that for all 1 ≤ j ≤ N ρj,in = ρ′j,in.
Let {(ρj,out, σj,out)}Nj=1 and {(ρ′j,out, σ′j,out)}Nj=1 be the cor-
responding globally-tight bounds on these miss streams. Then,
for all 1 ≤ j ≤ N , ρj,out = ρ′j,out.

Proof: W.l.o.g., assume σj,in = 0 for all 1 ≤ j ≤ N , and
consider the qj miss stream over some window w. We use
the subscripts T and T ′ to distinguish between the different
streams. Since we assume that the bounds are tight over w, we
set IT(w, j) = ρj,in(t− s) + σj,in and IT ′(w, j) = ρ′j,in(t−
s) + σ′j,in. W.l.o.g. assume that these values are integers, so
we drop the rounding operation. Then, the difference in the
total volume of the arrival streams is

∆ =

N∑
j=1

IT ′(w, j)−
N∑
j=1

IT(w, j)

=

N∑
j=1

(ρ′j,in − ρj,in)(t− s) + σ′j,in − σj,in =

N∑
j=1

σ′j,in

For a given sequence T, each request can belong to at
most a single miss-sequence w.r.t. fj . Thus, if we max-
imize the number of miss-sequences for both streams, ∆
bounds the difference between the number of misses -∣∣OT ′(w, j)−OT(w, j)

∣∣ ≤ ∆. Since ∆ is independent of the
window size and OT(w, j) =

∫ t
u=s

Rj,out(u) we get∣∣∣∣∫ t

u=s

R′j,out(u)−
∫ t

u=s

Rj,out(u)

∣∣∣∣ ≤ ∆

∣∣∣∣ 1

t− s

(∫ t

u=s

R′j,out(u)−
∫ t

u=s

Rj,out(u)

)∣∣∣∣ ≤ ∆

t− s

We take the limit for t → ∞, and recall the definition of
globally-tight bounds,∣∣ρ′j,out − ρj,out∣∣ ≤ 0

ρ′j,out = ρj,out

Based on Theorem 12, we shall assume in this section that
the sigma components of all arrival streams are 0. We next
turn to bound the rate of the miss stream - a (ρ, σ) version of
Theorem 8.

Theorem 13 (ρ bounds). Let M̂ = lim|w|→∞ M̂w/|w|. Then
the globally-tight bound on the mean miss rate for fj is

ρj,out := min{ρj,in, M̂}

and there exists a σj,out for which (ρj,out, σj,out) is a bound
for the miss stream.

Proof: From Theorem 8 we know Mw,j =
min{I(w, j),Mw}. For tight bounds and σ = 0,
I(w, j) = d|w|ρj,ine, which results in

M̂w,j = min{d|w|ρj,ine, M̂w},

min{|w|ρj,in, M̂w} ≤ M̂w,j ≤ min{|w|ρj,in + 1, M̂w}.

6

Dividing by |w| and taking the window size to infinity we get

min{ρj,in, M̂} ≤ lim
|w|→∞

M̂w,j

|w|
≤ min{ρj,in+ lim

|w|→∞

1

|w|
, M̂}

and using this sandwich argument we get

lim
|w|→∞

M̂w,j

|w|
= min{ρj,in, M̂} (3)

Finally, if we maximize the number of misses per window, we
get that regarding the miss process∫

w

Rj,out(t) = M̂w,j

lim
|w|→∞

1

|w|

∫
w

Rj,out(t) = lim
|w|→∞

M̂w,j/|w|

and by the definition of global tightness we get

ρj,out = lim
|w|→∞

M̂w,j/|w| (4)

and from Eq. 3 and 4 we conclude that ρj,out =
min{ρj,in, M̂}.

We have shown here how to compute the mean miss rate
over an infinite horizon. However, our bounds must hold as
well for all windows, and so we must demonstrate next that
this bound can be used with a finite burstiness component
for all windows. To show this, we prove next that M̂w,j

monotonically increase as |w| grows, and since ρj,out is
computed for an infinite window the argument is proven. Let
w,w′ be two windows s.t. |w| = k · |w′| for some integer
k > 1. Since we can assume the burstiness component is zero
in the arrival streams, the number of requests arriving in w is
exactly k times that of what arrives in w′. Denote |w′| = δ
and w = [s, t). Then,

1
|w|M̂w,j ≥(∗)

1

|w|

k−1∑
h=0

M̂[s+hδ,s+(h+1)δ),j

=(∗∗)
1

k|w′|

k−1∑
h=0

M̂w′,j =
1

k|w′|
kM̂w′,j =

1

|w′|
M̂w′,j

Inequality (*) is a result of the fact that we can construct miss
sets for w by iteratively doing so for each [s+hδ, s+(h+1)δ)
separately. Equality (**) is based on Lemma 11. From this
derivation we see that 1

|w|M̂w,j is monotonic with the increase
of the window size. Thus we know that ρj,out can be applied
to every window for some constant σ, which concludes our
proof.

Discussion. Theorem 13 reveals some interesting properties
of LRU caches. As this theorem states, the bound M̂ is the
same for all files - in the worst case, LRU acts as a capping
mechanism on the arrival flow, enforcing a cutoff point at M̂ .
Arrival rates are only affected by the cache if they go above a
certain value. The literature on LRU contains results indicating
that in practice LRU conducts a sort of “low-pass filtering”
[20] or “Majorization” [21]. Previous work on this subject
showed this for actual behavior but limited to simulation-
based conclusions, specific topologies or analytical models

for a limited range of arrival distributions. Our results here
prove this to be the case for worst-case bounds over arbitrary
boundable flows and network topologies.

B. Computing M̂ as a function of input bounds

In the previous section we demonstrated how the bounds
per flow are a function of M̂ . In this section we present an
algorithm for computing Mw and M̂ .

We begin with the case of a finite window w. With Algo-
rithm 1 we can compute the value of Mw when the input is
xj := I(w, j) for all 1 ≤ j ≤ N .

Theorem 14. Algorithm 1 returns M s.t. bMc = Mw.

Proof sketch: The algorithm consists mainly of iterating
over two steps, shown in lines 8 and 10 of Algorithm 1.
Line 10 (and initially 5) bound the number of miss sets by
dividing the number of requests by c + 1, the size of a miss-
set. Since duplicate requests in such a set do not increase the
number of misses, in Line 8 we remove such requests from
our accounting. this ensures we get an upper bound. When the
algorithm concludes, from the pigeonhole principle we show
that each request can be a part of a miss-set, so the bound is
tight. Next, we prove this claim formally.

Algorithm 1 Bounds(x1, ..., xN , c).
1: // For all the following, 1 ≤ k ≤ N
2: for 1 ≤ k ≤ N do
3: yk := xk
4: end for
5: M := 1

c+1

∑
k yk

6: while maxk yk > M do
7: for 1 ≤ k ≤ N do
8: yk := min{xk,M}
9: end for

10: M := 1
c+1

∑
k yk

11: end while
12: RETURN M

Lemma 15. If with an arrival of {xk}1≤k≤N we can construct
Mw miss sets, then with yk := min{xk,Mw} requests for each
k we can construct Mw miss sets as well.

Proof: From Property 5 we know that for any miss set,
after removing duplicate requests it remains a miss sequence
w.r.t. the same file. Thus, considering only the cases where
all miss-sets are strict sets and not multi-sets is sufficient. To
generate Mw strict miss-sets, at most one request for each file
can appear in each such set, so Mw bounds the number of
requests for each file, which concludes our proof.

Lemma 16. If M ≥Mw and yk := min{xk,M}, then Mw ≤
1
c+1

∑
k yk.

Proof: Since M ≥ Mw, then from Lemma 15 we know
that by using only yk requests for fk does not reduce the
number of miss sets we can construct. Next, since the minimal

7

size of a miss set is c+ 1 and the sets are disjoint, the lemma
is proven.

Theorem 17. Algorithm 1 returns M s.t. bMc = Mw.

Proof: Denote with M the output of the algorithm. First
we show that in each stage of the algorithm, M ≥ Mw. At
the initialization of the algorithm we have yk = I(w, k), and
from Lemma 16 we know that in Line 5 M ≥Mw.

If we enter the “while” loop, in each iteration we reduce yk
in a manner which, according to Lemma 15, does not reduce
the maximal number of miss-sets that can be constructed. We
then update in line 10 the value M , which according to Lemma
16 bounds the number of miss-sets that can be constructed.
Repeated application of these two steps will therefore not
violate the condition M ≥ Mw. Thus, regardless of entering
the loop, we always get M ≥ Mw, and since Mw ∈ N, this
implies bMc ≥Mw.

Next we show that bMc ≤ Mw by proving that when the
algorithm halts bMc miss sets can be constructed. By the loop
exit condition (line 6) we know that yk ≤ M for all 1 ≤
k ≤ N when the algorithm halts, and that (from line 10)
M = 1

c+1

∑
k yk. From line 10 we know that yk = M for

at most c + 1 files, and since for all 1 ≤ k ≤ N xk ∈ N,
taking the maximum in line 8 ensures at most c + 1 files
have non-integer yk. Thus, rounding down all yk will result in
enough requests to construct bMc miss sets. By the pigeonhole
principle, since for all files bykc ≤ M , we can construct M
miss sets, which concludes our proof.

Next, we use Algorithm 1 to compute M̂ . This is done by
applying the algorithm with ρ components as inputs, and no
rounding operation.

Lemma 18.
1

t
Bounds(ρ1,int, ..., ρN,int, c) = Bounds(ρ1,in, ..., ρN,in, c)

Proof: To show this, we note that in both lines 8, 10 the
t parameter has linear impact. In the first iteration:

line 8: yk = min{ρk,int,
t

c + 1

∑
k

ρk,in}

= tmin{ρk,in,
1

c + 1

∑
k

ρk,in}

line 10: M =
1

c + 1

∑
k

ρk,int =
t

c + 1

∑
k

ρk,in

and in all subsequent iterations, this phenomenon repeats
itself, and so we can extract the t variable from the input.

Theorem 19. M̂ = Bounds(ρ1,in, ..., ρN,in, c)

Proof: Let t be the length of window w. We can get
bounds on the miss rate with

1

t
Mw =

1

t
Bounds(I(w, 1), ..., I(w,N), c)

For the case where the arrival streams are tight over the
window w we get

1

t
M̂w =

1

t
Bounds(dρ1,int+ σ1,ine, ..., dρN,int+ σN,ine, c)

From Theorem 12 we assume the burstiness is zero, and using
a sandwich argument as in Theorem 13 the rounding operation
can be ignored as t→∞. Thus, from Lemma 18 we conclude

M̂ = lim
t→∞

1

t
Bounds(ρ1,int, ..., ρN,int, c)

= Bounds(ρ1,in, ..., ρN,in, c)

The following theorem is also a result of this algorithm:

Theorem 20. Consider two adjacent caches A,B such that
the arrival stream at B consists totally of the entire miss
stream of A, and B is smaller or equal in size to A. Then the
bounds on the miss stream in A are identical to the bounds
on the miss stream in B.

Proof: This can be determined from Algorithm 1. For
equal sized caches, the value bMc computed for cache A will
be computed in Line 5, and the loop will not be entered, so
the same cap will be used. This the miss stream is a result
of this capping, the cache B miss stream is unaffected. For
smaller caches, the cap will be higher, once again having no
impact on the miss stream of B.

Theorem 20 emphasizes the importance of cache and flow
diversity in the network: a next hop cache can benefit the
system if it is of a larger size, uses different replacement
policies or accepts miss flows from a multitude of neighboring
caches.

C. Achieving bounds in parallel

Until this point, our discussion has focused on the upper
bounds per individual file, rearranging the arrival order of
the interfering requests to generate the worst case for some
fj . In this section, we show that in fact these bounds are
tight also in combination - the worst case can be reached
for all files simultaneously. We do so using a constructive
proof: Algorithm 2 provides an arrangement of requests that
generates the worst-case for all files.

In Algorithm 2, which considers a window w, we take as
input the number of miss sets M and, for 1 ≤ k ≤ N , yk =
min{I(w, k),M} as used in Algorithm 1. We show now that
the arrangement the algorithm produces will generate misses
for all yk requests, for all k, in the case where the cache was
empty at the beginning of w.

Theorem 21. All yk requests for fk will be cache misses, for
all 1 ≤ k ≤ N .

Proof: First note that each qk is in a different miss
sequence, by the pigeonhole principle and the fact that
yk ≤ M . Next, denote with index(i,k) the position of qk
in si. If qk ∈ si ∩ sj and i < j, the algorithm ensures

8

Algorithm 2 GetMissSets(y1, ..., yN , c, M).
1: S = ∅
2: for k=1 to M do
3: ~sk = ∅ // Initialize empty sequence
4: S := S ∪ sk
5: end for
6: j = 0
7: for k=1 to N do
8: for h = 1 to yk do
9: sj := sj |qk // “—” indicates concatenation

10: j := (j + 1) mod M // Next qk request will be in
a different sequence

11: end for
12: end for
13: RETURN S

index(i, k) ∈ {index(j, k), index(j, k) + 1}. Thus, if we
concatenate the sequences in the reverse index order, i.e.,

~sM . ~sM−1..... ~s2. ~s1,

then all requests for the same file will be spaced out by at
least c interfering requests. The first requests are all misses
since we assume an empty cache, which concludes our proof.

The algorithm just described arranges exactly yk requests
per file to generate the worst case, when in practice there are
I(w, k) ≥ yk arrivals during w. To address this, we can place
each of the excess I(w, k)− yk requests for fk adjacent to a
qk in the sequence produced by the algorithm. This will not
change the number of cache misses for any file, as a miss
sequence for fj can have an arbitrarily-long suffix consisting
of requests for fj .

D. Bounding σj,out
We next consider the burstiness components of the miss

streams, given the arrival stream bounds and ρj,out computed
in the previous sections. In a slight variation of what we did
earlier, we define the following set:

Definition 22. An eviction set e ⊆ F is a multi-set of at
least c requests for unique files. A eviction sequence −→e is an
ordered eviction set. We say this is an eviction set (sequence)
for file j if qj /∈ e (qj /∈ −→e).

We further define similar concepts for eviction sets as we did
for miss sets. Ew,j denotes the number of eviction sets for j
over w; Êw,j is Ew,j when the arrivals are tight with the arrival
bounds; and Êj = lim|w|→∞ Êw,j/|w|. Since appending an
eviction sequence w.r.t. j with a request qj yields a miss
sequence, it can be shown from Theorems 8 and 13 that

Mw,j = min{I(w, j), Ew,j} (5)

ρj,out = min{ρj,in, Êj} (6)

In what follows we also use the following two sets for each
j: Xj = {k 6= j : ρk,in < M̂}, and Yj = {1, ..., N}\ (X ∪ j).

Theorem 23 (σ bounds). (a) If ρj,in < Êj , then σj,out =
σj,in.
(b) If ρj,in > Êj , then σj,out = Bounds({σk,in}k ∈ Xj , c −
|Yj | − 1)
(c) If ρj,in = Êj , then σj,out = min{σj,in,Bounds({σk,in}k ∈
Xj , c − |Yj | − 1)}

As with the rate component, we see here once again that
the less-popular files are unaffected by the cache (as shown in
part (a) of the theorem), contrary to the popular files.

Proof: We adopt an amortized analysis approach here: for
purposes of computing the bounds, we attribute requests first
to the rate component and the rest to the burstiness component
of a given bound. We say that the first group are rate related
while the second is burstiness related. In this regard, we
note that for any file such that ρj,in < M̂ , the entire rate
component is accounted for in computing M̂ . We can see this
by observing that in Algorithm 1 increasing this ρj,in slightly
(e.g. to anything less than M̂) will result in an increase of M̂ .
On the other hand, if ρj,in > M̂ , parts of the rate component
are not associated with any rate-related miss-set.

(a) Assume ρj,in < Êj , then we know ρj,out < Êj from
Eq. 6. Thus, there is a large enough window [s,t) over which
(Êj−ρj,out)(t−s) ≥ σj,in, where we can place each of σj,in
requests for qj after a eviction-sequence w.r.t. j, resulting in
additional σj,in miss-sets for j. This yields a total number of
misses of ρj,outt + σj,in = ρj,int + σj,in, which is clearly
bounded by the input, so it is tight.

(b) Assume ρj,in > Êj , then from Eq. 6 we know ρj,out <
ρj,in, so we have an infinite number of requests for fj that
are not in a rate-related miss-set. We now construct additional
miss-sets for fj by using the burstiness components. For each
k ∈ Yj we have an infinite number of qk arrivals also not in
any miss-set, and all we require to complete a miss set is to
add a request qj and an additional c−|Yj | unique requests from
Xj . The number of these is at most Bounds({σk,in}k ∈ Xj ,
c − |Yj | − 1).

(c) If ρj,in = Êj , both bounds from the previous sections
hold using the same arguments above. Since one bounds the
potential of interfering requests and the other the requests for
fj , taking the minimum of both gives us the bound on the
miss stream burstiness.

What is left is to compute Êj . To this end, note that eviction
sets for fj are identical to miss sets, except that (a) they do
not include qj’s and (b) they are of size c, not c + 1. Thus,
to compute Êj we once again use Algorithm 1, but with two
changes:
• The input given is only for files k 6= i.
• In line 10 we substitute 1/(c + 1) with 1/c.
The arguments and proofs are identical to those shown for

the proof regarding M̂ and so are not detailed here.

V. EVALUATION OF WORST-CASE BOUNDS

A. Extracting bounds from Trace Data

When testing the models we propose in this work, we will
be evaluating them against simulator-generated traces. In this

9

section we discuss how to compute the (ρ, σ) bounds for
flows in the simulation, both exogenous (user-to-router) and
endogenous (router-to-router).

For a given trace, and since we compute here globally-tight
bounds, this can be computed in linear time with the length
(in terms of the number of requests) of the simulation:
• ρj is the mean request rate for fj .
• To compute σj , compute first σ′ = maxk∈N

1
tj,k+1−tj,k ,

where tj,k is the arrival time of the kth request for fj . σ′

is the highest observed arrival rate. We then compute σ
by canceling out the mean rate component for that same
time slot, so we get σ = σ′ − ρ(tj,k+1 − tj,k).

In addition to computing bounds based on trace data, we
may want to compute the bounds on an arrival process based
on it’s stochastic properties. Computing the ρ component is
once again identical to the mean arrival rate of these processes.
Regarding the burstiness component, some processes do not
have a deterministic bound (e.g., exponential distribution). In
such cases, we can use a statistical bounding point: for some
α, let σα be such that

Pr(tj,k ≤ t+ σα|tj,k−1 = t) = α

for all k ∈ N. Then, σα − ρ is the burstiness bound.

B. Bound tightness in practice
We next present several results concerning the performance

of our calculus. As in the analytical sections, we focus on the
ρ component, due to its centrality for system performance. As
proven in this paper, the bounds hold for all the experiments
we conducted.

For Figures 2-4, the topology we consider is a complete
binary tree of depth 4, where level 0 is the root node, shown
in Figure 1. By default, we assume 600 unique files can be
requested exogenously. One of the benefits of our calculus
is the ability to compute performance for non-hierarchical
systems. Thus, we place two custodians at nodes v7, v14, and
split the files between them. As a result, the path from v7
to v14 experiences cross-flows - flows of requests going in
both directions. We consider the number of cross-flows to be
the minimum of rates in either direction across a link, so for
hierarchical systems this number is zero.

0

2 1

6 5 4 3

10 9 8 7 11 12 13 14

Figure 1. Topology for simulations. Custodians are at nodes 7, 14.

Since we are interested in assessing the impact of cross-
flows on the bound tightness, we consider the case where

files are distributed according to multi-zipf distribution. The
approach here is to divide the files into sets of equal size, give
each set an equal probability, and then have the popularity
within each set be distributed according to zipf. In the exam-
ples shown here we divide the files into eight sets of 75 files.
The benefit of using this distribution is that it is uniform across
the sets, so we can move sets between custodians and know
that each set carries the same probability, while retaining the
realistic scenario of non-uniform request patterns. Note that as
the number of sets increases to N we get closer to uniform
distribution, while as the number decreases to 1 we get the
zipf distribution.

We consider two uses of our calculus. The first is for
computing bounds on a network of arbitrary topology. We
begin by computing bounds per node when the exogenous
rates are the arrivals per node. These arrival rates are then
recomputed by combining the exogenous rates with the bounds
on the miss stream that are forwarded to that node. This
process is then repeated until the system converges to a fixed
point. We then compare the computed bounds to the actual
performance of the system using simulations. As the bound-to-
simulation ratio goes to 1, the bounds become more reflective
of actual performance, indicating LRU performing close the
it’s worst case.

The second use of our calculus is for assessing the perfor-
mance of LRU in cache network scenarios. In this context, we
simulate the performance of a cache network and then extract
the simulated arrival rates at each node. We feed these arrival
rates to the calculus and compare the actual (simulated) miss
rates with the bounds. The same interpretation of bound-to-
simulation ratio applies here as well.

Figures 2-4 consider the first use case, where the computed
bounds are fed to the next hop caches in the next iteration. In
Fig. 2 we gradually shift content from the custodian at v14 to
the one at v7, which generates more cross-flows. We see in
this figure how this increase in cross flows causes the bounds
to be tighter, especially near the root of the tree (nodes 0-2)
where the flows are largest.

In Fig. 3 we see how when decreasing the cache size
the bounds become tighter, and the same phenomenon oc-
curs when increasing the number of files. These results are
especially relevant to Cache Networks, where the file-to-
cache size ratio is expected to be high, making the bounding
calculus a useful tool in estimating reasonable upper bounds
on performance in practice.

We now turn briefly to applying our calculus in the second
manner presented above, to determine how well LRU performs
in a cache network. We once again consider the tree topology
as before, but this time place a single custodian for all files
at the root node, thus eliminating cross flows. The results
are shown in Figure 5. They demonstrate that the bounds
are getting tighter as we progress up the tree, indicating that
cache hierarchies using LRU at all levels are inefficient as they
increase in scale.

The importance of this calculus is highlighted when we
consider a wider variety of arrival processes. Most models

10

0 2 4 6 8 10 12 14

Node ID

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70
M

is
s

R
a
te

 R
a
ti

o
Tree - Cross Flows - Bounding performance

no cross
75/525
225/375

Figure 2. Impact of cross-flows on the bound tightness. cache size on bound
tightness, with 90% confidence intervals shown. Setup is identical to Fig. 3.
X/Y indicates X files at v7 and Y files at v14.

0 2 4 6 8 10 12 14

Node ID

1.1

1.2

1.3

1.4

1.5

1.6

M
is

s
R

a
te

 R
a
ti

o

Tree - Cross Flows - Bounding performance

csize = 20
csize = 35
csize = 50

Figure 3. Impact of cache size on bound tightness, with 90% confidence in-
tervals shown. Requests arrive at all nodes following a multi-zipf distribution.
Files are divided between custodians at nodes 7, 14, with 225 files at the first
and 375 at the second. As cache sizes decrease, bounds become more tight.

for caches consider only cases where the exogenous arrival
process follows the Independent Reference Model (IRM). This
means that requests are independent over time, such as when
the inter-arrival time between every two requests for content
fj follows exponential distribution. In Figure 4 we show
how varying the inter-arrival time distribution can generate
worse performance for LRU. In this plot, we use the Gamma
distribution to model exogenous arrivals: the time until the
next arrival of a request for fj with popularity pj = λj/

∑
i λi

is modeled according to Gamma(pj , β), where β is a scaling
parameter (β = 1 generates the exponential distribution). As
we can see in this figure, as the scaling parameter grows, the
bounds become tighter. Thus, our bounding calculus is suitable
for generating upper bounds in cases where the arrival process
is not known in advance.

0 2 4 6 8 10 12 14

Node ID

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
is

s
R

a
te

 R
a
ti

o

Tree - Cross Flows - Bounding performance

gamma 4
IRM

Figure 4. Impact of non-IRM traffic on bound tightness, with 90% confidence
intervals shown. Setup is identical to Fig. 3. As we see here, with inter-arrival
distances following the Gamma distribution with a scale parameter 4, bounds
become more tight relative to with IRM.

0 (root) 1 2 3

Tree Level

1.0

1.1

1.2

1.3

1.4

1.5

1.6

B
o
u
n
d
s/

S
im

 M
is

s
R

a
te

 R
a
ti

o

LRU Performance

200 files
300 files
500 files

Figure 5. Performance of LRU as compared to LRU worst-case. 90%
confidence intervals shown.

VI. RELATED WORK

As we’ve seen in this paper, networks of caches exhibit
extremely complex behavior. Even a single LRU cache in
isolation with IRM assumptions are difficult to analyze exactly
[19]. For individual LRU caches, the competitive ratio is
known to be c, most of the modeling literature has analyzed
performance for specific arrival processes to estimate the
performance in practice [19], [22]–[24].

Given the complexity of single cache analysis, it is not
surprising that cache network analyses to date have been ap-
proximate and limited to specific topologies. The modeling of
networked caches has been considered mostly for hierarchies
such as trees [8], [11], [20], [25], and recently for general

11

topologies [26], which has shown the significant impact of
dependencies within the miss streams on cache performance
which existing models fail to capture.

An alternative approach to approximate analysis of complex
networks is a bounding approach - the type of approach we
have taken here. Beginning with Cruz’s pioneering network
delay calculus [12], numerous researchers have developed both
deterministic and stochastic calculi for bounding the perfor-
mance of networks of queues [13]. Networks of queues, where
units of work proceed from one queue to another are quite
different from networks of caches, which perform a filtering
function, only forwarding cache misses on to downstream
nodes.

A number of efforts have adopted a bounding approach,
similar to network delay calculus for analyzing systems with
complex, time-varying, stochastic flows. These efforts have
analyzed energy flows in smart grid systems [27], [28] and
energy harvesting/expenditure in wireless sensor networks
[29]. While the flows in these systems are characterized by
(σ, ρ) bounds, the behavior of individual components through
which these flows pass, and the manner in which the bonded
flows are transformed, are quite different from cache networks.

VII. DISCUSSION AND FUTURE WORK

In this work we presented a Network Calculus for boundable
flows in an LRU cache network, and demonstrated its perfor-
mance for non-hierarchical topologies which existing models
do not address. Our bounds reveal that in the worst-case LRU
acts as a cutoff point on the arrival process, giving analytical
support to similar observations regarding actual behavior in
the network.

The results presented here can be extended in several
directions. The bounds here can be shown to hold equally well
for FIFO, whose worst-case is very similar to that of LRU.
Also, due to the limited impact of burstiness on the miss rate,
similar bounds on the rate can be shown for non-deterministic
bounding models, such as Exponentially Bounded Burstiness
[15]. As for extending beyond deterministic replacement poli-
cies and addressing policies such as random replacement, a
bound on the mean behavior would be more suitable, for which
a different set of analytical tools will be needed.

REFERENCES

[1] V. Jacobson. (2007) A new way to look at networking. Internet
video. [Online]. Available: http://video.google.com/videoplay?docid=-
6972678839686672840

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A Survey of Information-Centric Networking (Draft),” in Information-
Centric Networking, 2011.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, ser. CoNEXT ’09. ACM, 2009, pp. 1–12.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 161–172, 2001.

[5] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an information-
centric internetworking architecture,” SIGCOMM Comput. Commun.
Rev., vol. 40, April 2010.

[6] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web caching and zipf-like distributions: Evidence and implications,”
in INFOCOM, 1999, pp. 126–134.

[7] M. Busari and C. L. Williamson, “Simulation evaluation of a heteroge-
neous web proxy caching hierarchy,” in MASCOTS. IEEE Computer
Society, 2001, pp. 379–388.

[8] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of lru
caches and its analysis,” Performance Evaluation, vol. 63, pp. 609–634,
2006.

[9] G. Peng, “Cdn: Content distribution network,” 2004. [Online]. Available:
http://arxiv.org/abs/cs/0411069

[10] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modeling
and evaluation of ccn-caching trees,” in IFIP Networking, 2011.

[11] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in INFOCOM, 2010 Proceedings IEEE,
march 2010, pp. 1 –9.

[12] R. Cruz, “A calculus for network delay. i. network elements in isolation,”
Information Theory, IEEE Transactions on, vol. 37, no. 1, pp. 114 –131,
jan 1991.

[13] J. Le Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. springer-Verlag, 2001.

[14] D. Starobinski, M. Karpovsky, and L. A. Zakrevski, “Application of net-
work calculus to general topologies using turn-prohibition,” IEEE/ACM
Trans. Netw., vol. 11, pp. 411–421, June 2003.

[15] D. Starobinski and M. Sidi, “Stochastically bounded burstiness for
communication networks,” IEEE Transactions on Information Theory,
vol. 46, pp. 206–212, 1999.

[16] O. Yaron and M. Sidi, “Generalized processor sharing networks with
exponentially bounded burstiness arrivals,” in Journal of High Speed
Networks, 1994, pp. 628–634.

[17] J. Schmitt and U. Roedig, “Sensor network calculus–a framework for
worst case analysis,” Distributed Computing in Sensor Systems, pp. 467–
467, 2005.

[18] M. Raza, B. Robertson, W. Phillips, and J. Ilow, “Network calculus based
modeling of anomaly detection,” in Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS), 2010 International
Symposium on. IEEE, 2010, pp. 416–421.

[19] A. Dan and D. F. Towsley, “An approximate analysis of the lru and fifo
buffer replacement schemes,” in SIGMETRICS, 1990, pp. 143–152.

[20] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in IEEE INFOCOM, 2001, pp. 1416–1424.

[21] S. Vanichpun and A. Makowski, “Comparing strength of locality of
reference-popularity, majorization, and some folk theorems,” in INFO-
COM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 2. IEEE, 2004, pp. 838–849.

[22] W. F. King, “Analysis of paging algorithms,” in IFIP Congress, 1971,
pp. 485–490.

[23] H. Levy and R. J. T. Morris, “Exact analysis of bernoulli superposition
of streams into a least recently used cache,” IEEE Trans. Softw. Eng.,
vol. 21, no. 8, pp. 682–688, 1995.

[24] A. Panagakis, A. Vaios, and I. Stavrakakis, “Approximate analysis of lru
in the case of short term correlations,” Comput. Netw., vol. 52, no. 6,
pp. 1142–1152, 2008.

[25] Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 15, no. 6,
pp. 505 – 519, june 2004.

[26] E. J. Rosnsweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in INFOCOM, 2010 Proceedings IEEE, march
2010.

[27] K. Wang, F. Ciucu, C. Lin, and S. Low, “A stochastic power network
calculus for integrating renewable energy sources into the power grid,”
Selected Areas in Communications, IEEE Journal on, vol. 30, no. 6, pp.
1037–1048, 2012.

[28] J.-Y. Le Boudec and D.-C. Tomozei, “Demand response using service
curves,” in Innovative Smart Grid Technologies (ISGT Europe), 2011
2nd IEEE PES International Conference and Exhibition on, dec. 2011.

[29] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Trans. Embed. Comput.
Syst., vol. 6, no. 4, Sep. 2007.

