
Characterizing 4G and 3G Networks: Supporting
Mobility with Multi-Path TCP
UMass Amherst Technical Report: UM-CS-2012-022

Yung-Chih Chen
University of Massachusetts Amherst

yungchih@cs.umass.edu

Don Towsley
University of Massachusetts Amherst

towsley@cs.umass.edu

Erich M. Nahum
IBM T.J. Watson Research Center

nahum@us.ibm.com

Richard J. Gibbens
University of Cambridge

richard.gibbens@cl.cam.ac.uk

Yeon-sup Lim
University of Massachusetts Amherst

ylim@cs.umass.edu

Abstract—Advances in cellular technology have increased the
demand of accessing the Internet dramatically. Cellular tech-
nology not only enables mobility, but also allows redundant
connectivity using multiple wireless paths to improve availability,
reliability, and performance. Multiple paths enable the potential
to shift traffic from broken or congested paths to higher-quality
ones as traffic characteristics dynamically change, particularly
during movement. However, little work has been done to date
studying cellular networks or their suitability.

This paper characterizes the behavior of cellular networks,
examining 3G, 4G, and Wi-Fi networks for both single-path and
multi-path data transport. Our contribution is two-fold: First,
we perform measurements of single path transport using TCP
over major US cellular wireless networks (both 4G and 3G),
and characterize them in terms of throughput, packet loss, and
round-trip time. Second, we measure and evaluate transport
using multi-path TCP in cellular environments and show that
leveraging path diversity under changing environments is a
promising solution for more reliable and efficient TCP transfer.
We also identify potential issues in using multi-path TCP which
can limit performance.

I. INTRODUCTION

With the ubiquitous deployment and rapid evolution of
cellular data networks, the demand of accessing the Internet for
mobile users has soared dramatically. Not long after the third
generation (3G) standards were released, 3G services have
attracted a tremendous number of users due to the convenience
of mobile devices. Although traditional Wi-Fi has a much
higher transfer rate than 3G, using Wi-Fi in moving vehicles
is challenging since access points (APs) usually have short
signal ranges. Furthermore, the association process takes up to
10−15 seconds and the connection quality and durations are
both affected by the moving speed [6]. As a hybrid approach,
using Wi-Fi to augment 3G service [4] was a smart interim
solution that offloads data from ubiquitous but slow 3G to
intermittent yet fast Wi-Fi networks. However, this requires
constantly switching between Wi-Fi and 3G technology and
often breaks the existing connection into several short, possibly
delayed sessions. Since each TCP connection setup requires
additional time, due to three way handshaking, slow-start, and

congestion window initialization/ramp-up, splitting the exist-
ing connection into several TCP connections will introduce
additional overhead.

As most of major US cellular network carriers have recently
launched their 4G services in commercial markets, the status
quo of integrating the technologies of 3G and Wi-Fi for better
performance has changed. Here, we seek a better solution for
accessing the Internet under mobile scenarios by leveraging
path diversity offered by cellular networks, where a mobile
user can establish TCP connections using multiple paths
simultaneously. When any of the paths becomes congested or
breaks, this scheme can easily offload traffic from one path to
another without breaking existing TCP connections.

In this paper, we first characterize the 4G/3G networks
of three major US cellular network carriers (i.e., Verizon,
AT&T, and Sprint). We observe that 4G outperforms Wi-
Fi and provides several times greater performance than 3G,
in terms of throughput and loss rates. We also show that,
by leveraging path diversity (4G, 3G, and Wi-Fi), multi-
path TCP can support mobility without breaking existing
connections. When passing through areas where different
technologies/carriers have different availability, this solution
can dynamically offload traffic from congested/broken paths
to better ones, and provides a more reliable and efficient TCP
transfer with performance no worse than single-path TCP.

The remainder of this paper is structured as follows. Section
II briefly describes the background of current cellular data
networks and multi-path TCP. Measurement setup and method-
ology are presented in section III. Results of 4G/3G measure-
ments with multi-path TCP of static and mobile scenarios and
the performance comparison against single-path TCP are in
section IV. Related works are discussed in section V, and
section VI concludes this paper.

II. BACKGROUND

This section provides background of the state of art cellular
data network technologies and the multi-path TCP control
mechanisms needed for the rest of the paper .

A. Cellular Data Networks
In this paper, we examine the performance of 3G and 4G

(corresponding to the third and fourth generation) services of
Verizon, AT&T and Sprint networks, as they are the three
major carriers for which we have measured. We focus on
the downlink measurements as mobile clients using multi-path
TCP are usually the receivers.

1) 3G and 4G Technologies: 3G is a generation of stan-
dards defined by the International Mobile Telecommunication
Union (ITU). 3G services are required to satisfy the standards
of providing peak data rate of at least 200K bits per second
(bps), and 3G services of Verizon and Sprint are based on the
Evolution-Data Optimized (EV-DO), whereas AT&T is based
on High Speed Packet Access (HSPA), respectively. Note that
among all of our measurements, we did not observe any
area where AT&T provides 3G-only service. All of AT&T’s
networks are now under the enhanced version named evolved
HSPA (HSPA+). Unlike HSPA, there is no natural evolution
from EV-DO system to 4G LTE (described below), hence
Verizon currently uses the evolved High Rate Packet Data
(eHRPD) as their stopgap from 3G to 4G (instead of replacing
existing EV-DO system with HSPA and then migrating to 4G
LTE). For simplicity, in this paper, we refer to AT&T HSPA+
as AT&T 3.5G, Verizon eHRPD as Verizon 3G, and Sprint
EV-DO as Sprint 3G.

4G differs from technologies of previous generations in
that it aims to support mobility and all-Internet Protocol (all-
IP) based, packet-switched communications (as apposed to
circuit-switched telephony service). There are two major 4G
standards: Long Term Evolution (LTE) [1] and Worldwide
Interoperability for Microwave Access (WiMax) [12]. The
specified peak speed in the specifications for 4G services are
100 Mbps for high mobility communication (e.g., users in
vehicles), and 1Gbps for low mobility communication (e.g.,
stationary users or pedestrians). Both Verizon and AT&T have
launched their 4G LTE services recently in some areas. Sprint,
as a counter part, started its 4G service much earlier with
WiMax since 2008. Although Sprint recently announced that it
is entering the LTE market in 2012, due to the low availability
of Sprint LTE, we only focus on Sprint WiMax and refer to
it as Sprint 4G.

2) Availability: As cellular technologies have entered to our
daily life, it is much easier nowadays for us to access the In-
ternet while walking across the streets, going to another place
by car, or through public transportation. In most vehicular
scenarios, mobile users will experience technology switches
from certain carriers due to the availability of particular
cellular technologies.

Previous measurements from UMass mobility testbed [4],
a vehicular network consisting of 20 public transit vehicles,
has shown that 3G is available 90% of the time and Wi-
Fi is around 12% of the time in Amherst Massachusetts,
a geographical area of 150 square miles. Further statistics
show that 4G availability (from Verizon Wireless) in the same
measurement area of Amherst is about 60% of the time. Since
most carriers only offer their 4G services in limited, mostly

metropolitan, cities1, the presence of 4G technology, together
with 3G and Wi-Fi, has attracted our interest in the robustness
of data transport when using multiple paths during movement.

When a user moves across zones of different signal coverage
provided by different carriers (e.g., from a metropolitan work
place to a suburban residential area), it is often the case
that the mobile user will suffer instability or stallness of the
existing TCP connections. With multi-path TCP, these issues
can be dealt with by offloading traffic from heavily loaded
paths to higher quality ones during technology transition (e.g.,
4G to 3G), and from the congested/broken paths to well-
performed paths (e.g., weak signal coverage) without hurting
users’ experience.

B. Multi-Path TCP

Consider a scenario of two hosts where each host has
multiple interfaces. Multi-path TCP establishes a connection,
which utilizes the paths defined by all end-to-end interface
pairs. The traffic transferred over each path is referred to
as a flow, and each path contains one flow. Hence, in this
paper, we refer to a multi-path TCP connection utilizing k
paths simultaneously as having k flows in it. The benefits of
leveraging multi-path TCP with cellular networks in mobile
scenarios is three-fold:

• Improve throughput:
The most basic goal of using multi-path TCP is to
improve throughput. A multi-path TCP connection should
perform at least as well as a single-path TCP connection
on the best of all used paths.

• Load Balancing:
A multi-path TCP connection should move traffic from
its mostly congested path to other paths as much as
possible. A more extreme case would be when a path
breaks, a multi-path TCP connection should move all the
traffic from the broken path to other working paths, and
maintains the connection as stable as possible.

• Robustness for technology availability:
When traveling from one place to another, mobile users
might receive services of certain technologies from all
carriers at one place (e.g., in big cities), but only from
some of them in other places (e.g., in suburban areas).
Since service can die or degrade from cell to cell, data
transport with multi-path TCP can still offer a quality
service regardless of the poor performance from certain
carriers.

In summary, the aggregate throughput of a multi-path TCP
with k flows should perform at least as well as the best
single-path TCP running on any of the k paths. One should
treat a multi-path TCP as a single-path TCP and compare its
throughout to that of the best single-path TCP connection,
rather than to that of the aggregation of k independent single-

1As of June 2012, Sprint, together with its collaborator Clearwire, has
offered their 4G WiMax services in 77 cities [20] across the US since 2008.
Verizon Wireless, although started slightly later, has extended it 4G coverage
to 258 cities, while AT&T only covers 38 of them [24] [3].

Carrier Device Name Technology Frequency (MHz) Connection Type4G 3G 4G 3G
AT&T Elevate 3/4G mobile hotspot LTE HSPA(+) 704-746 850/1900 USB tethering
Verizon LTE USB modem 551L LTE eHRPD 746-787 800/1900 Ethernet Cable
Sprint OverdrivePro 3/4G mobile hotspot WiMax EV-DO 2495-2690 1850-1990 USB tethering

TABLE I
4G DEVICES USED FOR EACH CARRIER

path TCP connections for the purposes of fairness, as multi-
path TCP is designed to be TCP friendly.

In this work, we use multi-path TCP Kernel implementation
[15] under Ubuntu Linux 11.10 for measurements. As a
standard procedure of running multi-path TCP [8], a TCP 3-
way handshake is initiated by the mobile client, with multi-
path capable information placed in the option field of the SYN
packet. If the server also runs multi-path TCP, it then returns
corresponding information in the option field of SYN/ACK
and the first flow can be established. Information about other
interfaces at both ends is then exchanged through this existing
flow, and additional flows will be set up through additional
3-way handshakes for those interfaces.

Each flow behaves like a regular TCP connection, and
maintains its own congestion window during data transfer.
Denote by wi the congestion widow size of flow i, and w
the total congestion window size over all the flows. We briefly
describe the congestion control schemes used in regular single-
path TCP and multi-path TCP .

1) TCP Reno Congestion Control: The standard TCP con-
gestion control increases and decreases the congestion window
with the following manner:

• For each ACK on flow i: wi = wi +
1
wi

• For each loss on flow i: wi =
wi

2 .
As multi-path TCP cannot use the standard TCP congestion

control algorithm over each path due to resource allocation and
fairness problems, we hence explain the coupled congestion
control schemes in the following.

2) Coupled Congestion Control:
• For each ACK on flow i: wi = wi +

1
w

• For each loss on flow i: wi = max(wi − w
2 , 0)

The congestion controller listed above is referred to as fully
coupled because it uses the window sizes of all paths, which
couples all flows’ congestion windows in either the increase
phase (on each ACK received) and the decrease phase (on
each packet loss identified). When the controller only cou-
ples the flows’ congestion windows in the increase phase
(and maintains the flow window decrease mechanism from
TCP Reno), we refer to it as the coupled increase scheme.
Similarly, when coupling the flows’ congestion windows only
occurs during the decrease phase (and maintains flow window
increase mechanism from TCP Reno), we refer to it as
coupled decrease scheme. Note that when there is only one
flow available, all three coupled congestion control algorithms
reduce to the standard Reno algorithm. A further analysis [13]
has investigated issues related to these schemes, and suggested
that the coupled increase scheme should be used.

An enhanced version of the coupled increase algorithm is
proposed by Wischik et al. [26], which takes into account the
properties of different RTTs over different paths. Its coupled
increase phase is described as follows:

• For each ACK on flow i: wi = wi +min(αw , 1
wi

)

The additional parameter, α, controls the aggressiveness of the
window’s increase to compensate for situations where RTTs
over different paths differ widely.

In this paper, we use the multi-path TCP Kernel implemen-
tation [15], and the enhanced coupled increase scheme defined
in [26] is used as the default congestion controller of multi-
path TCP.

III. MEASUREMENTS DESCRIPTIONS

We conduct measurements over three major commercial
cellular network providers in the US: Verizon, AT&T and
Sprint.

The setting of our measurements consists of a wired
server, residing at the University of Massachusetts Amherst
(UMass) and a mobile client. Our server is Dell Precision
T1600n workstation using Intel Quad Core Xeon E3-1225
CPU (3.1 GHz processor, 8GB memory) and is configured
as a multi-homed host [8], connecting via 2 Intel Gigabit
Ethernet interfaces to two subnets (LANs) of the UMass
network. Each Ethernet interface is assigned with a public
IP address and connected to the LAN via a 1 Gigabit
Ethernet cable. The mobile client is Lenovo X-60 (Intel Dual
CPUs of 1.6 GHz processors with 2GB memory) and has a
built-in 802.11 a/b/g wi-fi interface. The mobile host, under
different configurations, is wired to 3 additional cellular
broadband data devices listed in Table I. These devices
have the functionality of detecting 4G LTE signal, and will
switch to 3G/3.5G automatically when 4G LTE/WiMax is
not available. Note that the AT&T and Sprint devices we use
are mobile hotspots, which can serve as 802.11 Wi-Fi APs
to allow multiple users to associate with it for bandwidth
sharing, we disable the functionality of Wi-Fi bandwidth
sharing, and wire it to our mobile client through a USB cable2

2As of April 2012, none of Verizon 4G dongles supports Linux as
advertised. We connect the USB modem to a 4G mobile broadband router
made by Cradlepoint [7], and wire it to the Ethernet port of the mobile
client. Note that Verzion does carry mobile hotspots, called “Mi-Fi”, which
are similar to other mobile hotspots but do not support USB tethering (hence
the mobile client is forced to use wifi to connect to Verizon mobile hotspot).

Carrier Location Technology BW (Mbps) RTT (ms) Loss Rate (%) 3WHS RTT (ms)
Mean Std. Mean Std. Mean Std. Mean Std.

Verizon 4G LTE 7.15 (2.93) 141.62 (91.83) 0.20 (0.08) 67.72 (8.66)
AT&T Boston 4G LTE 10.72 (1.10) 65.84 (14.94) 0.03 (0.03) 38.80 (0.42)

AT&T (adj) 4G LTE 15.63 (1.04) 124.64 (50.51) 0.05 (0.03) 40.57 (2.72)
Sprint MA 4G WiMax 2.72 (0.45) 166.22 (55.52) 0.26 (0.07) 158.16 (102.75)

RCN Wi-Fi 802.11 10.72 (0.15) 46.97 (22.80) 0.20 (0.01) 13.33 (1.66)
Verizon 4G LTE 12.01 (2.78) 77.31 (21.43) 0.13 (0.09) 76.39 (13.43)
AT&T Amherst 3.5G HSPA+ 6.49 (1.13) 115.32 (31.06) 0.14 (0.05) 170.18 (115.34)
Sprint MA 3G EVDO 1.19 (0.24) 348.02 (151.28) 0.27 (0.13) 107.03 (39.35)

UMass Wi-Fi 802.11 18.32 (0.87) 39.92 (16.82) 0.25 (0.08) 2.75 (1.10)
Verizon Sunderland, MA 3G eHRPD 1.85 (0.30) 362.37 (135.28) 0.10 (0.32) 153.27 (217.08)

TABLE II
SINGLE-PATH TCP MEASUREMENTS AT BOSTON AND AMHERST AREAS (MA)

A. Methodology

In all experiments, we collect packet traces from both
interfaces of the UMass server and all the interfaces used of the
client using tcpdump [22], and use tcptrace [23] to analyze
the collected traces. For each experiment, unless specifically
mentioned, the mobile client downloads a 100MB file from
the UMass server, and each result shown below is the average
of (at least) 6 runs of any particular configuration in a day
(morning/afternoon/evening).

We are interested in the following metrics related to the
performance of multi-path TCP and single-path TCP :

• Throughput:
The average throughput is computed as the number of
bytes sent divided by the elapsed time (in Mbps).

• Round trip time (RTT):
We measure RTT on a per-flow basis. Denote Tr as the
server’s receive time of an ACK packet for a previous
packet sent from the server at time Ts over a flow. Hence,
the RTT is the time difference between the time when a
packet is sent by the server and the time it receives the
ACK for that packet (i.e., RTT = Tr − Ts), and only
non-duplicate ACKs and non-retransmitted packets are
considered. Note that the RTT here is different from that
reported in [10], which uses only the RTT of the 3-way
handshake (3WHS), which is usually lower than the RTT
of data packets, as presented in Tables II, III, and IV.

• Loss rate:
The average loss rate is calculated on a per-flow basis,
and it is computed as the total number of retransmitted
data packets divided by the total number of data packets
sent from the server.

IV. RESULTS

A. Static Scenarios

1) Single-Path TCP: We have performed experiments for
single-path TCP with New Reno algorithm at multiple places
in Massachusetts USA, and summarize the average perfor-
mance metrics in Table II for easy reference. In general, we
observe very different properties for 4G networks than for 3G
networks in terms of all the performance metrics.

0 20 40 60 80 100 120
0

2
4

6
8

10
12

14

time (sec)

th
ro

ug
hp

ut
 (

M
bp

s)

Fig. 1. Verizon 4G LTE throughput

0 20 40 60 80

0
2

4
6

8
10

12
14

time (sec)

th
ro

ug
hp

ut
 (

M
bp

s)

AT&T 4G LTE
AT&T 3.5G HSPA+

Fig. 2. AT&T 4G and 3.5G throughput

Figure 1 shows the throughput of Verizon LTE when
downloading a 100 MB file from the UMass server over a
single-path TCP connection as a function of time. A regular
TCP Reno connection over Verizon LTE network behaves as
follows: it increases its congestion window on each ACK
received, and hence very quickly reaches the link capacity (the
peak rate observed here is 13.54 Mbps). When this happens,
packets start getting dropped, resulting in the congestion
window size reducing by half, and the controller enters the
congestion avoidance phase. This mechanism repeats until
all packets are correctly received and ACKed, and hence the

typical TCP sawtooth curve is present.
With an even higher average download rate, surprisingly,

we do not observe many packet losses from connections over
the AT&T LTE network. For many rounds, the packet loss
rate is even zero. Figure 2 shows the throughput of AT&T
4G LTE and 3.5G HSPA+ networks. It is interesting that the
AT&T 4G throughput curve does not exhibit the typical TCP
sawtooth pattern as Verizon 4G does in Figure 1, and seems
to be capped at 11 Mbps.

When we inspect packet headers, we observe that the
receiver window advertised in the AT&T LTE network differ
substantially from that of Verizon LTE network. Right after
the connection is established, the AT&T’s receiver advertised
window is set to a maximum value of 100,800 bytes and
remains constant afterwards.

Since the receiver advertises its buffer size as 100,800
bytes, and the sender’s congestion window size is restricted
to the value of min(cwnd, rwnd), where cwnd and rwnd
denote the updated congestion window size and the receiver
advertised window size. We conjecture that the receiver ad-
vertised window size limits the number of packets that the
sender can transmit over the AT&T TCP connections, since
for Verizon LTE network, the receiver advertised window size
is set to 676,304 bytes, which is 6.7 times larger than AT&T’s
advertised value.

Assume that the sender’s congestion window is set to the
receiver advertised window size of 100,800 bytes (equivalent
to 0.77 Mbits). As our measurements show that the average
RTT of the AT&T LTE network is 65.84 ms, the maximum
data rate that the sender can send is

Rate =
cwnd

RTT
=

0.77

0.06584
≈ 11.68 Mbps.

The calculation matches our measured average throughput
of 10.72 Mbps and the instantaneous rate is stable as shown
in Figure 2.

Discussion and Performance Comparison:

a) Small receiver advertised window: the maximum re-
ceiver advertised window is constrained by the bandwidth
delay product (BW×RTT), and the maximum socket receive
buffer allocated by the Linux kernel. TCP maintains part of
the buffer as the receive window advertised to the other end,
and the rest of the space is used as the application buffer.

As the default maximum TCP receive socket buffer size for
a 2GB RAM machine is 880KB, the AT&T USB tethering
device tends to modify the assigned value, and hence gets less
memory for its socket buffer (i.e., 100,800 Bytes), compared
to other carriers’ devices using the complete assigned memory
size. This small advertised value restricts AT&T’s window
increase, and yields a low-loss and stable TCP connection.
We also observe the same receiver advertised window in
AT&T 3.5G network. Because the link capacity of AT&T
3.5G bandwidth is much lower than 11.68 Mbps, we observe
the sawtooth behavior is prominent, as shown in Figure 2.

Note that in the multi-path TCP kernel implementation [5],
the Linux kernel maintains a connection-level receive buffer
(over all sockets) as a shared resource, and uses this value
for per-flow window advertisement. Therefore, for multi-path
TCP connections, the small receiver advertised window
from a particular carrier in the above scenario would not be
problematic.

b) Rate control and loss reduction: To understand how the
small receiver advertised window can affect the performance
in AT&T networks, we first increase the maximum receive
socket buffer size allocated to the AT&T device by eight times,
and make sure that each AT&T TCP socket has enough receive
buffer to advertise. As listed in Table II, the average throughput
of the adjusted version, AT&T (adj), is approximately 15.63
Mbps, a roughly 46% performance gain. Furthermore, even
after removing the constraint of small receiver advertised
window, surprisingly, we still did not see prominent sawtooth
patterns when inspecting the throughput as a function of time.
Our observations show that when the sender starts transmitting
at a high rate, the scheduler of the AT&T LTE base station, the
evolved NodeB (eNB), queues packets sent from the server,
and appears to drain the queue quickly or when a packet loss
occurs, resulting in much larger packet RTTs. Furthermore, for
non-retransmitted packets, they will be queued for different
amount of time, but the maximum RTT is capped at 200 ms
(will discuss the details in the following section). If we assume
the 3-way handshakes packets do not suffer any additional
queueing delay from by the AT&T network (since they are
the first few packets of a connection), and any following data
packets can be queued with a RTT up to 200 ms, then the
average round trip time is

RTT ≈ RTT3WHS +RTTmaxDelay

2
=

40.57 + 200

2
= 120.285

which matches our measurements of the average RTT of the
adjusted AT&T LTE measurements, AT&T (adj), in Table II,
which is 124 ms. If no additional queueing delay is introduced,
the AT&T LTE should be able to achieve an ideal throughput
roughly 3 times higher. We will see details in the following
section.

2) Multi-Path TCP: In this section, we measure the
throughput of multi-path TCP and compare it to that of single
path TCP. As we have shown that single-path TCP’s perfor-
mance (i.e., TCP New Reno) over all three carriers’ networks
in Section IV-A, here we present measurement results of multi-
path TCP in static scenarios.

a) Two client interfaces (4 flows):
In this configuration, we activate both the AT&T and Verizon
4G devices, and run multi-path TCP at both ends, downloading
the same 100MB file from the UMass server. Note that
in Section IV-A, we discussed the issue that the maximum
throughput can be capped by assigning receiver advertised
window size with a smaller number. In the multi-path TCP
configuration, on the other hand, the receiver buffer is shared

0 20 40 60 80

0
2

4
6

8
10

th
ro

ug
hp

ut
 (

M
bp

s) Verizon−flow1
Verizon−flow2

0 20 40 60 80

0
2

4
6

8
10

th
ro

ug
hp

ut
 (

M
bp

s) AT&T−flow 1
AT&T−flow 2

time (sec)

Fig. 3. Throughput of 4 flows from Verizon
and AT&T LTE

0 50 100 150 200

0
2

4
6

8
10

th
ro

ug
hp

ut
 (

M
bp

s) Verizon−flow1
Verizon−flow2

0 50 100 150 200

0
2

4
6

8
10

th
ro

ug
hp

ut
 (

M
bp

s) AT&T−flow 1
AT&T−flow 2

time (sec)

Fig. 4. The calibrated slow-start configuration
of the 4-flow case

50 100 150 200

0
10

0
20

0
30

0

R
T

T
 (

m
s)

Verizon−flow1

50 100 150 200

0
10

0
20

0
30

0

R
T

T
 (

m
s)

AT&T−flow1
retranmissions
RTT=200ms

time (sec)

Fig. 5. Round trip time samples of Verizon
and AT&T LTE flow-1

Carrier Technology BW (Mbps) RTT (ms) Loss Rate (%) 3WHS RTT (ms) Aggregate
Mean Std. Mean Std. Mean Std. Mean Std. Throughput

Amherst, MA 19.59 Mbps
Verizon-1 2.45 (0.63) 77.10 (17.54) 0.11 (0.05) 93.47 (27.95)
Verizon-2 4G LTE 1.96 (0.53) 76.26 (17.06) 0.13 (0.08) 90.78 (27.53) 4.41
AT&T-1 0.95 (0.47) 117.51 (39.80) 0.05 (0.05) 295.87 (62.31)
AT&T-2 3.5G HSPA+ 1.16 (0.57) 115.27 (34.66) 0.06 (0.05) 321.78 (19.96) 2.11
Sprint-1 0.42 (0.12) 245.69 (105.29) 0.21 (0.22) 147.70 (110.08)
Sprint-2 3G EVDO 0.46 (0.23) 253.26 (108.41) 0.18 (0.08) 164.40 (114.65) 0.88
UMass-1 6.43 (0.95) 17.20 (9.97) 0.09 (0.02) 3.43 (0.98)
UMass-2 Wi-Fi 5.76 (1.12) 18.10 (10.40) 0.12 (0.03) 3.37 (0.85) 12.19

Boston, MA 16.45 Mbps
Verizon-1 2.53 (1.36) 79.95 (33.67) 0.09 (0.05) 63.77 (7.75)
Verizon-2 4G LTE 2.06 (1.09) 84.23 (48.07) 0.17 (0.08) 71.77 (5.79) 4.59
AT&T-1 3.98 (2.49) 92.48 (32.08) 0.13 (0.06) 53.33 (13.08)
AT&T-2 4G LTE 3.52 (2.29) 81.75 (43.12) 0.14 (0.12) 53.23 (16.32) 7.50
Sprint-1 0.80 (0.47) 129.68 (44.20) 0.24 (0.16) 98.47 (7.44)
Sprint-2 4G WiMax 0.68 (0.50) 130.02 (40.88) 0.24 (0.13) 98.73 (7.19) 1.48

Boston RCN-1 1.45 (0.22) 23.12 (20.63) 0.48 (0.08) 14.00 (1.43)
Boston RCN-2 Wi-Fi 1.43 (0.41) 24.33 (19.48) 0.44 (0.16) 14.18 (1.60) 2.88

TABLE III
STATIC 8-FLOW SCENARIOS IN AMHERST AND BOSTON, MA

by all flows and hence the receiver advertised window size of
each flow is the same.

Figure 3 shows the throughput of 4 flows from the mobile
client (2 interfaces: Verizon and AT&T) to the UMass server
(2 interfaces, denote as flows 1 and 2). In this case, both AT&T
and Verizon 4G networks have similar bandwidth and RTTs
(around 100 ms). As in Figure 3, Verizon starts at around
5Mbps, and its two flows very quickly reach the link capacity
12 Mbps (6Mbps each). These flows then encounter packet
losses at around 40 seconds. Both Verizon flows reduce their
congestion windows by half, and increase their windows at
a similar speed as the AT&T flows. Note that the AT&T
flows start at much lower rates and do not suffer any loss.
Both flows increase the throughput gradually and the aggregate
throughput of the two flows (approximately 7Mbps) did not
reach maximum link capacity even after the completion of
downloading the file of 100MB at 80 seconds.

Discussion and adjustment:

As shown in Figure 3, there is a critical issue involved when
running multi-path TCP in high link bandwidth environments.
Our observations show that, in many cases, flows to the some
carrier device seem to leave slow start at a very early manner,
and the flows associated with the same carrier tend to leave
the slow start simultaneously and very quickly (if no loss
occurs). Since the flows’ data rates increase much slower in
the congestion avoidance phase than in the slow-start phase
(linearly vs. exponentially), flows with early entrance to the
congestion avoidance phase takes a very long time to reach a
high bandwidth as the AT&T flows in Figure 3.

This issue is not a big concern in single-path TCP, as
the single-path TCP congestion controller behaves N times
more aggressive than any of the N flows in a multi-path TCP
connection at the window increase phase (assume that all flows
are of similar conditions). However, when one flow leaves
the slow start phase at a very low data rate, followed by the
1/N slower window increase rate, it takes at least N times
longer than single-path TCP to achieve the same data rate. As

shown in Figure 3, the two AT&T flows’ data rates start at
approximately 1.5 Mbps, and do not grow fast enough with
reasonable high throughput even after one minute. This results
in performance degradation of multi-path TCP connections.

The main cause of these issues is the default setting of
Linux TCP sender’s caching slow start threshold (ssthresh)
for each IP-destination [18]. If an additional TCP connection
is established to the same destination IP address, the cached
value can be used for efficiently initializing the new TCP
connection.

When a TCP connection encounters a loss (after three
successive duplicate ACKs), as the standard procedure of fast
retransmit, the sender resends the lost packet and sets its slow
start threshold as follows:

ssthresh = max

{
FlightSize

2
, 2× SMSS

}
FlightSize is the amount of outstanding (un-ACKed) data

in the network, and SMSS is the size of the largest segment
that the sender can transmit [2]. That is, when an established
TCP connection suffers a sequence of losses, the ssthresh
value might be set to as low as 2 packets, and will be preserved
to cutoff the slow-start for the next flows to the same IP
address (i.e., the same cellular network carrier device).

For high bandwidth transmission links, we propose to
modify this default Linux TCP sender setting to not cache
metrics on closing connections to prevent possible perfor-
mance degradation due to early congestion avoidance. Each
newly opened flow/connection now uses the default slow-start
threshold [21] (64KB, roughly 5Mbps for 100 ms RTT links)
before encountering a packet loss.

Note that now each flow has its own slow-start threshold,
and the throughput over time of the calibrated configurations
of a 4-flow multi-path TCP is shown in Figure 4. Flows now
leave the slow start phase at approximately 5 ∼ 6 Mbps when
no loss occurs, as do Verizon flow-2 and AT&T flow-1. On
the other hand, Verizon flow-1 and AT&T flow-2 in Figure
4 suffer losses during the slow start phase at the beginning,
and hence the congestion controllers leave slow start and enter
congestion avoidance.

With the calibrated TCP configurations, flows now leave the
slow start phase with reasonable high data rates. As discussed
in the previous section, when flows of AT&T LTE start sending
packets at high data rates, data packets will be buffered in the
network and results in a maximum RTT of 200 ms. To better
characterize this behavior, we extended the download time to
see if there are any prominent patterns. Figure 5 shows the
RTT of each packet sent at a particular time from flow-1 of
Verizon and AT&T. In Figure 4, the aggregate throughput of
AT&T flows is 10 Mbps after leaving the slow start phase, but
the throughput of both AT&T flows do not increase linearly as
the Verizon flows do. This is mainly because the packets are
queued in the network. Since packet RTTs of the AT&T flow-
1 increases almost linearly during each RTT increase period,
and the flow throughput remains stable, we can still infer that

the AT&T flow-1’s congestion window also increases during
the same period (as flow throughput= cwnd/RTT).

An interesting observation is that at the end of each RTT
increase period, the packet RTTs drop very quickly from 200
ms to roughly 40 ms. Our observations show that these drops
occurs when a packet is dropped. In Figure 5, the vertical lines
are the times where retransmissions over AT&T network take
place at the server after packet losses.

Following by each packet loss/retransmission event, the
scheduler of the eNB drains the queue very quickly with
a sharp drop of RTT values. This is because after the lost
event occurs, during fast recovery, the sender’s congestion
window size increases by one when an additional duplicate
ACK is received after the lost packet is identified (by three
duplicate ACKs), resulting in more unACKed packets. When
the lost packet is correctly ACKed, the sender’s congestion
window will be set to cwnd = ssthresh+3, where ssthresh
is half size of the congestion window before fast recovery
[21]. When the congestion window is set to this new value
(reduced by half), the sender stops transmitting packets for
a period of RTT/2 until the number of unACKed packets
is smaller than the number of new congestion window size.
During this period of time, the scheduler drains the packets
in the queue. Note that we also inspected the Sprint and
Verizon’s packet RTT samples, and did not see the same
patterns in their networks.

b) Four client interfaces (8 flows):

As we have resolved all the issues which can potentially
degrade the performance of running multi-path data transport,
Table III lists the performance of static 8-flow multi-path TCP
scenarios in Boston and Amherst. Note that in Boston, all three
carriers (Verizon, AT&T, and Sprint) are of 4G services, and
the provider of Wi-Fi network is RCN. When in UMass, we
have a very diverse combination of wireless technologies. Our
devices connect to Verizon via 4G LTE, to AT&T via 3.5G
HSPA+, to Sprint via 3G EV-DO, and to Wi-Fi through UMass
campus-wide free Wi-Fi. As the first goal of using multi-
path TCP, one should have higher throughput when running
multi-path TCP for data transport, and should compare the
throughput of a multi-path TCP connection to that of the best
of single-path TCP running on any of the utilized paths for
the reason of fairness.

As listed in Table III, when running multi-path TCP for data
transport in the Amherst configuration, the average aggregate
throughput is 19.59 Mbps, which is higher than that of the
best single-path TCP connection from UMass Wi-Fi at 18.32
Mbps (shown in Table II), a roughly 7% performance gain.
Similarly, in the Boston configuration, the average aggregate
throughput of multi-path TCP connections is 16.45 Mbps,
which outperforms the best of the single-path TCP connection
from AT&T’s (adjusted) 4G LTE by 5.25%.

In the next section, we are going to present how one can
benefit from leveraging path diversity of cellular networks in
mobile scenarios. As in most of the mobile and vehicular

scenarios, wireless links might break from time to time;
running multi-path TCP in such kind of scenarios provides
a different aspect of robustness for data transport.

B. Mobile Scenarios

1) Single-Path TCP: In the following subsections, we will
sketch how one can benefit from using multi-path TCP in
mobile scenarios. We first performed experiments of single-
path TCP in the mobile scenarios as a baseline. The experi-
ments were mainly conducted at two rural towns in the western
Massachusetts, Amherst and Sunderland, and at Boston city in
eastern Massachusetts USA. For all the mobile experiments,
unless specified, were conducted at an average speed of 30
MPH, with 100 MB data transferred for mobile single-path
TCP scenarios, and 400 MB data transferred for multi-path
TCP scenarios.

Figure 6 illustrates the throughput changes over time of
mobile single-path TCP for AT&T 4G/3.5G, Verizon 4G/3G,
and Sprint 4G/3G connections. Table IV summarizes the
performance of all these technologies in mobile scenarios.
Note that the sawtooth pattern of AT&T 4G throughput curve
becomes prominent in mobile scenarios, and we conjecture
that it is because now the huge chunk of packets is not only
received and processed at a single eNB (base station) during
our movement in Boston, and hence packets are not queued
for long at each eNB. This is also reflected in the relatively
short average RTT of 67.06 ms in Table IV (as opposed to an
average of 124.64 ms in Table II).

0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

M
bp

s)

0
10

20
30 AT&T 4G

Verizon 4G
Sprint 4G

0 10 20 30 40 50 60 70

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) AT&T 3.5G
Verizon 3G
Sprint 3G

time (sec)

Fig. 6. Throughput of mobile single-path TCP

2) Multi-Path TCP: To better illustrate the robustness of
using multi-path TCP in mobile scenarios where users might
encounter technology switch and broken links due to the
diverse cellular network availability, in each of the following
scenarios, we make sure that there exists at least one working
path in the multi-path data transport. As listed in Table II, we
have AT&T 3.5G service in the entire western Massachusetts
while Verizon offers 3G service in Sunderland and 4G LTE
service in Amherst. To demonstrate how robust multi-path data
transport is while moving across zones where carriers have

different levels of coverage from various technologies, we will
examine the following cases:

• Move from 4G to 3G.
• Move from 3G to 4G.
• Drive around UMass campus with intermittent Wi-Fi.
• Drive around Boston (all 4G) with intermittent Wi-Fi.

0 100 200 300 400 500 600 700

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) Verizon(4/3G): flow 1
Verizon(4/3G): flow 2

0 100 200 300 400 500 600 700

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) AT&T(3.5G): flow 1
AT&T(3.5G): flow 2

0 100 200 300 400 500 600 700

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) UMass Campus Wifi: flow 1
UMass Campus Wifi: flow 2

time (sec)

Fig. 7. Verizon 4G to 3G: individual throughput

0 100 200 300 400 500 600 700

0
5

10
15

20

time (sec)

th
ro

ug
hp

ut
 (

M
bp

s)

Best single−path TCP (Verizon / AT&T)
6 flows: Verizon + AT&T + Wifi
4 flows: Verizon + Wifi
2 flows: Wifi only

Fig. 8. Verizon 4G to 3G: aggregate throughput

a) Move from 4G to 3G:

Case 1: Verizon 4G LTE to 3G eHRPD
We start with the case of moving from Verizon 4G zone to
3G zone as Verizon is the only carrier that offers 4G services
in Amherst, MA. In this scenario, we drove from Amherst to
Sunderland, a town 7 miles away from the UMass campus,
at an average speed of 40 MPH. Table V lists the schedule
and the average throughput during the different periods while
driving from 4G to 3G zone. Note that during the first and last
minute, we were stationary for experiment setup/termination.

Figure 7 shows the throughput of each flow over time. The
Wi-Fi paths broke right after our movement, and provided
no throughput afterwards. We entered the 4G/3G handoff
period during 375−385 seconds, where the throughput of both
Verizon’s flows dropped to 0 until the device successfully
switched to 3G service, and the associated IPs (the external
public IP address assigned by Verizon to the device, and the

Carrier Location Technology BW (Mbps) RTT (ms) Loss Rate (%) 3WHS RTT (ms)
Mean Std. Mean Std. Mean Std. Mean Std.

Verizon 4G LTE 9.43 (0.90) 107.80 (63.07) 0.30 (0.23) 74.95 (13.07)
AT&T Boston, MA 4G LTE 14.74 (1.32) 67.06 (26.10) 0.08 (0.06) 41.12 (3.44)
Sprint 4G WiMax 4.81 (0.45) 154.43 (92.37) 0.35 (0.22) 154.93 (83.10)

Verizon Amherst, MA 4G LTE 7.79 (1.79) 104.90 (49.57) 0.13 (0.04) 69.58 (9.30)
AT&T Western MA 3.5G HSPA+ 3.47 (1.13) 158.46 (98.29) 0.11 (0.03) 244.31 (66.87)
Verizon Sunderland, MA 3G eHRPD 0.85 (0.12) 695.10 (349.90) 0.21 (0.03) 189.10 (174.35)
Sprint Amherst, MA 3G EV-DO 0.31 (0.07) 673.73 (333.07) 0.66 (0.27) 510.23 (79.58)

TABLE IV
MOBILE SINGLE-PATH TCP MEASUREMENTS: 4G/3.5G/3G IN MASSACHUSETTS

0 20 40 60 80 100

0
5

10
15

20

th
ro

ug
hp

ut
 (

M
bp

s) Verizon(4 G): flow 1
Verizon(4 G): flow 2

0 20 40 60 80 100

0
5

10
15

20

th
ro

ug
hp

ut
 (

M
bp

s) Sprint(4G/3G): flow 1
Sprint(4G/3G): flow 2

time (sec)

0 20 40 60 80 100

th
ro

ug
hp

ut
 (

M
bp

s)

0
10

20
30

Best single−path TCP (Verizon)
4 flows: Verizon + Sprint
2 flows: Sprint only

Fig. 9. Sprint 4G to 3G: individual/agg. throughput

0 50 100 150 200

0
5

10
15

th
ro

ug
hp

ut
 (

M
bp

s) Verizon(4 G): flow 1
Verizon(4 G): flow 2

0 50 100 150 200

0
5

10
15

th
ro

ug
hp

ut
 (

M
bp

s) AT&T(4G/3.5G): flow 1
AT&T(4G/3.5G): flow 2

time (sec)

0 50 100 150 200

0
10

20
30

40

th
ro

ug
hp

ut
 (

M
bp

s) Best single−path TCP (AT&T / Verizon)
4 flows: Verizon + AT&T
2 flows: AT&T only

Fig. 10. AT&T 4G to 3G: individual/agg. throughput

Time (sec) Description Avg. Throughput
0−30 Stationary 12.29
30−60 Leaving UMass Wi-Fi 11.08
60−375 Within Verizon 4G zone 10.27
375−385 Transition: 4G to 3G 4.21
385− 590 Within Verizon 3G zone 5.12
590−675 Stationary 5.90
0−675 UMass to Sunderland 8.18 Mbps

TABLE V
MOBILE SCHEDULE: FROM 4G TO 3G ZONE

private IP address assigned by the device to the client) and
port numbers remained the same after the switch3. Figure
8 illustrates the aggregate throughput of 2/4/6 flows over
time, and 750MB data was transferred. When in the Verizon
4G zone, the multi-path TCP connection has an average
throughput of 10.48 Mbps, which is better than that of the
best single-path TCP (Verizon 4G LTE: 7.79 Mbps). Similarly,
when in the Verizon 3G zone, the multi-path TCP connection
has an average throughput of 5.30 Mbps, which outperforms
the best mobile single-path TCP connection (AT&T 3.5G: 3.47
Mbps).

3As all the carriers do not directly assign public IP addresses to their
customers, when a client is associating with a carrier, the carrier first assigns
a private IP address to the client. Then an external public IP address will
be shared by a group of customers, distinguished by the port number of that
public IP address.

The following experiments on the effect of technology
transitions on throughput of Sprint and AT&T were conducted
when moving from Boston to the suburban areas. Along the
way, we first encountered signal loss from Sprint 4G WiMax,
followed by AT&T 4G LTE, and then Verizon 4G LTE (7
miles away from Boston). As Verizon’s LTE coverage range is
broader than the other two carriers, for simplicity, we examine
AT&T and Sprint’s backward compatibility with the following
configurations: Verizon with AT&T, and Verizon with Sprint
(i.e., use Verizon flows as working paths).

Case 2: Sprint 4G WiMax to 3G EV-DO
Figure 9 shows the throughput changes over time when
traveling from Sprint 4G zone to 3G zone. The two flows
from Sprint WiMax have an aggregate throughput around
3Mbps before entering the 3G zone. When detecting losing
4G signal at time 86 seconds, the Sprint’s device, unlike those
of other carriers, did not perform fast switch to 3G. Instead, it
bootstrapped the device again and eventually reconnected to
3G. This results in getting a new public external IP address
from Sprint’s 3G network, but remaining the same private IP
address assigned by the device, and leads to stalled Sprint
flows in the multi-path TCP connections. This is because the
client is not aware of the external public IP address change,
and is still waiting for the server’s retransmissions to the old
public IP address (which may have been assigned to other
customers).

However, although the Sprint’s flows are not available after
the transition, the data transport via multi-path TCP is still
continuing. Traffic previously riding on the Sprint’s flows is
now offloading to the Verizon flows after time 86 seconds
as shown in Figure 9. Note that during this experiment, 400
MB data was transferred, and the aggregate throughput of 2/4
flows is compared to that of the best mobile single-path TCP
at the same place during that period, as shown at the bottom
in Figure 9.

Case 3: AT&T 4G LTE to 3G HSPA+
Figure 10 shows the case when we drove 2 miles farther
from Boston, we started losing AT&T’s 4G signal. Similar
to Verizon’s transition from 4G to 3G, the two AT&T flows
started switching to 3G service at time 157 seconds, and did
not respond to the UMass server’s retransmissions until five
seconds later. After the switch, the mobile client kept the same
private/external IP addresses. Note that in this experiment,
400MB file was transferred, and the aggregate throughput of
multi-path TCP is also compared to the best of mobile single-
path TCP at the same place during the same period of time at
the bottom of Figure 10.

In all, the cellular network backward compatibility to switch
from 4G to 3G results in connection break (or stalled) in
all carriers for single-path TCP scenarios. When transmitting
data with multi-path TCP, the fast switch to 3G results in
an average of 10-second path break in Verizon network, an
average of 5-second path break in AT&T network, and stalled
paths in Sprint network due to the mobile client’s unaware
of external IP address change. During this period, the sender
continues retransmitting packets on the broken paths, while
traffic on those broken paths will be offloaded to other working
paths. If the device successfully switches to 3G, then packet
exchanges over associated paths will resume; otherwise, the
existing working flows will continue the data transport and
complete the file transfer.

b) Move from 3G to 4G:
When we inspect the effect of technology transitions from 3G
to 4G, surprisingly, devices of all carriers behaved similarly.
When we start a multi-path TCP connection with 3G service,
the corresponding devices do not switch to 4G for the entire
data transport, even though we have entered a 4G zone. Due
to the space limit, we do not report the results here, as those
devices do not switch from 3G to 4G.

c) UMass Campus with intermittent Wi-Fi:
In contrast to the first two cases, here we show the scenario
when moving around UMass campus with intermittent free
Wi-Fi connectivity. Figure 11 illustrates the throughput of
each flow over time while moving on UMass campus. Wi-Fi
flows resumed occasionally when passing through hotspots,
but in general do not yield high throughput due to weak
signal strength and the mobility (average on campus speed

is 15 MPH). In this case, 300 MB data was trasferred, and
the average aggregate throughput of the multi-path TCP
connection is 8.96 Mbps, which outperforms the best of
mobile single-path TCP (Verizon 4G: 7.79 Mbps) by roughly
15%.

Note that both Wi-Fi flows were created during the first
minute, but only flow-1 continued transferring packets at time
130 and 200 seconds. Wi-Fi flow-2 still remained active, but
the sender missed the first few chances to deliver packets due
to the long retransmission timeouts (retransmissions occurred
at times 83, 115, 178, and 306 seconds, respectively),
spanning across the two hotspot-revisit periods at 130 and
200 seconds. As the establishment of Wi-Fi links takes 10−15
seconds [6], current TCP retransmission scheme makes it
very challenging to re-establish broken Wi-Fi paths when
the timeout timer goes beyond 10 seconds and increases
exponentially.

0 50 100 150 200 250 300

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) Verizon(4G): flow 1
Verizon(4G): flow 2

0 50 100 150 200 250 300

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) AT&T(3.5G): flow 1
AT&T(3.5G): flow 2

0 50 100 150 200 250 300

0
2

4
6

8

th
ro

ug
hp

ut
 (

M
bp

s) UMass Campus Wifi: flow 1
UMass Campus Wifi: flow 2

time (sec)

Fig. 11. Within UMass: individual throughput

d) Boston with all 4G and intermittent Wi-Fi:
Figure 12 presents the per-flow throughput of the scenario
while driving in Boston with intermittent Wi-Fi connections.
Note that in this case, we have all the devices from cellular
networks of 4G services. The sawtooth pattern of the AT&T
LTE throughput curve is prominent as in this case of mobile
single-path TCP. During this experiment, 800MB data was
transferred, and the average throughput of the 8-flow multi-
path TCP connection is 16.82 Mpbs, with a 14% performance
gain compared to the best single-path TCP from AT&T LTE
(14.74 Mbps).

3) Performance comparison and discussions: In general,
the performance of a single-path TCP connection in mobile
scenarios does not degrade from the static cases with rea-
sonable driving speed, as in Tables II and IV. By leveraging
the path diversity of 4G/3G for multi-path TCP, mobile users
do not need to worry about stalled connections even when
entering an area where certain paths break momentarily or
do not have signal coverage, as long as there is a working
path still delivering packets properly. However, a more serious
issue was described in mobile scenario (c), where intermittent

0 100 200 300 400

th
ro

ug
hp

ut
 (

M
bp

s)

0
4

8
12

Verizon(4G): flow 1
Verizon(4G): flow 2

0 100 200 300 400

th
ro

ug
hp

ut
 (

M
bp

s)

0
4

8
12

AT&T(4G): flow 1
AT&T(4G): flow 2

0 100 200 300 400

th
ro

ug
hp

ut
 (

M
bp

s)

0
4

8
12

Sprint(4G): flow 1
Sprint(4G): flow 2

0 100 200 300 400

th
ro

ug
hp

ut
 (

M
bp

s)

0
4

8
12

Boston Public Wifi: flow 1
Boston Public Wifi: flow 2

time (sec)

Fig. 12. Boston with 4G: individual throughput

Wi-Fi connectivity is available. In that case, retransmission
timeout of a broken path increases exponentially and makes
it challenging to re-establish broken Wi-Fi links as Wi-Fi link
availability in mobile scenarios might be less than a minute.
Although one can always remove the exponential increase of
timeout in TCP, however, a better solution is to fast detect
unstable Wi-Fi links. When the Wi-Fi link quality is below a
certain level, then we stop transmitting packets through that
path, and will only resume data transfer when the link quality
is beyond certain level.

C. Other Issues

Further issues related to running multi-path TCP over cel-
lular data networks are discussed in this subsection. It was
reported in [25] that TCP split-connections were widely im-
plemented in major US 3G networks. As split TCP connections
may cause problems for the use of multi-path TCP, it is of our
interest to understand the usage of split-connection in modern
3G/4G networks. Furthermore, some cellular network carriers
tend to terminate least used or idle flows very quickly to
save the resources in the cellular networks. This quick timeout
forces a flow to be removed unexpected, introducing additional
overhead for flow re-establishment.

1) Impact of split connection to multi-path TCP: Split-
connection is used to improve TCP performance over wireless
links by inserting a split point between the wireless and wired
hosts, thus splitting the end-to-end TCP connection into two
separate connections. As wireless links usually have worse
performance than wired ones, the goal of splitting a connection
is to separate wireless related issues from the wired hosts (the
split point and the UMass servers).

To detect split-connections, we actively delay each ACK
sent from the mobile client by a time interval of T before it is
returned to the server [25]. Let {Ri}ni=1 denote the sequence
of RTTs measured at the server, where n is the total number of
unique data packets. If min1≤i≤n{Ri} < T , then the observed
TCP connection is split. This delayed ACK approach does not
require clock synchronization.

We examined most popular TCP applications and checked
to see if the corresponding TCP connections are split. This

included FTP (port 20, 21), SSH (port 22, including SCP),
HTTP (port 80), and POP (port 110).

Fortunately, split-connection only occurs for the FTP control
connections (port 21) of all carriers, and our further inspection
shows that port 21 cannot be used for data transfer for all
carriers. AT&T uses Web traffic proxies (port 80) for its
4G/3.5G networks. As we delayed 5,000 ms for each ACK
sent from the client to the UMass server (at port 80) through
AT&T 4G/3.5G networks, all the packet RTTs fall below
1,000 ms. When we download the same file multiple times
consecutively, the UMass server only received the first request
from the client. A detailed inspection is that AT&T does not
support TCP option fields for Web traffic (both 3.5G and 4G).
It only allows the mobile host to initiate a single-path TCP
connection for web traffic. If any of the end points wishes
to establish an additional flow for web traffic through AT&T
4G/3.5G networks, the option field will be wiped out, and
hence the additional flow will be terminated immediately after
the request is sent. Thereby one should consider other ports
for web data transfer through AT&T cellular networks when
using multi-path TCP.

As each flow in a multi-path TCP connection is designed
to behave like a regular TCP connection. When a flow is
established, it should not deal with issues more than that of a
regular TCP connection [17]. From our measurements, these
transparent behaviors done by the carriers (as users will not
notice them unless to detect them actively) along the way of
packets’ traversing from one end to the other, have caused
fundamental problems when running multi-path TCP.

2) Connection timeout policies: Another important fac-
tor of running multi-path TCP over cellular networks is to
maintain each flow active when necessary. Table VI lists the
time out thresholds of all carriers over different technologies.
According to our observations, some of the carriers sets the
connection timeout as short as 3 minutes. In order to maintain
the existing flows in a multi-path TCP connection during
mobile scenarios, one should send a keep-alive probing packet
to the other end with a period of time smaller the listed timeout
values.

Carrier Type Time Out Type Time Out
Verizon LTE 30 min eHRPD 60 min
AT&T LTE 3 min HSPA+ 3 min
Sprint WiMax 30 min EVDO 30 min

TABLE VI
CONNECTION TIME OUT POLICY OF EACH CARRIER

V. RELATED WORK

Multi-path TCP has been proposed to exploit path diversity
to improve TCP performance. Although it has been deployed
and discussed for traditional Internet scenarios, little is un-
derstood about how well it will perform in mobile scenarios.
Early work [9] performed side-by-side comparison of using
open Wi-Fi and 3G only, and show that intermittent Wi-
Fi connectivity in an urban area can yield equivalent or

greater throughput than what can be achieved using an always-
connected, but slow 3G network. Based upon this idea, [4]
proposed an interim scheme to tackle the traffic on congested
and slow 3G networks by introducing a proxy to offload delay-
tolerant data to the intermittent but fast Wi-Fi connections.
This may break the connection into several short, possibly
delayed connections, and will introduce additional overhead
during the setup period of these newly opened TCP connec-
tions. On the other hand, Raiciu et al. [16] proposed a scheme
to enhance the use of multi-path TCP when any of the end
hosts is not multi-path TCP capable. The scheme requires a
publicly available proxy with multi-path TCP capability sitting
between both ends, and hence splits the TCP connection. If
both ends are capable of running multi-path TCP, the public
proxy would just serve as a packet relay.

In this paper, we characterize the state of art cellular data
networks, 4G LTE/WiMax and 3.5/3G networks, and show that
running TCP with path diversity can cope with mobility related
issues. Although recent study has shown some properties of
4G/3G networks [10] [11], but their results were passively
reported by users running mobile APPs. Here we have a very
different emphasis on the performance of multi-path TCP in
terms of throughput, loss rate, and round trip time. We focus
more on measuring the latency of cellular networks when
established connections have enough traffic riding on them,
rather than looking at the round trip times of light weight
probing packets, such as ping or 3-way handshake packets,
which might underestimate the network congestion.

VI. CONCLUSION

As cellular technology evolves, taking advantage of multiple
wireless radios provides a chance to improve the performance
and availability of mobile Internet access. In this paper, we
first characterize three major US 4G/3G networks in terms of
throughput, round trip time, and loss rate. We then conduct
experiments of single-path and multi-path TCP connections
over these cellular data networks, and show that by leveraging
path diversity of cellular networks, data transport using multi-
path TCP is a promising solution for a more reliable and
efficient data transfer scheme in changing environments.

We observe that 4G outperforms Wi-Fi and 3G in terms
of the throughput and loss rate. In this high bandwidth
environment, we observe that AT&T 4G network tends to
control the rate at which data flows to the receivers, and results
in queue buildups. Also, we suggest, in this high bandwidth
environment, to remove the default Linux TCP’s setting of
caching sender’s slow-start threshold for each destination IP
address as that will cutoff the newly opened flow’s slow-start
value. We also show that, by properly assigning socket buffer
to each flow in the AT&T LTE network, each flow can yield
higher throughput. These issues would potentially degrade the
performance of single- and multi-path TCP connections.

Furthermore, we have shown that multi-path TCP can sup-
port mobility without breaking existing connections, and can
dynamically offload traffic to paths associated with different
technologies of diverse availability during movement. Our

experiments also show that the exponential timeout scheme
is not proper for Wi-Fi links, and it should be adjusted since
the revisits to Wi-Fi hotspots in the vehicular cases (or high
speed movement) do not last longer than one or two minutes.
We recommend a scheme where bad paths should be detected
and removed quickly, and can resume packet exchanges when
they become available.

In the meantime, we are currently investigating the cases
where enabling multi-path TCP might not provide high
throughput gain, especially when file size is small and a partic-
ular path has significantly higher quality. Further performance
issues on separating the reliability from congestion control
[19], and when to remove poorly performed paths [14] are
our future work.

REFERENCES

[1] 3GPP LTE. http://www.3gpp.org/lte.
[2] M. Allman, V. Paxson, and E. Blanton. RFC 5681 TCP Congestion

Control, Sept. 2009.
[3] AT&T 4G LTE coverage. http://www.att.com/network/.
[4] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting

mobile 3g using wifi. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, MobiSys ’10, pages 209–
222. ACM, 2010.

[5] S. Barré, C. Paasch, and O. Bonaventure. Multipath TCP: from theory to
practice. In Proceedings of the 10th international IFIP TC 6 conference
on Networking - Volume Part I, NETWORKING’11, pages 444–457.
Springer-Verlag, 2011.

[6] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden.
A measurement study of vehicular internet access using in situ wi-fi
networks. In Proceedings of the 12th annual international conference on
Mobile computing and networking, MobiCom ’06, pages 50–61. ACM,
2006.

[7] cradlepoint. http://www.cradlepoint.com.
[8] A. Ford, C. Raiciu, H. M., and O. Bonaventure. TCP extensions

for multipath operation with multiple addresses. draft ietf-mptcp-
multiaddressed-07, 2012.

[9] R. Gass and C. Diot. An experimental performance comparison of 3g
and wi-fi. In Proceedings of the 11th international conference on Passive
and active measurement, PAM’10, pages 71–80. Springer-Verlag, 2010.

[10] J. Huang, Q. Feng, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A close examination of performance and power characteristics of 4G
LTE networks. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys ’12. ACM, 2012.

[11] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl.
Anatomizing application performance differences on smartphones. In
Proceedings of the 8th international conference on Mobile systems,
applications, and services, MobiSys ’10, pages 165–178. ACM, 2010.

[12] IEEE Standard 802.16. Broadband wireless metropolitan area networks
(MANs) http://standards.ieee.org/about/get/802/802.16.html.

[13] B. Jiang, Y. Cai, and D. Towsley. On the resource utilization and
traffic distribution of multipath transmission control. Perform. Eval.,
68(11):1175–1192, Nov. 2011.

[14] P. Key, L. Massoulié, and D. Towsley. Path selection and multipath
congestion control. Commun. ACM, 54:109–116, Jan. 2011.

[15] MultiPath TCP Linux Kernel implementation.
http://mptcp.info.ucl.ac.be/.

[16] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley. Opportunistic
mobility with multipath TCP. In Proceedings of the sixth international
workshop on MobiArch, MobiArch ’11, pages 7–12. ACM, 2011.

[17] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How hard can it be? designing and
implementing a deployable multipath tcp. In USENIX Symposium of
Networked Systems Design and Implementation (NSDI’12), San Jose
(CA), 2012.

[18] P. Sarolahti and A. Kuznetsov. Congestion control in linux TCP. In
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical
Conference, pages 49–62, Berkeley, CA, USA, 2002. USENIX Associ-
ation.

[19] V. Sharma, K. Kar, K. K. Ramakrishnan, and K. S. A transport protocol
to exploit multipath diversity in wireless networks. Transactions on
Networking (Infocom’08 extension), 2012.

[20] Sprint 4G WiMax coverage. http://www.clear.com/coverage.
[21] W. Stevens. RFC2581: TCP slow start, congestion avoidance, fast

retransmit, and fast recovery algorithms, Jan. 1997.
[22] tcpdump. http://www.tcpdump.org.
[23] tcptrace. http://www.tcptrace.org.
[24] Verizon Wireless 4G LTE coverage.

http://news.verizonwireless.com/lte/markets.html.
[25] W. Wei, C. Zhang, H. Zang, J. Kurose, and D. Towsley. Inference and

evaluation of split-connection approaches in cellular data networks. In
Proc. PAM (Passive and Active Measurement), 2006.

[26] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath TCP.
In Proceedings of the 8th USENIX conference on Networked systems
design and implementation, NSDI’11. USENIX Association, 2011.

