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Abstract

In this work we study the set size distribution estimation problem, where elements are randomly sampled
from a collection of non-overlapping sets and we seek to recover the original set size distribution from the
samples. This problem has applications to capacity planning, network theory, among other areas. Examples of
real-world applications include characterizing in-degree distributions in large graphs and uncovering TCP/IP flow
size distributions on the Internet. We demonstrate that it is hard to estimate the original set size distribution. The
recoverability of original set size distributions presents a sharp threshold with respect to the fraction of elements
that remain in the sets. If this fraction remains below a threshold, typically half of the elements in power-law and
heavier-than-exponential-tailed distributions, then the original set size distribution is unrecoverable. We also discuss
practical implications of our findings.

Index Terms—Cramér-Rao lower bound, Fisher information, set size distribution estimation.

I. INTRODUCTION

Networks are increasingly large and complex, posing tremendous challenges to their characterization in
the wild. Characterizing network structure (e.g. degree distribution), network traffic flows (e.g. TCP/IP flow
sizes in communication networks), node labels (e.g. group memberships), is usually impossible without
resorting to sampling due to the size and scale of current networks. Practitioners often sample networks to
estimate their characteristics. Many problems in network characterization through sampling can be mapped
into the class of set size distribution estimation problems. The set size distribution estimation problem
is stated as follows. Consider a collection of non-overlapping sets whose elements are probabilistically
sampled. The problem is to estimate the original (pre-sampling) set size distribution based on the samples.

Set size distribution estimation has several applications. One example of particular interest is the
estimation of in-degree distributions of on-line social networks, where nodes represent people and a
directed edge represents, for instance, one or more messages exchanged between two pairs of nodes.
By monitoring message exchanges one samples a fraction of the edges. Using these samples we want to
estimate the in-degree or out-degree distribution of nodes. The set size distribution problem also manifests
itself in other areas, including Internet traffic monitoring, e.g., estimating the size distribution (in packets)
of TCP/UDP flows [2], and in next generation Internet capacity planing, such as estimating the number
of copies of a movie in a CDN of next-generation routers. Fortunately, simple maximum likelihood [2]
or Bayesian-style estimators exist, even when we are unable to observe sets without observed elements.

Despite the importance of characterizing set size distributions, to the best of our knowledge no deep
analysis of set size distribution estimation exists in the literature. We fill this gap and show that set size
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distribution estimation exhibits intriguing abnormal statistical properties. To best illustrate our results,
consider the estimation of in-degree distributions of arbitrarily large power-law graphs. We prove that if
less than 50% of the edges are observed then the output of any estimator (be it frequentist or Bayesian)
will be as truthful to the original in-degree distribution as a set of random numbers between zero and one.
Moreover, when nodes without sampled incoming edges are unobservable, even a first order metric like
average degree is subject to the same threshold behavior, i.e., sampling less than 50% of all incoming
edges impedes the estimation of in-degree averages. The latter result seemly defies intuition. We prove
these and other results in the general setting of sets with arbitrary set size distributions. In what follows
we give an overview of our contributions.

A. General Observations
In this work we uncover intriguing set size distribution estimation properties, including:
• A (finite) increase in samples may result in no reduction in estimation errors.

Unlike estimation problems such as election polls, where a sufficient increase in samples always results in
increased accuracy, we show, paradoxically, that in the set size distribution estimation problem an increase
in samples may, in practice, result in no increase in accuracy. Section IV unveils the root cause of this
odd behavior and explains when it can be avoided. Another interesting property is:
• In networks with large set sizes (e.g., nodes with large degrees) and power-law set size distributions

(in fact our results hold for any heavier-than-exponential distributions), randomly sampling less
than 50% of set elements (e.g., edges of a node) provides almost no information about the set size
distribution or the average set size. However, in networks with sub-exponential set size distributions,
accurate set size distributions estimation is always possible.

The above observation is interesting because power-laws have more tail probability mass and, thus, large
sets are more likely to have sampled elements than in sub-exponential tails. However, and despite this,
we show that if less than 50% of elements are sampled, then estimates of power-laws distributions (more
precisely, any heavier-than-exponential distribution) are significantly less accurate than the estimates ob-
tained from sub-exponential distributions. Our work also provides a host of equally puzzling observations,
fully and formally presented in Section IV.

B. Outline
Our paper is organized as follows. In Section II we conduct experiments on the indegree distribution

estimation with real data. Section III presents the sampling and estimation models. Section IV presents
our theoretic results. Section VI presents our discussion section where we analyze problems that field
analysts are likely to face in practice, highlighting common mistakes made in the literature and how to
avoid them. Finally Section VII presents the conclusions and related work.

II. ESTIMATION WITH REAL DATA

In this section, we experiment with one particular application of the set size distribution problem: the
estimation of the in-degree distribution of a network. Consider the Enron dataset, that describes a network
composed by a group of people who exchanged emails during a certain period of time. Here each node
represents a person and two people have a directed edge if one has emailed the other. The maximum
in-degree in this network is 1383.

Collecting a fraction of the exchanged messages means sampling network edges. Disregarding edge
weights, assume the directed edges are independently sampled with probability p. Henceforth, each person
with more than one observed incoming email shall be called a sample. Figure 1a depicts the quality of the
in-degree estimator in (4) (see Section IV for the derivation) with p = 0.25, leading to N = 104 sampled
individuals. The black dots indicate the true in-degree distribution, the blue curve shows a typical estimate,
and the heat map indicates the density of estimated values across 100 runs, where red indicates high density
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and yellow (white) indicates low (no) density of estimated values. We observe from the blue curve that
the estimated values can be orders of magnitude away from the actual values and from the heat map we
observe that the blue line is typical.

In what follows we illustrate the effects of varying the number of samples N or changing the sample
probability p separately. To vary N while keeping p fixed, we draw a node in-degree directly from the
in-degree distribution of this network and subsequently sample its edges. We repeat this process until we
obtain N observed sets. This can be seen as sampling a larger (smaller) network that has the same degree
distribution.

We make two main observations:
1) Increasing the number of samples yields no reduction in estimation errors. This is an odd

behavior. We know from estimation theory that the error should decrease by
√
M when the number

of samples is increased by a factor of M . Figure 1b shows the corresponding results for N = 50×103.
We observe that the estimated fraction of nodes of each degree can still be very far from the actual
values.
To make it clear that the accuracy gain from increasing the number of samples is not in agreemeent
with theory, we compute the estimate error obtained when we vary the number of samples N ∈
{5, 10, 20, 50, 100}×103, for p = 0.25. The error is first measured in terms of the Normalized Root
Mean Square Error (NRMSE), which is defined as

NRMSE(θ̂i) =

√
E[(θ̂i − θi)2]

θi
.

where θ̂i and θi are the estimated and true fraction of degree i nodes, respectively. Then we take
the average NRMSE from the head (degrees up to 10) and the tail (degrees larger than 10) of the
distribution separately.
Surprisingly, we observe in Figure 1c that there is almost no improvement in accuracy across
different sample sizes, even when we compare 5 × 103 and 105 samples. We also display in this
figure the expected reduction in the NRMSE for both head and tail by dashed lines. It turns out that
the error does not decrease as we would expect. This raises the question of why, which we address
in Section IV.

2) For much larger values of p, the error starts to decrease with the number of samples. According
to Theorem 4.1 that we describe in Section IV, the difficulties experienced above arise due to the
use of small sampling probability (p < 0.5) with heavy-tailed distributions, ant not due to a lack
of samples. Hence we repeat the experiment using p = 0.9. Figures 1d and 1e show the heat maps
for N = 20 × 103 and N = 105. As opposed to what we previously saw, increasing the number
of samples makes the estimates closer to the true in-degree distribution. The accuracy gain as a
function of the number of samples is shown in Figure 1f. In fact, we observe that the NRMSE
does decrease as expected for the head of the distribution, but not for the tail. Why are there two
distinct behaviors, one for the head and one for the tail? Why did it help to increase the number of
samples when estimating frequencies of small degrees for p = 0.9, as opposed to what we observed
for p = 0.25? Is it possible to make the NRMSE of the tail to decrease as fast as the NRMSE of
the head?

In order to investigate the questions we pose here, we study the Cramér-Rao Lower Bound (CRLB) of
the set size estimation problem. This give us a lower bound on the estimation errors based on the amount
of information contained in the samples, measured in terms of Fisher Information. Moreover, we apply
the CRLB to the estimation of the in-degree distribution and average in-degree.

III. MODEL

Let Sk be a nonempty set of elements, k = 1, . . . ,m, with Si ∩Sj = ∅, i, j = 1, . . .m, i 6= j. Let Sk =
|Sk| denote the size of the k-th set and assume set sizes are i.i.d. with distribution Sk ∼ θ = (θ1, . . . , θW ),
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Figure 1. The first row (a-c) shows the results for p = 0.25, while the second row (d-e) shows the corresponding plots for p = 0.90. (a-b,d-e)
True degree distribution, one example of estimate and heat map indicating the ocurrence rates of the estimate values for N = 10 × 103

samples (first column) and N = 50 × 103 samples (second column), respectively. The red color in the heat map indicates high density of
estimated values and yellow (white) indicates low (no) density of estimated values. A subplot shows a zoom-in for the first degrees. (c,f)
Average NRMSE of the head and the tail of the distribution for N ∈ {1, 5, 10, 20, 100}×103. Dashed line shows how the error should vary
with the number of samples. In (c) we have the typical behavior of wrong estimates. Increasing the number of samples does not improve
the quality of estimates. On the other hand (f) shows the typical behavior of correct estimates. Here increasing the number of samples
yields lower estimation errors of the head.

W > 1 k ≥ 1. We assume W finite (W <∞). The model breaks nodes (edges) into groups (sets) and our
task in what follows is to characterize those groups from incomplete observation (sample) of these sets.
To illustrate the model, consider a directed graph; the set of incoming (outgoing) edges of a node k is
represented by Sk, θ is the indegree (outdegree) distribution, and W is the maximum indegree (outdegree).
Another straightforward example is representing IP traffic of a communications network, where k is a
TCP flow, Sk is the set of TCP/IP packets that constitute flow k, and W is the maximum observable flow
size.

Sampling
We observe (sample) elements of Sk, k = 1, . . . ,m, with probability p – a process also known as

thinning. Let α(Sk) be a random function that returns the number of observed elements of Sk . Elements
are sampled independently (i.e., the sampling process is Bernoulli) and thus,

P [α(Sk) = j|Sk = i] =

{(
i
j

)
pjqi−j , j ≥ 0, i > 1, i ≥ j,

0, otherwise,
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where q = 1− p. We assume that when no elements of a set are observed, then the set as a whole is not
observed, i.e., Sk is said to be observable if α(Sk) > 0. Thus, we denote

S = {α(Sk) : α(Sk) > 0 , k = 1, . . . ,m}
the size of the observable set sizes. Let N = |S| denote the number of observed sets.

Estimation
We start by considering p = 1, that is, all elements of all sets are observed. The minimum variance

estimator of θi is

T ′i (S1, . . . ,Sm) =
m∑
k=1

1{Sk = i}
N

,

where N = m. To measure the accuracy of the estimates we consider the mean squared error (MSE) –
a.k.a. quadratic loss – of the estimates

MSE(T ′i (S1, . . . ,Sm)) = E[(T ′i (S1, . . . ,Sm)− θi)2] =
θi(1− θi)

m
≤ 1

4m
.

Thus, for p = 1 the estimation error decreases as 1/m, recalling that m is the number of sets.
Unfortunately, accurately estimating θ when p < 1 is significantly more challenging. Recall that a set
Sk is said to be observable if α(Sk) > 0. We upfront assume that a unobservable sets cannot be used in
the estimation process. This means that our estimator only has access to sets Sk where α(Sk) > 0. Here
we need another function Ti that takes the observed set sizes S as inputs and outputs an unbiased estimate
Ti(S) of θi, i.e., E[Ti(S)] = θi. In what follows we focus on unbiased estimates; our discussion section
(Section VI) extends our results to biased estimators. The Mean Squared Error (MSE) of our estimator is

MSE(Ti(S)) = E[(Ti(S)− θi)2].
The function Ti that minimizes the MSE with respect to sets of size i = 1, . . . ,W is

T ?i (S) = arg min
Ti

MSE(Ti(S)),

s.t. E[T ?i (S)] = θi.

IV. RESULTS

In this section we present and discuss our results.
Theorem 4.1: Let θ = (θ1, . . . , θW ) be a distribution where ∃i0 such that θi ≤ 1/2 for all i > i0. Recall

that N ≤ m is the number of observed sets out of the total m sets. We show that, as W → ∞, for N
sufficiently large any unbiased estimator Ti(S), i ≥ 1 is such that:

1) When θW decreases faster than exponentially in W , i.e., − log θW = ω(W ), MSE(Ti(S)) = O(1/N)
for 0 < p < 1.

2) When θW decreases exponentially in W , i.e., log θW = W log a+ o(W ) as for some 0 < a < 1,
a) log[MSE(Ti(S))] = Ω(W/ logN), if p < a/(a+ 1),
b) MSE(Ti(S)) = Ω(W 2i+1/N), if p = a/(a+ 1),
c) MSE(Ti(S)) = O(1/N), if p > a/(a+ 1).

3) When θW decreases more slowly than exponential, i.e., − log θW = o(W ),
a) log[MSE(Ti(S))] = Ω(W/ logN), if p < 1/2,
b) MSE(Ti(S)) = O(1/N), if p ≥ 1/2; more precisely,

i) MSE(Ti(S)) = ω(1/N), if p = 1/2 and
∑W

j=1 j
2iθj = ω(1),

ii) MSE(Ti(S)) = O(1/N), if either p > 1/2 or p = 1/2 and
∑W

j=1 j
2iθj = O(1).

Theorem 4.2: The bounds on the estimation error of the average set size are analogous to the set size
distribution bounds.

In what follows we explain how we sketch out the proof of Theorems 4.1 and 4.2 and describe their
implications.
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A. Lower Bound on Estimation Errors
In this section we derive a lower bound on the Mean Squared Error (MSE) of Ti(S), i = 1, . . . ,W . For

this we use the Cramér-Rao (CR) lower bound of Ti(S), which gives the smallest MSE that any unbiased
estimator Ti can achieve.

Recall that a set is observable only if one or more of its elements are observable. The probability that
a (random) set S is observed and has j elements is defined as

bji(p) ≡ P [α(S) = j |α(S) > 0, |S| = i] =

(
i
j

)
pjqi−j

1− qi
, if 0 < j ≤ i ≤ W, (1)

and bji(p) = 0 otherwise, where q = 1− p. Let dj(θ, p) denote the fraction of observed sets with exactly
j observed elements. From (1) we have, j = 1, . . . ,W ,

dj(θ, p) = P [α(S) = j| |S| > 0]

=
W∑
i=j

P [α(S) = j|α(S) > 0, |S| = i]P [|S| = i|α(S) > 0]

=
W∑
i=j

bji(p)φi(θ). (2)

where
φi(θ) = P [|S| = i |α(S) > 0] =

θi(1− qi)∑W
k=1 θk(1− qk)

, (3)

is the distribution of the set sizes of the observed sets. Or, in matrix notation,

d(θ, p) = B(p)φ(θ),

where d(θ, p) = (d1(θ, p), . . . , dW (θ, p))T and B(p) = [bji(p)], j, i = 1, . . . ,W . To illustrate the distribu-
tion d(θ, p) in our model, note that for a random observed set S,

α(S) ∼ d(θ, p),

with likelihood function

f(j|θ) ≡ P [α(S) = j |θ] = (B(p)φ(θ))j = dj(φ(θ), p). (4)

In what follows for simplicity we denote dj(θ, p) as dj(θ), j = 1, . . . ,W .
Recall that we are interested in functions Ti(S) that take as input the observed subset sizes S and outputs

an unbiased estimate Ti(S) of θi, i = 1, . . . ,W . Moreover, we want these estimates to be accurate, i.e.,
MSE(Ti(S)) must be low in respect to θi. Otherwise, the estimate is of little use to the practitioner for
set sizes of interest, as illustrated in Figure 1.

Thus, it is important to find attainable lower bounds of MSE(Ti(S)). The Cramér-Rao Theorem states
that the MSE of any unbiased estimator T is lower bounded by the inverse of the Fisher information
matrix divided by the number of independent samples N , provided some weak regularity conditions
hold [9, Chapter 2], i.e.,

MSE(Ti(S)) ≡ E[(Ti(S)− θi)2] ≥
(
(J (θ)(p))−1

)
ii

N
, 1 ≤ i ≤ W. (5)

where (J (θ)(p))−1 is the inverse of the Fisher information matrix of a single observed set defined using
the likelihood function (4) as

(J (θ)(p))i,k ≡
W∑
j=1

∂ ln f(j |θ)

∂θi

∂ ln f(j |θ)

∂θk
dj(φ(θ)) =

W∑
j=1

∂dj(φ(θ))

∂θi

∂dj(φ(θ))

∂θk

1

dj(φ(θ))
, (6)



7

given
∑W

i=1 θi = 1.
The lower bound in (5) is known in the literature as the Cramér-Rao lower bound or CRLB for short.

Let T ∗i (S) be an unbiased estimator, i = 1, . . .. We say T ∗i (S) is asymptotically efficient if MSE(T ∗i (S))
approaches the Cramér-Rao lower bound in (5) as N →∞. We show in Appendix D that the Maximum
Likelihood Estimator is asymptotically efficient on the set size estimation. The implication of having an
efficient estimator is that the lower bounds provided in this paper are tight for N sufficiently large. In
what follows we represent J (θ)(p) as J (θ) for simplicity.

B. Obtaining the CRLB
In what follows we derive closed-form lower bounds for the MSE of any unbiased estimator T , as a

function of the original set size distribution θ, the sampling probability p, and the number of observed sets
N , where we ignore the constraint

∑W
i=1 θi = 1. Deriving a closed-form solution for the inverse of J (θ)

is no easy task as matrix J (θ) is a function of ∂f(j|θ)/∂θi, i = 1, . . . ,W , which makes J (θ) a non-linear
function of θ. However, observe that the likelihood function f ?(j|φ) ≡ P [α(S) = j|φ] (where S is a
random observed set) is linear with respect to φ

f ?(j|φ) ≡ (Bφ)j = dj(φ). (7)

It is worth noting that f ?(j|φ(θ)) = f(j|θ). The Fisher information matrix with respect to φ is defined
as J (φ) = [J

(φ)
i,k ], i, k = 1, . . . ,W , where

J
(φ)
i,k ≡

W∑
j=1

∂dj(φ)

∂φi

∂dj(φ)

∂φk

1

dj(φ)
, (8)

given
∑W

i=1 φi = 1; and because dj(φ) is linear in φ, combining (7) and (8) yields

(J (φ))−1 = B(p)−1diag(B(p)φ)−1(B(p)−1)T − φφT. (9)

Here the term φφT corresponds to the accuracy gain obtained by considering the constraint
∑W

i=1 φi = 1
(see Tune and Darryl [8] for more details and Gorman and Hero [3] for the general formula on adding
equality constraints to the CRLB). Quantitatively we can safely ignore the constant term φφT as we are
interested in the behavior of (J (φ))−1 as a function of W and the elements of φφT are typically small.
All that is left to do is to find a relationship between (J (φ))−1 and (J (θ))−1.

We now obtain (J (θ))−1 from (J (φ))−1 through a multi-variate extension of the single variable chain
rule. As f ?(j|φ(θ)) = f(j|θ) the chain rule yields

∂f(j|θ)

∂θi
=
∂f ′(φj(θi))

∂θi
=
∂f ′(φj)

∂φj
· ∂φj(θ)

∂θi
, ∀i, j.

Using the Jacobian ∇H = [hik], hik = ∂θk(φ)/∂φi with θk(φ) as given in (3), we arrive at the equivalent
multivariate rule [9, pp. 83] to express (J (θ))−1 as

(J (θ))−1 = ∇H(J (φ))−1∇HT. (10)

Using (9) – detailed derivation relegated to the Appendices – we find:

[(J (φ))−1]ij =
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(θ). (11)
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Substituting (11) into (10) – and through a variety of algebraic manipulations detailed in the Appendices
– yields

[(J (θ))−1]ii =
1

η2

(
1

(1− qi)2
[(J (φ))−1]ii︸ ︷︷ ︸

A1(i)

+ θ2i

W∑
j=1

W∑
k=1

[(J (φ))−1]kj
(1− qk)(1− qj)︸ ︷︷ ︸
A2(i)

− 2θi

W∑
j=1

[(J (φ))−1]ij
(1− qj)(1− qi)︸ ︷︷ ︸

A3(i)

)
, (12)

where η =
∑W

j=1 φj(θ)/(1−qj). Note that term A1(i) of (12) is proportional to the CRLB of φ, [(J (φ))−1]ii
but terms A2(i) and A3(i) are more involved. Through a series of algebraic manipulations of terms A1,
A2, and A3, all detailed in the Appendices, we see that (A1(i) + A2(i) − A3(i)) grows as a function of
(1− p)/p and W , yielding the relation

MSE(Ti(S)) = Ω


∑W

j=1

(
1−p
p

)j
θj

N

 , i = 1, . . . ,W, (13)

where the number of observed sets N is large but constant in respect to W .
The result in (13) is very powerful as it gives simple estimation error lower bounds as a function of the

sampling probability p and the original set size distribution θ. A close look at (13) reveals – a detailed
exposition is presented in the Appendices – that when ((1 − p)/p)iθi = Ω(i−1) for all i > i?, i? � W ,
then the sum in (13) grows at least as fast as the a harmonic series, which grows as logW . On the other
hand, we see in the Appendices that when ((1−p)/p)iθi = O(i−β), β > 1, then the sum in (13) converges
to a constant, more precisely, it grows no faster than a Riemman zeta function with parameter β, ζ(β).

Thus, for a given θ with W � 1 the CRLB suffers from an interesting sharp threshold related to
the sampling probability p. If p is below this threshold no estimator Ti of θi ,i = 1, . . . ,W , is able to
achieve accurate estimates of θi. Below such p threshold, and as long as the number of sampled sets, N ,
is large enough, there exists estimators Ti(S) ,i = 1, . . . ,W , that can achieve accurate estimates. To be
more specific, we look at the threshold behavior of p by breaking down θ into three broad classes of
distributions:

1) If θW decreases faster than exponentially in W there is no threshold behavior of p. This is because
if − log θW = ω(W ), then there exists a constant a < 1 such that ((1− p)/p)jθj < aj , j = 1, 2, . . ..
Hence, the sum in (13) converges to a constant for any p > 0, yielding MSE(Ti(S)) = Ω(1/N), for
0 < p < 1. Detailed arguments are presented in the Appendices.

2) If log θW = W log a+o(W ) then if p ≤ a/(a+1) yields ((1−p)/p)jθj = a−jθj = Ω(1), ∀j. Hence,
the sum in (13) diverges with W . On the other hand, if p > a/(a + 1) the sum in (13) converges
to a constant. Detailed arguments are presented in the Appendices.

3) Finally, if θW decreases more slowly than exponential then if p = 1/2−ε, ε ≥ 0, yields ((1−p)/p)j >
(1 + ε/2)j , ∀j. Hence, because θj decreases more slowly than an exponential, the sum in (13)
diverges with W . If p ≥ 1/2 the lower bound in (13) converges to a constant. Detailed arguments
are presented in the Appendices.

To illustrate our results, we compute the MSE lower bounds in (12) where θ is the Enron in-degree
distribution truncated at different values of W . More precisely, we take the in-degree distribution of the
Enron dataset (discussed in Section II) and truncate the maximum degree to W by accumulating in W all
the probability mass previously corresponding to degrees greater than W . The Enron in-degree distribution
is a (truncated) heavier-than-exponential distribution.
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Figure 2. CRLB of the in-degree distribution of the Enron dataset for N = 104 samples.

Figures 2a and 2b show the MSE lower bounds for p ∈ {0.25, 0.90}, respectively. We observe that
for p = 0.25 (Figure 2(a)) the MSE lower bound grows with W even for small degrees, as predicted
by Theorem 4.1. While, for p = 0.9 (Figure 2(b)) the MSE lower bound behaves (mostly) independent
of W , also as predicted by Theorem 4.1.These results corroborate to explain the simulations results in
Section II.

Other metrics besides the set size distribution are of interest. In what follows we observe that, surpris-
ingly, the accuracy of the average set size follows similar lower bounds of set size distribution estimators
Ti, i = 1, . . . ,W . We then analyze the accuracy of entropy estimates.

V. ACCURACY OF ESTIMATED AVERAGES

In this section we focus on the accuracy of the average set size.

A. Average set size
The average set size is mθ =

∑W
j=1 jθj , or, alternatively, in matrix form

mθ = [1, . . . ,W ]θT.

Let
∇M
∇θ

=

[
∂mθ

∂θ1
, · · · , ∂mθ

∂θW

]
= [1, . . . ,W ].

Let m(S) be an unbiased estimate of the average set size. Using a similar argument used to obtain (10)
(see Appendices) yields

MSE(m(S)) ≥ ∇M
∇θ

(J (θ))−1
∇M
∇θ

T

=
∇M
∇θ

(
∇H
∇φ

(J (φ))−1
∇H
∇φ

T) ∇M
∇θ

T

=

(
∇M
∇θ
∇H
∇φ

)
(J (φ))−1

(
∇M
∇θ
∇H
∇φ

)T

. (14)
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Note that [
∇M
∇θ
∇H
∇φ

]
k

=
W∑
i=1

ihik

=
W∑
i=1
i6=k

i

(
− θi
η(1− qk)

)
+ k

(
1− θk

η(1− qk)

)

=
1

η(1− qk)

(
k −

W∑
i=1

iθi

)
=

k −mθ

η(1− qk)
, (15)

where again η =
∑W

j=1 φj(θ)/(1− qj). Substituting (15) into (14) yields

MSE(m(S)) ≥ 1

N

W∑
i=1

W∑
j=1

(
j −mθ

η(1− qj)

)
[(J (φ))−1]ji

(
i−mθ

η(1− qi)

)

=
1

N

1

η2

(
W∑
i=1

W∑
j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

+m2
θ

W∑
i=1

W∑
j=1

[(J (φ))−1]ji
(1− qj)(1− qi)

−

2mθ

W∑
i=1

W∑
j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)

=
1

N

1

η2

(
η(

W∑
i=1

i2θi +
q

p
mθ) +

m2
θ

θ2j
A2(i)− 2mθη(mθ +

q

p
θ1)

)
,

with A2(i) as given in (12). Detailed derivations are found in the Appendices. A closer look at A2(i)
reveals

A2(i) =
1

N
θ2i

(
1 + η

(
W∑
j=1

qjθj +
W∑
j=1

(
1− p
p

)j
θj

))
= Ω


∑W

j=1

(
1−p
p

)j
θj

N

 . (16)

Note that the lower bound of m(S) in (16) is the same as the lower bound of Ti(S), i = 1, . . . ,W , in (13).
Hence, a theorem in the lines of Theorem 4.1 can be stated for m(S):

Theorem 5.1: Let θ = (θ1, . . . , θW ) be a distribution where ∃i0 such that θi ≤ 1/2 for all i > i0. Recall
that N ≤ m is the number of observed sets out of the total m sets. We show that, as W → ∞, for
N sufficiently large any unbiased estimator of the estimated mean of θ, m(S), must obey the following
properties:

1) When θW decreases faster than exponentially in W , i.e., − log θW = ω(W ), MSE(m(S)) = O(1/N)
for 0 < p < 1.

2) When θW decreases exponentially in W , i.e., log θW = W log a+ o(W ) as for some 0 < a < 1,
a) log[MSE(m(S))] = Ω(W/ logN), if p < a/(a+ 1),
b) MSE(m(S)) = Ω(W/N), if p = a/(a+ 1),
c) MSE(m(S)) = O(1/N), if p > a/(a+ 1).

3) When θW decreases more slowly than exponential, i.e., − log θW = o(W ),
a) log[MSE(m(S))] = Ω(W/ logN), if p < 1/2,
b) MSE(m(S)) = O(1/N), if p ≥ 1/2; more precisely,

i) MSE(m(S)) = ω(1/N), if p = 1/2 and
∑W

j=1 j
2θj = ω(1),
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ii) MSE(m(S)) = O(1/N), if either p > 1/2 or p = 1/2 and
∑W

j=1 j
2θj = O(1).

Theorem 5.1 states that estimating the average set size is in the same order of hardness as estimating
the entire set size distribution.

It is interesting, though, to verify if the same property holds in the case of the average size of the
observed sets, i.e., the average set size in respect to φ,

mφ =
W∑
j=1

jφj.

In what follows we show that the difficulty in estimating mφ is a function of W and is affected only by
the first and second moments of φ, that is, as long as mφ and

m
(2)
φ =

W∑
j=1

j2φj

are finite, mφ can be accurately estimated if enough samples, N , are collected.
Let m̂φ(S) denote an unbiased estimate of mφ and let

MSE(m̂φ(S)) = E[(m̂φ(S)−mφ)2]

denote the MSE of m̂φ(S). After applying a variety of algebraic manipulations detailed in the Appendices
we arrive at the following inequality

MSE(m̂φ) ≥
(1, . . . ,W )(J (φ))−1(1, . . . ,W )T −m2

φ

N

=
W∑
k=1

k∑
i=1

k∑
j=1

ij

(
k

j

)(
k

i

)
(−q)2k−i−j

p2k
(1− qi)(1− qj)dk(φ)

=

(
W∑
i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi)

−m2
φ

)
/N.

More interestingly, we show that

m̂?
φ(S) =

∑
s∈S s

Np
+

(
1− 1

p

)∑
s∈S 1s=1

N
, (17)

is an unbiased efficient (minimum variance) estimator of mφ, yielding

MSE(m̂?
φ(S)) =

(
W∑
i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi)

−m2
φ

)
/N.

Alternatively we can rewrite the above as

MSE(m̂φ) = O

(
m

(2)
φ −m2

φ

N

)
.

Hence, MSE(m̂φ) is lower bounded by the variance of the observed set sizes. A simple explanation for
this behavior is likely found in the inspection paradox. Even if we know the sizes of the sampled sets, the
mere fact that the set is sampled means that it probably has a higher than average size, as the probability
that a set of size i is sampled is 1− (1− p)i. Larger variance in the set sizes means larger biases towards
sampling larger sets, which in turn makes it harder to unbias these samples.
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VI. DISCUSSION

We divide this section in three parts. Section VI-A considers the initialization of estimation procedures.
Section VI-B shows that no clever way to process the data S exists that would allow an estimator to
violate the bounds provided in Section IV. Finally, Section VI-C shows that our results can be extended
to encompass biased and Bayesian estimators.

A. Initialization of Estimation Procedures
As previously stated, eq. (4) can be used to derive a maximum likelihood estimator (MLE) for θ. From

the MLE one could either use a constrained non-linear optimization method to maximize the likelihood
function directly or use the Expectation-Maximization (EM) algorithm to write an iterative estimation
procedure. In the latter case, the procedure consists of an initialization step followed by a loop of two
steps known as the E-step and M-step. We discuss two issues that arise when EM is used to estimate the
set size distribution.

In EM, the solution to which the algorithm converges to depends on the initial guess. Therefore,
in order to have an unbiased estimate, one must choose a point uniformly at random from the space
of possible values. Although it may seem reasonable to choose values for each θi uniformly in [0, 1]
and then normalize them, it turns out that this does not yield uniformly distributed initial guesses. One
way to correctly generate the initial guess is to draw from the Dirichlet distribution with W parameters
α = (1, . . . , 1), since the Dirichlet PDF at point θ is proportional to

∏W
i=1 θ

αi−1
i .

Nevertheless, such an initialization combined with the other two steps of EM will give us estimates
θ̂i ∈ [0, 1] hence producing biased estimates. Therefore, it is possible that EM achieves an MSE not in
agreement with the CRLB we derived previously. This is the case when the number of samples N is
small and, consequently, the diagonal of G has relatively large values (possibly greater than 1). On the
other hand, for large N , the number of observed sets with size i will converge to a Normal distribution
with mean θi and small variance. For small enough variance, restricting θi to be between 0 and 1 does
not affect the final estimate significantly and thus the CRLB accurately bounds the MSE.

B. An Application of the Data Processing Inequality
The data processing inequality [10] states that no function of the data may increase the amount of Fisher

information already contained in the data. Thus, the bounds in Theorems 4.1 and 5.1 remain unchanged
regardless of how the data is pre-processed, no matter how clever the pre-processing approach is. This,
of course, encompasses any type of noise filters or machine learning methods.

C. Impact on Different Types of Estimators: Bayesian, Frequentist, Biased and Unbiased
To extend our results beyond unbiased estimators we explain the connection between Fisher information,

the Cramér-Rao bound and biased estimators. We also extend our results to Bayesian estimators (including
maximum a posteriori estimators).

1) Extension to Biased Estimators: Let h(θi) = E[Ti(S)] − θi be the estimator bias. Then (see for
instance Ben-Haim and Eldar [1])

MSE(Ti(S)) ≥
(

1 +
∂b(θi)

∂θi

)2

[(J (θ))−1]ii,

assuming ∂b(θi)/∂θi exists. Note if the bias derivative satisfies −2 < ∂b(θi)/∂θi < 0, then the biased
estimator has lower MSE than any unbiased estimator. However, we believe it is unlikely that a large
value of [(J (θ))−1]ii (as large as 10160 as seen in Section IV-B for the Enron e-mail network) can be
compensated by a biased estimator.
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2) Extension to Bayesian Estimators: Let θ now be a random variable with prior distribution πθ. A
Bayesian estimator adds πθ as extra information to the estimation problem. The Fisher information of the
prior is

J
(p)
ij = E

[
∂ lnπθ
∂θi

∂ ln πθ
∂θj

]
.

The Fisher information obtained exclusively by the data is J (θ) presented in (6). And the total Fisher
information prior + data is [9, pp. 84]

J (t) = J (p) + J (θ).

The Cramér-Rao bound of a Bayesian estimator Wi(S) of θi with prior πθ yields [9, pp. 85]

MSE(Wi(S)) ≥ (J (t))−1 = (J (p) + J (θ))−1,

and thus, if the data contains little Fisher information then a decrease in the MSE is due to the information
contained in the prior πθ.

VII. CONCLUSIONS & RELATED WORK

In this paper we give explicit expressions of MSE lower bounds of unbiased estimators of the distribution
of set sizes θ and the average set size mθ with sampling probability p. We show that the estimation error
of θ grows at least exponentially in W , when log θW = W log a+ o(W ) as W →∞ for some 0 < a < 1,
and p < a/(a+1), or when log θW = o(W ) as W →∞ and p < 1/2, which indicates that there unbiased
estimators of some distributions θ are too inaccurate to be useful for practitioners. Moreover we show
that unbiased estimates of mθ suffer from similar problems.

Not much prior work exists in the literature. Hohn and Veitch [4] first observed that using a sampling
probability of p < 1/2 poses problems in the context of two specific estimators for the flow size distribution
when the distribution obeys a power law. In particular, they showed that their estimators are asymptotically
unbiased with decreasing error as the number of flow samples increases when p ≥ 1/2 but not when
p < 1/2. Our work shows that this is a fundamental result of set size distribution estimation and not
specific to any one or two estimators. Ribeiro et al. [7] was the first to introduce the use of Fisher
information as a design tool for flow size estimation. Experiments reported in that paper suggested that
there is little information when p is small and showed how this information can be significantly increased
with the addition of other data taken from packet headers. Last, Tune and Veitch [8] applied Fisher
information to compare packet sampling with flow sampling. In the process of doing so, they obtained a
variety of useful Fisher information inverse identities, which we rely on in this work.
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APPENDIX A
SET SIZE DISTRIBUTION PROOFS

Let B(p) = [bji(p)], j, i = 1, . . . ,W be a matrix whose elements are given by

bji(p) ≡ P [α(S) = j |α(S) > 0, |S| = i] =

(
i
j

)
pjqi−j

1− qi
, if 0 < j ≤ i, (18)

and bij(p) = 0 otherwise, where q = 1− p.
Lemma A.1 shows a closed formula for the inverse of B(p).
Lemma A.1: B(p)−1 = [b?ji(p)] (i, j = 1, . . . ,W ), where

b?ji(p) =

{(
i
j

)
p−i(−q)i−j(1− qj) i ≥ j

0 i < j.

Proof. Let B(p)−1 = [b?ji(p)] with b?ji(p) defined above. We first show that Y = B(p)B(p)−1 is an identity
matrix. Consider element (j, i) of Y :

yji =
W∑
l=1

bjl(p)b
?
li(p) . (19)

We have three cases: j > i, j = i, and j < i.
Case 1, j > i: eq. (19) yields yji = 0 since bjl(p) = 0, ∀l ≤ i and b?li(p) = 0, ∀l > i.
Case 2, j = i: Here bjl(p)b?lj(p) = 0, ∀l 6= j and (19) yields

yjj =
pj

1− qj
· p−j(1− qj) = 1 .

Case 3, j < i: eq. (19) yields

yji =
i∑
l=j

(−1)i−lpj−iqi−j
(
l

j

)(
i

l

)

= pj−iqi−j
i∑
l=j

(−1)i−l
(
i

j

)(
i− j
l − j

)

= pj−iqi−j
(
i

j

) i∑
l=j

(−1)i−l
(
i− j
l − j

)
= pj−iqi−j

(
i

j

)
(1− 1)i−j

= 0

Thus, yjj = 1, ∀j and yji = 0, ∀j 6= i, which concludes our proof. �
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Lemma A.1 directly yields the inverse of the Fisher information matrix J (φ) of a single observed set,
as seen in the following lemma.

Lemma A.2: (J (φ))−1 = [[(J (φ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (φ))−1]ij =
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(θ) (20)

Proof. Denote R(φ)(p) = [R
(φ)
ji (p)] = B−1(p)diag(B(p)φ)−1, where R(φ)

ji (p) = b?ji(p)di(φ). Based on
Lemma A.1 and eq. (2), we have

R
(φ)
ji (p) =

{ (
i
j

)
p−i(−q)i−j(1− qj)di(φ), i ≥ j,

0, i < j.
(21)

Since J (φ) = R(φ)(p)(B(p)−1)T, [(J (φ))−1]ji is computed as the following equation based on Lemma A.1
and eq. (21)

[(J (φ))−1]ji =
W∑
k=1

R
(φ)
jk (p)b?ik(p)

=
W∑

k=max(i,j)

(
k
j

)(
k
i

)
(−q)2k−i−j(1− qi)(1− qj)dk(φ)

p2k

=
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(φ)

�

Lemma A.3: (J (θ))−1 = [[(J (θ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (θ))−1]ii =
1

η2

(
[(J (φ))−1]ii
(1− qi)2

+ θ2i

W∑
j=1

W∑
k=1

[(J (φ))−1]kj
(1− qk)(1− qj)

− 2θi

W∑
j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)
(22)

where η =
∑W

i=1 φi/(1− qi).
Proof. The relationship between (J (θ))−1 and (J (φ))−1 is given by

(J (θ))−1 = ∇H(J (φ))−1∇HT, (23)

where ∇H = [hik] with hik = ∂θk(φ)/∂φi. Hence

hik =

{
−φi/(η(1−qi))

η(1−qk) i 6= k
1−φi/(η(1−qi))

η(1−qi) i = k

where η =
∑W

k=1 φk/(1− qk) is a constant. Note that from eq. (3) we have θi = φi/(η(1− qi)). Therefore
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the diagonal elements of (J (θ))−1 can be written as

[(J (θ))−1]ii =
W∑
j=1

W∑
k=1

hik[(J
(φ))−1]kjh

T
ij

=
W∑
j=1
j 6=i

W∑
k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]kj

(
− θi
η(1− qj)

)
+

W∑
j=1
j 6=i

(
1− θi

η(1− qi)

)
[(J (φ))−1]ij

(
− θi
η(1− qj)

)
+

W∑
k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]ki

(
1− θi

η(1− qi)

)
+

(
1− θi

η(1− qi)

)2

[(J (φ))−1]ii

=
1

η2

(
[(J (φ))−1]ii
(1− qi)2

+ θ2i

W∑
j=1

W∑
k=1

[(J (φ))−1]kj
(1− qk)(1− qj)

− 2θi

W∑
j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)
. (24)

�

We split eq. (22) in three parts to carry out its analysis:

[(J (θ))−1]ii =
1

η2

(
[(J (θ))−1]ii
(1− qi)2︸ ︷︷ ︸

A1(i)

+ θ2i

W∑
j=1

W∑
k=1

[(J (θ))−1]kj
(1− qk)(1− qj)︸ ︷︷ ︸
A2(j)

− 2θi

W∑
j=1

[(J (θ))−1]ij
(1− qi)(1− qj)︸ ︷︷ ︸

A3(i)

)
. (25)

A. Analysis of A1(i)

Based on Lemma A.2 and eq. (2), we have
Lemma A.4:

A1(i) = ηq−2i
W−i∑
j=0

(
i+ j

i

)
qj+iθj+igij. (26)

where η =
∑W

k=1 φk/(1− qk) and gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)k+i.

Proof.

[(J (φ))−1]ii =
W∑
k=i

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2dk(φ)

=
W∑
k=i

W∑
j=k

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2
(
j
k

)
pkqj−kφj

1− qj

= (q−i − 1)2
W∑
j=i

(
j

i

)
qjφj

1− qj
j∑
k=i

(
k

i

)(
j − i
k − i

)
(q/p)k

= (q−i − 1)2
W−i∑
j=0

(
i+ j

i

)
qi+jφi+jgij

1− qi+j
(27)

where gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)i+k.

Since φi/(1− qi) = θi · η, we can eq. (26) as a function of θ:
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[(J (φ))−1]ii = η
(
q−i − 1

)2 W−i∑
j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i) = ηq−2i
W−i∑
j=0

(
i+ j

i

)
qi+jθi+jgij. (28)

�

Lemma A.5: We have the following bounds for A1(i):

A1(i) < Ci

i∑
k=0

cik

∞∑
j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (29)

and

A1(i) > Cicii

W−i∑
j=i(i−1)

j2i
(q
p

)i+j
θi+j (30)

where
Ci =

ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏
l=0

(i− l), k = 0, . . . , i; i = 1, . . .W.

Proof. Since the i-th derivative of (q/p)i+k with respect to q/p, is

di(q/p)i+k

d(q/p)i
=

i∏
l=1

(k + l)(q/p)k,

we have the following equations for gij

gij =
1

i!

(q
p

)i j∑
k=0

i∏
l=1

(k + l)

(
j

k

)
(q/p)k

=
1

i!

(q
p

)i j∑
k=0

(
j

k

)
di(q/p)i+k

d(q/p)i

=
1

i!

(q
p

)idi(∑j
k=0

(
j
k

)
(q/p)i+k

)
d(q/p)i

=
1

i!

(q
p

)idi((q/p)i(1 + q/p)j
)

d(q/p)i
.

Using a general form of the product rule [6, pp. 318] yields

gij =
1

i!

(q
p

)i min{i,j}∑
k=0

(
i

k

)(1

p

)j−k k−1∏
l=0

(j − l)
(q
p

)k i−k−1∏
l=0

(i− l), (31)

where to simplify the expression we define
∏−1

l=0 · · · = 1.
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Substituting (31) back into (28), we obtain the following expression for A1(i)

A1(i) = Ci

i∑
k=0

cik

W−i∑
j=0

1{k ≤ j}
i∏
l=1

(j + l)
k−1∏
l=0

(j − l)(q/p)i+jθi+j (32)

where
Ci =

ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏
l=0

(i− l), k = 0, . . . , i; i = 1, . . . ,W.

We have the following upper bounds for A1(i),

A1(i) < Ci

i∑
k=0

cik

W−i∑
j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (33)

< Ci

i∑
k=0

cik

∞∑
j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j. (34)

A lower bound is obtained by noting that
i∏
l=1

(j + l)
k−1∏
l=0

(j − l) > ji−k
k∏
l=1

(j + l)
k∏
l=1

(j − l + 1)

= ji−k
k∏
l=1

(j2 + j + l − l2).

The latter is greater than or equal to j2i whenever j > i(i− 1) yielding

A1(i) > Cicii

W−i∑
j=i(i−1)

j2i
(q
p

)i+j
θi+j. (35)

�
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B. Analysis of A2(i)

W∑
i=1

W∑
j=1

[(J (θ))−1]ij
(1− qi)(1− qj)

=
W∑
i=1

W∑
j=1

W∑
k=1

(
k
j

)(
k
i

) (
q
p

)2k
(−1)−j−i(q−j − 1)(q−i − 1)dk(φ)

(1− qj)(1− qi)

=
W∑
k=1

(
q

p

)2k

dk(φ)
k∑
i=1

k∑
j=1

(
k

j

)(
k

i

)
(−q)−j−i

=
W∑
k=1

(
q

p

)2k

dk(φ)

(
k∑
i=1

(
k

i

)
(−q)−i

)2

=
W∑
k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
− 1

)2

using (63)

=
W∑
k=1

dk(φ)− 2
W∑
k=1

(
−q
p

)k
dk(φ) +

W∑
k=1

(
q

p

)2k

dk(φ)

= 1− 2
W∑
k=1

(
−q
p

)k
dk(φ) +

W∑
k=1

(
q

p

)2k

dk(φ). (36)

First, note that

W∑
k=1

(
−q
p

)k
dk(φ) =

W∑
k=1

(
−q
p

)k W∑
j=1

(
j

k

)
pkqj−kθjη

= η
W∑
j=1

qjθj

j∑
k=1

(
j

k

)
(−1)k

= −η
W∑
j=1

qjθj. using (65) (37)

Also,

W∑
k=1

(
q

p

)2k

dk(φ) =
W∑
k=1

(
q

p

)2k W∑
j=1

(
j

k

)
pkqj−kθjη

= η

W∑
j=1

qjθj

j∑
k=1

(
j

k

)(
q

p

)k

= η

W∑
j=1

qjθj

((
1

p

)j
− 1

)
using (64)

= η

(
W∑
j=1

(
q

p

)j
θj −

W∑
j=1

qjθj

)
. (38)

Replacing eqs. (37) and (38) into (36) yields
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W∑
i=1

W∑
j=1

[(J (θ))−1]ij
(1− qi)(1− qj)

= 1 + η

(
2

W∑
j=1

qjθj +
W∑
j=1

(
q

p

)j
θj −

W∑
j=1

qjθj

)
(39)

= 1 + η

(
W∑
j=1

qjθj +
W∑
j=1

(
q

p

)j
θj

)
. (40)

Therefore,

A2(i) = θ2i

(
1 + η

(
W∑
j=1

qjθj +
W∑
j=1

(
q

p

)j
θj

))
. (41)

Note that A2(i) is positive and may diverge or not depending on the summation
∑W

j=1

(
q
p

)j
θj .

C. Analysis of A3(i)

Note that

W∑
k=1

(
k

i

)(
−q
p

)k
dk(φ) =

W∑
k=i

(
k

i

)(
−q
p

)k W∑
j=1

(
j

k

)
pkqj−kθjη

= η
W∑
k=i

(−1)k
W∑
j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η
W∑
j=i

(
j

i

)
qjθj

j∑
k=i

(
j − i
k − i

)
(−1)k

= (−1)iη
W∑
j=i

(
j

i

)
qjθj

j−i∑
k=0

(
j − i
k

)
(−1)k

= (−q)iηθi. using (66) (42)

We also have

W∑
k=1

(
k

i

)(
q

p

)2k

dk(φ) =
W∑
k=1

(
k

i

)(
q

p

)2k W∑
j=1

(
j

k

)
pkqj−kθjη

= η

W∑
k=1

(
q

p

)k W∑
j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η

W∑
j=i

(
j

i

)
qjθj

j∑
k=i

(
j − i
k − i

)(
q

p

)k
. (43)

From eq. (42) and (43), we have

W∑
j=1

[(J (θ))−1]ij
(1− qj)(1− qi)

= ηθi − (−q)−iη
W∑
j=i

(
j

i

)
qjθj

j∑
k=i

(
j − i
k − i

)(
q

p

)k
(44)
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and hence,

A3(i) = 2ηθ2i︸︷︷︸
A3,1(i)

− 2θi(−q)−iη
W−i∑
j=0

(
i+ j

i

)
qi+jθi+j

j∑
k=0

(
j

k

)(
q

p

)k+i
︸ ︷︷ ︸

A3,2(i)

. (45)

Since A3,1(i) is always finite, we only need to compare the magnitude of A1(i) and A3,2(i). Since∑j
k=0

(
j
k

) (
q
p

)k+i
< gij , we can bound |A3,2(i)| by

|A3,2(i)| ≤ 2θiq
−iη

W−i∑
j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i)− |A3,2(i)| ≥ (q−2i − 2θiq
−i)η

W−i∑
j=0

(
i+ j

i

)
qi+jθi+jgij.

The RHS of the previous inequation is positive when

q−2i ≥ 2θiq
−i

θi ≤
1

2qi
<

1

2
.

Recall that we assumed that ∃i0 such that θi ≤ 1/2 for all i > i0. Thus by examining only A1(i) and
A2(i) we can determine whether [(J (θ))−1]ii diverges or not for i > i0.

APPENDIX B
PROOF OF THEOREM 4.1.

The lower bound of MSE(Ti(S)), given by [(J (θ))−1]ii, is described for each of the three possible cases
in Theorem 4.1. The corresponding proofs are shown in what follows.

1) When θW decreases faster than exponentially in W .
Proof. Suppose that θW decreases faster than exponentially in W . More precisely, assume that
− log θW = ω(W ). It follows that log(θW/θW+1) → ∞ as W → ∞. Hence, for any ε > 0, there
exists a W0(ε) such that log(θW/θW+1) > 1/ε for W > W0(ε). This implies θW+1/θW < e−1/ε for
W > W0(ε). Given p > 0, we can choose ε such that qe−1/ε/p < 1. We now apply the ratio test for
convergence of an infinite sum to each of the i+ 1 sums in the upper bound for A1(i) given by (29).

(W + i+ 1)2i(q/p)W+i+1θW+i+1

(W + i)2i(q/p)W+iθW+i

<
(W + i+ 1)2i

(W + i)2i
qe−1/ε

p

for W > W0(ε) − i and the latter expression becomes less than one as W → ∞. Hence A1(i) = O(1)
for 0 < p < 1.

A similar argument can be used to show that A2(i) = O(1). Hence, [(J (θ))−1]ii = O(1) for 0 < p < 1.
�

2) When θW decreases exponentially in W .
Proof. Suppose that θW decreases exponentially in W . More precisely, let log θW = W log a+ o(W )

for 0 < a < 1. Recall that A2(i) is positive. Therefore, the logarithm of [(J (θ))−1]ii in (22) can be lower
bounded as follows,

log[(J (θ))−1]ii ≥ logA1(i). (46)
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In addition, the logarithm of A1(i) in (26) can be bounded by

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(qa/p) + o(W )

where the latter equality follows from the hypothesis. Now, if qa/p > 1, then logA1(i) = Ω(W ), which
implies log[(J (θ))−1]ii = Ω(W ). Note that qa/p > 1 iff p < a/(a+ 1).

When p = a/(a + 1), then qa/p = 1. Hence the lower bound of A1(i) given by (30) is Ω(W 2i+1).
Hence, [(J (θ))−1]ii = Ω(W 2i+1).

Similarly to the proof for the case where θW decreases faster than exponentially in W , we can use the
ratio test for convergence of an infinite sum to show that for qa/p < 1, A1(i) = O(1). Hence, it follows
that [(J (θ))−1]ii = O(1) for p > a/(a+ 1).

�

3) When θW decreases slower than exponentially in W .
Proof. Suppose that θW decreases slower than exponentially in W . More precisely assume that
− log θW = o(W ). The logarithm of A1(i) can be lower bounded as follows,

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(q/p) + o(W )

The latter equality follows from the hypothesis. Now, if q/p > 1 (i.e., p < 1/2), then logA1(i) ≥ Ω(W ),
which implies log[(J (θ))−1]ii = Ω(W ).

When p ≥ 1/2, it follows that A2(i) = O(1). In particular if p = 1/2 and
∑W

j=1 j
2iθj = ω(1), we can

see from eq. (30) that A1(i) = ω(1) and in turn, [(J (φ))−1]ii = ω(1).
Note that for p = 1/2 each of the i + 1 sums in the upper bound for A1(i) given by (29) is bounded

by the 2i-th moment of the set size distribution. Hence, if
∑W

j=1 j
2iθj = O(1), then [(J (θ))−1]ii = O(1).

Finally, when p > 1/2, an argument similar to that used in the case where θW decreases faster than
exponentially yields [(J (θ))−1]ii = O(1). �

APPENDIX C
SIMPLIFIED BOUNDS

It is worth noting that A2(i) gives us a lower bound on [(J (θ))−1]ii, as A1(i)−A3(i) > 0. Furthermore,
the convergence of A2(i) is given by the convergence of the sum

∑W
j=1(q/p)

jθj . Therefore, we can write

[(J (θ))−1]ii = Ω

(
W∑
j=1

(
1− p
p

)j
θj

)
. (47)

From that, we derive the following results.
1) When θW decreases faster than exponentially in W .

By definition, for any ε > 0, there exists a W0(ε) such that log(θW/θW+1) > 1/ε. Given p > 0, we can
choose ε such that qe−1/ε/p < 1. The ratio test for convergence of an infinite sum reads

(q/p)j+1θj+1

(q/p)jθj
<
qe−1/ε

p
(48)

Let a = qe−1/ε/p. Hence, there exists a j∗ such that for all j > j?, ((1 − p)/p)jθj < aj , j = 1, 2, . . . .
Therefore, the sum converges to a constant for any 0 < p < 1, yielding [(J (θ))−1]ii = O(1).

2) When θW decreases exponentially in W .
By definition, there exists 0 < a < 1 such that log θW = W log a+o(W ). When p ≤ a/(a+1) it follows

that ((1− p)/p)jθj ≥ a−jθj = Ω(1). Therefore, [(J (θ))−1]ii = O(W ). A tighter bound can be obtained by
taking into account A1(i), yielding log[(J (θ))−1]ii = O(W ) for p < a/(a+1) and [(J (θ))−1]ii = O(W 2i+1)
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for p = a/(a+ 1). On the other hand, for p > a/(a+ 1), we have ((1− p)/p)jθj < ajθj = O(1). Hence,
[(J (θ))−1] = O(1).

3) When θW decreases slower than exponentially in W .
When p < 1/2, it follows that (1−p)/p = a > 1. In this case, there exists a j? such that for all j > j?,

((1 − p)/p)jθj = ajθj = Ω(1). Hence, [(J (θ))−1]ii = O(W ) for p < 1/2. Conversely, when p > 1/2,
(1 − p)/p = a < 1. Hence, there exists a j? such that for all j > j?, ((1 − p)/p)jθj = ajθj = O(1).
Thus, [(J (θ))−1]ii = O(1) for p > 1/2. At last, for p = 1/2, the summation is exactly 1, which also
implies [(J (θ))−1]ii = O(1). In the latter case (i.e., p = 1/2), a tigher bound is obtained by taking
A1(i) into account, which yields [(J (θ))−1]ii = ω(1) if

∑
j = 1W j2iθj = ω(1) and [(J (θ))−1]ii = O(1) if∑

j = 1W j2iθj = O(1).

APPENDIX D
ASYMPTOTIC EFFICIENCY AND ASYMPTOTIC NORMALITY OF THE MLE T ∗i (S)

In this section we show that there exists a Maximum Likelihood Estimator (MLE) T (φ)
i (S) of φi that

is asymptotic efficient (i.e., MSE(T ∗i (S)) = [(J (φ))−1]ii) and asymptotic normal. Since the Delta Method
is an exact approximation for the Normal distribution, it follows that there exists a MLE T ∗i (S) of θi that
is asymptotic efficient, which can be obtained by applying the Delta Method to T (φ)

i (S).
Consider the likelihood function in Eq. (7):

f(j|φ) =
W∑
i=1

bjiφi.

From the sum-to-one contraint on the parameters, it follows that φ1 = 1−
∑W

i=2 φi. Thus we can rewrite
the previous eq. as

f(j|φ) = bj1 +
W∑
i=2

(bji − bj1)φi. (49)

Hence,

∂

∂φk
log f(j|φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

2 < k < W.

From Theom. 5.1 [5, Chapter 5], we prove that there exists a MLE that is asymptotically efficient and
asymptotically normal by showing that assumptions (A0)-(A2) and (A)-(D) are satisfied.

Proof. (A0) Follows from (49).
(A1) The support of φi for 2 ≤ i ≤ W is 0 < φi < 1 subject to

∑W
i=2 φi ≤ 1.

(A2) Observations are assumed to be independent.
(A3) Follows by the assumption that 0 < φi < 1 for 2 ≤ i ≤ W .
(A) We have

∂

∂φk
f(j|φ) = bjk, 2 ≤ k ≤ W

and hence

∂3

∂φm∂φl∂φk
f(j|φ) = 0, 2 ≤ k, l,m ≤ W.

(B) The expectation of the first logarithmic derivative of f is
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Eφ

[
∂

∂φk
log f(j|φ)

]
=

W∑
j=1

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

(
bj1 +

W∑
i=2

(bji − bj1)φi

)

=
W∑
j=1

bjk −
W∑
j=1

bj1

= 1− b11
= 0.

As for the second derivative, we have

E

[
∂

∂φl
log f(j|φ)

∂

∂φk
log f(j|φ)

]
=

W∑
j=1

(bjl − bj1)(bjk − bj1)(
bj1 +

∑W
i=2(bji − bj1)φi

)2
(
bj1 +

W∑
i=2

(bji − bj1)φi

)

=
W∑
j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

,

which is equivalent to

E

[
− ∂2

∂φl∂φk
log f(j|φ)

]
=

W∑
j=1

−

− (bjk − bj1)(bjl − bj1)(
bj1 +

∑W
i=2(bji − bj1)φi

)2
(
bj1 +

W∑
i=2

(bji − bj1)φi

)
=

W∑
j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

.

(C) The vectors
[

∂
∂φ2

log f(j|φ), ∂
∂φ3

log f(j|φ), . . . , ∂
∂φW

log f(j|φ)
]

for 1 < j < W must be linearly
independent with probability 1. Note that and bjk > 0 ⇐⇒ j ≤ k (in particular, bj1 > 0 ⇐⇒ j = 1).
It follows that for j > k ≥ 2

∂

∂φk
log f(j|φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

= 0,

whereas for j ≤ k,

∂

∂φk
log f(j|φ) =

bjk∑W
i=2(bji − bj1)φi

> 0.

Therefore, the j − 1 leftmost entries in the j-th vector are 0 while the remainder are positive. Hence
the vectors are linearly independent.
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(D) Consider a constant εj > 0 such that f(j|φ) = bj1 +
∑W

i=2(bji − bj1)φi ≥ εj for 1 ≤ j ≤ W . Thus,

∣∣∣∣ ∂3

∂φm∂φl∂φk
f(j|φ)

∣∣∣∣ =

∣∣∣∣∣∣∣
−(bjk − bj1)(bjl − bj1)× 2(bjm − bj1)φm(bj1 +

∑W
i=2(bji − bj1)φi)(

bj1 +
∑W

i=2(bji − bj1)φi
)4

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2(bjk − bj1)(bjl − bj1)(bjm − bj1)φm(

bj1 +
∑W

i=2(bji − bj1)φi
)3

∣∣∣∣∣∣∣
≤

∣∣∣∣2(bjk − bj1)(bjl − bj1)(bjm − bj1)φm
ε3j

∣∣∣∣ .
Since Mklm(j) =

∣∣∣ ∂3

∂φm∂φl∂φk
f(j|φ)

∣∣∣ <∞, then Eφ[Mklm(j)] <∞ for all k, l,m. �

APPENDIX E
AVERAGE SET SIZE PROOFS

Lemma E.1: Let p be the sampling probability and m̂φ denote an unbiased estimate of the average size
of the observed sets mφ. Then,

MSE(m̂φ) = O

(
m

(2)
φ −m2

φ

N

)
.

Proof. The estimation error lower bound of the average set size is [9, pg.83, Proposition 3]

MSE(m̂φ) ≥
(1, . . . ,W )(J (φ))−1(1, . . . ,W )T −m2

φ

N
. (50)

Lemma A.2 yields

(1, . . . ,W )(J (φ))−1(1, . . . ,W )T

=
W∑
k=1

k∑
i=1

k∑
j=1

ij

(
k

j

)(
k

i

)(
q

p

)2k

(−1)2k−i−j(q−i − 1)(q−j − 1)dk(φ)

=
W∑
k=1

(q/p)2kdk(φ)

(
k∑
i=1

i

(
k

i

)
q−i − 1

(−1)i

)(
k∑
j=1

j

(
k

j

)
q−j − 1

(−1)j

)

= d1(φ) +
W∑
k=2

(q/p)2kdk(φ)

((
−1− q

q

)k
k

1− q

)2

=

(
1− 1

p2

)
d1(φ) +

1

p2

W∑
k=1

dk(φ)k2. (51)

Now (2) yields

d1(φ) =
W∑
i=1

ipqi−1

1− qi
φi (52)
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and
W∑
k=1

dk(φ)k2 =
W∑
k=1

W∑
i=k

(
i
k

)
pkqi−k

1− qi
φik

2

=
W∑
i=1

i∑
k=1

(
i
k

)
pkqi−k

1− qi
φik

2

=
W∑
i=1

(
i∑

k=1

(
i

k

)
pkqi−kk2

)
φi

1− qi
.

Using the relation
i∑

k=1

(
i

k

)
xkyi−kk2 =

{
x, i = 1,
ix(ix+ y)(x+ y)i−2, i ≥ 2.

yields
W∑
k=1

dk(φ)k2 =
W∑
i=1

ip(ip+ q)φi
1− qi

. (53)

Putting together (50), (51), and (53) yields

MSE(m̂φ) ≥

(
W∑
i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi)

−m2
φ

)
/N (54)

which concludes the proof. �

Lemma E.2: Using the observed set sizes S = {Sk}Nk=1 the following

m̂φ =

∑N
k=1 Sk
Np

+

(
1− 1

p

)∑N
k=1 1Sk=1

N
, (55)

is an efficient (smallest variance) unbiased estimator of mφ.
Proof. We start by noting that

mφ = [1, ...,W ]φ = [1, ...,W ]B−1d(φ). (56)

Denote z = [z1, . . . , zW ] = [1, ...,W ]B−1. From Lemma A.1, we have

zi =
W∑
j=1

jb?ji

=
i∑

j=1

j

(
i

j

)
p−i(−q)i−j(1− qj)

= (−q/p)i
i∑

j=1

j

(
i

j

)
1− qj

(−q)j
(57)

For i = 1 (57) yields z1 = 1 and for 2 ≤ i ≤ W ,

zi = (−q/p)i
(
−1− q

q

)i
i

1− q
=
i

p
.

Therefore,

z =
[p, 2, 3, . . . ,W ]

p
.
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Thus applying the above back into (56) yields

mφ =
md

p
+

(
1− 1

p

)
d1(φ), (58)

where md =
∑W

i=1 idi is the expectation of average set size of observed subsets. Rewriting (58) using the
set sizes S we get

m̂φ =
1

N

N∑
k=1

(
Sk
p

+

(
1− 1

p

)
1Sk=1

)
.

Based on our assumption that {Sk}mk=1 is an i.i.d. sequence, we have that {Sk}Nk=1 is also i.i.d. with
distribution d(φ). Therefore,

E[m̂φ] = E

[
Sk
p

+

(
1− 1

p

)
1Sk=1

]
,

and

Var[(m̂φ)2] =
1

N
Var

[(
Sk
p

+

(
1− 1

p

)
1Sk=1

)2
]
.

Since

E[Sk] = md =
W∑
i=1

idi(φ),

and
E[1Sk=1] = d1(φ),

we have E[m̂φ] = mφ from (58), which indicates that m̂φ is unbiased. Then

E[(Sk)2] =
W∑
i=1

i2di(φ),

E[(1Sk=1)
2] = d1(φ),

and
E[Sk1Sk=1] = d1(φ),

yield

Var[(m̂φ)2] =

(
1− 1

p2

)
d1(φ) + 1

p2

∑W
k=1 dk(φ)k2 −m2

φ

N
.

From (50) and (51) we find that m̂φ is an unbiased estimator that achieves the Cramér-Rao lower bound
(i.e., it is an efficient estimator). �

Lemma E.3: Let m̂ denote an unbiased estimate of the average set size mθ. Then,

MSE(m̂θ) ≥
1

η2

(
W∑
i=1

W∑
j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

+m2
θ

W∑
i=1

W∑
j=1

[(J (φ))−1]ji
(1− qj)(1− qi)

−

2mθ

W∑
i=1

W∑
j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
. (59)

Proof.
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MSE(m̂θ) ≥
∇M
∇θ

(
∇H
∇φ

(J (φ))−1
∇H
∇φ

T) ∇M
∇θ

T

=

(
∇M
∇θ
∇H
∇φ

)
(J (φ))−1

(
∇M
∇θ
∇H
∇φ

)T
. (60)

where ∇M∇θ = (1, . . . ,W ). Note that

[
∇M
∇θ
∇H
∇φ

]
k

=
W∑
i=1

ihik

=
W∑
i=1
i 6=k

i

(
− θi
η(1− qk)

)
+ k

(
1− θk

η(1− qk)

)

=
1

η(1− qk)

(
k −

W∑
i=1

iθi

)
=

k −mθ

η(1− qk)
. (61)

Substituting eq. (61) in eq. (60), we have

MSE(m̂θ) ≥
W∑
i=1

W∑
j=1

(
j −mθ

η(1− qj)

)
[(J (φ))−1]ji

(
i−mθ

η(1− qi)

)

=
1

η2

(
W∑
i=1

W∑
j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

+m2
θ

W∑
i=1

W∑
j=1

[(J (φ))−1]ji
(1− qj)(1− qi)

−

2mθ

W∑
i=1

W∑
j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
.

�

Similarly to what we did for eq. (22), we split eq. (59) into three pieces to analyze its behavior.

MSE(m̂θ) ≥
1

η2

(
W∑
i=1

W∑
j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)︸ ︷︷ ︸

U1

+m2
θ

W∑
i=1

W∑
j=1

[(J (φ))−1]ji
(1− qj)(1− qi)︸ ︷︷ ︸
U2

−

2mθ

W∑
i=1

W∑
j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)︸ ︷︷ ︸
U3

)
.
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A. Analysis of U1

W∑
i=1

W∑
j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

=
W∑
i=1

W∑
j=1

W∑
k=1

ij

(
k

i

)(
k

j

)(
q

p

)2k

(−q)−i−jdk(φ)

=
W∑
k=1

(
q

p

)2k

dk(φ)

(
k∑
i=1

i

(
k

i

)
(−q)−i

)2

=
W∑
k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
k

p

)2

using (62)

=
1

p2

W∑
k=1

k2dk(φ)

=
η

p2

W∑
i=1

ip(ip+ q)θi

= η(
W∑
i=1

i2θi +
q

p
mθ).

Note that U1 is bounded by the second moment of the distribution θ.

B. Analysis of U2

Note that U2 =
m2
θ

θ2i
A2(i). Therefore, we conclude that U2 diverges if either θW decreases exponentially

in W and p < a/(a+ 1) or θW decreases slower than exponentially in W and p < 1/2.

C. Analysis of U3

W∑
i=1

W∑
j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

=
W∑
k=1

(
q

p

)2k

dk(φ)
k∑
i=1

(
k

i

)
(−q)−i

k∑
j=1

j

(
k

j

)
(−q)−j

=
W∑
k=1

(
q

p

)2k

dk(φ)

((
−p
q

)k
− 1

)((
−p
q

)k
k

p

)
using (63,62)

=
1

p

W∑
k=1

kdk(φ)︸ ︷︷ ︸
ηpmθ

−1

p

W∑
k=1

(
−q
p

)k
kdk(φ)︸ ︷︷ ︸

−ηqθ1

= η(mθ +
q

p
θ1).

Thus,

U3 = 2mθη(mθ +
q

p
θ1).

It is interesting to note that, counterintuitively, U2 goes to infinity for certain values of p and θ while
U1 and U3 are always finite, even though the factor [(J (φ))−1]ji that appears inside the double summation
in U2 is the same factor that appears multiplied by j and ji in U1 and U3, respectively.
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D. Proof of Theorem 4.2
Note that U1, U2 and U3 are positive quantities and, moreover, MSE(m̂θ) > 0 ⇒ U1 + U2 > U3. We

observe that U1 diverges if the second moment of θ is infinite, U2 diverges if
∑W

j=1

(
q
p

)j
θj → ∞ as

W →∞, while U3 is always finite.
Proof. 1) When θW decreases faster than exponentially in W .
In this case, the second moment of θ is finite and the sum

∑W
j=1

(
q
p

)j
θj = O(1) for 0 < p < 1.

Therefore, MSE(m(S)) = O(1) for 0 < p < 1.
2) When θW decreases exponentially in W .

The second moment of θ is still finite. However, we can show that the sum
∑W

j=1

(
q
p

)j
θj is Ω(W ) for

p ≤ a/(a+ 1) and O(1) for p > a/(a+ 1) by using an argument similar to the one used in Section E of
Appendix A. Hence, MSE(m(S)) = Ω(W ) for p ≤ a/(a+ 1) and MSE(m(S)) = O(1) for p > a/(a+ 1).

3) When θW decreases more slowly than exponentially in W .
We can show that the sum

∑W
j=1

(
q
p

)j
θj is Ω(W ) for p < 1/2 and O(1) for p ≥ 1/2 by using an

argument similar to the one used in Section E of Appendix A. However, the second moment of θ shows
up in U1 and it can be either finite or infinite. Although it does not affect the bound for p < 1/2, in which
case we have log MSE(m(S)) = Ω(W ), it does change the bound for p ≥ 1/2. In particular, if p = 1/2
and

∑W
j=1 j

2θj = ω(1), then MSE(m(S)) = ω(1). On the other hand, if p = 1/2 and
∑W

j=1 j
2θj ≥ O(1),

then MSE(m(S)) = Ω(1). Finally, if p > 1/2, then MSE(m(S)) = Ω(1) as well.
�

APPENDIX F
USEFUL IDENTITIES

k∑
j=1

j

(
k

j

)
(−q)−j =

(
−q
p

)−k
k

p
(62)

k∑
j=1

(
k

j

)
(−q)−j =

(
−q
p

)−k
− 1 (63)

j∑
k=1

(
j

k

)(
q

p

)k
=

(
1

p

)j
− 1 (64)

j∑
k=1

(
j

k

)
(−1)k = −1 (65)

j∑
k=0

(
j

k

)
(−1)k =

{
1 if j = 0

0 otherwise
(66)


