
An Approach to Modeling and Supporting the Rework Process in Refactoring

Xiang Zhao
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

xiang@cs.umass.edu

Leon J. Osterweil
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

ljo@cs.umass.edu

Abstract—This paper presents the definition of a process for
performing rework, and a tool that executes the process in
order to support humans seeking help in being sure that they
are carrying out rework completely and correctly. The process
definition treats rework as the reinstantiation of previously-
performed activities in new contexts, which requires the careful
specification and management of the values of the artifacts
that comprise key process execution history and contextual
information. The rework tool exploits access to this information
to provide human reworkers with guidance about the rework
tasks to be done and with context and history information
expected to be useful in guiding superior rework decisions.
The paper presents a detailed example of the use of the process
and tool in supporting a particular kind of rework, namely the
refactoring of the design of an Object-Oriented program.

Keywords-rework; software process; refactoring

I. INTRODUCTION

The reconsideration and revision of decisions and activ-
ities that had taken place previously is a central activity
in creative processes such as the development of software.
We suggest that this notion of reconsideration and revision
be taken as an intuitive description of the activity that is
commonly referred to as rework. Rework seems inevitable
in virtually any activity that entails exercising judgment,
being creative, or speculating about imponderable future
events. Thus, for example, civil engineers might need to
rework plans for digging a building foundation when sub-
surface features (e.g., large rocks) are discovered. Doctors
might need to rework treatment plans when patients develop
unexpected reactions and symptoms, and educators might
need to rework course plans when classes turn out to have
unexpectedly large numbers of underprepared students. In
virtually all of these situations, it should be expected that
rework will needed, probably on an ongoing basis. Rework
should be expected because understandings of problems and
proposed solutions grow over time, invariably creating new
perspectives on prior approaches and decisions. These future
understandings are impossible to predict. Rework should
be expected to be ongoing at least partly because these
solution activities are aimed at solving problems arising
in the real world, and the real world changes constantly.
Ongoing changes in the world create changes in context that

affect the suitability of choices made about how to solve
problems.

Of greatest interest to us is the need for rework that arises
in software development projects. In software development
initial decisions (e.g. design choices or assumptions about
user communities) often turn out to be incorrect or un-
workable, typically necessitating rework. Rework becomes
necessary when design considerations indicate that initial
requirements may have been incomplete or inconsistent.
Conversely requirements changes often necessitate rework
of previous architecture and design decisions. Code rework
is necessitated when design specifications change. And sys-
tem testing outcomes often necessitate design, coding, and
requirements rework. Because software systems address real
world problems and operate under real-world constraints,
the changes that take place continually in the real world
typically necessitate continual software rework. Indeed, the
need for rework is so prevalent, that it has been suggested
that software developers spend most of their time doing what
we characterize here as ”rework”.

In earlier work we have suggested that the most com-
monly enunciated characterizations of rework are insufficient
and can lead to inadequate attempts to support rework
[1] [2]. Thus, typically [3] it is suggested that rework
consists of ”going back to a previous phase” of software
development to redo decisions made or work carried out
in that previous phase. But it is rarely the case that a
software project really ”goes back” to a previous phase of
development. If requirements specifications are found to be
incomplete, inadequate, or incorrect during design, it is rare
for the design phase to be aborted in favor of reopening
the requirements phase. Instead activities more typically
associated with the requirements phase are repeated, but now
in the context of the design phase. Thus, for example, a
requirement specification task will be instantiated to create
a new requirement specification element whose need had
not been previously appreciated, but whose need is now
understood in the context of subsequent design activities.
The context of the further design is essential to the more
effective specification of the missing requirement. Such
examples have led us [4] to propose that rework is more
accurately characterized as the reinstantiation of tasks pre-



vious carried out in earlier development phases in the richer
context that is provided by the activities and artifacts that
had been performed and created during subsequent phases. A
troublesome consequence of the need to make such changes
is that these changes often create inconsistencies with other
decisions, creating the need to revisit those other decisions.
We characterize this need to address inconsistencies created
in this way as consequential rework, which leads to what is
often characterized as ”ripple effect”, with rework leading to
consequential rework that can lead to further consequential
rework, potentially ad infinitum.

In this paper we explore and evaluate our previously pro-
posed characterization of rework by exploring in more detail
a kind of rework prevalent in modern software development,
namely refactoring the class structure of an Object-Oriented
(OO) program. This is a good example of rework because
the class structure of an OO program comprises a key ele-
ment of the program’s design, and yet refactoring typically
takes place either during the coding phase, or even after
deployment, when experience indicates that initial design
decisions need reconsideration, revision, and improvement.
In this case, refactoring does not involve leaving the coding
or deployment phase, but rather entails instantiating design
tasks in the context of those later phases. In this case,
the context of subsequent experience (coding difficulties,
performance issues, etc.) creates the richer context needed
to inform the rework that must be done. Note also that
the need to modify a single class definition often creates
consequential rework and ripple effect.

This paper provides a more complete and specific discus-
sion of our proposal about the nature of rework, through
presentation and evaluation of a system that adopts our
notion of rework as the basis for its architecture. Section II
presents our notion of rework more carefully. Section III
then describes the system itself, and its conceptual basis
drawing upon our ideas about rework. Section IV presents
an example of how our system has been used to support the
refactoring of an OO class structure. Section V presents the
capabilities of some other refactoring tools, comparing them
to our own tool. The paper provides suggestions for future
work in section VI and concludes in section VII.

II. AN APPROACH TO REPRESENTING REWORK AND
PROVIDING AUTOMATED SUPPORT

A. A Rigorous View of Rework

In earlier work [5] we have suggested that rework can be
modeled as the handling of an exception that is thrown when
an inconsistency has been identified. Inconsistencies of many
kinds can arise at many places in software development,
and accordingly various consistency checks are typically
incorporated throughout development processes (often these
checks are made during periodic reviews). The failure of
a consistency check (e.g., for the adherence of behavior
to requirements) then becomes an event that triggers the

instantiation of a process aimed at remedying the inconsis-
tency. That process is typically a software development task
that had been performed previously. But the triggered new
performance of the task is expected to have a better outcome
because the new performance will take place in a richer
context that includes the outcome of the failed consistency
check, new software artifacts, and consistency checks that
have occurred subsequent to the previous instantiation of the
task being undertaken.

This view of rework suggests that the context provided
by such things as newly created artifacts, recently per-
formed consistency checks, and the outcomes of previous
decisions are central to an appreciation of the nature of
rework. Simply repeating a task that had been carried out
previously could possibly deliver the same outcome, unless
that task has the benefit of more knowledge, provided by
subsequently generated artifacts and understandings. Thus, it
is the provision to revisited tasks of contextual information
carried in the form of artifacts and outcomes that seems
to us to characterize rework. Being precise and complete
in describing this context becomes increasingly important
(and difficult) in dealing with iterated rework (the need to
rework decisions and activities that had already been re-
worked previously), consequential rework, and ripple effects.
In these cases entire histories of decisions, activities, and
resulting artifacts are increasingly needed in order to be sure
that complete and correct contextual information is made
available to increasingly complex reconsiderations.

In other prior work [6] [7], we have also suggested
that abstractions and capabilities that have been previously
developed for programming languages can be quite useful
in supporting the precise specification of complex processes
such as software development. Rework seems to provide
a good example of this, in that the intuitive notions just
presented seem likely to be described far more precisely
and usefully using programming language constructs. Thus,
for example, as suggested in [5], consistency checks can
be modeled as postconditions or if statements, and the
triggering of rework can be modeled as the throwing of an
exception. But the above discussion of the essence of rework
as being the provision of context suggests that, in addition,
mechanisms for using scoping concepts to manage the access
to software artifacts could be of central importance as well.
Appropriate abstraction mechanisms, using scoping infor-
mation to control which artifacts are to be made available
to which instantiations of rework activities, seem particu-
larly useful in supporting rework. The support of iterated
rework and ripple effect would seem to be facilitated, in
particular, by visibility rules that are central to supporting
nested scoping. Moreover, as shall be seen, the importance
of being able to benefit from inspecting the outcomes of
previous activities and decisions, also suggests the value
of incorporating historical retrospection into capabilities for
supporting rework.



In view of the previous discussion, we suggest that
processes and tools for supporting rework are more likely to
be more effective if they support the semantic features just
described. In particular we hypothesize that the performance
of rework processes can be materially facilitated by execut-
ing process definitions that incorporate appropriately strong
and precise specifications of context by means of process
language features such as scoping, abstraction, parameter
passing, recursion, and historical retrospection. A key goal
of this paper is to explore that hypothesis.

Exploration of this hypothesis thus requires the use of
a process definition language that is executable and that
supports the semantic features just enumerated. The Little-
JIL process definition language offers these features and thus
has been taken as a key vehicle for the evaluation of our
hypothesis. A full description of Little-JIL can be found in
[8]. Here we summarize very briefly some of the key features
of the language that are most relevant to exploring our
hypothesis. Additional language features will be presented
in the context of the rework process descriptions to be found
in the next section of this paper.

B. Using Little-JIL to Define Rework

Little-JIL is a rigorously defined language intended to be
used to support the definition of complex processes. The
language incorporates such semantic features as abstraction,
concurrency, hierarchical decomposition, exception manage-
ment, and human-user-driven choice in order to facilitate the
clear and detailed specification of complex processes down
to low levels of detail. Little-JIL process definitions are
comprised of three main components, specifying an activity
structure, an artifact space, and a repository of resources,
some of which can serve as agents for executing activities.
The Little-JIL activity structure is the central feature of a
definition, and has a visual representation intended to make
process definitions more accessible to domain experts.

An activity specification is a hierarchical decomposition
of steps. The visual representation of a step is shown in
Figure 1. A Little-JIL step is best thought of as a proce-
dural abstraction defined by a hierarchical decomposition of
substeps, with parent and child steps communicating with
each other through artifacts that are passed back and forth

X
Step Name

Substep Handlerstep

Interface Badge

Sequencing Badge

Prerequisite Badge

Exception Handler Badge

Postrequisite Badge

+

Cardinality Continuation Badge

Sequencing Badge:

Continuation Badge:

Sequential

TryX
Choice

Parallel

Continue

Rethrow

Restart

Complete

Figure 1. Little-JIL Step

as arguments, bound to formal parameters that are part of
each step’s definition. In Figure 1, a step is represented by
a black rectangular step bar, with the step’s name shown
above the bar. Parameters are incorporated into the step’s
external interface, represented iconically by a small circle
above the step bar. Substeps are represented as steps shown
below the parent, but connected to the parent by edges.
The edges support specification of argument artifacts passed
and bindings of arguments to formal parameters. Steps have
two types of substeps, ordinary substeps, attached to the
parent by edges emanating from the left of the step bar,
and exception handlers, attached to the parent by edges
emanating from the right of the step bar. The left side
of a non-leaf step bar contains an iconic representation of
the order in which substeps are to be executed. There are
four order specifications: sequential (represented by a right
arrow), parallel (represented by an equal sign), and two
specifications that allow human process participants to make
choices, namely the choice step and try step kinds (iconically
represented respectively by a slashed circle and an arrow
with an X on its tail).

Every Little-JIL step is to be executed by an agent, whose
specification is incorporated as part of the step’s external in-
terface. A step’s agent can be either a human or an automated
device (hardware or software). Agents can throw exceptions,
which are typed objects. Exceptions can also be thrown
during the execution of step prerequisites or postrequisites,
step structures optionally incorporated into the execution
of a step by being executed either before (prerequisite)
or after (postrequisite) the step executes. Exceptions are
handled by exception handlers, substeps emanating from the
right of ancestor step bars. Each exception handler handles
exceptions of a specific type specified as part of the handler’s
definition. Because exception handlers are Little-JIL steps
they have external interface specifications that define how
they handle artifacts passed as arguments. Steps are true
procedural abstractions, and thus can be instantiated multiple
times, with each instantiation being differentiated (e.g., by
parameter bindings and exception handler access) according
to the context in which the instantiation is done. Recursion
is defined straightforwardly by instantiation of a step as its
own descendant.

These language features seem particularly effective in
supporting the needs of rework definition. The hierarchical
structure of Little-JIL supports nested scoping. Rigorous
parameter passing semantics (Little-JIL uses copy-and-
restore) support rigorous control of the visibility of artifacts
by step instances, particularly important to the creation
of contexts for activities. Recursion seems important for
support of nested rework. Treating exceptions as typed
objects provides a vehicle for separating the handling of
different instances of consequential rework from each other.



The next section presents an example that makes clear the
relevance of these kinds of language features to supporting
the specification and support of rework.

III. REFACTORING AS AN EXAMPLE OF REWORK

In this section we present a Little-JIL definition of a
process to support one form of rework, namely refactoring
the class structure of an Object-Oriented (OO) program, and
a tool to support execution of the process.

A. Refactoring as an Example of Rework

Decisions about the concepts to be captured as classes
and objects are among the most important decisions made
in creating an OO program. A good choice of classes makes
an OO program more readable, more evolvable, and more
straightforward to program. Bad choices lead to programs
that are problematic. It is neither unusual nor surprising to
find that initial decisions have led to later problems. The ac-
cumulation of knowledge, insights, and subsequent decisions
can suggest how to reduce these problems by rebundling
methods and capabilities into classes. This form of rework
is commonly called refactoring. Initial refactoring changes
may be incorrect, causing consequential rework. Moreover,
these changes in class definitions may themselves spawn the
need for more subsequent changes (the previously-described
ripple effect).

We now present an example of a specific form of refactor-
ing called separating query from modifier [9]. This kind of
refactoring deals with a method that is used both to query,
and also to change the state of an object. Combining these
two capabilities into a single method may have seemed like
a good idea initially, but subsequently it may turn out that
the method is used mostly as a query, where side effects
are awkward. An obvious response is to refactor the method
into two methods, a query and a modifier. We now present a
carefully and precisely defined Little-JIL process definition
that can be useful in helping assure that all necessary
changes are made correctly.

B. A Little-JIL Refactoring Process Definition

Figure 2 shows the top hierarchical level of a Little-
JIL definition of a process for guiding the refactoring just

Separate Query from Modifier

Specify QueryModifier Method

Modify Original Method

Create Query
Update References

Deal with Original Method

Figure 2. Top-level Process Definition

Make original method return a call to the new query

Compile

Run unit tests

Modify Original Method

Handle Compilation Failure

Handle Unit Tests Failure

UnitTestFailureException

CompilationFailureException

Figure 3. Modify Original Method Step Definition

described. The process is represented by the step Separate
Query from Modifier, which is defined to be the sequential
execution (note the right-facing arrow in the left of the
step bar) of five child substeps, Specify QueryModifier
Method, Create Query, Modify Original Method, Update
References, and Deal with Original Method. Each of these
substeps must be further decomposed in order to support the
kind of detailed refactoring support that we seek. Because
of space limitations we focus only on the third and fourth
substeps. Figure 3 shows the third substep, Modify Original
Method, decomposed into three ordinary substeps, and two
exception handler substeps. The three ordinary substeps
describe the sequence of activities taken under nominal cir-
cumstances, namely performing sequentially namely making
the change in the method (Make original method return a
call to the new query), then compiling the newly modified
code (Compile), and then running a suite of test cases to
assure that the change has been made correctly (Run unit
tests). Note that some of these steps are performed by a
human agent (the refactorer), and some are performed by
automated agents (e.g. a compiler, and an automated test
aid). Essential to effective support of this step, however, is
providing support in the not-unlikely case that the change
has not been made correctly. Thus, the Modify Original
Method step incorporates as substeps Handle Compilation
Error to deal with exceptions raised when the changed code
fails to compile, and Handle Unit Tests Failure to deal with
exceptions raised when execution of one or more unit test
cases does not deliver correct results.

Check method call

Check Query body

Compile

Run unit tests Handle Unit Test Compilation Exception

Check method call

Check Query body

Compile

Handle Unit Test Compilation Exception

Handle Unit Tests Failure

Handle Unit Tests Failure

Figure 4. Handle Unit Test Failure Step Definition



Update Reference

Retrieve source file

Replace original call to call the query

Add a call to original method before the query

Compile

Run unit tests

Handle Reference Compilation Error

Update Reference

Compile

Handle Reference Compilation Error

Handle Reference Unit Test Failure

Update Reference

Compile

Run unit tests

Handle Reference Compilation Error

Handle Reference Unit Test Failure

Update References

Retrieve Reference files

referencefile+

Figure 5. Update References Step Definition

One way this process supports rework is shown by how
the process handles these exceptions. Figure 4 provides
further details about this by showing how unit test failures
are handled. Note that more than one unit test case may fail,
and that each failed test case must be examined individually.
Little-JIL supports specifying this by treating an exception as
an object whose type is used to select the appropriate handler
and whose argument artifacts are used by the exception
handler to support appropriate responses. In Figure 4 the
Run unit tests step throws one UnitTestFailureException
for each unit test case that fails, causing each unit test case
failure to instantiate a separate UnitTestFailureException
handler.

The handling of a single unit test case failure is defined by
the elaboration of the Handle Unit Tests Failure step shown
in Figure 4. This consists of performing in sequence the
steps Check method call, Check Query body, Compile,
and Run unit tests. Examination of this step shows both
the complications that can arise during refactoring, and the
process language features that can be effective in addressing
this complexity. Note that the first two substeps support
examination of the specification and the body of the modified
method in the hope that a defect will be found and fixed.
But then recompilation of the method and rerunning of the
unit tests follow to confirm that defects have been found and
fixed. In the not-implausible case that one or more defects
remain, compilation error exceptions and/or unit test failure
exceptions will be thrown. In case a compilation error is
thrown, it is handled by the Handle Unit Test Compilation
Exception exception handler, whose substep decomposition
is almost identical to the Handle Compilation Error sub-
step decomposition that caused the initial consideration of
the compilation error. In case a unit test error is thrown, it is
handled by a recursive call to the Handle Unit Test Failure

exception handler. In both of these situations previously
executed debugging steps are now being executed again,
but now in the context of additional information (e.g. new
defects observed, or indications of why previous attempts to
fix previously-identified defects have not succeeded). These
new context can be seen clearly from examining the Little-
JIL diagrams. The values that comprise these contexts are
constructed from the values of the artifacts that are visible
from these step instantiation sites.

A similar situation can be seen in the elaboration in Fig-
ure 5 of Update References, the fourth substep of Separate
Query from Modifier. This substep is the sequential execu-
tion of four substeps, with the additional specification of two
exception handlers. The first substep, Retrieve Reference
files, identifies all classes that refer to the changed class, the
second substep defines an iteration through each such class,
in which the Update Reference subsubstep of Update Ref-
erences is responsible for making the actual changes to each
class, sequentially one at a time, the third substep Compile
checks to be sure that all changes actually compile correctly,
and the fourth substep Run unit tests reruns all unit tests.
The exception handlers Handle Reference Compilation
Error and Handle Reference Unit Test Failure include
recursive invocations of Update Reference and Compile,
which may cause further compilation errors thereby causing
the recursive invocation of Handle Reference Compilation
Error and Handle Reference Unit Test Failure. There
is clearly a strong analogy between the internal structures
of the third and fourth substeps of Separate Query from
Modifier. Clearly the recursive invocations of steps in both
cases can continue without limit. Clearly such recursive
invocation sequences can go on in parallel for each of the
exceptions that has been thrown. And, in addition, there is
the clear possibility that steps taken to address one defect



may interfere with addressing other defects. Thus, these
are two very representative examples of how rework, and
potentially quite complex rework, arises quite naturally in
the course of performing refactoring.

Clear understanding of what is needed to support human
refactorers who undertake complex rework requires more
than examination of the steps required to support rework. As
the current example shows, the sequence of steps performed
to do rework is essentially an iteration. But the essence of
the rework is not the iteration, but rather the sequence of
contexts within which each iteration is carried out. Thus
a major challenge in supporting rework effectively is the
ability to specify, create, and control the contexts within
which process steps execute. A key component of this
context is the set of values of the variables and artifacts
to which the step and its performer have access. A Little-
JIL process seems capable of managing these scopes and
artifacts, and thus seems promising as the basis for a tool
that can support human refactorers by providing clear access
to them. We describe such a tool in the next section.

C. A Tool to Support Execution of the Process

Careful execution of the process just described (e.g. by
Juliette [10], the Little-JIL interpreter) is necessary to sup-
port human refactorers, but far from sufficient. It is certainly
necessary for Juliette to advise humans when each step is
to be performed, and which artifacts (e.g. bodies of code)
to perform the steps on. But the essence of the support we
propose to provide is to be sure that humans have sufficient
context and history to support a deep understanding of the
changes needed. Accordingly, it seems necessary to also
provide humans with clear visibility of that contextual and
historical information as well.

Figure 6 is a high-level diagram of a prototype tool that
provides such support. The righthand side of the diagram
shows the Little-JIL process and an interpreter that performs
needed delivery of the appropriate steps to the appropriate
agents (in this case only one human agent is depicted)
by placing the steps, and their associated artifacts, on
the agents’ agendas. But the diagram also shows that the
artifacts included in the steps carry pointers that enable
the human to access considerable historical and contextual
information. That access is through a dynamic execution
trace recording that we refer to as the Data Derivation Graph
(DDG).

The DDG is a vehicle for keeping track of how the
values of process artifacts change as a process executes.
Because the Little-JIL activity diagram is a static structure
of types (e.g., types of steps that are to be instantiated,
and types of arguments that are also to be instantiated,
at runtime) it is unsuitable for representing artifact value
evolution during process execution. The DDG has been
developed to represent artifact value evolution as a structure
that records how each instance of each artifact in a Little-

DDG

Agenda

Refactoring 
Process 
Definition

Artifacts

Juliette 
Interpreter

User working on refactoring

UnitTestFailure

Check Query body

...

Check method call

Creates and Maintains

Controls and Presents

CheckingAccount.java

Query Declaration

Return Method Call

...

Monitors

Figure 6. System Architecture

JIL process has been derived and is then used in subsequent
derivations of new values. Further details about DDGs can
be found in [11] [12]. A basic understanding of the nature
of a DDG can be gained with the help of an example such
as is shown in Figure 7. Figure 7 shows a DDG that it
is a small portion of an idealization of the DDG that is
built during execution of the part of the refactoring process
shown in Figure 4. Rectangle blue and red nodes represent
artifact values and are at the tails of edges whose heads
represent the process step(s) that created them (represented
by yellow round boxes). Thus, for example, the bottom node
in Figure 7, Unit Test Success, represents the creation of a
token indicating that all unit tests have succeeded, and this
token was created by executing the Run Unit Tests step,
which in turn required access to the Unit Test Suite artifact.
The figure shows that this step also required a Compilation
Success token, generated by the prior Compile step.

The Compile step itself required access to the name of the
source file and the content of the file (sourcefilename and
sourcefilecontent respectively). Note that the step Check
Method Call required access to similar artifacts, but also
required that a CompilationFailureException exception
token had been generated.

Note that the top half of Figure 7 looks quite similar to
the bottom half of the figure, and that is because each half
represents a different iteration under the Handle Unit Tests
Failure step shown in Figure 4. What is depicted is the
response to a failure of the Run Unit Tests step, where the
first response was a change that caused a compilation failure.
On the next iteration, the unit compiled and execution of



DDG Legend

Exception

Artifact

Exception Data Flow

Artifact Flow

Unit Test Suite

sourcefilenameUnitTestFailureException

sourcefilecontent

sourcefilecontent

CompilationFailureException

sourcefilecontent

sourcefilecontent

Compilation Success

Unit Test Success

……

Artifact Sequence Flow

Run unit 
testsLeaf Step 

Execution

Check 
method 

call

Check 
Query 
body

Compile

Check 
method 

call

Check 
Query 
body

Compile

Run unit 
tests

Figure 7. A DDG Example

Run Unit Tests also succeeded. We suggest that access
to previous values of the compilation unit, represented by
the sourcefilecontent artifact, was expected to be helpful,
and so the figure depicts these values as being linked to
each other (by curved green edges) for easy perusal by
the user. In addition, the tool currently incorporates Meld
[13], an open source visual diff and merge tool to help the
user visualize artifact changes more easily. This expedited
access to past values is an example of the kind of historical
information that seems helpful in supporting rework. The
artifacts managed by ancestor steps provide further context,
and are also accessible through navigation up the DDG
to the ancestor steps. Figure 7 shows that the DDG is
managed as a structure of tokens, with actual artifact values
managed separately (accessed through DDG links) because
of the expectation that they may be large and require storage
optimization.

IV. EVALUATION OF THE PROCESS AND THE TOOL

In this section we present a specific example of our
experience in the execution of the refactoring process, and
our experience with the support tool just described, in the
context of our efforts to refactor a simple class called
CheckingAccount, which holds the balance and provides
methods for withdrawing and depositing from a bank check-
ing account, as shown in Listing 1.

Listing 1. CheckingAccount.java
1 public class CheckingAccount{
2 private float balance;
3 public CheckingAccount(float balance) {
4 this.balance = balance;
5 }
6 public float checkForBalanceAndWithdraw(

float amount) {
7 if (balance >= amount) {
8 balance -= amount;
9 System.out.println("Widthdraw done.

Current balance: " + balance);
10 return balance;
11 } else {
12 System.out.println("There is not

enough balance!");
13 return balance;
14 }
15 }
16 public void deposit(float amount) {
17 balance += amount;
18 }
19 }

This class has combined the balance checking and with-
drawal features in one method, which is to be refactored
into two methods, a query of the current balance, and a
withdrawal of money from the account.

Process execution begins with some steps that are per-
formed by automated agents. The first step assigned to
the human refactoring agent is Specify Query Modifier
Method. A Linux terminal interface feature of our tool
provides the user with the argument to this step, which is
the full source code of the class and its method list. The
terminal also shows a terse instruction on what to do in this
step:
Please enter a query modifier method name:

The user is then directed to specify the full method
signature of the method needed for refactoring as the output
of this step, querymodifiername. The process then transmits
this parameter to the parent step Separate Query from
Modifier, which distributes it to its other substeps as input
parameters. Next the process execution places on the user’s
agenda a step requiring the user to declare a query method
in the class source file that returns the desired value, which
in this case is the balance of the account. As this step is
specified to require a code editor as a resource, the process
execution system acquires a code editor, opens it with the
source file being edited, and makes this available to the user
through the user’s agenda. In a similar way, the execution



system will in sequence ask the user to declare the query
method, and modify the query method to return the same
value as the original method. After the user has performed
these steps, the Little-JIL interpreter then automatically calls
the Java compiler to do the first check on the new artifacts.
If there is a compilation failure, one or more Compilation-
FailureException instances will be thrown by the Compile
step. A new step instance Handle Compilation Error will
be initiated to respond to the exception, causing a form of
rework that requires examining the previous decisions and
making new decisions about modifying the artifact.

During rework, the user is guided by the tool to perform
checks on the previous steps’ artifacts from different per-
spectives. To illustrate this, suppose the user had created the
query definition shown in Listing 2:

Listing 2. Sample Query Declaration
1 public float checkForBalance(){
2 return balance++
3 }

In this case the user has left a semicolon out of the
declaration and wrote the wrong return statement, resulting
in a compilation exception. The tool will then execute the
appropriate exception handler by placing the appropriate
step on the agenda of the human refactorer. Executing the
first step will show the detailed compilation error message
as output from the Java compiler, and indicate that Check
Query declaration should be performed first, followed by
the Check Query body step. At the same time, the user
can check the currently generated DDG to review all past
decisions and artifact changes. In this example, the DDG
will show the change to the artifact is the newly added
query declaration, and the change was done by having
performed Declare Query Method and Modify Query to
return same value as original one steps sequentially. This
rework instance is very easy to deal with, and the user
can simply append a semicolon at line 2. Note after the
rework, the tool will initiate another compilation step to
check for errors. If the user’s fix still does not compile,
another instance of CompilationFailureException will be
thrown and handled by the nested Handle Compilation
Error step. Our experience suggests that things become
more difficult when a user thinks a problem was fixed but
another exception is raised because the fix was defective.
In this case, our tool’s provision of contextual information
becomes much more valuable in supporting the making of
correct decisions, as will be described later in this paper.

Suppose exception handlers have now guided the correc-
tion of all compilation errors. In this case the complete
history of all the changes the user made will have been
recorded in the DDG for possible future reference. The
process continues to guide the user to refactor this method by
placing the next step Make original method return a call
to the new query on the user’s agenda. After the user makes

the requested change, the tool will invoke the compiler
to check for errors and jUnit to perform unit tests. Any
number of instances of two different kinds of exceptions,
either CompilationFailureException or UnitTestFailure-
Exception can be thrown here. Each exception instance
will result in one or more rework instances. The Handle
Compilation Error step follows the same pattern as before.
We will assume that the user did some rework there and
fixed the compilation issue. As is shown in Listing 2, the
balance is not returned as it should be, so the Run unit tests
step detects the error and a more complicated step Handle
Unit Tests Failure is initiated. Figure 4 shows the fixing
process involves revisiting two previous decisions that may
be related to the unit test failure, Check method call and
Check Query body. After the user checks the corresponding
aspect in the code and fixes it, the source files will be
compiled and the unit tests will be run again. In this context,
assume that in the process of fixing the unit test failure, the
user has accidentally caused another compilation exception.
In that case a CompilationFailureException instance will
be created in the course of this rework process. As is shown
in Figure 4, another rework process is then invoked within
the current one, to revisit Check method call and Check
Query body and fix the local exception. The fixing step will
be iterated if more exceptions are thrown and more rework
instances are created. Once the tool has ensured that the
code compiles, it returns to its previous high-level task of
running the unit tests to see if the error has been fixed. If
not, the tool executes a new Handle Unit Tests Failure
step instance to guide further changes until the source files
pass the unit tests. The tool will then proceed to direct that
the user update references to the refactored method. The
execution of this step is similar to what has been described
previously. Note in Figure 5 shows referencefile+ notation
in the edge from Update References to Update Reference.
This is an artifact binding referencefile-referencefilelist[] that
specifies iteration over an artifact collection and causes the
tool to fetch a list of source files that reference the method,
iterate over the file collection, and instantiate one Update
Reference step for each file. The potential rework in this
step creates a more complicated situation where method
references are updated in parallel, but changes to one artifact
in the context of one reference may necessitate changes to
other artifacts connected with other references. Although
Little-JIL is able to define this complex rework, our DDG
builder is currently not able to provide complete support.

To finalize the method refactoring process, the original
method is modified to assign a void return type, also
removing its return expressions so that it will no longer be
used as a query method. The tool will notify the user of the
completion of the process, and show the user the final DDG
depicting the whole process execution.

Certainly the example just given is relatively straightfor-
ward, but the assistance provided by the DDG and Little-JIL



interpreter, were positively helpful. The tool assured that the
user was always able to find out what the next step should
be and enabled the user to examine previous decisions and
current context. This was helpful even in this small example,
and is expected to be even more helpful in larger examples
that are to be carried out in future work.

Although this example never required recursive invoca-
tions of depth greater than five layers, the DDG generated
consists of 60 data nodes and 147 procedure nodes. Clearly
it will be important to devote serious attention to the efficient
management of the DDGs generated by these sorts of rework
processes.

V. RELATED WORK

A number of tools are available to provide automated
support for refactoring. While the degree of automation and
the coverage of refactoring process vary, we note that a
DESMET [14] evaluation of refactoring tool support [15]
showed that none of the tools fully supported refactoring.
Common software IDEs and plugins like Eclipse Java de-
velopment tools (JDT) [16], JBuilder [17] and IntelliJ IDEA
[18] offer refactoring as one of their key capabilities, but
these tools focus on a selective set of refactoring tasks
and selected parts of the refactoring process. For instance,
Eclipse JDT supports some refactoring tasks like renaming
fields and extracting methods, allowing users to specify
intended changes with the tool automating the propagation
of the changes. RefactorIT [19] supports more automation
like detecting code smells. However, the refactoring support
provided by these tools focuses only on automating some
of the common operations while not providing support
for the entire refactoring process. Without a rigorously
defined process, these tools are not able to offer a complete
solution to specific refactoring problems, and without the
proper collection of history information, they are not able
to provide context information to help users understand how
their current decisions might be guided by their previous
decisions.

Some other tools provide better support for the refactoring
process. Guru [20] is derived from research on automatic
refactoring of OO programs by restructuring inheritance
hierarchies. Its Java equivalent Condenser [21] finds and
removes duplicate code. These tools perform an entire
refactoring process without human interaction. But because
the process is fully automated, users cannot review refac-
toring progress during rework, and no user customization
is possible. This can cause users to lose control over their
source code.

Technologies for capturing data provenance during pro-
cess execution have been studied by others. VisTrails [22]
implements a provenance mechanism that captures changes
to the data and displays them in a history tree. Callahan et al.
[23] proposed a framework adapting this approach in process
driven settings by creating a uniform environment. Kepler

[24] provides a mechanism for integrating a broad range
of supporting tools for specification, execution, and visual-
ization of scientific data processes, and provenance data is
built incrementally much as is done by our own DDG. Some
of the other approaches to provenance are summarized in
[25]. But these other process provenance systems are based
upon process languages with less comprehensive semantics,
which cause the provenance records that they generate to
have fewer details, for example about the contexts in which
data management events occur. We argue that our more
comprehensive process definition language leads to a more
complete and more useful data provenance model.

The Little-JIL language and DDG provenance technology
address important shortcomings of these other approaches.
Little-JIL processes such as the one described here, provide
support for entire refactoring processes, while keeping users
engaged and in control of the refactoring process. In addition
our technologies afford users access to extensive historical
and contextual information that make it easier to learn from
past decisions and outcomes.

VI. FUTURE WORK

This work presented here is still preliminary, but it already
suggests many future research directions. Most immediately,
there should be much more experimentation with our ap-
proach and our tool. We will undertake larger and more
complex refactoring examples, contriving more intricate
rework scenarios. For example, in our current process mul-
tiple exceptions thrown by multiple compilation or testing
errors are handled sequentially. But the exceptions should be
handled in parallel, perhaps by multiple humans. This will
require enhancement of our current tool support.

We plan to enhance our tool by automating more op-
erations and invoking other useful tools for each step in
our refactoring processes. For instance, in Modify Original
Method, we could automate the modification of the return
statement and make it return a call to the query method
we declared. We will also add more of the refactoring
processes described in [9] to our refactoring process library
and specifically study their use of rework.

We will also address DDG scalability problems. Because
DDGs preserve all artifact values, step execution sequences,
and exception information, DDGs quickly become very
large, causing querying to take longer. We will explore pro-
viding optimized DDG query support from within process
definitions to address this problem.

VII. CONCLUSION

We have shown that an articulate process language can
be used to create clear definitions of processes that seem
able to support humans in doing complex rework tasks. An
example of the rework entailed in OO code refactoring was
presented. Initial experience suggests that this approach and
tool support can provide valuable assistance to rework in



refactoring, but considerable additional research and evalu-
ative experience are indicated.

ACKNOWLEDGMENT

The authors thank Sandy Wise for his strong support of
this project in providing advice, expertise, and support for
understanding Little-JIL and Juliette. We would also thank
Barb Lerner for her advice, expertise, and insights into the
design and implementation of the DDG.

The authors also thank the National Science Foundation
for its support of this research through grant #CCF-0905530.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] A. G. Cass, L. J. Osterweil, and A. Wise, “A pattern for
modeling rework in software development processes,” in
Proceedings of the International Conference on Software
Process: Trustworthy Software Development Processes, ser.
ICSP ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
305–316.

[2] A. G. Cass, S. M. S. Jr., and L. J. Osterweil, “Formalizing
rework in software processes,” in EWSPT, ser. Lecture Notes
in Computer Science, F. Oquendo, Ed., vol. 2786. Springer,
2003, pp. 16–31.

[3] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of
software engineering. Prentice Hall, 2003.

[4] A. Wise, A. Cass, B. Lerner, E. McCall, L. Osterweil, and
J. Sutton, S.M., “Using Little-JIL to coordinate agents in
software engineering,” in Automated Software Engineering,
2000. Proceedings ASE 2000. The Fifteenth IEEE Interna-
tional Conference on, 2000, pp. 155 –163.

[5] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou,
U. Kannengiesser, and A. Wise, “Exception handling patterns
for process modeling,” IEEE Transactions on Software Engi-
neering, vol. 99, no. RapidPosts, pp. 162–183, 2010.

[6] L. Osterweil, “Software processes are software too,” in Pro-
ceedings of the 9th international conference on Software
Engineering, ser. ICSE ’87. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1987, pp. 2–13.

[7] L. J. Osterweil, “Software processes are software too, revis-
ited: an invited talk on the most influential paper of icse 9,” in
Proceedings of the 19th international conference on Software
engineering, ser. ICSE ’97. New York, NY, USA: ACM,
1997, pp. 540–548.

[8] A. Wise, “Little-JIL 1.5 language report,” Department of
Computer Science, U. of Massachusetts, Amherst, Tech. Rep.
(UM-CS-2006-51), 2006.

[9] M. Fowler, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley, 1999.

[10] A. Cass, A. Lerner, E. McCall, L. Osterweil, J. Sutton,
S.M., and A. Wise, “Little-JIL/Juliette: a process definition
language and interpreter,” in Software Engineering, 2000.
Proceedings of the 2000 International Conference on, 2000,
pp. 754 –757.

[11] L. Osterweil, L. Clarke, A. Ellison, E. Boose, R. Podorozhny,
and A. Wise, “Clear and precise specification of ecological
data management processes and dataset provenance,” Automa-
tion Science and Engineering, IEEE Transactions on, vol. 7,
no. 1, pp. 189 –195, jan. 2010.

[12] B. Lerner, E. Boose, L. J. Osterweil, A. Ellison, and L. Clarke,
“Provenance and quality control in sensor networks,” in
Proceedings of the Environmental Information Management
Conference, ser. EIM 2011, Santa Barbara, CA, USA, 2011.

[13] K. Willadsen. Meld. [Online]. Available:
http://meldmerge.org/

[14] B. A. Kitchenham, “Evaluating software engineering meth-
ods and tool part 1: The evaluation context and evaluation
methods,” SIGSOFT Softw. Eng. Notes, vol. 21, pp. 11–14,
January 1996.

[15] E. Mealy and P. Strooper, “Evaluating software refactoring
tool support,” in Software Engineering Conference, 2006.
Australian, april 2006, p. 10 pp.

[16] D. Megert et al. Eclipse Java Development Tools. [Online].
Available: http://www.eclipse.org/jdt/overview.php

[17] Embarcadero Technologies. Jbuilder. [Online]. Available:
http://www.embarcadero.com/products/jbuilder

[18] JetBrains. IntelliJ IDEA. [Online]. Available:
http://www.jetbrains.com/idea/

[19] RefactorIT. [Online]. Available:
http://sourceforge.net/projects/refactorit/

[20] I. Moore, “Automatic inheritance hierarchy restructuring and
method refactoring,” in Proceedings of the 11th ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications, ser. OOPSLA ’96. New York,
NY, USA: ACM, 1996, pp. 235–250.

[21] I. Moore. Condenser. [Online]. Available:
http://condenser.sourceforge.net/

[22] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and
H. T. Vo, “Managing the evolution of dataflows with vistrails,”
in Data Engineering Workshops, 2006. Proceedings. 22nd
International Conference on, 2006, p. 71.

[23] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, H. T.
Vo, and V. Inc, “Towards process provenance for existing
applications,” in Proceedings of IPAW, 2008, pp. 120–127.

[24] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance
collection support in the kepler scientific workflow system,”
in Proceedings of IPAW, 2006, pp. 118–132.

[25] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data
provenance in e-science,” SIGMOD Rec., vol. 34, pp. 31–36,
September 2005.


