
The Role of Context in Exception-Driven Rework

Xiang Zhao
Computer Science Department

University of Massachuestts Amherst
Amherst, USA

xiang@cs.umass.edu

Barbara Staudt Lerner
Computer Science Department

Mount Holyoke College
South Hadley, USA

blerner@mtholyoke.edu

Leon Osterweil
Computer Science Department

University of Massachusetts Amherst
Amherst, USA

ljo@cs.umass.edu

Abstract—Exception-driven rework occurs commonly in
software development. In this paper, we describe a simple
refactoring process, showing the use of the exception-driven
rework exception handling pattern within it. We also discuss
the important role that context plays in supporting the user
during rework in helping the user keep track of the tasks being
worked on and to facilitate resumption of normal activities
upon completion of the exception handling work. The example
process is specified in the Little-JIL process definition language.
The use of context information in supporting the user is
illustrated using a Data Derivation Graph (DDG), a graph
that is automatically generated to document the ways in which
artifact values are evolved during execution of a Little-JIL
process.

Keywords-exception handling; software process; rework;
provenance

I. INTRODUCTION

Rework [1][2][3] refers to repeating work activities that
were previously done. This is quite common in software
development. For example, rework can happen because
of changed requirements, but it also frequently occurs in
reaction to a problem that has been discovered. In this paper,
we focus on the common software engineering process of
refactoring an object. This work builds on our prior work
on exception handling patterns in processes [4], but by
elaborating upon this particular kind of software rework,
this elaboration provides more clarity about the nature of
rework and how it fits our exception-driven rework pattern.
It also sheds light on the critical role of context in performing
rework.

In this paper, we identify an example of exception-driven
rework in Section II and raise awareness of the importance
of history and context. In Section III we elaborate the
notion of context, and discuss how to support its acquisition,
organization, and presentation. An overview of related work
is given in Section IV, and we suggest observations on some
future work in Section V.

II. REFACTORING AS AN EXAMPLE OF
EXCEPTION-DRIVEN REWORK

To gain insight into what we mean by exception-driven
rework, we first present the exception-driven rework pattern
in Little-JIL, a process definition language. We then model

a specific refactoring task in Little-JIL and compare this
task to the general exception-driven rework pattern to drive
exploration of the features and ramifications of this example
and exception-driven rework, in general.

A. Exception-Driven Rework in Little-JIL

Little-JIL [5] is a process language that has been used
to define processes in many domains, including software
development. We describe only a minimal amount of Little-
JIL language semantics–just enough to allow understanding
of our examples. A Little-JIL process is expressed as a
hierarchical decomposition of steps (denoted iconically by
a black rectangular step bar) into substeps attached to the
left side of the step bar. Substeps are essentially procedures
called by their parent step, where arguments are passed
between parent and child. Steps may have facilities for
handling exceptions thrown by their descendants, in which
case exception handlers are defined as substeps connected
to the right side of the parent step bar. Parent steps specify
the order in which substeps are executed by using an icon
in the left side of the step bar. In our examples we use only
right-arrows to denote left-to-right sequential execution of
substeps.

Figure 1 shows the exception-driven rework pattern. First
some Work is done. At some later stage, there is a Check
Work activity, and if Check Work uncovers a problem,
an exception is thrown. The exception is handled by doing
Rework, which consists of redoing the Work, then the
Check Work activity is repeated, and if the work is done
correctly now, the main activity will resume. If not, the

Exception-driven Rework Pattern

Work Check Work

Rework

Work Check Work Rework

Agent: fixer

Agent: anomaly detector

Exception instances as triggers

Context support

Figure 1. Exception-Driven Rework Pattern



Rework will be done recursively. Figure 1 unfortunately
does not show the artifacts that flow between parent and
child, but it is critically important to note that all steps
receive as arguments specification of the work to be done,
and pass back augmentations of these specifications that
include specifications of the work that has just been done.
Thus each execution of a new instance of Work adds new
information about the work that has been done, thereby
incrementally adding items of historical information to a
growing specification of the context in which the new
instance is carried out.

B. Refactoring Process as an Example of Exception-Driven
Rework

Refactoring the source code of an object-oriented (OO)
program changes its internal structure while keeping its
external behavior unchanged. It is done to improve the pro-
gram’s efficiency, readability, maintainability, evolvability,
etc. We now present an example of one kind of refactoring,
called separating query from modifier [6]. This kind of
refactoring splits a method that both queries an object and
also has side effects on the object state into two methods, a
query method and a modifier method. We use our Little-JIL
example of the refactoring process to identify instances of
exception-driven rework, and also show the role of process
history and context in supporting the rework.

The refactoring task involves the following steps: create
a query method that returns the same value as the original
method; change the return statement in the original method
so that it calls the query method; replace calls to the original
method with calls to the query method and add a call to the
original method on the preceding line; change the return
type of the original method to void and remove its return
statements. After each step, the programmer should compile
and test the changed code to be sure that no errors have
been introduced inadvertently.

Due to space limitations we show in Figure 2 only
the second of these steps in Little-JIL. As can be seen
from the diagram, the substep Change return statement
corresponds to the actual changes to the original method.
The following Compile step will check for compilation
errors. In the Run unit tests step, a suite of test cases will
be run to ensure the external behaviors stay unchanged. The

Change return statement 

Compile

Run unit tests

Modify Original Method

Handle Compilation Failure

Handle Unit Tests Failure

UnitTestFailureException

CompilationFailureException

Figure 2. Method Original Method Step Definition

Compile and Run unit tests steps may throw two differ-
ent types of exceptions: CompilationFailureException and
UnitTestFailureException, each of which is handled by its
corresponding exception handler.

Figure 3 shows that handling UnitTestFailureException
involves rework, namely the reexercising of two previous
changes to the code: Change return statement and Create
query method (elaboration not shown). There are two ex-
ception handlers, one for UnitTestCompilationFailureEx-
ception and one for UnitTestFailureException. The Han-
dle Unit Test Compilation Failure handler rework consists
of reexecuting the most recently done steps. Note that both
exception handlers are nested, meaning that the execution of
an exception handler may cause a new exception instance
to be handled in a deeper context, for example in the case
that another compilation error occurs after attempting to fix
the first one.

The refactoring process of Figure 3 maps onto the rework
pattern as follows. Change return statement and Create
query method together comprise the Work. Compile and
Run unit tests together comprise the Check Work activity.
The Handle Unit Test Compilation Failure and Handle
Unit Tests Failure steps are Rework steps.

III. CONTEXT IN EXCEPTION-DRIVEN REWORK

When doing rework activities such as refactoring, it is
easy to forget exactly how one got into the current situation.
What error am I trying to fix? Why did I change the code
in this way? Now that I got that pesky compilation problem
fixed, what was I trying to do anyway? We believe that
supporting the user by maintaining context information can
help answer these questions. For example, in this case,
appropriate contextual information could remind the user
about the refactoring task(s) the user is in the middle of, or
it might help the user make sense of the particular errors the
user encounters. Thus, for example, our complete refactoring
process makes it clear that exception handling due to com-
pilation errors can occur at many places during a software
development process. Appropriate contextual information
can make sure that users are aware of which error is to
be fixed, and can provide information that could help the
user to come up with a suitable correction. Being able to
provide contextual information that is indeed appropriate is
facilitated in our example by careful manipulation of history
and context in ways that are implied by the exception-driven
rework pattern.

We define context to be the collection of information
about the process execution state, including past and present
artifact values, resource allocations, agent behaviors, step
execution histories, etc. We believe this information can
be particularly important when doing rework. We are de-
veloping support for context collection, presentation, and
persistence in exception-driven rework. The key structure
that we create is called a Data Derivation Graph (DDG)



Change return statement 

Create query method

Compile

Run unit tests Handle Unit Test Compilation Failure

Change return statement 

Creat query method

Compile

Handle Unit Test Compilation Failure

Handle Unit Tests Failure

Handle Unit Tests Failure

UnitTestCompilationFailureException

UnitTestFailureException

Figure 3. Handle Unit Test Failure Exception Step Definition

[7]. The DDG records how data is produced by a running
process by documenting such information as which inputs,
passed to which steps, executed by which agents, resulted
in the creation of which outputs.

The DDG is automatically generated during the process
execution and made accessible globally to all steps in the
refactoring process, enabling its use to record the source
file names and contents derived from and used by each
executed step, and to also record all compiler and JUnit
diagnostics. For example, suppose the Run unit tests step
throws a UnitTestFailureException, and in the process of
handling this, the user revisits previous modifications to
the query method and the original method to check for
errors and make changes. However, suppose these changes
caused another exception-driven rework, triggered by a
UnitTestCompilationFailureException. The information in
the DDG can guide the user to revisit the decisions made
just now when fixing the unit test failure. Suppose, however,
that the user fixes the compilation error but the unit test still
reports failure, thus causing another round of rework driven
by a new instance of UnitTestFailureException. Figure 4
characterizes part of the DDG abstraction in this situation
and covers its key features1. The diagram consists of two
different kinds of nodes. The round one stands for the leaf
step execution and the rectangle one describes the data ob-
ject. The exception data object is shown in brown or a deeper

1Figure 4 is a simplified representation of the DDG that is actually
generated automatically. The actual DDG that would be generated by this
process execution would contain more features and details that represent
such execution aspects as scoping. Many of these details are not directly
relevant to this example and so have been omitted from this representation
to save space and improve the understandability of the example.

shade of gray if the diagram is viewed in black and white,
while the normal data object is lighter. And the exception
dataflow edges are dotted compared to the ordinary ones
denoting normal dataflows. The arrows in the diagram show
the derivation dependencies between steps and artifacts.
For instance, the sourcefilecontent is the artifact derived
from Change return statement step and the Create query
method step depends on the input of the sourcefilecontent
object. The UnitTestFailureException object serves as a
token generated by the Run unit tests step and triggers the
following handler steps. Every artifact is associated with a
value when it was created, and these values are left out
in this example but can be examined in the actual DDG.
We also have non-leaf step execution notations in the actual
DDG to better represent the scope in the process, but they
are also left out here for simplicity. The user can inspect the
current state of the DDG, tracking back the history of the
development of the artifact, and comparing previous artifact
values, perhaps with the help of a textual differencing tool.
We believe the context information provided in this way
will help the user to make an acceptable change and resume
normal process execution.

We emphasize that simply specifying that certain
previously-executed steps are to be executed again misses
the main point of rework, namely that it is these reexecuted
steps’ access to increasingly rich historical and contextual
data that characterizes rework and provides a basis for
ending the rework and allowing work to proceed forward.

IV. RELATED WORK

Exception Handling in Workflow Systems. Exception
handling support in workflow management systems has been



Run unit
tests

Change return
statement

Unit Test 
Suite

UnitTestFailureException sourcefilenamesourcefilecontent

Create query 
method

Compile

sourcefilecontent

UnitTestCompilationFailureException

Change return
statement

sourcefilecontent

Create query 
method

sourcefilecontent

Compile

Compiled Code

Run unit
tests

Legends

Leaf step
execution

Data Exception Data flow

Figure 4. The DDG Example

studied in a variety of contexts. Eder and Liebhart [8]
discussed the concept of handling exceptions with partial
rollback and forward execution, and the approaches of
automatic exception handling and ad hoc exception handling.

The focus of their work is more on managing control flow
of the activities than the data flow of the artifacts, which
we believe is at least equally important in constituting new
context for the rework. Event driven architectures (EDA)
have been employed in some work to customize event
condition action (ECA) rules to deal with exception handling
in workflow systems. Luo et al. [9] proposed a framework
to support exception handling in workflow systems, and
attempted to use “justified” ECA rules to capture contexts.
They also proposed a case-based reasoning approach to
match exception occurrences with suitable handling strate-
gies. The features they proposed in their exception handling
framework, such as user-defined typed exceptions and task-
specific exception handling, are incorporated in the Little-
JIL language semantics and so are part of our understanding
and specification of rework. In addition, however, our ap-
proach also incorporates the specification and management
of context using rigorously defined artifact models, resource
models, agent specifications, and parameter passing, to allow
more specific context utilization to support exception-driven
rework.

Rework Formalization. Although there is a common
belief that rework plays an important role in all software
development processes, it has not been studied thoroughly
by the community. Cass et al. [1] proposed initial approaches
of formalizing rework with the Little-JIL process language.
After this, a pattern was created to illustrate the concept
more clearly [2]. In their characterization, rework is modeled
as being triggered by exception instances, with the fixing
process involving reworking of previous steps. In this paper,
the definition of rework follows this pattern.

Context Support. There is an increasing awareness of
the importance of context in software processes. Antunes et
al. [10] proposed a context model in software development
with multiple layers and perspectives. They also studied
relations between activities and the entities they use and
produce. Extracting these relations uses dynamic inference
from developer resource sharing data, whereas our work
is based on using an articulate process definition. Kersten
and Murphy [11] studied how to capture task contexts
and reuse them to improve programmer productivity. They
developed a task context model and a set of operations
on it. Mylyn [12] is a tool based on their approach of
integration of task management and task context. Mylyn
monitors users’ interactions with an Integrated Development
Environment (IDE), keeping record of operations performed,
and providing context information based on the users’ needs.
But Mylyn is not able to assemble context information that
is as precise as what we can assemble by drawing upon an
articulate process definition.

V. DISCUSSION AND FUTURE WORK

This preliminary work strongly suggests that much can
be learned about rework, and the role of exceptions, by



developing detailed models of different kinds of rework.
Our work emphasizes the importance of contextual and
historical data, but does not yet provide sufficiently specific
information about the exact nature of the data that is of most
value. We will continue to elaborate our refactoring process
definition to obtain such more precise information. We are
also developing a tool that is essentially an interpreter of
our refactoring process and expect that using the tool will
provide still more specific information about how to build,
manage, and present context so that it is of most value. The
tool will also facilitate the executability of our proposed
rework process framework and provide more automation by
integrating other tools. We will also develop processes for
implementing other kinds of refactoring and other kinds of
rework. We expect this further research will tell us much
more about the importance of appropriate context, and may
also suggest additional features that are of importance in the
effective support of other kinds of exception-driven rework.

ACKNOWLEDGMENT

The authors thank Sandy Wise for many conversations
that have led to important insights and to excellent ideas
about how to design our refactoring process and how to
implement the prototype version of our refactoring tool. We
also thank the National Science Foundation for its support
of this research through grant #CCF-0905530. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

REFERENCES

[1] A. G. Cass, S. M. Sutton, and L. J. Osterweil, “Formalizing
rework in software processes,” in EWSPT, ser. Lecture Notes
in Computer Science, F. Oquendo, Ed., vol. 2786. Springer,
2003, pp. 16–31.

[2] A. G. Cass, L. J. Osterweil, and A. Wise, “A pattern for
modeling rework in software development processes,” in
Proceedings of the International Conference on Software
Process: Trustworthy Software Development Processes, ser.
ICSP ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
305–316.

[3] L. J. Osterweil and A. Wise, “Using process definitions to
support reasoning about satisfaction of process requirements,”
in Proceedings of the 2010 international conference on New
modeling concepts for today’s software processes: software
process, ser. ICSP’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 2–13.

[4] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou,
U. Kannengiesser, and A. Wise, “Exception handling patterns
for process modeling,” IEEE Transactions on Software Engi-
neering, vol. 99, pp. 162–183, 2010.

[5] A. Wise, A. Cass, B. Lerner, E. McCall, L. Osterweil, and
J. Sutton, S.M., “Using Little-JIL to coordinate agents in
software engineering,” in Automated Software Engineering,
2000. Proceedings ASE 2000. The Fifteenth IEEE Interna-
tional Conference on, 2000, pp. 155 –163.

[6] M. Fowler, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley, 1999.

[7] B. Lerner, E. Boose, L. J. Osterweil, A. Ellison, and L. Clarke,
“Provenance and quality control in sensor networks,” in
Proceedings of the Environmental Information Management
Conference, ser. EIM 2011, Santa Barbara, CA, USA, 2011.

[8] J. Eder and W. Liebhart, “Contributions to exception handling
in workflow management,” in EDBT Workshop on Workflow
Management Systems, March 1998, pp. 3–10.

[9] Z. Luo, A. Sheth, K. Kochut, and J. Miller, “Exception
handling in workflow systems,” Applied Intelligence, vol. 13,
pp. 125–147, 2000, 10.1023/A:1008388412284.

[10] B. Antunes, F. Correia, and P. Gomes, “Context capture in
software development,” in 3d Artificial Intelligence Tech-
niques in Software Engineering Workshop, Larnaca, Cyprus,
2010.

[11] M. Kersten and G. C. Murphy, “Using task context to im-
prove programmer productivity,” in Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of
software engineering, ser. SIGSOFT ’06/FSE-14. New York,
NY, USA: ACM, 2006, pp. 1–11.

[12] M. Kersten. Mylyn. Http://www.eclipse.org/mylyn/.


