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Abstract

Previous approaches to manifold alignment are based on solving a
(generalized) eigenvector problem. We propose a least squares formula-
tion of a class of manifold alignment approaches, which has the potential
of scaling better to real-world data sets. Furthermore, the least-squares
formulation enables various regularization techniques to be readily incor-
porated to improve model sparsity and generalization ability. In particu-
lar, it enables using the l1 norm regularization framework to make previ-
ous manifold alignment algorithms more robust. The new approach can
prune domain-dependent features automatically helping to improve trans-
fer learning. This extension significantly broadens the scope of manifold
alignment techniques and leads to faster algorithms. We present detailed
experiments to illustrate the approach using the domains of cross-lingual
information retrieval and social network analysis.
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1 Motivation

Manifold alignment is a new approach to domain adaptation and transfer learn-
ing [1, 3, 13]. The key idea underlying this approach is to map different domains
to a new latent space, simultaneously matching the corresponding instances and
preserving the local (or global) geometry of each input domain. Manifold align-
ment makes use of both unlabeled and labeled data. The ability to exploit
unlabeled data is particularly useful for domain adaptation, where the number
of labeled instances in the target domain is usually limited. Many previous
approaches to manifold alignment involve solving a (generalized) eigenvector
problem, which can be prohibitively expensive in large real-world domains.

A key difficulty in applying manifold alignment to domain adaptation is
that each input domain may have many input features, and some of them do
not provide knowledge shared across all input datasets. Such features could lead
to overfitting, especially when the given correspondence information is insuffi-
cient. In this paper, we show that a class of manifold alignment problems can
be formulated as a least squares problem. As a result, various regularization
techniques can be readily incorporated into the formulation to improve model
sparsity (feature selection) and generalization ability. This idea is based on the
observation that once the manifold alignment problem is formalized as a least
squares problem, the general framework of l1 regularization can be incorporated
into the loss function for feature selection. This enhancement provides manifold
alignment with the extra power to remove useless features, and can speed up
the computation since algorithms for solving least squares regularization are
often significantly more efficient compared to methods for solving generalized
eigenvalue decomposition used in previous manifold alignment methods.

Our approach is designed to learn sparse mapping functions to project the
source and target domains to a new latent space, simultaneously matching the
instances in correspondence and preserving the local geometry of each input
domain. The contributions of this paper are twofold. From the perspective of
transfer learning and domain adaptation, our contribution is a new approach
to address the problem of transfer, removing the domain-dependent features
automatically. From the perspective of manifold alignment, our contribution
is to incorporate the l1 norm optimization framework to improve previous ap-
proaches. This enhancement significantly broadens the scope of manifold align-
ment techniques and helps speed up the computation. We present detailed
experiments applying the new approach to cross-lingual information retrieval
and social network analysis.

2 Background

2.1 Manifold Alignment

We now review some background material necessary for the analysis of our
alignment framework.
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2.1.1 Instance-level alignment

Semi-supervised alignment [3] finds the best alignment mapping for instances
xi and yi by minimizing the following cost function:

C(f, g) = µ

l∑
i=1

‖fi − gi‖2 + 0.5
∑
i,j

‖fi − fj‖2W i,j
x + 0.5

∑
i,j

‖gi − gj‖2W i,j
y =

[
fT gT

]
L

[
f
g

]
,

where fi is the embedding of xi, gi is the embedding of yi, and µ is the weight
of the first term. The first term penalizes the differences between X and Y on
the embeddings of the corresponding instances. The second and third terms
ensure that the local geometries within X and Y will be preserved. L is the
combinatorial graph Laplacian matrix. To remove an arbitrary scaling factor in
the embedding, an extra constraint is imposed: fT f + gT g = γT γ = I. Then,
the d-dimensional alignment result is given by[

f
g

]
= [γ1 · · · γd] = γ,

where f, g are of size n×d, and γ1 · · · γd are eigenvectors of Lξ = λξ correspond-
ing to the d smallest non-zero eigenvalues.

2.1.2 Feature-level Alignment

Manifold projections [13] learns mapping functions α and β for alignment.
When the correspondence is given, its cost function is given as:1

C(F,G) = µ

l∑
i

∥∥∥FTxi −GT yi

∥∥∥2 + 0.5
∑
i,j

∥∥∥FTxi − FTxj

∥∥∥2W i,j
x + 0.5

∑
i,j

∥∥∥GT yi −GT yj

∥∥∥2W i,j
y

=
[
FTX GTY

]
L

[
XTF
Y TG

]
.

To remove an arbitrary scaling factor in the embedding, an extra constraint
is needed: FTXXTF + GTY Y TG = γTZZT γ = I. Then, the d-dimensional
mapping function is given by[

F
G

]
= [γ1 · · · γd] = γ,

where γ1 · · · γd are the eigenvectors of ZLZT ξ = λZZT ξ corresponding to the
d smallest non-zero eigenvalues. Manifold projections builds mappings between
features (rather than instances) across manifolds, so it can handle new test
instances without requiring out of sample extension and makes direct knowledge
transfer possible.

1When no correspondence is given or when one instance can match multiple instances in
another dataset, the loss function can be specified in a more general manner.
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2.2 Lasso and Its Variants

In machine learning, regularization is often used to avoid overfitting. The most
common approach of regularization is to impose some penalty on the norm of
the coefficients in order to achieve a sparse and simple model. Recently, l1
regularization has attracted a lot of attention because of its ability to obtain
sparsity. A well-known example of l1 regularization is regression shrinkage and
selection via the Lasso [10]. Lasso performs l1 penalized regression by solving
the optimization problem given by:

argmin
w

n∑
i=1

(yi − wTxi)
2

+ α||w||1.

l1 penalized regression has the following limitations: 1) if p � n, methods
such as Lasso can select at most n features. 2) They tends to select only one
feature from a group of correlated features and do not distinguish between which
one is selected. 3) when n > p and the correlation between the features is high,
ridge regression empirically performs better [16]. Elastic net [16] aims to have
a better grouping effect, and performs better when p� n. The elastic net is a
linear interpolation of the ridge and the Lasso objective functions, and its loss
function is as follows:

arg min
w

n∑
i=1

(yi − wTxi)
2

+ α||w||1 + γ||w||2.

Elastic net has been shown to successfully produce a sparse model with good
accuracy and have a better grouping effect over the Lasso. In addition, if we
know the feature group in advance, group Lasso [15] tends to outperform other
approaches, achieving sparsity at the group level. When the features can be
ordered in a meaningful way, a method called Fused Lasso [11] can yield a
sparse solution with small successive difference. The loss function of the Fused
Lasso is in the form of

arg min
w

n∑
i=1

(yi − wTxi)
2

+ α||w||1 + β
p∑

j=2

|wj − wj−1|.

3 Sparse Manifold Alignment

3.1 High Level Explanation

Given k input manifolds, our goal is to construct k sparse mapping functions
to project the input manifolds to a common latent space for alignment. To
achieve this goal, we first formulate the manifold alignment problem as a least
squares problem. Then we incorporate the regularization terms (like l1 term)
in the least-squares formulation for model sparsity and generalization ability.
The resulting alignment result produced by the least squares solver is optimal
regarding the new loss function, but not for the previous loss function used in
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xi ∈ Rp; X = {x1, · · · , xm} is a p×m matrix; Xl = {x1, · · · , xl} is a p× l matrix.
yi ∈ Rq; Y = {y1, · · · , yn} is a q × n matrix; Yl = {y1, · · · , yl} is a q × l matrix .
Xl and Yl are in correspondence: xi ∈ Xl ←→ yi ∈ Yl.

Wx is a similarity matrix, e.g. W i,j
x = e−

||xi−xj ||
2

2σ2 . Dx is a full rank diagonal matrix: Di,i
x =∑

j W
i,j
x ;

Lx = Dx −Wx is the combinatorial Laplacian matrix.
Wy, Dy and Ly are defined similarly.

Ω1−Ω4 are all diagonal matrices having µ on the top l elements of the diagonal (the other elements
are 0s); Ω1 is an m×m matrix; Ω2 and ΩT

3 are m× n matrices; Ω4 is an n× n matrix.

Z =

(
X 0
0 Y

)
is a (p+ q)× (m+ n) matrix.

D =

(
Dx 0
0 Dy

)
and L =

(
Lx + Ω1 −Ω2

−Ω3 Ly + Ω4

)
are both (m+ n)× (m+ n) matrices.

F is a (p+ q)× r matrix, where r is the rank of ZZT and FFT = ZZT . F can be constructed by
SVD.
(·)+ represents the Moore-Penrose pseudoinverse.

H is an (m+ n)× h matrix, where L = HHT , and h is the rank of H.
Q and R are the thin QR decomposition results of H, where H = QR, Q ∈ R(m+n)×h and
R ∈ Rh×h.
Uh,Σh and Vh are all h× h matrices, and R = UhΣhV

T
h .

Figure 1: Some notation used in this paper.
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the original eigenvalue decomposition-based approach. Compared against the
previous approaches, the added sparsity constraints prune domain-dependent
features automatically, further lower the chances of overfitting, and help improve
transfer learning.

3.2 Justification

Theorem 1 proves that the manifold alignment problem previously formulated
as generalized eigenvalue decomposition problems can be reformulated as reg-
ular eigenvalue decomposition problems. Theorem 2 proves the equivalence of
the result of Theorem 1 and a least squares regularization problem under the
condition: rank(Z) = m+n−1, where Z is the joint instance matrix. This con-
dition is likely to hold when the data dimensionality is larger than the sample
size, and it has also been used in the other approaches in the literature [9]. It
is worth noting that the solution to a similar problem is given in [9], assuming
XSXTw = λXXTw can be reformulated as (XXT )+XSXTw = λw, where ()+

represents the pseudoinverse. This assumption does not hold for our problem,
since (XXT )+XXT is not an identity matrix when the data dimensionality is
larger than the sample size.

Theorem 1: The solution to the generalized eigenvalue decomposition
ZLZT γ = λZZT γ is given by ((FT )+x, λ), where x and λ are eigenvec-
tor and eigenvalue of F+ZLZT (FT )+x = λx. (See supplemental material
for the proof).

Theorem 2: The solution to the generalized eigenvalue decomposi-
tion ZLZT γ = λZZT γ is given by minimization of ‖WTZ − UT

h Q
T ‖2F

under the condition of rank(Z) = m+ n− 1.
Proof:

L is a Laplacian matrix, so

eTLe = 0, where e is a vector of all ones. (1)

Since L is a positive semi-definite matrix, we can decompose L as follows:

L −→ HHT , (2)

where H ∈ R(m+n)×h and h is the rank of H.

Let H = QR (3)

be the thin QR decomposition of H, where Q ∈ R(m+n)×h, R ∈ Rh×h.

Let R = UhΣhV
T
h (4)

be the Singular Value Decomposition of R, where Uh,Σh, Vh ∈ Rh×h.

From Equation (2), (3) and (4), we have L = HHT = QRRTQT = QUhΣ2
hU

T
h Q

T . (5)
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Let Z = UZΣZV
T
Z (6)

be the compact Singular Value Decomposition of Z, where ΣZ is a full rank
square matrix. This implies that ZZT = UZΣZΣZU

T
Z . From the definition of

F in Figure 1, we know

F = UZΣZ . (7)

From Equation (7), we have the following results:

FT = ΣZU
T
Z , F

+ = Σ+
ZU

+
Z , (F

T )+ = (UT
Z )+Σ+

Z = UZΣ+
Z . (8)

Combining Equation (5), (6) and (8), we have

F+ZLZT (FT )+ = Σ+
ZU

+
Z UZΣZV

T
Z LVZΣZU

T
Z (UT

Z )+Σ+
Z (9)

= Σ+
ZΣZV

T
Z LVZΣZ(ΣZ)+ = V T

Z LVZ = (V T
Z QUh)Σ2

h(UT
h Q

TVZ)(10)

To show the columns of matrix V T
Z QUh are the eigenvectors of matrix F+ZLZT (FT )+,

we need to prove

(UT
h Q

TVZ)(V T
Z QUh) = I. (11)

When Z is centered, we have Ze = 0. From Equation (6), we have

Ze = 0 ⇒ eTZTZe = 0⇒ eTVZΣZU
T
ZUZΣZV

T
Z e = 0 (12)

⇒ eTVZΣ2
ZV

T
Z e = 0⇒ V T

Z e = 0. (13)

From Equation (5), we have

eTLe = 0⇒ eTQUhΣ2
hU

T
h Q

T e = 0⇒ UT
h Q

T e = 0. (14)

It can be verified that

V T
Z VZ = I and (QUh)TQUh = UT

h Q
TQUh = I. (15)

Using Equation (12)-(15), the given condition and Lemma 2 in [9], we know

(UT
h Q

TVZ)(V T
Z QUh) = I. (16)

Combining Theorem 1, Equation (8) and (16), we know the solution to the
generalized eigenvalue decomposition ZLZT γ = λZZT γ is given by

(FT )+V T
Z QUh = UZΣ+

ZV
T
Z QUh. (17)

From Theorem 2 in [9] and Equation (17), we know the eigenvector solution to
our generalized eigenvalue decomposition is also given by

‖WTZ − UT
h Q

T ‖2F . (18)
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4 The Algorithmic Framework

Given X,Xl, Y, Yl, the notation defined in Figure 1, the algorithm to compute
the least squares formulation of manifold alignment is as follows:

Algorithm : Sparse Manifold Alignment

1. Center X and Y .

2. Use Lasso solver [8] to find W that minimizes ‖WTZ − UT
h Q

T ‖2F or its
variants (Section 4.1).

3. Compute mapping functions for manifold alignment:[
F
G

]
= W is a (p+ q)× h matrix.

For any i and j, FTxi and GT yj are in the same h dimensional space and can
be directly compared.

4.1 Extensions

Instance-level Manifold Alignment: To use our framework to perform non-
linear instance-level alignment (described in Section 2.1.1), we need to minimize
the cost function C(f, g) instead of C(F,G). This problem is less challenging
and can be solved in a similar manner.

Manifold Alignment with Lasso: The Lasso achieves both feature se-
lection and weight shrinkage. Integrating Lasso in the manifold alignment loss
function can help us achieve a sparsified projection to align manifolds. To use
Lasso, we can simply replace the loss function used in Step 2 with the one given
below (h dimensional embedding):

‖WTZ − UT
h Q

T ‖2F + α‖W‖1,1.

Manifold Alignment with Fused Lasso: When the input features can be
ordered in a meaningful way, Fused Lasso [11] can be integrated into manifold
alignment, yielding a sparse projection function with small successive differences
in the weights. To use the Fused Lasso, we need to replace the loss function
used in Step 2 with the following one (involving an h-dimensional embedding):

‖WTZ − UT
h Q

T ‖2F + α‖W‖1,1 + β

h∑
j=1

p+q∑
k=2

|wj,k − wj,k−1|.

5 Applications and Results

We compare our Lasso/Fused Lasso-based alignment methods against instance-
level [3] and feature-level [13] manifold alignment techniques and other state of
the art approaches, including Canonical Correlation Analysis (CCA) [4], Affine
matching based alignment [6] and Procrustes alignment [12]. We use the SLEP
package [7] [8] to solve the Lasso and Fused Lasso.
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5.1 Cross-Lingual Information Retrieval

Nine approaches are tested in an experiment involving cross-lingual informa-
tion retrieval. Three of them are instance-level approaches: Procrustes align-
ment with Laplacian eigenmaps, Affine matching with Laplacian eigenmaps, and
instance-level manifold alignment. The other six are feature-level approaches:
Procrustes alignment with LPP, Affine matching with LPP, CCA, feature-level
manifold alignment and our Lasso and Fused Lasso-based manifold alignment
approaches. The order used in the Fused Lasso is based on the word frequency
in the corpus. Procrustes alignment and Affine matching can only handle pair-
wise alignment, so when we align two collections the third collection is not taken
into consideration. The other manifold alignment approaches and CCA align
all input data simultaneously. In all methods, we use k-nearest neighbor matrix
(k = 10) as adjacency graphs. The parameters α = 0.1 and β = 0.01 in this
experiment.

In this experiment, we make use of the proceedings of European Parlia-
ment [5], dating from 04/1996 to 10/2009. The corpus includes versions in
11 European languages. Altogether, the corpus comprises of about 55 million
words for each language. The data for our experiment comes from the English,
Italian and German collections. The dataset has many files. Each file contains
the utterances of one speaker in turn. We treat an utterance as a document.
We filtered out stop words, and extracted English-Italian-German document
triples where all three documents have at least 75 words. This resulted in
70,458 document triples. We then represented each English document with the
most commonly used 2,500 English words, each Italian document with the most
commonly used 2,500 Italian words, and each German document with the most
commonly used 2,500 German words. The documents were represented as bags
of words, and no tag information was included. The topical structure of each
collection can be thought as a manifold over documents. Each document is a
sample from the manifold.

5.1.1 Experiment 1 (1,500 Test Documents)

Instance-level manifold alignment cannot process a very large collection since it
needs to do an eigenvalue decomposition of an (m1 +m2 +m3)×(m1 +m2 +m3)
matrix, where mi represents the number of examples in the ith input dataset.
Approaches based on Laplacian eigenmaps suffer from a similar problem. In
this experiment, we use a small subset of the whole dataset to test all nine ap-
proaches. 1, 000 document triples were used as corresponding triples in training
and 1, 500 other document triples were used as unlabeled documents for both
training and testing, i.e. p1 = p2 = p3 = 2, 500, m1 = m2 = m3 = 2, 500.
xi1 ←→ xi2 ←→ xi3 for i ∈ [1, 1000]. Similarity matrices W1, W2 and W3 were
all 2, 500×2, 500 adjacency matrices constructed by nearest neighbor approach,
where k = 10. To use Procrustes alignment and Affine matching, we ran a
pre-processing step with Laplacian eigenmaps and LPP to project the data to a
d = 200 dimensional space. In CCA and feature-level manifold alignment, d is
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also 200. Our testing scheme is as follows: for each given English document, we
retrieve its top k most similar Italian documents. The probability that the true
match is among the top k documents is used to measure the performance of the
method. We also consider two other scenarios in the same setting: English →
German and Italian → German. Figure 2 summarizes the average performance
of these three scenarios.

Our first finding is that the regular Lasso-based approach performs much
better than previous approaches. Given a document in one language, it has
a 25% probability of finding the true match if we retrieve the most similar
document in another language. If we retrieve 10 most similar documents, the
probability of finding the true match increases to 44%. By integrating the l1
term in the manifold alignment loss function, the resulting projection functions
are sparse. Sparsity often leads to a good generalization ability and our result
supports this.

The second result shown in Figure 2 is that the Fused Lasso-based manifold
alignment outperforms all the other approaches by a large margin. It has a 73%
probability of finding the true match if we retrieve the most similar document
in another language. The order used in the Fused Lasso is based on the word
frequency in the corpus, so our Fused Lasso-based method will encourage the
words with similar background frequencies to be processed in a similar manner.
This is similar to taking the inverse document frequency (idf) into consideration
in the alignment process. It is well-known that integrating the existing knowl-
edge (like term background frequency) can help solve overfitting problems when
the training data is insufficient. This is justified by our result.

The third result is that CCA does a very poor job in aligning the test docu-
ments. CCA can be shown as a special case of feature-level manifold alignment
preserving local geometry when manifold topology is not respected. When the
training data is limited, CCA has a large chance of overfitting the given cor-
respondences. Manifold alignment does not suffer from this problem, since the
manifold topology also needs to be respected in the alignment.

5.1.2 Experiment 2 (10,000 Test Documents)

Feature-level approaches have two advantages over instance-level approaches.
Firstly, feature-level approaches learn feature correlations, so they can be ap-
plied to a large dataset and directly generalize to new test data. Secondly, they
are less sensitive to overfitting compared to instance-level approaches due to
the “linear” constraint on mapping functions. In our second setting, we apply
the resulting mapping functions from the feature-level approaches in the previ-
ous test to a larger testset with 10,000 test English-Italian-German document
triples. This test is used to measure the generalization ability of each approach.
This test under the second setting is in fact very hard, since we have thousands
of features in each input dataset but only 1,000 given corresponding triples to
learn the projection functions.

The results are summarized in Figure 3. The Lasso-based approaches again
perform much better than the existing feature-level manifold alignment ap-
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Figure 2: Cross-Lingual Retrieval
Test 1
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Figure 3: Cross-Lingual Retrieval
Test 2

proaches. For any given document, if we retrieve the most similar document in
another language, the Fused Lasso-based approach has a 40% chance of getting
the true match. If we retrieve 10 most similar Italian documents, the new ap-
proach has a 60% probability of getting the true match. For regular Lasso-based
approach, the two numbers are 12% and 24%, which are also 10% better than
the previous approaches. This result shows that applying a regularization to
the projection function is quite important. It significantly improves the gener-
alization ability. Further, the Fused Lasso can take the prior information into
consideration (background term frequency in the corpus for our test), and fit
particularly for applications like text mining. Such information is not used in
the previous manifold alignment techniques. In contrast to most approaches in
cross-lingual knowledge transfer, we are not using any specialized pre-processing
technique from information retrieval to tune our framework to this task.

5.2 Alignment of Social Networks

In this experiment, we align multiple social networks. The networks were con-
structed from the snapshots of DBLP authorship networks evolving over time.
Following the approach presented in [2], we selected a set of authors, who con-
tributed in at least eight of the ten years dating from 1995 to 2002. From this
set of authors, we chose the largest connected component of the first snapshot
(1995). This resulted in a set of 2,538 authors at 10 different time points. We
built a data set for each year, using the authors as instances and diffusion top-
ics [14] as features. To build diffusion topics for each year, we first represented
each author using the keywords from the titles of all his papers published in that
year. After removing the stop words, we created a word-word matrix T = ATA
from the author-word matrix A with the 5,000 most popular words. Since the
rank of T is 2,538 for all 10 years, the finest levels of all diffusion topic models
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Figure 4: Alignment of Social Networks

consist of 2,538 topics [14]. For each year, we projected the authors onto the sub-
space spanned by the corresponding 2,538 topics, resulting in ten author-topic
matrices used for our task.

We aligned the manifolds corresponding to the year of 2000, 2001 and 2002.
Setting of this task is similar to the previous one. 1, 000 author triples were
used as corresponding triples in training and 1, 538 other author triples were
used as unlabeled documents for both training and testing. The same nine
approaches were tested in this experiment. In all approaches, the adjacency
graphs were constructed as follows: two authors are neighbors in the graph if
they co-authored a paper in that year. The testing scheme is as follows: for
each author in a manifold, we retrieve his top k most similar authors in another
manifold. The probability that the author himself is included in the top k
authors is used to measure the performance of the method. α = 0.001, β = 0.01
and d = 200 are used for this test. Results (Figure 4) show that the regular
Lasso-based approach outperforms all other approaches. Given an author in one
year, it has a 19% probability of finding the true match if we retrieve the most
similar author in another year. The Fused Lasso-based manifold alignment also
performs better than the previous approaches by a large margin, but a little
worse than the regular Lasso. One reason for this is that the order of the topics
are almost arbitrary. This result shows that the Fused Lasso-based alignment
does not necessarily help improve the system performance, especially when the
order of features is not directly related to the learning task.

6 Conclusions

In this paper, we propose a least squares formulation of a class of manifold
alignment approaches. A key aspect of this approach is that various regular-
ization techniques can be readily incorporated into the formulation to improve
model sparsity and generalization ability. The new approach can make use
of prior knowledge, and remove the domain-dependent features automatically
during knowledge transfer. It also significantly broadens the scope of manifold
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alignment techniques and helps speed up the computation by combining l1 norm
optimization with the previous manifold alignment framework. We presented
a detailed theoretical and experimental evaluation of our approach, providing
results showing useful knowledge transfer from one domain to another. Case
studies on cross-lingual information retrieval and social network analysis were
also presented.
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