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Abstract

Standard machine learning approaches require labeled data, and labeling
data for each task, language, and domain of interest is not feasible. Con-
sequently, there has been much interest in developing training algorithms
that can leverage constraints from prior knowledge to augment or replace la-
beled data. Most previous work in this area assumes that there exist efficient
inference algorithms for the model being trained. For many NLP tasks of
interest, such as entity resolution, complex models that require approximate
inference are advantageous. In this paper we study algorithms for training
complex models using constraints from prior knowledge. We propose an
MCMC-based approximation to Generalized Expectation (GE) training, and
compare it to Constraint-Driven SampleRank (CDSR). Sequence labeling ex-
periments demonstrate that MCMC GE closely approximates exact GE, and
that GE can substantially outperform CDSR. We then apply these methods
to train densely-connected citation resolution models. Both methods yield
highly accurate models (up to 94% mean pairwise F1) with only two simple
constraints.
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1 Introduction

Standard machine learning approaches require labeled data. However, labeling data
for many tasks, domains, and languages of interest is prohibitively expensive and
time-consuming, so there has been recent interest in developing training algorithms
that can leverage alternate forms of supervision. Usually we have substantial prior
knowledge about the task of interest, and this knowledge can often be naturally
specified as constraints on feature expectations. For example, when the task is
named entity recognition, we may know that roughly 80% of tokens that appear in
a known list of last names should be labeled person. Methods that use such con-
straints for training have been successfully applied to classification and sequence
labeling tasks (Mann and McCallum, 2007; Chang et al., 2007; Druck et al., 2009;
Bellare et al., 2009; Ganchev et al., 2010), among others. Most previous work
has used these methods in conjunction with exact inference. However, complex
information extraction and natural language processing tasks, such as coreference
resolution and relation extraction, can benefit from joint inference and the mod-
eling of long-range dependencies (Poon and Domingos, 2008; Wick et al., 2008;
Wellner et al., 2004).

The goal of this work is to enable constraint-based training for complex mod-
els, where exact inference is intractable, using MCMC methods. We compare two
training algorithms. First, we propose an MCMC-based approximation to Gen-
eralized Expectation (GE; Mann and McCallum (2007)) training, including the
incorporation of a temperature term that increases accuracy. Second, we explore
the use of Constraint-Driven SampleRank (CDSR; Singh et al. (2010)). In Sec-
tion 4, we present sequence labeling experiments that demonstrate that MCMC GE
closely approximates exact GE, and that GE can substantially outperform CDSR.
Then, in Section 5, we use these approaches for lightly supervised training of an
entity disambiguation model that contains exponential-domain variables and pair-
wise factors, yielding high accuracy on a standard data set with just two simple
constraints. This is the first application of constraint-based supervision to loopy,
undirected graphical models (although CDSR uses approximate inference, it was
previously applied only to linear chains in Singh et al. (2010)).
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2 Background

In this section, we give a brief summary of the background material and introduce
notation.

2.1 Discriminative Log-Linear Graphical Models

Given observed (input) variables x, the probability distribution over the output
variables y of interest can be modeled using a probabilistic graphical model. In
particular, an undirected graphical model (Kschischang et al., 2001) consists of
factors Ψa that assign scores to assignments of subsets of input and output variables
(xa,ya). In log-linear models, the score for each factor Ψa is the dot product of
a factor-specific feature vector fa and a global set of parameters θ. Given these
features and parameters, the probability of an assignment of the variables is:

p(y|x;θ) =
1

Z(x)
exp

∑
a

Ψa(ya,xa)

=
1

Z(x)
exp

∑
a

θ · fa(ya,xa) =
1

Z(x)
expθ · f(y,x) (1)

where Z(x) is the input specific normalization constant.
Supervised estimation of the parameters θ relies on labeled training data Dl =

{ŷi,xi}n. Specifically, parameters are typically estimated to maximize the model
log-likelihood of the labeled data,

max
θ
L(θ,Dl) =

∑
Dl

log p(ŷi|xi;θ)− λ||θ||2. (2)

Log-linear models have been applied to many problems in natural language
processing and information extraction. NLP tasks such as chunking, part of speech
tagging, and named-entity recognition can be cast as sequence labeling problems,
and exact inference in a sequential log-linear model is efficient (Sutton and Mc-
Callum, 2011). Further, these models provide considerable flexibility in designing
features.

2.2 Constraint-based Learning

Obtaining labeled data is often much more difficult than obtaining unlabeled data
for a number of reasons. First, labeling can be prohibitively expensive and time-
consuming for some tasks, as in dependency parsing, where a complex structure
needs to be identified for every sentence, or entity resolution, where the true par-
titioning needs to be chosen amongst exponential possible clusterings. Second,
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a large number of languages of interest have a significant lack of resources. We
would still like to be able to learn the parameters of log-linear models in such
contexts, when labeled data is unavailable.

Constraint-based learning is a recent area of research in semi-supervised learn-
ing that addresses this problem (Mann and McCallum, 2008; Bellare et al., 2009;
Ganchev et al., 2010). While labeling data is difficult, it is often much easier to
specify auxiliary information about the labels. This auxiliary information can be
represented as targets for the model expectations of a few constraint features. As
an example, consider the task of named entity recognition for a new language,
for which labeling would involve reading every sentence and specifying the per-
son/location/organization token spans in that sentence. Instead, it would be easier
to specify that all instances of a particular name (say “John”) should be labeled as
a person with a high probability (say 80%). Formally, this corresponds to a con-
straint feature φ = [[y = PER, x = ”John”]] and a target φ̃ = 0.8. The model
expectation of φ over the unlabeled data is then encouraged to match the target φ̃,
i.e. Ep(y|x;θ)[φ] ≈ 0.8. These constraint features and accompanying expectation
targets are a very powerful and intuitive way to encode the supervision, and can
save significant labeling effort. Note that the set of constraint features φ may be
disjoint from the model features f , but often in practice the constraints are specified
over a subset of the model features.

While previous work on constraint-based learning has proposed the use of vari-
ational inference in Posterior Regularization (Naseem et al., 2010), and the use of
MCMC to leverage non-Markov constraints for sequence labeling (Bellare et al.,
2009), in this paper we are interested in MCMC-based methods and complex,
loopy models.

2.3 Generalized Expectations

A number of different approaches for learning with expectation constraints have
been proposed. Generalized Expectation (GE) Criteria has been shown to be effec-
tive for estimating parameters of discriminative log-linear models without labeled
data (Mann and McCallum, 2007; Druck et al., 2009). Although this approach can
easily be combined with labeled data, in this work we will focus on the task of
learning parameters without any labeled data. Further, we focus on the following
“squared error” GE objective over the unlabeled data Du:

max
θ
O(θ) = max

θ
−

∑
x∈Du

||φ̃− Ep(y|x;θ)[φ(x,y)]||22. (3)
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We use numerical optimization to maximize O(θ). The gradient of O(θ) is given
by

∂

∂θ
O(θ) = 2

∑
x∈Du

(φ̃− Ep(y|x;θ)[φ(x,y)])TCOVθ(φ(x,y), f(x,y)) (4)

where COVθ(φ, f) is the covariance between constraint and model features. The
covariance and the expectation terms in the gradient can only be computed ex-
actly if the model features and the constraint features form a tree-shaped graph.
Although this is true for many sequential models, many NLP tasks such as de-
pendency parsing, coreference resolution, and relation extraction are better repre-
sented as models with long-range dependencies. Intractability of exact inference,
and hence the computation of the covariance and expectation terms, restricts the
utility of GE as a learning algorithm for these tasks. In this work we will study the
extension of GE that can be applied to arbitrary graphical models.

3 Approximate Constraint-based Learning

In this section, we explore approaches that enable supervision from constraints for
models for which exact inference is intractable.

3.1 MCMC for GE Training

In this paper, we approximate GE training using Markov chain Monte Carlo (MCMC)
methods (Andrieu et al., 2003). In particular, once we obtain our set of samples
from MCMC, S = {s : s ∼ p(y|x;θ)}, we use them to approximate expectations.

Ep(y|x;θ)[φ(x,y)] ≈ 1

|S|
∑
y∈S

φ(x,y) (5)

Similarly, we approximate the covariance:

COVθ (φ, f) ≈ 1

|S|
∑
y∈S

φ(x,y)f(x,y)T − 1

|S|
∑
y∈S

φ(x,y)
1

|S|
∑
y∈S

f(x,y)T.

(6)
By the law of large numbers, these estimates converge almost surely to the exact
values as |S| → ∞. In fact, it can be shown using the Hoeffding Inequality (Ho-
effding, 1963) that the probability of the estimated mean in Equation 5 deviating
from the true mean is exponentially small in |S|.

Though we do not explore this setting here, the proposed approach is also ap-
plicable when exact inference in the model is tractable, but the constraint features
do not decompose in the same way as the model features.
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3.1.1 Temperature

Mann and McCallum (2007) note that a label constraint with target distribution
[0.6, 0.4] can be satisfied by a model that assigns a label distribution of [0.6, 0.4] to
every output variable. As these low-entropy solutions are undesirable, the model
probabilities may be modified with a temperature.

pT (y|x;θ) ∝ exp(
1

T
θ · f(x,y))

If T < 1, the model distribution becomes more peaked. As T → 0, pT approaches
a distribution with all mass concentrated on the maximum probability output.

A temperature is also often used in MCMC to focus sampling effort around the
mode of the distribution (Andrieu et al., 2003). Consequently, using a temperature
T < 1 in MCMC GE could increase accuracy and may reduce the number of
samples required to obtain an accurate approximation.

3.2 Constraint-Driven SampleRank (CDSR)

Singh et al. (2010) introduce an approach that incorporates supervision in form of
constraints to the SampleRank algorithm. SampleRank (Wick et al., 2011) is a su-
pervised training method that performs updates to the parameters during inference.
The algorithm ensures that the model ranking of pairs of assignments is consistent
with an objective function F : Y → R defined using the labeled data. This ap-
proach is well-suited for MCMC as the pairs are generated during sampling.

CDSR defines a custom objective function that uses the constraints to define the
ranking of assignments over unlabeled data. In particular, for a given configuration
y,x, the objective is the sum of the targets of the constraint features that appear in
y,x, i.e. F(y,x) = φ̃ · φ(x,y). Since CDSR only examines pairs of samples,
it does not match the target expectations; instead the probabilities act as a proxy
for constraint strength. Effectively, this results in the mode of the target distribu-
tion acting as a hard constraint. If multiple constraints apply, the constraints with
higher probabilities dominate. Note that this is preferable to directly enforcing the
constraints at test time; CDSR will propagate the supervision to learn parameters
for model features that do not have a target.
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4 Comparison on Sequence Labeling

The use of approximate inference in GE has not been studied. Therefore, in this
section we investigate how the accuracy of the expectation estimates affects the
accuracy of the trained model. We also compare exact and approximate GE to
CDSR.

We use linear chain conditional random fields (CRFs; (Lafferty et al., 2001))
for these experiments to enable tractable comparison with exact GE. Note that we
do not necessarily expect the approximate GE method to be faster in this setting, as
both exact inference and sampling can be performed in linear time (in the number
of variables) for linear chains. When inference is NP-hard (such as for loopy mod-
els like the entity resolution model in Section 5), the sampling approach enables
constraint-based training where it would otherwise be infeasible.

We use Gibbs sampling to sample from p(y|x;θ). To ensure the quality of
samples, we have a burn-in period of 100 iterations, and do 10 iterations be-
tween each sample. We evaluate on the apartment listings data set, with features
and processing as in Druck et al. (2009), and CoNLL03 named entity recogni-
tion, with features and processing as in Ratinov and Roth (2009). We automat-
ically select 40 feature constraints from labeled data (that have high mutual in-
formation with the true labels), and coarsen the target probabilities to be one of
{0, 0.2, 0.4, 0.6, 0.8, 1.0}, similar to Druck et al. (2009). For example, apartments
constraints include lease→{rent : 1.0} and bedroom→{features : 0.4, size :
0.6}1. We do not use any of the labels for training.

Figure 1 compares MCMC GE, with an increasing number of samples per se-
quence, to exact GE and CDSR (at convergence) on a held-out test set. Interest-
ingly, we observe that a relatively small number of samples (∼ 10) is sufficient
to obtain an accurate model with MCMC GE training. With more samples, the
approach quickly obtains similar accuracy to exact GE.

In both sets of experiments, we find that using a temperature T < 1 improves
accuracy. However, using T < 1 in MCMC GE reduces the rate of convergence
to exact GE, likely as a consequence of the known difficulty that MCMC methods
have in transitioning between modes. This motivates the investigation of anneal-
ing procedures in which T varies over time, though initial attempts failed to yield
improvements.

The accuracy obtained by CDSR at convergence is substantially lower than
GE. Both of the tasks in our evaluation use constraints that have soft targets, i.e.
many of the constraint features are weak indicators of the label, and the expectation

1In other words, if we encounter the word “bedroom” in an advertisement, it is likely to be
talking about features or size, with the given probabilities, where size indicates that the text describes
the number of rooms.
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(a) Apartment Listings Segmentation
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(b) CoNLL03 Named Entity Recognition

Figure 1: Sequence Labeling: Comparison of Exact GE with CDSR and MCMC
GE as the temperature and the number of MCMC samples is varied.

targets need to match precisely for learning an accurate model. CDSR treats the
constraints instead as hard constraints, and is unable to match the targets.

5 Lightly Supervised Entity Resolution

Entity resolution, an important component of the information extraction pipeline,
is the task of partitioning mentions (or records) so that mentions that refer to the
same entity are in the same partition. This task forms the basis of a number of
problems such as within-document coreference, citation matching, entity disam-
biguation, document clustering, and so on. Labeling data for this task is incredibly
difficult and time consuming because it involves either labeling every pair of men-
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If the string match is ≥ 80%,
then the citations match 85% of the time.
If the string match is ≤ 20%,
then the citations do not match 99% of the time.

Table 1: Constraints used for citation resolution.

tions (quadratic), or identifying sets of mentions that are coreferent (exponential).
Further, deciding whether two mentions are coreferent or not can require further
exploration, such as conducting research on the web. In this section we perform
entity resolution without labeled data using a discriminative model and two simple
constraints. In particular, from the set of citations in the Cora2 dataset, we resolve
the citation strings that refer to the same paper.

5.1 Model

We represent the prediction task as a discriminative log-linear graphical model.
The model consists of set-valued entity variables that take subsets of mentions as
their values. Conversely, mentions are random variables that are defined over their
entity assignments. The factors are defined over all pairs of mentions, resulting in
a fully-connected model for which exact inference is intractable. The features for
these factors represent the string similarity between the mention strings. We use
the similar title and venue features as computed in Poon and Domingos (2007), as
well as standard features based on the count and proportion of token matches in the
citation strings.

5.2 Setup

As supervision, we select two simple constraints, displayed in Table 1. They en-
code the intuition that “two citations that have a high string overlap usually refer
to the same paper”, and that “two citations that have very lower string overlap al-
most never refer to the same paper”. Target probabilities are estimated using a
combination of domain knowledge and a cursory examination of the mentions.

We compare a number of approaches that learn using these constraints. First,
our Hard baseline deterministically enforces the constraints from Table 1. For
example, a pair of citations that have ≥ 80% string match are required to be coref-
erent. There is no learning in this baseline. The MaxEnt (ME) approach esti-
mates weights for the constraint features using maximum entropy estimation, with

2Available at http://alchemy.cs.washington.edu/
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gradients computed using MCMC samples. Specifically, the objective for this ap-
proach is to maximize the entropy of model predictions while minimizing the L2

2

difference between constraint feature and target expectations. Hence, it can only
learn the parameters that correspond to the constraint features. In contrast, GE and
CDSR additionally learn parameters for unconstrained model features. For GE,
this transfer occurs via the covariance term discussed in Section 3.1.

Sampling is used to compute the gradients for ME and GE. We use 500 Metropolis-
Hastings samples in each iteration. When using GE, the parameters are initialized
using the final parameters from ME. For evaluation, we compute the pairwise eval-
uation metric by treating entity resolution as a binary classification task defined
over pairs of mentions. Since this metric can often be misleading for practical
problems, we also compute the B3 metric (Bagga and Baldwin, 1998) that is widely
used for entity disambiguation.

5.3 Results

The results of our experiments are shown in Table 2. Results with the Hard base-
line demonstrate that using the constraints as simple rules during inference is not
sufficient to obtain accurate predictions. Although ME learns parameters using the
constraints, it performs poorly as well because it only learns parameters for the two
constraint features. GE substantially outperforms the Hard and ME baselines in all
metrics. The difference in performance between ME and GE can be attributed to
the propagation of information to non-constraint features. CDSR also outperforms
the ME and Hard baselines, and gives comparable results to GE (slightly better
results on fold 1).

It is somewhat unexpected that GE and CDSR provide comparable results. Be-
cause CDSR does not observe the model’s expectations, it cannot match the targets;
instead it uses the modes of the target distribution as a hard constraint over indi-
vidual assignments. This approximation has a substantial adverse effect with high
entropy constraints (Section 4). However, because our constraints for entity reso-
lution have targets close to 0/1, the approximation that CDSR introduces does not
have a significant adverse impact. We expect GE to outperform CDSR on tasks
where the target expectations are less peaked, or where matching the targets pre-
cisely is required for high accuracy.

The fact that GE and CDSR yield high accuracy on an important task with very
little supervision demonstrates the potential and importance of constraint-based
training for complex models.
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Method Pairwise Metric B3 Metric
(Fold) P / R F1 P / R F1
Hard (0) 100.0 / 64.3 78.3 100.0 / 61.2 75.9
ME (0) 83.5 / 66.1 73.7 76.5 / 63.8 69.6
CDSR (0) 95.8 / 98.9 97.4 95.5 / 98.1 96.8
GE (0) 94.8 / 100.0 97.3 94.3 / 100.0 97.1
Hard (1) 99.1 / 56.7 72.2 99.0 / 62.1 76.3
ME (1) 80.8 / 60.7 69.3 81.6 / 67.7 74.0
CDSR (1) 99.2 / 91.1 94.9 98.1 / 92.4 95.1
GE (1) 87.5 / 99.4 93.0 88.9 / 98.7 93.5
Hard (2) 97.1 / 60.1 74.4 99.2 / 60.5 75.1
ME (2) 67.1 / 60.9 63.8 68.1 / 61.8 64.8
CDSR (2) 88.9 / 91.9 90.4 91.7 / 92.9 92.3
GE (2) 82.5 / 99.2 90.1 86.8 / 98.8 92.4

Table 2: Entity Resolution: on the Cora data, using constraints to learn the model.

Conclusion and Future Work

We studied two methods for constraint-based training of complex models. We
approximated the expectations and covariances required for GE training using
MCMC. Although MCMC methods are well known, the use of MCMC methods
in constraint-based training has not been studied. We conducted sequence label-
ing experiments that demonstrated that a small number of samples is sufficient to
approximate exact GE, and considerably outperform CDSR, a fast and approxi-
mate training approach. We also applied MCMC GE and CDSR to lightly super-
vised entity resolution, obtaining accurate models with only two simple, intuitive
constraints. This novel application of constraint-based training demonstrates the
potential and importance of the approaches.

Directions for future work include investigating efficient sampling schemes
and exploring similar approximations for Posterior Regularization (Ganchev et al.,
2010).
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