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Abstract
Testing and static analysis tools can help root out bugs in programs,
but not bugs in data. Checking data for errors is arguably as
important as finding program errors, but lacks effective tool support.
Previous approaches like data cleaning and statistical outlier analysis
require either ground truth data for cross-validation, or that the data
follow a known statistical distribution.

This paper introduces data debugging, an approach that com-
bines data dependence analysis with statistical analysis to find and
rank potential data errors. Since it is impossible to know a priori
whether data are erroneous or not, data debugging instead reveals
data whose impact on the computation is unusual. Data debugging is
particularly promising in the context of data-intensive programming
environments that intertwine data with programs (in the form of
queries or formulas).

This paper presents the first data debugging tool, CHECKCELL,
an add-in for Microsoft Excel. CHECKCELL highlights values
in shades proportional to the unusualness of their impact on the
spreadsheet’s computation, which includes charts and formulas.
CHECKCELL is efficient; its algorithms are asymptotically optimal,
and the current prototype runs in seconds for most spreadsheets
we examine. We perform a case study by employing workers via a
crowdsourcing platform, and show that CHECKCELL is effective at
finding actual data entry errors.

1. Introduction
In many computational tasks, correctness is a primary concern. Most
work in the programming language community has focused on ways
to discover whether the program performing the computation is
correct. Techniques to reduce program errors range from testing
and runtime assertions, to dynamic and static analysis tools that can
discover a wide range of bugs. These tools and approaches enable
programmers to find errors and reduce their impact, contributing to
improving overall code quality.

However, a program is just one part of a computation. Existing
tools ignore the correctness of program inputs. If the input contains
errors, the result of the computation is likely to not be correct. Unlike
programs, data cannot easily be tested or analyzed for correctness.

Input data errors can arise in a variety of ways [19]:
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• Data entry errors, including typographical errors and transcrip-
tion errors from illegible text.

• Measurement errors, when the data source itself, such as a
disk or a sensor, is faulty or corrupted (unintentionally or not).

• Data integration errors, where inconsistencies arise due to
the mixing of different data, including unit of measurement
mismatches.

While data errors pose a threat to the correctness of any computa-
tion, they are especially problematic in data-intensive programming
environments like databases, spreadsheets, and certain scientific
computations. In these settings, data correctness can be as important
as program correctness (“garbage in, garbage out”). The results
produced by the computations—queries, formulas, charts, and other
analyses—may be rendered invalid by data errors. These errors can
be costly: errors in spreadsheet data have led to losses of millions of
dollars [29, 30].

By contrast with the proliferation of tools at a programmer’s
disposal to find program errors, few tools exist to help find data
errors. Part of the problem is that it can be difficult to decide
whether any given data element is an error or not. For example,
the number 1234 might be correct, or the correct value might be
12.34. Typographical errors can change data items by orders of
magnitude. Unfortunately, finding this kind of mistake via manual
data auditing is onerous, unscalable, and error-prone.

Existing approaches to finding data errors include data cleaning
and statistical outlier detection. Data cleaning primarily copes with
errors via cross-validation with ground truth data, which may not be
present. Statistical outlier detection typically reports data as outliers
based on their relationship to a given distribution (e.g., Gaussian).
Automatic identification of data distributions is error-prone and can
give rise to excessive false positives.

Contributions
This paper presents data debugging, an approach for locating
potential data errors. Since it is impossible to know a priori whether
data are erroneous or not, data debugging does the next best thing:
locating data that has an unusual impact on the computation.
Intuitively, data that has an inordinate impact on the final result
is either very important, or it is wrong. By contrast, wrong data
whose presence has no particularly unusual effect on the final
result does not merit special attention. Data debugging combines
data dependence analysis and statistical analysis to find and rank
data based on the unusualness of its impact on the results of a
computation.

Data debugging works by first building a data dependence graph
of the computations. It then measures data impact by replacing
data items with data chosen from the same group (e.g., a range
in a spreadsheet formula) and observing the resulting changes



in computations that depend on that data. This non-parametric
approach allows data debugging to find errors in both numeric and
non-numeric data, without any requirement that data follow any
particular statistical distribution.

By calling attention to data with unusual impact, data debugging
can provide insights into both the data and the computation and
reveal errors. We believe data debugging is broadly applicable,
though it is especially well-suited for data-intensive programming
that intertwine data and programs (e.g., with queries and formulas).

This paper presents the first data debugging tool in the form
of CHECKCELL, an add-in for Microsoft Excel. Spreadsheets are
one of the most widely-used programming environments, and this
domain has recently attracted renewed academic attention [16, 18,
31]. In addition, spreadsheet errors are a well known risk and have
led to significant monetary losses in the past, making them an
excellent first target for data debugging.

CHECKCELL highlights all data whose impact crosses a thresh-
old of unusualness that is more than two standard deviations away
from the mean impact. In the user interface, CHECKCELL ranks
these cells by coloring them in shades proportionally to their impact:
the brighter a cell is highlighted, the more unusual impact it has.
CHECKCELL is empirically and analytically efficient and effective,
as we show in Sections 4 and 5. The current prototype is untuned but
analysis time is generally low, taking seconds to run on most of the
spreadsheets we examine. We perform a case study by employing
human workers via a crowdsourcing platform (Amazon’s Mechani-
cal Turk), and show that CHECKCELL is effective at finding actual
data entry errors.

Outline
The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the algorithms that
data debugging employs. Section 4 derives analytical results that
demonstrate data debugging’s runtime efficiency and effectiveness.
Section 5 presents an empirical evaluation of data debugging in the
form of CHECKCELL, measuring its runtime performance and its
effectiveness at finding errors. Section 6 describes directions for
future work, and Section 7 concludes.

2. Related Work
Data Cleaning
Most past work on locating or removing errors in data has focused
on data cleaning or scrubbing in database systems [17, 24]. Standard
approaches include statistical outlier analysis for removing noisy
data [32], interpolation to fill in missing data (e.g., with averages),
and using cross-correlation with other data sources to correct or
locate errors [20].

A number of approaches have been developed that allow data
cleaning to be expressed programmatically or applied interactively.
Programmatic approaches include AJAX, which expresses a data
cleaning program as a DAG of transformations from input to
output [14]. Data Auditor applies rules and target relations entered
by a programmer [15]. A similar domain-specific approach has been
employed for data streams to smooth data temporally and isolate
it spatially [22]. Potter’s Wheel, by Raman and Hellerstein, is an
interactive tool that lets users visualize and apply data cleansing
transformations [25].

To identify errors, Luebbers et al. describe an interactive data
mining approach based on machine learning that builds decision
trees from databases. It derives logical rules (e.g., “BRV = 404⇒
GBM = 901”) that hold for most of the database, and marks
deviations as errors to be examined by a data quality engineer [23].
Raz et al. describe an approach aimed at arbitrary software that uses
Daikon [9] to infer invariants about numerical input data and then

Figure 1. A sample spreadsheet showing a personal budget, with
an unfortunate typographical error (see Section 3).

report discrepancies as “semantic anomalies” [26]. Data debugging
is orthogonal to these approaches: rather than searching for latent
relationships in or across data, it measures the interaction of data
with the programs that operate on them.

Spreadsheet Errors
Spreadsheets have been one of the most prominent computer applica-
tions since their creation in 1979. The most widely used spreadsheet
application today is Microsoft Excel. Excel includes rudimentary
error detection including errors in formula entry like division by
zero, a reference to a non-existient formula or cell, invalid numerical
arguments, or accidental mixing of text and numbers. Excel also
checks for inconsistency with adjacent formulas and other struc-
tural errors, which it highlights with a “squiggly” underline. In
addition, Excel provides a formula auditor, which lets users view
dependencies flowing into and out of particular formulas.

Past work on detecting errors in spreadsheets has focused on
inferring units and relationships (has-a, is-a) from information
like structural clues and column headers, and then checking for
inconsistencies [1, 2, 7, 10, 11]. For example, XeLda checks if
formulas process values with incorrect units or if derived units clash
with unit annotations. There also has been considerable work on
testing tools for spreadsheets [6, 13, 27, 28].

This work is complementary and orthogonal to CHECKCELL,
which works with standard, unannotated spreadsheets and focuses
on unusual interactions of data with formulas.

Statistical Outlier Analysis
Techniques to locate outliers date to the earliest days of statistics,
when they were developed to make nautical measurements more
robust. Widely-used approaches include Peirce’s criterion, Chau-
venet’s criterion, and Grubb’s test for outliers [5]. All of these tech-
niques require that data belong to a known distribution, primarily the
normal (Gaussian). Unfortunately, input data does not necessarily
fit any statistical distribution. Moreover, identifying outliers leads to
false positives when they do not materially contribute to the result
of a computation (i.e., have no impact). By contrast, data debugging
only reports data items with a substantial impact on a computation.

3. Data Debugging: Algorithms
This section describes in detail the algorithms that data debugging
employs. Section 4 includes formal analysis of various aspects of
the data debugging algorithms described here, including asymptotic
performance and statistical effectiveness.

Throughout this section, we illustrate these algorithms with
a running example of a budget shown in Figure 1, which is a
reduced version of a sample template included with Microsoft Excel.
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Figure 2. The dependence graph that CHECKCELL extracts from
the spreadsheet in Figure 1.

This spreadsheet tracks expected versus real spending on monthly
expenses. The spreadsheet indicates whether the user can afford to
splurge and go out to a fancy restaurant, which is when real spending
is at least $150 less than expected. However, this example contains
an unfortunate typographical error that could lead the user to spend
money that he or she does not actually have.

3.1 Dependence Analysis
The first step in data debugging is to identify the relationship of data
(inputs) to computations (outputs). In a spreadsheet, inputs are data
in cells, while computations are either charts or formulas that are
not used by other formulas. CHECKCELL uses techniques similar to
past work to identify dependencies in spreadsheets [13], but adds
support for charts.

Charts are often a key “result” of a spreadsheet computation,
so it is important to detect data that triggers dramatic changes in
charts. To handle charts, CHECKCELL treats them as if they were
formulas that compute the average over their inputs. A data value
that significantly alters the average is considered to have an unusual
impact on the chart.

Figure 2 shows the dependence graph that CHECKCELL extracts
from this spreadsheet. The final formula, the only output in this
spreadsheet (shown in black), depends on two formulas, which
depend on two disjoint data ranges.

3.2 Impact Analysis
The next step is to iterate through the data itself to test the impact of
each data item on all computations. For each item, data debugging
repeatedly chooses another item from the same “distribution”, e.g.,
another tuple in the same table, or another cell in the same range,
and replaces the item being tested with the selected one.

The selection process is exhaustive for small ranges (less than
30 elements); that is, for each item, impact analysis tests the effect
of replacing it with every other item in the range. For larger ranges,
we employ random sampling.

The computations are then recalculated using this new dataset.
Changes in the computations are recorded as their impact scores
on each data item. The impact score for a computation depends on
whether the output is numeric or non-numeric. For numeric data,
the impact score is the absolute change from the original value. For
non-numeric data, the impact score is an indicator value: 1 if the
result of the computation changed, and 0 if not.

Figure 3. The same spreadsheet, with the error highlighted by
CHECKCELL as the value with the most unusual impact on the
computation.

For the spreadsheet in Figure 1, CHECKCELL starts with cell
B3. It chooses an item from the same range, for example, cell B6.
Replacing B3 with B6 results in a new sum, $4352.50. Since this
sum does not change the Yes answer in the formula, the impact
score for cell B3 remains 0.

However, the same procedure for cell B4 is likely to have a
different effect. For example, replacing B4 with B9 yields a sum of
$1866.25. The difference between this sum and actual spending has
now dropped below $150, triggering a change in the result to No.
CHECKCELL then adds 1 to cell B4’s impact score.

To minimize sampling error, random selection (for large ranges)
is repeated a fixed number of times (at least 30), accumulating the
impact scores associated with each datum. The impact score is then
divided by the number of iterations. Section 4.1 shows that the
runtime efficiency of this approach is asymptotically optimal, and
Section 4.2 explains why sampling can be nearly as effective as
checking each item’s impact exhaustively.

3.3 Impact Scoring
In the final phase, the impacts of each data item are normalized
by transforming them into a test statistic computed as the absolute
distance of each item from the sample mean, divided by the sample
standard deviation. This normalized impact score represents the
distance from the mean impact, in numbers of standard deviations.
A standard approach, which we adopt here, is to only report data
whose impact is at least two standard deviations away from the
mean. Note that this interpretation does not depend on normality
assumptions about the data or its impact (see Section 4).

Each data item’s normalized impact scores are then averaged
across all the outputs, and data debugging assigns that average as
the overall impact score of each data item. Intuitively, data with
large overall impact scores either have an extremely unusual impact
on a small number of computations, or an unusual impact on many
computations. The overall impact score is used both for ranking
and for displaying the relative anomalousness of the impact of
particular data items, e.g., by coloring such values in brighter colors
corresponding to their distance from the mean.

Figure 3 shows the effect of running CHECKCELL, which in this
case identifies cell B4 as the only one with an unusual impact on the
spreadsheet.

4. Data Debugging: Analysis
This section presents an analysis of several aspects of data debug-
ging: its runtime, its sampling approach to measure impact for large
data ranges, and its scoring to perform impact outlier analysis.



4.1 Asymptotic Runtime
Data debugging operates in several phases: computing the depen-
dence graph, performing impact analysis, and then ranking impacts.
Runtime depends on the following parameters: the number of data
items (n), the number of formulas (f ), and the number of inputs
(i). In spreadsheets, the number of inputs equals the number of data
items, but in other contexts like databases, inputs correspond to
fields, so i� n. Since each formula and data item must be exam-
ined at least once to compute the dependence graph and to measure
impact, respectively, runtime for data debugging must be Ω(n+ f).

The cost of building the dependence graph varies depending
on the structure of the computation. It has a worst-case runtime of
O((i ∗ f)2), quadratic in the total number of inputs and formulas; it
is theoretically possible for each formula to depend on every input
and other formula. However, this kind of pathological computation
structure is atypical. Dependence graphs normally form a tree or a
forest of trees. In this case, the cost of constructing the dependence
graph becomes linear in the number of inputs and formulas, or
O(i+ f).

Impact analysis dominates the costs of constructing the depen-
dence graph and ranking impacts, since it requires recalculation of
the computations affected by changes in the data.

A naïve implementation of impact analysis that checked the
impact of each data item by systematically replacing it with every
other item in the same range would require O(n2) time. Worse,
each of these iterations requires potentially costly recalculations.
For large ranges, such an approach would make data debugging
unusable in practice.

By using a fixed number of random selections once the range
exceeds a threshold size, data debugging keeps the total number
of recalculations to O(n), linear in the number of data items.
Any strategy that visits each data item at least once takes O(n)
time, so this bound is tight. Section 4.2 explains why this strategy
approximates the effect of a complete examination of other inputs,
while minimizing execution time.

Finally, ranking impacts involves only two linear passes over the
impacts to compute absolute impact scores, so it also operates in
(optimal) linear time in the number of impacts.

4.2 Sampling Effectiveness
A complete strategy for measuring the impact of any data item i is
to systematically measure the impact of replacing it with every other
item j in the same range:

impacti =

∑N
j 6=i |resulti − resultj |

N
(1)

This approach, as mentioned above, would take O(n2) time and so
is inefficient for large data sets, though it is reasonable to do for
small ones.

For large data sets, data debugging employs a sampling-based
strategy that randomly chooses (with replacement) a fixed number
of samples K (e.g., K = 30).

estimated_impacti =

∑N

j∈{sample} |resulti − resultj |
K

(2)

The following theorem establishes that using the estimated
impact is likely to result in minimal error.

Theorem 4.1. When the percentage of values with unusual impacts
is low, the estimated impact closely approximates the actual impact
because it minimizes the risk of false positives and false negatives.

There are two cases where using the estimated impact will have a
different effect than using the actual impact:

• False negatives. The item under consideration has an unusual
actual impact, but the sampling procedure repeatedly chooses
other items with similarly anomalous impacts, so the item
under consideration appears to have only average impact (the
anomalous values cancel out).

• False positives. The item under consideration does not have an
unusual actual impact, but the sampling procedure repeatedly
chooses items that do have an unusual impact. Now, the item
under consideration appears to have an anomalous impact,
despite the fact that it actually does not.

The key to bounding the likelihood of either false negatives
or false positives is to ensure that the sampling process does not
repeatedly sample data items with unusual impacts.

Recall that data debuggging considers a data item to have an
unusual impact when that impact is at least two standard deviations
away from the mean impact in that range. When impacts follow a
normal distribution, the number of items with unusual impact will
be less than 5%. Of course, impacts will not necessarily be normally
distributed, although they will be when the computations include
averages (by virtue of the Central Limit Theorem). Nonetheless, as
long as the tails of the impact distribution comprise a small fraction
of the total, the theorem holds, as we explain below.

One can view the sampling procedure as a series of Bernoulli
trials, repeatedly flipping a biased coin with a probability p = 0.05
of choosing a value whose impact is anomalous (heads) and a
probability q = 0.95 of choosing a value with a non-anomalous
impact (tails). For n coin flips and probability p of heads, the
expected number of times that the sampling procedure will choose
an anomalous value is just np, or 1.5.

Because the Poisson distribution is an excellent approximation
as long as n is at least 20 and p is no more than 0.05, it is convenient
to use it to approximate the likelihood of choosing a larger number
of high-impact values than x, where x > λ and λ = np:

Pr[X ≥ x] ≤ e−λ(eλ)x

xx
(3)

We can use this equation to show that it is highly unlikely
that the sampling procedure would accidentally choose a large
number of unusually-impactful values. For example, the probability
of choosing one-third of those values from a sample of size K = 30
is less than 3/100, 000.

Therefore, the estimated impact computed by sampling is nearly
as effective at reducing both false positives and false negatives as
computing the actual impact.

4.3 Impact Outlier Analysis
Once all impact scores have been computed, only those data whose
impacts cross some threshold of anomalousness should be reported.
We currently treat the impact scores as if they fit a normal distri-
bution, and only report data whose scores place them more than
two standard deviations away from the mean. In a normal distribu-
tion, that is just under 0.05% of the population; in other words, this
corresponds to a 95% confidence level that these are anomalies.

In the absence of knowledge of the distribution of impact scores,
using the normal distribution is a conservative approach. That is, it
is likely to report few false negatives, at the risk of introducing some
false positives. This fact derives from two particular characteristics
of the normal distribution: its low skewness and kurtosis.

The normal distribution has zero skewness, where skew is
the distribution around the mean; in other words, it is perfectly
symmetric. Any asymmetric distribution by definition has a greater
number of points either to the left or to the right of the mean. By
choosing outliers from the tails of the normal, CHECKCELL also
includes one of the skewed tails of any asymmetric distribution.



In addition, the normal has either zero kurtosis, which indicates
the peakedness of the curve and heaviness of the tail. Counting
outliers from the perspective of the normal distribution is generally
conservative, since it includes all distributions with heavier tails (i.e.,
those with positive kurtosis). Because distributions with negative
kurtosis generally have small tails, they also tend to have few out-
liers, by definition. Thus, failing to report outliers for distributions
with negative kurtosis is usually safe.

One exception worth noting and a limitation of this approach is
symmetric multimodal distributions, where the outlier values are
not only in the tail but also centered around the mean. Using the
normal as a reference would not uncover such outliers.

5. Evaluation
We evaluate CHECKCELL across two dimensions: its execution time,
and its effectiveness at finding actual errors.

Our experimental platform is a 13” MacBook Air equipped
4GB of RAM and an Intel Core i5-2557M processor running at
1.70GHz. The operating system is Windows 7 Professional (SP1),
which executes non-virtualized (via Bootcamp). CHECKCELL was
compiled using Microsoft Visual C# 2010, and runs as an add-in in
Microsoft Excel 2010.

5.1 Execution Time
To measure the runtime of CHECKCELL, we run it on a random
subset of 30 spreadsheets drawn from the EUSES corpus [12],
excluding those that do not contain formulas.

Table 1 includes characteristics of these spreadsheets, ordered
by the number of formulas each contains. We include two columns
that count the number of cells in different ways. Cells (raw) indi-
cates the total number of cells that participate in any computation.
Cells (weighted) indicates the total number of cells inside ranges,
weighted by the number of times each cell is used in a computation.
For example, a cell that is in a range involved in two computations
is counted twice. Because the weighted cell count only includes
ranges, it is possible for it to be lower than the raw number of cells.

Figure 4 reports the performance of data debugging across our
spreadsheet suite, ordered by the weighted number of cells. Table 1
includes the full data.

For 19 of the 30 spreadsheets, CHECKCELL takes 9 seconds
or less to complete. Its runtime is less than three minutes for all
but two of the spreadsheets: intresults and NEW, which take 318
seconds and 683 seconds, respectively. The average runtime over all
spreadsheets is 61 seconds; without the two outliers, it is 29 seconds.
As our analysis in Section 4.1 predicts, the cost of CHECKCELL is
generally proportional to the cost of the impact analysis, which is in
turn dependent on the weighted number of cells.

The spreadsheets that require the most execution time both have
by far the largest number of formulas (1,066 and 2,626), and the
latter also has the largest number of weighted cells (2,403). Their
relatively high execution time is attributable to the fact that the cost
of impact analysis increases as the number of formulas increases,
since the Excel recalculation engine must do more work per item
tested. The intresults spreadsheet also has an extremely highly-
connected clique in its dependence graph, which leads to both higher
time for dependence analysis and increases the cost of recalculations
during impact analysis (see Figure 7).

Summary: For nearly every spreadsheet examined, CHECK-
CELL’s runtime is under three minutes; we believe this overhead is
acceptable for an error detection tool.

5.2 Error Detection
While CHECKCELL can be used across the EUSES suite, looking
for errors in existing spreadsheets is problematic because we do not

know what the ground truth is. To evaluate CHECKCELL’s efficacy
at finding actual errors, we need errors and ground truth to compare
it against.

Rather than artificially inject errors, we designed an experiment
that allows us to observe real errors produced by people and use
CHECKCELL to find them. We collect human errors by hiring
workers to perform data entry tasks (entering known data) via
Amazon’s Mechanical Turk, a popular crowdsourcing platform,
and then check their results with CHECKCELL.

Our ground truth data is drawn from 3q2000.xls, a spreadsheet
from the EUSES repository that contains selected financial infor-
mation from Fannie Mae. We save the data as a comma-separated
value file (.csv). Mechanical Turk workers were paid 3 cents to enter
10 of these numerical values at a time into a web form designed
to look like a spreadsheet, shown in Figure 5. To prevent copying
and pasting, we generate an image containing the comma-separated
values. Each worker had the opportunity to perform up to seven
different tasks.

In all, we collected 200 responses from 46 distinct users. Out of
these responses, 14 had omitted data and 52 contained errors, for
an overall error rate of 33%. The errors can be classified into the
following categories:

• Sign omission, where a negative sign was dropped;
• Magnitude errors, any change in a value (usually a dropped or

spurious digit) that results in an order of magnitude increase or
decrease;

• Digit transposition, where at least two digits are transposed;
• Typos, any other typographical error (e.g., a mistyped digit).

We then inserted the erroneous data back into the spreadsheet
one at a time and ran CHECKCELL to see whether it found any of
these errors. Recall that by design, CHECKCELL reports data with
an unusual impact on any of the calculations. For this spreadsheet,
CHECKCELL always highlights the values in the top row (the net
interest income) because these values have a significant impact on
the spreadsheet; most of the income in this spreadsheet comes from
this row. We classify CHECKCELL as having correctly found an
error if it also highlights an erroneous cell.

For 13 of the 52 erroneous inputs (25%), CHECKCELL correctly
marks the cell with the error, supporting our hypothesis that locating
data with unusual impact also finds errors. In all but two of these
cases, the error was a magnitude error; such errors are likelier to have
an unusual impact on a computation than all other errors, since they
change the input data dramatically. Even sign omission only causes a
factor of two change in a data element. Nonetheless, 20 of the errors
that CHECKCELL does not report also involve magnitude errors, but
those errors occur in data that do not contribute significantly to any
computation.

Figure 6 presents a screenshot of CHECKCELL’s results with one
of these errors. In addition to the top row, CHECKCELL indicates
that cell G19 has an unusual impact; this is, in fact, the error. The
correct value for G19 is -379300000, and the value entered by the
worker was 3793000000: the worker made both a sign error and an
order of magnitude error (one too many 0’s).

Summary: By searching for data with unusual impacts on the
spreadsheet, CHECKCELL is able to successfully find actual human
data entry errors.

5.3 Impact Distribution
CHECKCELL treats inputs whose impact scores are more than two
standard deviations from the mean impact as outliers. When impact
scores are normally distributed, we can strongly claim that scores
outside 2 standard deviations are unusual, and that standard outlier
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Figure 4. CHECKCELL execution time. For most of the spreadsheets, CHECKCELL completes its analysis in under 9 seconds; for all but two,
it completes in under three minutes (see Section 5.1).

Figure 5. The page presented to Mechanical Turk workers to perform data entry tasks in order to collect actual human data entry errors (see
Section 5.2).

rejection techniques are non-controversial. While CHECKCELL
does not assume normality for our outlier rejection procedure, we
empirically evaluate the distribution of average impacts produced
by our suite of benchmarks.

Several of our benchmarks are empty forms and are thus popu-
lated only with zero values. We exclude these spreadsheets from our
analysis since the standard deviation of their average impacts is, by
definition, zero, and they would thus be vacuously normal.

Our analysis of 23 spreadsheets shows that average impact scores
which are more than two standard deviations from the mean impact
score are in fact rare, thus supporting our decision to reject them. In
a standard normal distribution, no more than 5% of values are found
outside 2 standard deviations. In our evaluation, on average, 1.45%
of impact values fall outside 2 standard deviations from the mean.
Limiting our analysis to ranges of size 15 or greater, approximately
3.47% of their impact values fall outside 2 standard deviations. The
latter is a stronger evidence, since small distributions tend to have
fewer outliers.

6. Future Work
In future work, we plan to explore applying data debugging to other
data-intensive domains, including Hadoop/MapReduce tasks [3,
8], scientific computing environments like R [21], and database
management systems, especially those with support for “what-if”
queries [4].

We expect all of these domains will require some tailoring of the
existing algorithms to their particular context. For databases, we plan
to treat as computations both stored procedures and cached queries.
While it is straightforward to apply data debugging to databases
when queries have no side effects, handling queries that do modify
the database will take some care in order to avoid an excessive
performance penalty due to copying.

A similar performance concern arises with Hadoop, where
the key computation is the relatively costly reduction step. Data
debugging will also likely need to take into account features of the
R language in order to work effectively in that context. Finally, we
are interested in exploring the effectiveness of data debugging in
conventional programming language settings.



Figure 6. A screenshot of CHECKCELL’s results. In addition to the top row, which has a large impact on the final results, CHECKCELL
highlights cell G19, a human data entry error.

While CHECKCELL’s speed is reasonable in most cases, we
are interested in further optimizing it. We are especially interested
in developing a version that incrementally updates its impacts on-
the-fly. This version would run in the background and detect data
with unusual impacts as they are entered, much like modern text
entry underlines misspelled words. We believe that having automatic
detection of possible data errors on all the time could greatly reduce
the risk of data errors.

7. Conclusion
This paper presents data debugging, an approach aimed at finding
potential data errors by locating and ranking data items based on
their overall impact on a computation. Intuitively, errors that have
no impact do not pose a problem, while values that have an unusual
impact on the overall computation are either very important or
incorrect.

We present the first data debugging tool, CHECKCELL, which
operates on spreadsheets. We evaluate CHECKCELL’s performance
analytically and empirically, showing that it is reasonably efficient
and effective at helping to find data errors. CHECKCELL is avail-
able for download at https://github.com/plasma-umass/
DataDebug.
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Spreadsheet Formulas Cells Cells Runtime Dep. Impact Impact
raw weighted total (s) Analysis Analysis Scoring

3660 schedule S2003 31 1 0 1.54 0.73 0.44 0.34
ReqComp 54 162 0 1.95 0.95 0.52 0.44
Inventory_Control 33 21 0 4.71 1.67 1.59 1.42
RMRanker95 79 54 11 7.07 2.74 2.38 1.91
Logistikkostnader 73 29 26 8.88 3.48 2.97 2.40
HMWK112403 36 41 27 2.31 0.88 0.78 0.63
30day 125 92 30 3.01 1.39 1.31 0.27
2002fairreport 3 39 39 4.30 1.29 1.67 1.30
9620040303160820 42 81 81 4.77 1.19 2.74 0.81
Inventory errors 100 129 90 2.83 1.25 1.02 0.53
grades 227 661 96 154.45 3.06 149.85 1.51
expenses_ans 57 60 120 3.24 0.92 2.15 0.15
grades2002 61 143 123 2.67 1.03 1.11 0.51
csDept-PayrollTimecardEntry 68 204 124 7.37 1.85 4.37 1.10
Example_3 71 130 127 3.15 1.22 1.56 0.28
lmc_financial 72 148 142 17.15 4.69 7.63 4.80
104r 22 146 144 6.66 1.81 3.26 1.54
TRAIL INVENTORY N#A850A 2 156 156 6.15 1.12 3.99 0.99
Grades-6_excerpt 106 168 168 1.83 1.10 0.45 0.25
intresults 1066 3158 239 318.91 17.12 287.63 14.12
OakProducts 69 271 242 6.82 1.67 4.20 0.91
am_skandia_fin_supple#A80EE 56 272 268 6.64 1.53 4.01 1.06
E04_AppE_Census_Database_50 42 300 300 39.04 4.07 32.72 2.22
pfi-anxa 5 310 310 73.56 16.38 33.10 24.05
q exhibit54-OEA 797 1160 365 102.56 18.03 68.70 15.79
econ424-fall2003-publ#A8A23 93 517 384 62.83 3.91 56.96 1.93
Grades_EEE481&581 177 757 756 40.11 3.31 35.74 1.03
gpa_calculator 80 80 819 115.86 1.88 113.67 0.28
s446gradessp04 335 1369 1247 129.36 9.76 113.29 6.27
NEW 2626 2574 2403 683.32 115.75 440.30 127.23

Table 1. The benchmark suite of 30 spreadsheets, a random sample from the EUSES repository [12], ordered by weighted number of cells.
The raw number of cells indicates the total number of cells that are used in any formula; the weighted number of cells weighs cells in ranges
by the number of formulas that depend on it. A breakdown of CHECKCELL execution times (in seconds) appears on the right side.
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