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Abstract

This letter establishes the asymptotic optimality of equal power allocation for measurements of

a continuous wide-sense stationary (WSS) random process with a square-integrable autocorrelation

function when linear estimation is used on equally-spaced measurements with periodicity meeting the

Nyquist criterion and with the variance of the noise on any sample inversely proportional to the power

expended by the user to obtain that measurement.
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I. INTRODUCTION

Linear estimation of a random process from a set of noisy measurements is employed in many

wireless communication and sensing applications. We consider a scenario where a continuous

wide-sense stationary (WSS) random process with a square-integrable autocorrelation function

(ACF) is to be estimated using a Wiener filter from measurements that are equally-spaced with

periodicity meeting the Nyquist criterion and subject to additive Gaussian white noise (AWGN)

with variance inversely proportional to the power expended by the observer to obtain it. A Wiener

filter estimator is optimal in the mean squared error sense if the random process is also Gaussian.

Generally, if the observation period is finite in this setting, equal power allocation is suboptimal.

However, equal power allocation is simple to implement and performs well when the observation

period is long enough to reduce the importance of the “edge effects”. In this letter we confirm

this intuition by proving that the optimal power allocation across equally-spaced measurements

indeed tends to equality in the asymptotic case of an infinite number of measurements of a WSS

random process with a square-integrable ACF.

Our scenario frequently arises in pilot symbol assisted modulation (PSAM) on wireless chan-

nels. A Gaussian random process with a square-integrable ACF often governs the behavior of

the wireless channel, ensuring the optimality of Wiener filtering of the channel measurements

collected by the receiver from the known pilot signals inserted into the transmission by the

sender at the Nyquist rate for the process. Many PSAM techniques correspond to different

wireless channel models (see survey [1] and references therein). However, we prove a general

result, confirming the intuition behind equally-spaced equal-power pilots used in the original

work analyzing PSAM [2] (and similar approaches).

In the following section we formally state our problem. In Section III we establish preliminary

results that facilitate the proof of the asymptotic optimality of equal power allocation for linear

estimation of WSS random processes in Section IV. Section V concludes the letter.
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II. POWER ALLOCATION PROBLEM

Consider a continuous-time WSS random process x(t) with a square integrable ACF Rx(τ):∫∞
−∞(Rx(τ))

2dτ <∞. We sample x(t) at rate 1
Ts

that meets the Nyquist criterion, collecting n

samples of x(t) from the interval [0, (n−1)Ts]. Let x(n)i = x(iTs). Typically (e.g. for PSAM) the

discrete observations of x(n)i take the following form: ỹ(n)i =

√
P

(n)
i x

(n)
i +z̃

(n)
i , where {z̃(n)i } is an

independent and identically distributed (i.i.d.) AWGN sequence with z̃(n)i ∼ N (0, σ2), and P (n)
i >

0 is the power used by the observer for the ith observation. Normalizing the observations by(
P

(n)
i

)−1/2
simplifies the analysis without affecting performance, yielding y(n)i = ỹ

(n)
i

/√
P

(n)
i =

x
(n)
i +z

(n)
i , where {z(n)i } is an i.i.d. sequence with z(n)i ∼ N (0, σ2/Pi). The observer is subject to

the peak power constraint Pmax such that P (n)
i ≤ Pmax for all i, where Pmax is a finite constant.

Let PT (n) =
∑n−1

i=0 P
(n)
i denote the total power allocated to n observations of the process.

We estimate x(n)i from y
(n)
i using a Wiener filter over the finite-time horizon [0, (n − 1)Ts]

for an increasing number of observations n. Denote the sequence of covariance matrices of x(n)i

as {Rn}, where (Rn)i,j = Rx(|i − j|Ts). Since Rx(τ) is square integrable and since x(t) is

sampled at the Nyquist rate, the sequence {Rx(kTs)}n−1k=0 that forms Rn is square summable1:∑∞
k=−∞(Rx(kTs))

2 <∞. Since the noise z(n)i is i.i.d., the sequence of covariance matrices of the

observation process is {Rn+Dn}, where Dn = diag

(
σ2

P
(n)
0

, σ2

P
(n)
1

, . . . , σ2

P
(n)
n−1

)
defines a sequence

of diagonal matrices. Note that the observation process depends on the sequence of power

allocation vectors {p(n)} through Dn, where p(n) = [P
(n)
0 , P

(n)
1 , . . . , P

(n)
n−1]. By [3, Eq. (12.53)],

x̂(n) = Rn (Rn + Dn)
−1 y(n) defines the sequence of estimate vectors {x̂(n)}, where the ith

row of matrix Rn (Rn + Dn)
−1 contains the Wiener filter coefficients for the estimate of x(n)i .

Denoting the expectation operator by E [·] and the transpose of matrix A by AT , the covariance

matrix Mn = E
[
e(n)

(
e(n)
)T] of the estimate error e(n) = x(n) − x̂(n) is [3, Eq. (12.55)]:

Mn = Rn −Rn(Rn + Dn)
−1Rn (1)

1Nyquist interpolation of sequence {Rx(kTs)}n−1
k=0 and the orthogonality of the sinc pulses yield: ∞ >

∫∞
−∞(Rx(τ))

2dτ =∑∞
k=−∞

∑∞
l=−∞Rx(kTs)Rx(lTs)

∫∞
−∞ sinc

(
τ
Ts
− k
)
sinc

(
τ
Ts
− l
)
dτ = T 2

s

∑∞
k=−∞(Rx(kTs))

2.
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= (R−1n + D−1n )−1 (2)

where (2) is due to [4, Ch. 0.7.4]. Again, note that the sequence {Mn} depends on the sequence

of power allocation vectors {p(n)} via Dn.

We are interested in the relationship between the power allocation vector p(n) and the mean

squared error (MSE) of the estimate over the entire observation window, as the size of the win-

dow, n, grows large. Note that the diagonal entries of Mn contain the MSE of each observation.

Thus, denoting the trace of the matrix A by Tr[A], the MSE over all observations is:

E
(
p(n)

)
≡ 1

n

n−1∑
i=0

E
[
e2i
]
=

1

n
Tr[Mn] (3)

Our main result is the following theorem:

Theorem 1. The MSE E
(
p
(n)
opt

)
of the optimal power allocation p

(n)
opt converges to the MSE

E
(
p
(n)
eq

)
of the equal power allocation p

(n)
eq = {P (n)

i : P
(n)
i = Peq} as n→∞, with Peq =

PT (n)
n

.

In a typical scenario when PT (n) increases linearly with n, Peq is a constant. In order to prove

this theorem in Section IV, we provide several essential lemmas in the next section.

III. PREREQUISITES

We first prove that (3) is strictly convex over all choices of power allocation, demonstrating the

uniqueness of the optimal power allocation. We then introduce cyclically-symmetric functions,

and prove that, if such functions are strictly convex on a convex domain, then the unique vector

that attains their minimum has equal values. The section concludes with the introduction of the

asymptotic equivalence of Toeplitz and circulant matrices using material from [5] and [6].

A. Power Allocation Vector that Minimizes MSE is Unique

Lemma 1. If A is a real symmetric positive-definite n × n matrix, then the function f(x) =

Tr[(A + diag(x))−1] is strictly convex within the polytope
∑n−1

i=0 xi = C, xi > 0.
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Proof: Since the domain of f(x) is convex [7, Ch. 2.1.2 and 2.1.4], f(x) is strictly convex

in x if and only if g(t) = f(x + tv) is strictly convex in t for any t ∈ R and v ∈ Rn such

that x + tv is in the domain of f(x) (i.e. x + tv is a real vector with positive entries that sum

to C) [7, Ch. 3.1.1]. This follows directly from the definition of convexity and is known as the

method of restriction to a line. Define B ≡ A+diag(x)+t diag(v) and note that it is symmetric

positive-definite (as is B−1) since A is symmetric positive-definite and diag(x) + t diag(v) is a

diagonal matrix with positive entries on the diagonal. Consider h(t) = uTB−1u, where u is an

arbitrary non-zero vector. Its first two derivatives with respect to t are [8, Ch. D.2.1]:

h′(t) = −uTB−1 diag(v)B−1u (4)

h′′(t) = 2wTB−1w (5)

where w = diag(v)B−1u. We can substitute w into (5) since B is symmetric. Also, since B−1

is positive-definite, h′′(t) > 0, implying that h(t) is strictly convex in t. Now

g(t) = Tr[(A + diag(x) + t diag(v))−1] (6)

=
n−1∑
i=0

eTi (A + diag(x) + t diag(v))−1ei (7)

where ei is a vector containing one in the ith location and zeros everywhere else. Since each

summand of (7) can be written down as h(t) (with ei replacing u) and since the sum preserves

convexity, g(t) is strictly convex in t. Therefore, f(x) is strictly convex in x.

Since Rn is symmetric positive-definite, so is its inverse. Also D−1n = diag(p(n))
σ2 . Thus, by

Lemma 1, E(p(n)) is strictly convex and p
(n)
opt that minimizes MSE in our problem is unique.

B. Cyclically-symmetric Functions

We next introduce a class of symmetric functions and prove a useful property about them.

Definition 1 (Cyclically-symmetric function). f(x0, x1, . . . , xn−1) is cyclically-symmetric if

f(x0, x1, . . . , xn−1) = f(x1, . . . , xn−1, x0)
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Lemma 2. Suppose f(x0, x1, . . . , xn−1) is strictly convex and cyclically-symmetric on a convex

domain S. If vector x∗ = argminx∈S f(x0, x1, . . . , xn−1), then x∗0 = x∗1 = . . . = x∗n−1.

Proof: Since f(x0, x1, . . . , xn−1) is strictly convex, x∗ is unique. Since f(x0, x1, . . . , xn−1) is

cyclically-symmetric, then, for all i = 1, . . . , n−1, x∗ also minimizes f(xi, . . . , xn−1, x1, . . . , xi−1).

Thus, x∗0 = x∗1 = . . . = x∗n−1.

C. Asymptotically Equivalent Matrices

Results on the asymptotic equivalence of matrix sequences in [5, Ch. 2] enable the discussion

of the Toeplitz and circulant matrices at the end of this section. First, let A be a real-valued

n× n matrix. Then we define the matrix norms as follows:

Definition 2 (Strong norm). ‖A‖ = maxz:zT z=1

[
zTATAz

]1/2.
Definition 3 (Weak norm). |A| =

√
1
n
Tr [AHA].

If A is symmetric positive-definite with eigenvalues {λi}n−1i=0 , |A| =
√

1
n

∑n−1
i=0 λ

2
i . Also, ‖A‖ =

λmax and ‖A−1‖ = 1/λmin, where λmax and λmin are the maximum and minimum eigenvalues

of A, respectively.

Lemma 3 (Lemma 2.3 in [5]). For n× n matrices A and B, |AB| ≤ ‖A‖ · |B|.

Now define the asymptotic equivalence of matrix sequences as [5, Ch. 2.3]:

Definition 4 (Asymptotically Equivalent Sequences of Matrices). The sequences of n×n matrices

{An} and {Bn} are said to be asymptotically equivalent if the following hold:

‖An‖, ‖Bn‖ ≤M <∞, n = 1, 2, . . . (8)

limn→∞ |An −Bn| = 0 (9)

We abbreviate the asymptotic equivalence of the sequences {An} and {Bn} by An ∼ Bn.
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Properties of asymptotic equivalence are stated and proved in [5, Theorem 2.1]. A property

particularly useful in the proof of Theorem 1 is re-stated here as a lemma:

Lemma 4. If An ∼ Bn and ‖A−1n ‖, ‖B−1n ‖ ≤ K <∞, n = 1, 2, . . ., then A−1n ∼ B−1n .

Proof: |A−1n −B−1n | = |B−1n BnA
−1
n −B−1n AnA

−1
n | ≤ ‖B−1n ‖ · ‖A−1n ‖ · |An −Bn| −−−→

n→∞
0,

where the inequality is due to Lemma 3.

Another important consequence of asymptotic equivalence follows from [5, Corollary 2.1]:

Lemma 5. If An ∼ Bn, then limn→∞
1
n
Tr[An] = limn→∞

1
n
Tr[Bn] when either limit exists.

Proof sketch: By the Cauchy-Schwarz inequality,
∣∣∣Tr[An−Bn]

n

∣∣∣ ≤ |An −Bn| −−−→
n→∞

0.

D. Sequences of Toeplitz and Circulant Matrices

An n × n Toeplitz matrix Tn, illustrated in Fig. 1(a), is defined by a sequence {t(n)k } where

(Tn)i,j = ti−j . The covariance matrix Rn in Section II is Toeplitz and symmetric. An n × n

circulant matrix Cn, illustrated in Fig. 1(b), is defined by a sequence {c(n)k } where (Cn)i,j =

c
(n)
(j−i) mod n. Since the sequence {Rx(kTs)}n−1k=0 that defines Rn is square summable, we can define

an asymptotically equivalent sequence of circulant matrices Cn ∼ Rn using [6, Eq. (7)]:

c
(n)
k = Rx(kTs) +

k

n
(Rx((n− k)Ts)−Rx(kTs)) (10)

The resulting circulant matrix Cn is symmetric since, by (10), c(n)k = c
(n)
n−k.

By [6, Eq. (5)], Cn , F−1n ∆nFn, where ∆n = diag

({
ν
(n)
i

}n−1
i=0

)
contains the diagonal

entries ν(n)i = (FnRnF
−1
n )i,i of the covariance matrix of the discrete Fourier transform (DFT)

Fnx
(n) of x(n) and (Fn)i,k =

1√
n
e2πikj/n is the DFT rotation matrix. Since Rn is positive-definite,

by the properties of the similarity transformation, FnRnF
−1
n is positive-definite and has positive

diagonal entries. Thus, ∆n is positive-definite and so is Cn.
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Tn =



t
(n)
0 t

(n)
−1 · · · t

(n)
−(n−1)

t
(n)
1 t

(n)
0 · · · t

(n)
−(n−2)

... . . . ...

t
(n)
n−1 t

(n)
n−2 · · · t

(n)
0


(a) Toeplitz matrix

Cn =



c
(n)
0 c

(n)
1 · · · c

(n)
n−1

c
(n)
n−1 c

(n)
0 · · · c

(n)
n−2

... . . . ...

c
(n)
1 c

(n)
2 · · · c

(n)
0


(b) Circulant matrix

Fig. 1. Illustration of Toeplitz and circulant matrices.

IV. ASYMPTOTIC OPTIMALITY OF EQUAL POWER ALLOCATION

Proof (Theorem 1): Define symmetric circulant matrix Cn as in Section III-D so that

Cn ∼ Rn and consider (2). Asymptotic equivalence results in the following chain of implications:

Cn ∼ Rn ⇒ C−1n ∼ R−1n (11)

⇒ C−1n + D−1n ∼ R−1n + D−1n (12)

⇒
(
C−1n + D−1n

)−1 ∼ (R−1n + D−1n
)−1 (13)

⇒ lim
n→∞

1

n
Tr[Ln] = lim

n→∞

1

n
Tr[Mn] (14)

where Ln ≡ (C−1n + D−1n )
−1. Since Rn and Cn are symmetric positive-definite, the conditions

for Lemma 4 hold, resulting in (11). Then (12) follows from adding D−1n to both sides of the

asymptotic equivalence relation and noting that the condition (8) is satisfied via Weyl’s inequality

[4, Theorem 4.3.1] since the peak power constraint on the observer implies that D−1n has finite

eigenvalues. Lemma 4 yields (13), and (14) is due to Lemma 5. Let

Eequiv(p
(n)) ≡ 1

n
Tr[(C−1n + D−1n )−1] (15)

Then, since we defined E(p(n)) ≡ 1
n
Tr[Mn] in (3), (14) can be restated as follows:

lim
n→∞

E(p(n)) = lim
n→∞

Eequiv(p
(n)) (16)
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Since Cn is symmetric positive-definite, by Lemma 1, Eequiv(p
(n)) is strictly convex in p(n).

Showing that Eequiv(p
(n)) is cyclically-symmetric with respect to p(n) would complete the proof

by Lemma 2. The discussion of the convergence of E(p(n)) to Eequiv(p
(n)) follows the proof.

Denote the similarity transformation Ri(A) , SiAS−1i of an n × n matrix A the rotation

of degree i, where Si =

 0 I(n−i)×(n−i)

Ii×i 0

 and In×n is an n × n identity matrix. Si is

a permutation matrix, and is thus orthogonal, implying that S−1i = STi = Sn−i. Suppose that

the rows and columns of matrix A are labeled 0, . . . , n − 1 top-to-bottom and right-to-left,

respectively. Then SiA produces a matrix with the top i rows of A shifted to the bottom (i.e. rows

0, . . . , i − 1 become rows n − i − 1, . . . , n − 1), and AS−1i produces a matrix with the left i

columns of A shifted to the right (i.e. columns 0, . . . , i−1 become columns n−i−1, . . . , n−1).

Shifting the top i rows of a circulant matrix C down produces the same matrix as shifting the

left n − i columns to the right. Thus, SiC = CSi, which implies the rotation invariance of

circulant matrices: Ri(C) = C.

Inverse A−1 of matrix A can be expressed as (A−1)i,j = (−1)i+j
det(A)

Mj,i(A) where det(A)

denotes the determinant of A and Mi,j(A) = det(A(i,j)) with the sub-matrix A(i,j) formed by

removing row i and column j from A [4, Ch. 0.8.1]. Thus, (15) can be re-stated as:

Eequiv(p
(n)) =

∑n−1
k=0Mk,k(C

−1
n + D−1n )

n det(C−1n + D−1n )
(17)

The inverse of a circulant matrix, if it exists, is circulant2 [5, Theorem 3.1 (3)]. Due to

the rotational invariance of circulant matrices, for all i = 1, . . . , n − 1, Ri(C
−1
n + D−1n ) =

C−1n +Ri(D
−1
n ) with Ri(D

−1
n ) = diag(

P
(n)
i

σ2 , . . . ,
P

(n)
n−1

σ2 ,
P

(n)
0

σ2 , . . . ,
P

(n)
i−1

σ2 ). The denominator of (17)

is cyclically-symmetric with respect to p(n) due to the rotation being a similarity transformation,

which preserves the determinant. Since the submatrix of C−1n + D−1n with row k and column k

removed is a submatrix of C−1n +Ri(D
−1
n ) with row (k− i) mod n and column (k− i) mod n

2We note that, in general, the inverses of Toeplitz matrices are not Toeplitz.
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removed, the numerator of (17) is also cyclically-symmetric with respect to p(n). Therefore,

Eequiv(p
(n)) is cyclically-symmetric and, by Lemma 2, argminp(n) Eequiv(p

(n)) = p
(n)
eq . By (16),

limn→∞ E(p(n)
eq ) = limn→∞ Eequiv(p

(n)
eq ), completing the proof.

Convergence: First bound |E(p(n))−Eequiv(p
(n))| =

∣∣ 1
n
Tr[Ln −Mn]

∣∣ ≤ |Ln −Mn| using the

Lemma 5 proof idea. Now, as done in the proof of Lemma 4, apply Lemma 3: |Ln −Mn| ≤

‖Ln‖ · ‖Mn‖ · ‖C−1n ‖ · ‖R−1n ‖ · |Cn − Rn|. The strong norm terms are bounded by Weyl’s

theorem per the arguments following (14), while the discussion following [6, Eq. (10)] asserts

that |Cn −Rn| ≤ C√
n
+ ε where C and ε are constants, with ε arbitrarily small. Thus, in (16),

E(p(n)) and Eequiv(p
(n)) converge at a rate proportional to 1√

n
.

Finally, while the numerical results are not in the scope of this letter, our evaluations show

that E(p(n)
eq ) converges to E(p(n)

opt ) fairly quickly3 in typical wireless communication scenarios.

V. CONCLUSION

The asymptotic optimality is established for the equal power allocation between equally-spaced

measurements used for Wiener filter estimation of a continuous WSS random process with a

square-integrable ACF, where the periodicity of the measurements meets the Nyquist criterion

and the measurements are subject to AWGN with variance inversely proportional to the power

expended by the observer.
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