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ABSTRACT

MODELING REFORMULATION AS QUERY
DISTRIBUTIONS

July 17, 2012

XIAOBING XUE

B.Sci., NANJING UNIVERSITY, NANJING, CHINA

M.Eng., NANJING UNIVERSITY, NANJING, CHINA

Directed by: Professor W. Bruce Croft

Query reformulation modifies the original query with aim of providing a better

representation of a user’s information need and consequently improving the retrieval

performance. Previous reformulation models typically generate words and phrases

related to the original query, but do not consider how these words and phrases would

fit together in realistic or actual queries. Some recent work on web search studies

specific reformulation operations, but ignores how to combine different operations

within the same framework. Furthermore, little research considers the reformulation

model and the retrieval model from a joint perspective.

In this dissertation, a novel framework is proposed that models reformulation as

a distribution of reformulated queries, where each reformulated query is associated

with a probability indicating its importance. On one hand, this framework considers

a reformulated query as the basic unit and can capture the important query-level

dependencies between words and phrases in a realistic or actual query. On the other
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hand, since a reformulated query is the output of applying a single or multiple re-

formulation operations, this framework combines different operations such as query

segmentation, query substitution and query deletion within the same framework.

Moreover, a retrieval model is considered as an integrated part of this framework,

which considers the reformulation model and the retrieval model jointly.

Specifically, the query distribution framework consists of three major components,

which are query generation, probability estimation and retrieval. For query genera-

tion, we generate the reformulated queries that are semantically related to the original

query using different operations. For probability estimation, we estimate the proba-

bility assigned to each reformulated query by directly optimizing the retrieval perfor-

mance. For retrieval, the retrieval scores from each reformulated query are combined

together and the probabilities are used as the combination weights.

Furthermore, in order to model the relationships between the reformulated queries,

we extend the standard query distribution model to the hierarchical query distribu-

tion. The hierarchial query distribution model transforms the original query into

a reformulation tree, where each path of the tree models a sequence of generating

reformulated queries. A stage-based probability estimation approach is proposed to

capture the relationships between queries and directly optimize the retrieval perfor-

mance.

Several implementations of the query distribution model are designed for different

types of queries and applications including short keyword queries, verbose queries,

natural language questions and patent applications. Experiments on TREC collec-

tions show that the query distribution model significantly and consistently outper-

forms the state-of-the-art techniques.
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CHAPTER 1

INTRODUCTION

The query is essential in information retrieval, since it represents a user’s informa-

tion need and is used as the input to a search system. The original query formulated

by a user, however, is not always a good representation of a user’s underlying in-

formation need, especially from a search system’s perspective. First, a typical user

query is short. For example, on average, a web search query consists of two or three

keywords. Considering that only a small number of keywords are included in the

original query, many important concepts can be missed. Given a TREC query1 “oil

industry history”, the information need is about the history of the U.S. oil industry

including historical exploration and drilling. Besides the query words, other words

such as “energy”, “production”, “exploration” and “drilling” are also important for a

search system to find relevant documents, but are not included in the original query.

Second, due to the complexities of natural languages, the same information need can

be expressed in different ways. For example, the query “oil industry history” can be

also expressed as “petroleum industry history” or “oil and gas industry history”. The

search system only using the original query may miss relevant documents containing

alternative expressions of the information need.

On the other hand, search queries have been evolving beyond short keyword

queries. For example, verbose queries (Bendersky and Croft 2008; Kumaran

and Carvalho 2009) that describe a user’s information need in detail, have been

studied in ad hoc retrieval and web search. Natural language questions are also

1The details of TREC queries will be described in the Appendices.
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widely observed as search queries in question and answer archives (Jeon et al. 2005).

For patent retrieval, the whole patent application (Xue and Croft 2009) is used

as a query. From a user’s perspective, these new types of queries help express the

information needs naturally and save the effort of selecting keywords. However, for

a search system, these types of queries are difficult to process and the additional in-

formation provided is more likely to confuse current search systems rather than help

them (Kumaran and Carvalho 2009).

Therefore, in this dissertation, we study Query Reformulation as a process of

modifying the original query posed by a user to provide a better representation of the

underlying information need for a search system.

From a probabilistic view, the original query is just one possible output of a query

generation process. This process generates queries according to a probabilistic dis-

tribution reflecting a user’s underlying information need. Thus, query reformulation

can also be considered as an attempt to recover this query generation process.

Note that, besides the input from a user, the word “query” sometimes also indi-

cates an internal representation used by a search system. For example, in the sentence

“we use a weighted bag of words as the query for retrieval”, the word “query” actually

means an internal representation generated by a query reformulation model. In this

dissertation, unless otherwise stated, we use the first meaning of “query”, i.e., the

input from a user.

1.1 Query Reformulation in Information Retrieval

Query reformulation has been studied for decades in information retrieval. Among

many reformulation techniques, query expansion is the most successful. Query ex-

pansion adds new words and phrases into the original query. These new words and

phrases help capture some important concepts missed in the original query and also

alternative expressions. Early work of query expansion focused on term association
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and automatic thesaurus construction. These approaches used term association mea-

sures such as mutual information to find related words from the entire collection.

These related words are then organized as a thesaurus used for query expansion. The

expanded words generated by these thesaurus-based approaches are only related to a

single query word, thus cannot capture the entire query context.

Pseudo relevance feedback methods solved this problem by extracting words and

phrases from the top ranked documents in a result list. Several successful pseudo

relevance feedback models have been developed. For example, the relevance model

approach (Lavrenko and Croft 2001) adds new words to the original query, the

sequential dependence model (Metzler and Croft 2005) adds phrase structure,

and the latent concept expansion model (Metzler and Croft 2007) adds new term

proximity features and words. Generally, query expansion reformulates the original

query as a large, possibly weighted, “bag of concepts”, where a concept could be the

word and phrase from the original query or a new word and phrase.

However, query expansion does not consider how these concepts would fit together

to express the information need. In other words, they cannot discriminate between a

good combination of concepts and a bad one. For example, our implementation of the

relevance model expands the original query “oil industry history” as a weighted bag

of words “0.44 industry, 0.28 oil, 0.08 petroleum, 0.08 gas, 0.08 county, 0.04 history,

...”2, where the score before each word denotes the probability of generating this word.

Using this model, the probability assigned to “oil industry history” is smaller than

the probability assigned to “oil industry county”, since the generation probability of

“history” is smaller than “county”. Yet, the former is the original query, while the

latter is a somehow random combination of words. Thus, a document containing “oil

2The details of the relevance model will be described later.
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industry history” will incorrectly receive lower score than a document containing “oil

industry county”.

From a generative view, query expansion independently selects concepts to gener-

ate queries. Since the model itself does not impose any constraint between concepts,

besides realistic queries, many obviously artificial queries are also generated, some-

times even with high probabilities. Here, a realistic or actual query is a semantically

coherent query, which is posed by a user and is likely to be observed in query logs.

In contrast, an artificial query is a random combination of several query concepts,

which does not convey a clear information need. For example, “oil industry history”

is a realistic query, while “oil industry county” is an artificial query. These artificial

queries have a negative effect on the retrieval performance.

Thus, the realistic or actual queries impose important query-level dependencies

between query concepts. Query expansion fails to capture this type of dependency.

Note that these query-level dependencies are different with some local dependencies

captured by phrases or proximity features. Since a phrase or a proximity feature is

difficult to express the information need alone, we still need to consider how to use

them with other concepts.

1.2 Query Reformulation in Web Search

The popularity of web search engines has recently made large scale query logs

available. Query logs record users’ search behavior and provide a valuable resource

for query reformulation.

Query expansion has been revisited in the web search context. Instead of ana-

lyzing the target corpus, new words or phrases are now generated from query logs.

Specifically, the queries that either have a significant overlap with the original query

or receive a similar click pattern as the original one are collected. The new words and
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phrases from these queries are not directly used for retrieval in web search. Instead,

these queries are displayed to users as suggestions.

Several new reformulation operations have also been studied in web search. Query

segmentation (Bergsma and Wang 2007) tries to detect underlying concepts in

keyword queries and annotate those concepts as phrases. For example, given the query

“oil industry history”, query segmentation techniques may detect “oil industry” as a

concept and annotate it as a phrase in the new query “(oil industry) history”. Query

substitution (Jones et al. 2006) tries to change some words of the original query to

bridge vocabulary mismatch. For example, the query “oil industry history” could

be changed to “petroleum industry history”, since some relevant documents may

contain “petroleum industry” instead of “oil industry”. Query deletion (Jones and

Fain 2003) tries to delete extraneous words from the original query. This operation

is particularly useful when the original query is long and contains noisy information.

In general, the reformulation models in web search transform the original query

into a single reformulated query using a specific reformulation operation. Compared

with query expansion in information retrieval, these approaches explicitly model the

generation of a reformulated query. On the other hand, these models only output the

best reformulated query. Thus, they do not capture the information about alternative

reformulated queries. Furthermore, these models only study a specific operation

and none of this research considers combining different operations from a unified

perspective.

1.3 Interactive vs. Automatic

A query reformulation model can be incorporated into the search system either

in an interactive way or in an automatic way. Using the interactive approach, the

output of a reformulation model, whether it is a set of words or phrases from query

expansion or a reformulated query from a web reformulation model, is displayed to
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a user. These words, phrases, or queries will not be added into the retrieval model

unless a user explicitly clicks on them. In contrast, the automatic approach does not

require any user interaction. Sometimes, a user may not even notice the existence

of a reformulation process. The reformulation model will be seamlessly incorporated

into the retrieval model.

For example, the query suggestion model works interactively, where the related

queries are displayed to users. These queries are not used for retrieval unless a user

clicks on any of them. On the other hand, the pseudo relevance feedback model

works automatically. The original query is first expanded using the new words picked

from the top ranked documents and then this expanded query is fed into the retrieval

model without interaction with the user.

In this dissertation, we focus on using the reformulation model in an automatic

way. Thus, seamlessly combining the reformulation model with the retrieval model is

a critical issue.

1.4 Motivations

Based on the analysis of previous studies on query reformulation, the motivations

of this dissertation come from three aspects.

First, a realistic or actual query should be the basic unit of a reformulation model.

The query expansion model considers a concept as the basic unit. In order to formu-

late a new query, this model independently selects several concepts. Thus, besides

realistic queries, many artificial queries are also generated, which have some negative

effect on the retrieval performance. By considering a realistic query as the basic unit,

the important query-level dependencies between concepts are explicitly modeled. In

this way, the query generation process can be modeled as sampling a query from a

set of realistic queries according to some probabilistic distribution. Another reason

using a realistic query as the basic unit is to use the important features provided in
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query logs. For example, the frequency of a query observed in query logs provides

a reasonable measure for its popularity and the number of clicked documents after

posing a query is related to its quality. All these features characterize a realistic query

as a whole, thus it is difficult for query expansion models to use these features.

Second, different query reformulation models have been developed to address a

specific reformulation operation such as query segmentation, query substitution and

query deletion. Due to the complexities of a user query, applying a single reformu-

lation operation is usually not enough to achieve satisfactory retrieval performance.

Thus, we need to combine different reformulation operations within the same frame-

work. Instead of generating a single reformulated query using a specific operation as

most web reformulation models have done, we should apply more operations to the

original query and also generate more alternative queries.

Third, most of previous research considers query reformulation as a query pro-

cessing step which is independent from the following retrieval step. For example, the

relevance model (Lavrenko and Croft 2001) generates the expanded query repre-

sentation based on the “relevance” of each word. Some web reformulation techniques

(Bergsma and Wang 2007; Jones et al. 2006) train their models according to the

judgments of human annotators, who are asked to decide whether a reformulated

query is “good” or not according to their knowledge. The relevance of words and

the goodness of reformulated queries are both potentially important indicators for re-

trieval performance, but they may not necessarily lead to good retrieval performance,

especially considering that different retrieval models can have widely different perfor-

mance for a given set of words or queries. Therefore, it is essential to jointly consider

the reformulation model and the retrieval model. In other words, the reformulation

model should be trained by directly optimizing the performance of the retrieval model

that will be used. There has, however, been little prior research in this direction.
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1.5 A Query Distribution Model

In this dissertation, we propose a novel reformulation framework where the origi-

nal query is transformed into a distribution of reformulated queries. A reformulated

query is generated by applying different operations including adding or replacing

query words, detecting phrase structures, and so on. First, since the reformulated

query is a realistic or actual query that involves a particular choice of words and

phrases, this framework captures important query-level dependencies. Second, this

framework naturally combines query segmentation, query substitution and other pos-

sible reformulation operations, where all these operations are considered as methods

for generating reformulated queries. In other words, a reformulated query is the

output of applying single or multiple reformulation operations. The probabilities of

alternative reformulated queries can then be estimated within the same framework.

Third, the probabilities assigned to each reformulated query are estimated by directly

optimizing the retrieval performance on the training set. In this way, the reformu-

lation model and the retrieval model is jointly considered. The reformulation model

can be adapted to the retrieval model that will be used.

This framework potentially provides a better way of modeling users’ reformulation

behavior. During a search session, the user will pose a series of reformulated queries

if the original one doesn’t work well, thus modeling reformulation as a distribution of

related queries instead of a large bag of related words seems more natural.

The query distribution model consists of three major components. First, a set

of reformulated queries are generated, where each query is the output of applying

a single or multiple reformulation operations. Second, the probability is estimated

for each reformulated query by directly optimizing the retrieval performance. Third,

the generated reformulated queries and their associated probabilities are used for

retrieval. The retrieval model is a weighted combination of the retrieval scores using

each reformulated query and their corresponding probabilities serve as weights.
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1.6 Contributions

Our major contributions through this dissertation are as follows:

1. Novel Reformulation Framework. We propose a novel framework for query

reformulation, where the original query is transformed into a distribution of

reformulated queries and the retrieval model is considered as an integrated part

of this framework.

2. Novel Probability Estimation Approaches. We propose two approaches

to estimate the probability of each reformulated query by directly optimizing

the retrieval performance. These probability estimation approaches consider

the reformulation model and the retrieval model jointly.

3. Hierarchical Query Distribution for Complex Queries. We propose a hi-

erarchical query distribution that extends the standard query distribution model

to capture the dependencies between the reformulated queries. This model is

useful for dealing with complex queries that require a series of reformulation

operations.

4. Effective Reformulated Query Generation Approaches. We propose

several effective approaches to generate the reformulated queries based on the

type of the original query.

5. State of the art retrieval performance. We test the query distribution

model on different tasks such as ad hoc retrieval and web search and achieve

consistent and significant performance improvement over state-of-the-art tech-

niques.

1.7 Organization

In the rest of this dissertation, we first review previous work on query reformula-

tion, including the work in information retrieval and the work on web search (Chapter
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2). Then, we introduce the framework of the query distribution model and compare

it with previous reformulation models (Chapter 3). Following that, we describe four

approaches of generating reformulated queries according to different types of queries

and applications (Chapter 4). We also propose two probability estimation methods

that learn the probabilities assigned to the reformulated queries by directly optimiz-

ing their retrieval performance (Chapter 5). Two applications are introduced to show

the effect of the query distribution model on ad hoc retrieval using short and long

queries, respectively (Chapter 6 and Chapter 7). The hierarchical query distribution

model is proposed to process complex queries and model the relationships between the

reformulated queries (Chapter 8). Finally, we conclude this dissertation and discuss

some future directions (Chapter 9).
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CHAPTER 2

RELATED WORK

Query reformulation has been an important topic in information retrieval for long

time. Recently, it has also attracted much attention in web search, since it signifi-

cantly improves web users’ search experiences. However, to the best of our knowledge,

there is little work that models reformulation as a distribution of reformulated queries,

especially considering the retrieval model as an integrated part of the approach. In

this chapter, we will first review previous research in information retrieval and then

describe some recent work in web search. A distribution-based representation is

also described. Furthermore, we also consider previous work that weights words and

phrases by directly optimizing the retrieval performance. Finally, previous techniques

that model the relationships between reformulated queries are reviewed.

2.1 Query Reformulation in Information Retrieval

Some standard query processing techniques such as stemming, stopword removal

and spelling correction can all be considered as cases of query reformulation, since

they modify the original query to improve retrieval performance.

Stemming transforms a word into its root form, which helps a search system

to match variants of a query word in documents. The Porter stemmer (Porter

1980) is the most popular algorithmic stemmer. It uses a series of rules to remove

the suffixes of a word. Different variants of a word cannot be fully captured by an

algorithmic stemmer using a set of rules, thus a dictionary-based stemmer simply

store the word variants in a dictionary to avoid the errors of the algorithmic rules.
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It is also reasonable to combine both types of stemmers and the Krovetz stemmer

(Krovetz 1993) provides a good example of this combination strategy. Instead of

stemming the entire collection, the query-based stemming (Xu and Croft 1998)

treats stemming as a query expansion process, where the new words are limited to

word variants.

Stopword removal is a basic query processing technique. The INQUERY stop-

word list (Allan et al. 2000) is the most common stopword list used in information

retrieval. Lo et al (2005) proposed automatically constructing stopwords from the

corpus and the general idea is to select words with high idf scores. In addition to

stopwords, Callan and Croft (1993) removed stop phrases. Recently, Huston and

Croft (2010) studied removing stopwords and stop phrases in verbose queries and

proposed an approach to automatically detect stop phrases.

Spelling correction is another important query processing step, since many user

queries contain spelling errors. String edit distance is typically used to generate

candidate corrections and a noisy channel model provides a general framework for

spelling correction. More details can be found in (Kukich 1992; Jurafsky et al.

2000).

Besides the above query processing techniques, query expansion has been widely

studied in information retrieval as a query reformulation technique.

Some early work of query expansion focused on term association and automatic

thesaurus construction. These studies analyze the entire collection to group the re-

lated words together and organize them into a thesaurus. Van Rijsbergen (1979)

described several term association measures. Simply expanding a query word using

its related words in a thesaurus does not work well, since these related words can-

not capture the query context. Some approaches (Crouch and Yang 1992; Qiu

and Frei 1993; Jing and Croft 1994) carefully designed how to construct a the-

saurus and select expanded words and reported good retrieval performance. Since
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the thesaurus-based approaches analyze the entire collection, they are usually called

“global analysis” techniques.

Compared with global analysis techniques that use the entire corpus, researchers

have noticed that the top ranked documents in a result list provide a better approx-

imation of the query context. This type of technique referred to as “local analysis”.

Another name for this technique is pseudo relevance feedback that may be more fa-

miliar to readers. This name comes from a series of classic query expansion methods

(Rocchio 1971) that require a user to provide feedback for the relevance of the top

ranked documents. In local analysis, the top ranked documents are assumed as rele-

vant and no relevance feedback is required. Thus, local analysis is also called pseudo

relevance feedback.

Xu and Croft (2000) is among the earliest work that compares local analysis tech-

niques with global analysis techniques. Laverenko and Croft (2001) and Zhai and Laf-

ferty (2001a) revisited pseudo relevance feedback in the language modeling framework

(Ponte and Croft 1998; Zhai and Lafferty 2001b). Laverenko and Croft (2001)

proposed a framework for estimating the concept of relevance, which can be natu-

rally used for query expansion. Zhai and Lafferty (2001a) assumed that the language

models of the top ranked documents are mixtures of the relevance model and the back-

ground model and estimated the relevance model using the expectation-maximization

algorithm. Metzler and Croft (2007) proposed a latent concept expansion model that

adds both words and phrases to the original query. Collins-Thompson and Callan

(2007) studied the uncertainty in pseudo relevance feedback and considered the rele-

vance model as a distribution. Cao et al (2008) noticed that many expansion words

returned by the pseudo relevance feedback model are actually unrelated to or even

harmful for the original query. Thus, they proposed a classifier to help decide which

terms are good expansion words. Lee et al (2008) used a cluster-based resampling

method to select dominant top documents for pseudo relevance feedback, which im-
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proves the quality of the pseudo relevant documents. Xu et al (2009) developed a

query dependent pseudo relevance feedback model that uses Wikipedia in different

ways according to query types. Lang et al (2010) proposed Hierarchical Markov

Random Fields (HMRFs) to improve the latent concept expansion model (Metzler

and Croft 2007) by considering the hierarchical structure within documents. Lv

and Zhai (2010) developed the positional relevance model to capture the term po-

sition and proximity in feedback documents. Bendersky et al (2011) considered a

parameterized concept weighting method for pseudo relevance feedback.

Besides query expansion approaches, Metzer and Croft (2005) detected phrases

from the original query and proposed the sequential dependence model to combine

query words, phrases and term proximity features.

In general, previous reformulation models in information retrieval add different

query concepts such as words, phrases and term proximity features, to the original

query, but they do not consider how these concepts would fit together to form realistic

or actual queries. Thus, important query-level dependencies between concepts were

ignored. In the proposed query distribution model, a reformulated query is considered

as the basic unit, which explicitly models how query concepts are used in realistic

queries.

2.2 Query Reformulation in Web Search

Query reformulation is considered an important technique for web search. With

the popularity of search engines, large scale query logs have become a valuable re-

source for many query processing and reformulation techniques. Several reformulation

techniques studied in information retrieval have been revisited in the web search sce-

nario, especially with the help of query logs.
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Peng et al (2007) proposed a context-sensitive stemming method for web queries,

where a query word is stemmed based on the analysis of its query context using query

logs. A context-sensitive document matching is also conducted during retrieval.

Sun et al (2010) used query logs for spelling correction. A phrase based error model

was trained using the query-correction pairs extracted from the clickthrough data.

Compared with other approaches, this model captures the contextual information

between query words.

For query expansion, Billerbeck et al (2003) extracted expansion terms from asso-

ciated queries. Cui et al (2002) proposed a probabilistic query expansion model using

query logs. In addition, personalized query expansion (2007) was also studied.

Compared with query expansion, query suggestion has been widely adopted in

web search, which finds and suggests semantically related queries for users. Vlachos

et al (2004) and Chien and Immorlica (2005) calculated the similarity of queries based

on their temporal behaviors. Cucerzan and Brill (2006) measured query similarity

with aggregated session statistics. Cao et al (2008) proposed a context-aware query

suggestion method, which considered the preceding queries as context and utilized

click-through and session data.

Several types of query reformulation operations have been studied in web search,

which modifies the original query for retrieval.

Bergsma and Wang’s work (2007) is among the earliest studying query segmen-

tation on the web. They trained a SVM classifier to make a decision for each seg-

mentation position using several types of features. Tan and Peng (2008) proposed an

unsupervised query segmentation method using a concept-based language model. The

parameters of the language model were estimated by the EM algorithm conducted on

a partial corpus specific to the query. Bendersky et al (2009) proposed a two-stage

query segmentation method.
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Jones et al (2006) first provided a clear definition for query substitution on the

web. In their work, a substitution pair is generated from two successive queries that

share some common terms. Then, a linear regression classifier is trained to decide

the quality of each pair. Wang and Zhai (2008) mined query logs to find potential

query term substitution and addition patterns. Their basic idea is that similar words

would have similar neighborhood words in query logs. Dang and Croft (2010) re-

implemented and tested Wang and Zhai’s method for TREC collections. The results

showed that this method does not work well for the well-formed TREC queries. They

also showed that anchor text can be used as a good substitute for real query logs.

Jones et al (2003) proposed a model to predict which word should be removed

from the original query in order to increase the query coverage in the web search.

Guo et al (2008) proposed a CRF-based model for query refinement, which com-

bined several tasks such as spelling correction, stemming and phrase detection. Within

their model, different tasks can be solved simultaneously instead of sequentially. Their

model mainly focused on morphological changes of the query words such as spelling

correction and stemming, and did not consider query substitution.

Researchers (Boldi et al. 2009; Jansen et al. 2009) also studied query reformu-

lation patterns and built a model to automatically classify query reformulations into

categories. For example, Boldi et al (2009) classify reformulations into four categories,

which are generalization, specialization, error correction and parallel moving.

Little research has considered different reformulation operations from a unified

view and studied their effect on improving retrieval performance. In the proposed

query distribution model, a reformulated query is the output of applying a single

or multiple operations. Thus, different operations are combined within the same

framework. Moreover, we will explicitly explore the effect of reformulation operations

on improving retrieval performance.
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2.3 Distribution-based Query Representation

Collins-Thompson (2008) studied the uncertainty in pseudo relevance feedback

and modeled relevance using the feedback model distribution. Specifically, given an

input query and a set of top ranked documents, several feedback models, i.e, the

language model returned by a pseudo relevance feedback approach, are generated by

resampling the top ranked documents. Then, a Dirichlet distribution is estimated

using the generated feedback models.

In this dissertation, we model reformulation as a multinomial distribution over the

space of realistic queries, while Collins-Thompson (2008) model relevance as a Dirich-

let distribution over the space of language models. As aforementioned, the language

model returned by a pseudo relevance feedback is a weighted “bag of words”, thus

it cannot capture the contextual information of realistic queries. Furthermore, the

multinomial distribution used in this dissertation is estimated by directly optimizing

the retrieval performance.

2.4 Combing Reformulation Model and Retrieval Model

Previous research optimizes the reformulation model and the retrieval model sep-

arately, and few of them have considered these two models jointly.

“Learning to rank” techniques are proposed to optimize the retrieval model. This

direction has attracted considerable attention recently. The basic idea of the “learning

to rank” approaches is to characterize each query-document pair as a set of features

and construct a training set using the queries previously observed and their relevance

judgments. A ranking model is learned using machine learning techniques. This

learned model is then used to rank documents for unseen queries. Several learning

to rank methods have been proposed, such as RankSVM (Herbrich et al. 2000),

RankBoost (Freund et al. 2003) and RankNet (Burges et al. 2005). These methods

optimize the ranking loss for a pair of documents, thus they are called as “pairwise”
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methods. Cao et al (2007) extended “pairwise” methods to “listwise” methods that

considered a ranked list of documents as an instance used in the ranking model and

designed a neural network based approach, i.e., ListNet. AdaRank (Xu and Li 2007)

is another listwise approach that uses the boosting method and has the property

of directly optimizing the retrieval performance. Qin et al (2008) considered the

relationships between documents and proposed a method to learn the retrieval scores

of a list of documents simultaneously.

Many reformulation models are optimized using human annotations (Bergsma

andWang 2007; Jones et al. 2006). For example, Bergsma and Wang (2007) trained

their segmentation model using the best segmentations provided by people. Also,

Jones et al (2006) asked human annotators to decide whether a query substitution is

good. As aforementioned, these human annotations do not necessarily result in good

retrieval performance.

Some recent query weighting approaches (Bendersky et al. 2010; Bendersky

et al. 2011) learned the weighting of query words by directly optimizing retrieval

performance. Also, Sheldon et al (2011) proposed merging the search results of query

reformulations using a supervised merging method.

2.5 Modeling the relationships between reformulated queries

Most previous research relies on query logs to model the relationships between

reformulated queries . Boldi et al (2008) proposed to build a query-flow graph that

models web users’ search behaviors. Specifically, the edges between two queries indi-

cated that they were likely to belong to the same search mission. Both the time and

the textual information was used for the graph construction. The query-flow graph

has demonstrated its promise when applied to tasks such as session detection and

query suggestion. Mei et al (2009) presented a general framework to model search

sequences that are represented as a nested sequence of search objects. Various search

18



sequence analysis tasks were modeled within this framework and the features were

reused across different tasks.

In this dissertation, we consider reformulation sequences that model a series of

reformulation operations without using query logs. Also, the reformulation sequences

are directly incorporated into the retrieval model.
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CHAPTER 3

FRAMEWORK OF QUERY DISTRIBUTIONS

In this chapter, we first describe the framework of the query distribution model.

Then, we compare this model with previous reformulation models. Part of the content

of this chapter has been published in our previous work (Xue and Croft 2010).

3.1 Framework

Formally, given the original query q, we first generate a set of reformulated queries

SQ = {qr}, where qr is a reformulated query. qr is the output of applying single or

multiple reformulation operations. Note that the original query q also belongs to

SQ, which can be considered as a special reformulated query without applying any

reformulation operation. Then, we assign the probability P (qr|q) to each reformulated

query, which measures how likely qr will be generated from the underlying information

need of q. Since the sum of the probabilities is equal to one, i.e.
∑

qr∈SQ
P (qr|q) = 1,

P (qr|q) is considered as a multinomial distribution over SQ. The query distribution

model is denoted as QDist.

For example, given the original query “oil industry history”, we first generate

a set of reformulated queries “(oil industry)(history), (petroleum industry)(history),

(oil and gas industry)(history), (oil)(industrialized)(history)...”. Here, a reformu-

lated query is generated by first applying query substitution and then applying query

segmentation. For example, the original query first has a substitution to produce

“petroleum industry history” and then it is segmented to produce “(petroleum in-

dustry)(history)”. Then, we estimate the probability for each reformulated query.
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Table 3.1. The query distribution representation for “oil industry history”

Query Distribution (QDist)
(0.78 oil industry history),
(0.08 (oil industry)(history)),
(0.05 (petroleum industry)(history)),
(0.05 (oil)(industrialized)(history)),
(0.04 (oil and gas industry)(history))...

Query Distribution 
{(P(qr |q) qr)}

Reformulated Queries {qr}

Original Query q

Reformulated Query 
Generation 

Probability 
Estimation

Retrieval         
Model

Retrieved Documents {D}

Figure 3.1. The framework of the query distribution model.

The query distribution representation for “oil industry history” is displayed in Table

3.1. This representation consists of a set of tuples and each tuple consists of the re-

formulated query and the corresponding probability. For example, in the tuple “(0.08

(oil industry)(history))”, 0.08 is the probability assigned to “(oil industry)(history))”.

Fig. 3.1 shows the framework of the query distribution model, which consists of

three major components. The first component generates the reformulated queries

{qr} and the second component estimates the probabilities {P (qr|q)}. In the third

component, the generated query distribution is used by the retrieval model to retrieve

documents.
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The query generation component generates a set of reformulated queries that

convey the same information need as the original query but using different expressions.

Different strategies can be adopted according to the type of the original query and

the properties of the applications. For example, given a keyword query, using query

logs has been shown as an effective way to generate reformulated queries for web

search. For other applications where the query log data is not available, analyzing

the passages from the target corpus also helps. Beyond keyword queries, natural

language questions can be reformulated by searching large scale Q&A archives. In

patent retrieval, the whole patent application is transformed into prior-art queries by

extracting words and phrases from different fields using different weighting methods.

The probability estimation component assigns the probability to each reformulated

query. These probabilities measure the importance of the corresponding queries for

retrieval. Some previous models (Bergsma and Wang 2007; Jones et al. 2006)

estimate these probabilities according to the judgments of human annotators, who

are asked to decide whether a reformulated query is “good” or not according to their

knowledge. However, the “goodness” of a reformulated query does not necessarily lead

to good retrieval performance, especially considering that different retrieval models

can have very different performance for a given set of queries. Thus, it is essential to

jointly consider the reformulation model and the retrieval model. In other words, the

probabilities assigned to reformulated queries should be trained by directly optimizing

the performance of the following retrieval model.

The retrieval component takes into the generated query distribution and outputs

a set of retrieved documents. This component contains an underlying retrieval model

M . Formally, given the query distribution, the retrieval score of a document D is

calculated in Eq. 3.1.

score(q,D) =
∑

qr∈SQ

P (qr|q) logP (qr|D) (3.1)
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where P (qr|q) is the probability of generating qr from the underlying information need

of q and P (qr|D) is the probability of generating the reformulated query qr from the

document D. logP (qr|D) can be considered as the retrieval score of the document D

using qr, which is returned by the underlying retrieval model. Thus, Eq. 3.1 shows

that the retrieval score using the query distribution is a weighted combination of the

retrieval scores using each reformulated query qr in SQ, where the weight is P (qr|q).

Note that the query distribution model provides a general framework to transform

the original query into a set of reformulated queries and assign the probability to each

query by directly optimizing the retrieval performance of the underlying retrieval

model. Each component can be implemented using different strategies according to

applications. In the following chapters, we will describe the approaches of generating

reformulated queries and estimating probabilities, respectively.

3.2 Comparison with Previous Reformulation Models

In the rest of this chapter, we compare the query distribution model with two

types of reformulation models, which we call the Concept Distribution models and

the Single Reformulated Query models, to help readers understand the advantages of

the query distribution model.

3.2.1 Concept Distribution (CDist)

The first category of previous reformulation models is Concept Distribution, which

is denoted as CDist. Here, a “concept” denotes any component extracted from

the original query. Besides the original query words, it also includes query phrases

(Metzler and Croft 2005), new words (Lavrenko and Croft 2001; Metzler

and Croft 2007), new phrases (Metzler and Croft 2007) and some proximity

features (Metzler and Croft 2005; Metzler and Croft 2007). Formally, this

category of models is defined as follows.
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The Concept Distribution model first generates a set of concepts SC = {c}, where

c denotes a concept. Then, the probability P (c|Q) is assigned to each concept c,

which measures the importance of c. Since the sum of P (c|Q) over all concepts in

SC is equal to one, i.e.
∑

c P (c|Q) = 1, P (c|Q) can be considered as a multinomial

distribution over SC . The concept distribution can be represented as a set of tuples

{(P (c|Q) c)}.

When the concept distribution is used for retrieval, the retrieval score of a docu-

ment D is calculated in Eq. 3.2.

score(q,D) =
∑

c∈SC

P (c|q) logP (c|D) (3.2)

where P (c|q) is the probability assigned to the concept c and logP (c|D) is the prob-

ability of generating c from the document D. logP (c|D) can be considered as the

retrieval score of a document D using the concept c as the query. Thus, Eq. 3.2

shows that the retrieval score using CDist is a weighted combination of the retrieval

score using each concept c in SC , where the weight is P (c|q).

Next, we describe two typical models from this category, the relevance model and

the sequential dependency model.

The Relevance Model (RM) (Lavrenko and Croft 2001) limits the concept

c to the original query words and the new words that are related to the original

query. In the relevance model, P (c|q) is estimated by mixing the language models

of the top ranked documents. For example, the original query “oil industry history”

could be reformulated as “(0.44 industry), (0.28 oil), (0.08 petroleum), (0.08 gas),

(0.08 county), (0.04 history), ...”, which includes not only words from the original

query such as “oil”, “industry” and “history”, but also new words like “gas” and

“petroleum”.

The Sequential Dependence Model (SDM) (Metzler and Croft 2005) limits

the concept c to the original query words and the bigrams extracted from the original
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Table 3.2. Different query representations for the original query “oil industry his-
tory”

Model Output
Concept Distribution (CDist)

RM (0.44 industry), (0.28 oil), (0.08 petroleum),
(0.08 gas), (0.08 county), (0.04 history), ...

SDM (0.28 oil), (0.28 industry), (0.28 history),
(0.08 (oil industry)), (0.08 (industry history))
Single Reformulated Query (SRQ)

SEG (oil industry)(history)
SUB petroleum industry history

Query Distribution (QDist)
(0.78 oil industry history),
(0.08 (oil industry)(history)),
(0.05 (petroleum industry)(history)),
(0.05 (oil)(industrialized)(history)),
(0.04 (oil and gas industry)(history))...

query q1. In the sequential dependence model, P (c|q) is estimated based on the type

of c, i.e., word or bigram. In other words, all words are assigned the same probability

value and this is also true for bigrams. For example, the original query “oil industry

history” could be reformulated as “(0.28 oil), (0.28 industry), (0.28 history), (0.08

(oil industry)), (0.08 (industry history))”. Besides the words from the original query,

this also includes bigrams such as “oil industry” and “industry history”, which are

denoted as “(oil industry)” and “(industry history)”.

Table 3.2 shows the representations generated by RM and SDM.

3.2.2 Single Reformulated Query (SRQ)

The second category of previous models is a single reformulated query generated

by applying a specific reformulation operation, which is denoted as SRQ.

1For each bigram, the sequential dependency model applies two types of window operators, the
ordered window and the unordered window. For simplicity, we don’t differentiate these two types of
bigrams, but the following analysis is still valid if the differentiation is considered.
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Formally, q?r (oper) denotes the new query generated after applying the reformula-

tion operation oper to the original query q. q?r(oper) is simplified to q?r if the operation

oper is not explicitly mentioned.

When q?r is used for retrieval, the retrieval score of document D is calculated as

follows.

score(q,D) = logP (q?r |D) (3.3)

Next, we describe two reformulation operations, query segmentation and query

substitution.

Query Segmentation (SEG) (Bergsma and Wang 2007) is the operation of

grouping query words into phrases. Given the original query Q = q1q2...ql, the seg-

mented query is denoted as p1p2...pm. Here, pi is a phrase, which groups some original

query words qj+1...qj+k together. j indicates the index of the original query and k is

the length of the phrase pi. If k is equal to one, pi is a single word. For example,

“(oil industry)(history)” is a segmentation of the original query.

Query Substitution (SUB) (Jones et al. 2006) is the operation of replacing some

original query words with new ones. Given the original query Q = (q1...qi+1...qi+s...ql),

the substituted query is denoted as q1...q
′
1...q

′
t...ql, where the original words qi+1...qi+s

are replaced with q′1...q
′
t. Here, s is the number of the original query words to be

replaced and t is the number of new query words. For example, “petroleum industry

history” replaces “oil industry” with “petroleum industry”. s and t are not neces-

sarily equal so substitution can expand the original query. For example, “oil and gas

industry history” substitutes “oil industry” with “oil and gas industry”.

Table 3.2 shows the representations generated by SEG and SUB.
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3.2.3 Query Generation Process

A query reformulation model can be considered as a process of generating queries.

In this subsection, we compare the query generation process of different reformulation

models.

The query generation process of the Single Reformulated Query (SRQ) model is

deterministic. Given the original query q, it will generate a single reformulated query

q?. This process is shown in Eq. 3.4.

P (qr|q) =











1 when qr = q?r

0 when qr 6= q?r

(3.4)

In contrast, the Query Distribution (QDist) model generates queries in a proba-

bilistic way. Specifically, a query qr is sampled from SQ according to P (qr|q), which

is a multinomial distribution. Note that both SRQ and QDist generate generate re-

alistic or actual queries, in the sense of being semantically coherent and likely to be

found in query logs.

The query generation process of the Concept Distribution (CDist) model is not

as straightforward as SRQ and QDist, since the basic unit of this model is a concept.

In order to generate a query qr, CDist will first sample the count of concepts in qr,

i.e. |qr|, according to a count distribution δ and then sample |qr| concepts from SC

independently according to P (c|q). This process is shown in Eq. 3.5.

P (qr|q) = δ(|qr|)

|qr|
∏

i=1

P (ci|q) (3.5)

Since the generation process of CDist assumes that the concepts are generated

independently, this model does not consider how to form realistic queries using con-

cepts. Thus, many artificial queries that will almost never be posed by users are

also generated. These artificial queries have negative effect on the quality of the

reformulation model. Two examples are provided as follows.
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In the first example, given the original query “oil industry history” (AP2=5.9)

and one artificial query “oil industry county” (AP=2.5), we consider the generation

probabilities of these two queries using the RM representation (see Table 3.2), which

is a typical example of CDist. The concepts considered in RM are the words in the

original query and the expanded words.

P (oil industry history) = δ(3)× P (oil)× P (industry)× P (history)

= δ(3)× 0.28× 0.44× 0.04

P (oil industry county) = δ(3)× P (oil)× P (industry)× P (county)

= δ(3)× 0.28× 0.44× 0.08

where δ(3) denotes the probability of generating a query containing three concepts.

According to RM, the probability assigned to “oil industry county” is even higher

than the original query “oil industry history”, since RM assumes that the words in a

query are independent of each other. However, “oil industry county” is an artificial

query and cannot lead to good retrieval performance.

In the second example, two reformulated queries with different effectiveness, namely

“(oil industry) history” (AP=4.7) and “(oil industry) industry” (AP=2.0), receive the

same generation probability in the SDM model (see Table 3.2). SDM considers the

words and the bigrams in the original query as concepts.

P ((oil industry) history) = δ(2)× P ((oil industry))× P (history)

= δ(2)× 0.08× 0.28

P ((oil industry) industry) = δ(2)× P ((oil industry))× P (industry)

= δ(2)× 0.08× 0.28

2AP denotes the average precision, which is described in the Appendices.
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Figure 3.2. The queries generated by different models

where δ(2) denotes the probability of generating a query containing two concepts.

Without considering whether “history” or “industry” is more likely to be used

with the phrase “(oil industry)” to form realistic queries, SDM cannot discriminate

between these two queries. On the other hand, “(oil industry) history” is a more

realistic query and has better performance than “(oil industry) industry”.

Fig. 3.2 illustrates the queries generated by different models. The whole space

represents all possible queries generated using different concepts. The space within

the circle represents realistic or actual queries posed by users, while the space outside

the circle represents artificial queries. The queries generated by CDist spread over

the whole space. In contrast, the queries generated by QDist and SRQ will only fall

inside the circle.

3.2.4 Retrieval Scores

In this subsection, we further consider the effect of the query generation process

on the retrieval scores of different models.

The retrieval score of SRQ (as shown in Eq. 3.3) can be rewritten as follows.

29



score(q,D) = logP (q?r |D)

=
∑

qr 6=q?r

0 · logP (qr|D) + 1 · logP (q?r |D) (3.6)

=
∑

qr

P (qr|q) logP (qr|D) (3.7)

Eq. 3.6 is obtained according to Eq. 3.4, where SRQ assigns all probability to q?r .

Eq. 3.7 shows that the retrieval score of SRQ can be rewritten as the combination of

the retrieval scores using the generated queries.

Before we study the retrieval score of CDist, two claims are made as follows.

Claim 1.

P (c|q) =
∑

qr∈{qr |c∈qr}

P (qr|q), given that P (qr|q) = δ(|qr|)

|qr|
∏

i=1

P (ci|q)

The proof of Claim 1 can be found in the Appendices. Claim 1 shows that using

the query generation process of CDist (see Eq. 3.5), the sum of the probability of

generating all queries that contain the concept c is equal to the probability of directly

generating the concept c.

Claim 2.

P (qr|D) =
∏

c∈qr

P (c|D)

Claim 2 shows that the probability of generating qr from a document D can be

calculated as the product of the probability of generating each concept c in qr from

D. This claim is widely used in the language modeling approach (Ponte and Croft

1998; Zhai and Lafferty 2001b).
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Using the above claims, the retrieval score of CDist (as shown in Eq. 3.2) can be

rewritten as follows.

score(q,D) =
∑

c∈SC

P (c|q) logP (c|D)

=
∑

c∈SC

logP (c|D)
∑

qr∈{qr|c∈qr}

P (qr|q) (3.8)

=
∑

qr

P (qr|q)
∑

c∈qr

logP (c|D) (3.9)

=
∑

qr

P (qr|q) log
∏

c∈qr

P (c|D) (3.10)

=
∑

qr

P (qr|q) logP (qr|D) (3.11)

Eq. 3.8 is obtained by using Claim 1. Eq. 3.9 is obtained by changing the order

of summation. Eq. 3.11 is obtained using Claim 2. Eq. 3.11 shows that the retrieval

score of CDist can be considered as the combination of the retrieval scores using the

queries generated by CDist.

In general, Eq. 3.1, Eq. 3.7 and Eq. 3.11 show that the retrieval scores of the

three models, i.e. QDist, SRQ and CDist, are closely related to their query generation

process. The retrieval score of SRQ is decided by a single reformulated query, while

QDist considers a set of reformulated queries. On the other hand, the retrieval score

of CDist is affected by both the realistic queries and the artificial queries.

3.3 Summary

In this chapter, we described the framework of the query distribution model and

compared it with other reformulation models. Generally, compared with the concept

distribution model, the query distribution model considers a realistic query as the

basic unit and thus captures the query-level dependencies between concepts. On the

other hand, compared with the single reformulated query model, the query distribu-

31



tion model explores alternative reformulated queries and combines them within the

same framework.
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CHAPTER 4

REFORMULATED QUERY GENERATION

In this chapter, we focus on the reformulated query generation component. Several

approaches are described and each of them is proposed to deal with a specific type

of query. First, a passage-analysis technique based on the target corpus is designed

for keyword queries. Second, a subset selection strategy is used for verbose queries.

Third, we search a Q&A archive to reformulate natural language questions. Fourth,

we transform a patent application into prior-art queries. The content of this chapter

has been published in our previous work (Xue et al. 2010) (Section 4.1), (Xue et al.

2008) (Section 4.3) and (Xue and Croft 2009) (Section 4.4)

4.1 Passage Analysis for Keyword Queries

Keyword (or short) queries are the typical type of queries used in information

retrieval, where users select some keywords to express their information needs. In

web search, large scale query logs have been shown to be successful for reformulating

keyword queries. However, these query logs are not available for many important

applications such as legal search and forum search. Thus, it is important to develop

some techniques to reformulate keyword queries by only using the target corpus and

publicly available resources. Furthermore, this technique once available can also be

used as a complement to the query log based method.

We propose passage analysis technique based on the target corpus. We observe

that in the target corpus, passages containing all query words or most of the query

words provide a good source of information for reformulating queries. Specifically,
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passages with all query words provide information about the common ways that

people split the original query into different concepts. For example, given the orig-

inal query “oil industry history”, the analysis of passages containing all these three

words in the Gov2 collection1 shows that the original query is split as “(oil indus-

try)(history)” in 51 passages. Similarly, passages only containing some query words

can indicate possible ways of substituting missing words. For example, the analysis

of passages containing “industry history” on Gov2 shows that “petroleum industry

history” appears in 46 passages, which indicates that “petroleum industry history” is

a potential substitution for the original query.

The passage analysis technique can be divided into two main steps: first, the

original query is substituted through passage analysis and with the help of Wikipedia

to generate the candidate queries; second, the candidate queries are further segmented

based on passage analysis to generate the final reformulated queries.

4.1.1 Generating Query Substitutions

Three different methods are considered to generate query substitutions.

The first method is to use the morphologically similar words. Morphologically sim-

ilar words are a reliable way to substitute the original query words using appropriate

morphological variants. In our work, the morphologically similar words are chosen by

considering other query words. Specifically, given the original query Q = (q1...qi...ql),

for each query word qi, we extracted all passages containing all query words except

qi. For each extracted passage, if we find a word q′i which is morphologically similar

to qi, q
′
i will be considered as a substitution of qi and a candidate query is generated

as Qc = (q1...q
′
i...ql). Note that a morphologically similar word is considered as a sub-

stitution only when it appears in passages containing all other query words, which

further guarantees the quality of the substitution word.

1Gov2 is a TREC collection used for ad-hoc retrieval.

34



For example, given the original query “oil industry history”, we consider sub-

stitutions for each query word. For “history”, passages containing both “oil” and

“industry” are first extracted. Since some extracted passages contain the word “his-

torical”, which is similar to “history”, “historical” is used to substitute for “history”

and “oil industry historical” is generated as a candidate query. The same process will

also be applied to “industry” and “oil”, and “industrialized” is found as a substitution

for “industry”.

A simple method is used to decide whether two words are morphologically similar

to each other. Given two words wi and wj, the Porter Stemmer (Porter 1980) is

used to get their root forms stemi and stemj . If stemi is equal to stemj or wi starts

with stemj , or wj starts with stemi, wi and wj are considered as morphologically

similar, otherwise they are not similar.

The pattern-based method is another way to find query substitutions. Several

types of patterns are derived from the original query and these patterns are then

used to match qualified passages to find query substitution. Here, two types of pat-

terns are considered, adding-word patterns and changing-word patterns, which will

be described in turn.

Adding-word patterns are used to find substitutions which replace a bigram of the

original query with an n-gram that adds some words in the middle of the query bigram.

Specifically, given the original query Q = (q1...qiqi+1...ql), we consider substitute any

qiqi+1 with qiw1...wsqi+1. w1...ws are the added words and s is the number of added

words. Here, we only consider adding one or two words. First, for each bigram

qiqi+1, a pattern is designed as qi ? qi+1, where ? denotes any word or any two words.

Then, passages containing all query words q1...ql are extracted. For each extracted

passage, if the designed pattern qi ? qi+1 matches this passage, qiwqi+1 is collected as

a substitution of qiqi+1. Here, w denotes the added word/words. Thus, a candidate

query is generated as q1...qiwqi+1...ql.
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For example, given the original query “oil industry history”, two patterns are

derived as “oil ? industry” and “industry ? history”. Then, all passages containing

all three query words are extracted. For some passages, “oil ? industry” matches

expressions “oil and gas industry”, thus “oil and gas industry” are considered as a

substitution for “oil industry” and a candidate query “oil and gas industry history”

is generated.

Changing-word patterns are used to find substitutions that replace a trigram of

the original query with a new trigram where the middle word is different. Specifically,

given the original query Q = (q1...qiqi+1qi+2...ql), we consider substituting qiqi+1qi+2

with qiwqi+2, where w is a different word. First, for each trigram qiqi+1qi+2 of the

original query, a pattern is designed as qi ? qi+2. Second, passages containing all

query words except qi+1 are extracted. For each extracted passage, if the pattern

qi ? qi+2 matches this passage, qiwqi+2 is collected as a substitution for qiqi+1qi+2 and

a candidate query substitution is generated as q1...qiwqi+2...ql.

For example, given the original query “oil industry history”, a pattern is designed

as “oil ? history”. Then, all passages containing “oil” and “history” but not “in-

dustry” are extracted. For some passages, “oil ? history” matches expressions “oil

spill history”, thus “oil spill history” is considered as a substitution of “oil industry

history”.

Some query substitutions are difficult to obtain only relying on corpus informa-

tion, thus the third method uses Wikipedia as an external resource. A redirect page

in Wiki-pedia is designed to send the user to the article with an alternative title2.

For example, if the user searches for “UK”, a redirect page will send the user to the

article with title “United Kingdom”, since “UK” is the abbreviation of “United King-

dom”. Other reasons for maintaining redirect pages include alternative names (“Edi-

2The definition of redirect pages and the following examples can be found at http://en.

wikipedia.org/wiki/Redirects_on_wikipedia
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son Arantes do Nascimento” redirects to “Pelé”), less or more specific forms of names

(“Hitler” redirects to “Adolf Hitler”), alternative spellings or punctuation (“Colour”

redirects to “Color”), likely misspellings (“Massachusets” to “Massachusetts”), plu-

rals (“Gre-enhouse gases” redirects to “Greenhouse gas”), related words (“Symbiont”

redirects to “Symbiosis”) and so on. Clearly, the redirect page is a valuable resource

for query substitution and since they are created by people, the quality is generally

good.

All redirect pages are organized as a set of tuples {(psrc, ptar)}, where the phrase

psrc is redirected to the phrase ptar. Given the original query Q = (q1...qi+1...qi+n...ql),

all n-grams (n > 1) are extracted. For each n-gram qi+1...qi+n, if it matches psrc or

ptar in any tuple, the corresponding ptar or psrc will be collected as a substitution.

Then, a candidate query substitution is generated as (q1...ptar ...qn) or (q1...psrc...qn).

For example, for the original query “oil industry history”, we extract n-grams “oil

industry”, “industry history” and “oil industry history”. Each of these n-grams is

used to match the redirect tuples. The n-gram “oil industry” matches a tuple (“oil

industry”, “petroleum industry”), thus “petroleum industry” is used as a substitution

of “oil industry” and a candidate query “petroleum industry history” is generated.

4.1.2 Generating Query Segmentations

In this step, phrase structures are detected using passage analysis for all candidate

queries including both the original query and query substitutions. The basic idea can

be described as follows. Given a candidate query, passages containing all query words

are extracted. Then, each extracted passage tells us one way to segment the candidate

query. After analyzing all extracted passages, the most frequent ways of segmenting

the candidate query can be determined.

The details of the algorithm are provided in Fig. 4.1. Generally, the function

DetectSegmention returns how the input query is segmented in the given passage.
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ALGORITHM: Generating Reformulated Query
INPUT: candidate query Qc = (q1q2...qm), corpus C
OUTPUT: a set of reformulated queries R = {(Qr, Stat)}, where
Qr is one way to segment Qc and Stat = {(psgid, docid)} records
from which passages (psgid) and documents (docid), Qr is detected.
PROCESS:

1. select passages containing q1q2...qm from C.

2. for each selected passage psg

- get (psgid, docid), the passage id and corresponding doc-
ument id of psg.

- Qr = DetectSegments(Qc, psg)

- add (Qr, (psgid, docid)) into R.

FUNCTION: DetectSegmention

INPUT: query Qc = (q1q2...qm), passage psg = w1w2...wg

OUTPUT: Qr

PROCESS:

1. S =Ø, i = 1

2. while i ≤ g

- search the longest string str = wiwi+1...wi+s that starts
with wi and matches a substring of q1q2...qm.

- if str is found

S ← str, i = i+ s+ 1

else

i = i+ 1

3. for each str in S

- if str is a substring of another string in S

S = S − str

4. According to S, Qc is segmented to form Qr.

Figure 4.1. Algorithm for generating reformulated queries.
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Table 4.1. Examples of reformulated queries generated using the passage analysis
technique

source controlling type ii diabetes pyramid scheme
Orig (controlling)(type ii diabetes) (pyramid scheme)
Wiki (controlling)(type 2 diabetes) (1)(up)(system)
Morph (control)(type ii diabetes) n/a
Pat-add n/a (pyramid promotional scheme)
Pat-chg (controlling)(type 2 diabetes) n/a

source low white blood cell count Enron California energy crisis
Orig (low white blood cell count) (Enron)(California energy crisis)
Wiki (low)(leukocyte count) (Enron)(California electricity crisis)
Morph (lower)(white blood cell count) (Enrons)(California energy crisis)
Pat-add n/a n/a
Pat-chg (low red blood cell count) (Enron)(California electricity crisis)

source hybrid alternative fuel cars ban human cloning
Orig (hybrid)(alternative fuel)(cars) (ban)(human cloning)
Wiki (hybrid)(alternative fuel)(vehicle) (ban)(human)(clone)
Morph (hybrid)(alternative fueled)(cars) (bans human cloning)
Pat-add n/a (ban on human cloning)
Pat-chg n/a (ban reproductive cloning)

Then, the algorithm records all returned segmentations and their associated passage id

(psgid) and document id (docid), which can be used to weight different segmentations.

Some examples are provided to show how the function DetectSegmentation works.

The input query is “oil and gas industry history”, which is a query substitution.

Given the passage “...shape the history of the oil and gas industry in Oklahoma

during the early days of the Oklahoma Oil boom...”, S = {“history”, “oil and gas

industry”, “oil”} after Step 2. Since “oil” is a substring of “oil and gas industry”,

“oil” is removed from S in Step 3 and S becomes {“history”, “oil and gas industry”}.

According to S, a segmentation is formed as “(oil and gas industry)(history)”.

4.1.3 Examples

Table 4.1 shows examples of the reformulated queries generated using the passage

analysis techniques. “Orig” denotes the segmentation of the original query without

substitution. “Wiki” denotes the reformulated queries generated from the Wikipedia

39



redirect page. “Morph” denotes the reformulated queries generated from morpholog-

ically similar words. “Pat-add” denotes the method of using adding-word patterns

and “Pat-chg” denotes the method of using changing-word patterns. Note that for

each substitution method, only one example is displayed, but actually more than one

reformulated query would typically be generated.

Table 4.1 contains many interesting reformulated queries. “(controlling)(type

2 diabetes)” reformulates “controlling type ii diabetes”, “1-up system” reformu-

lates “pyramid scheme”, “(low)(leukocyte count)” reformulates “low white blood cell

count”, “(Enron)(California electricity crisis)” reformulates “Enron California en-

ergy crisis” and so on. Sometimes, the reformulated queries generated from different

sources happen to be the same. For example, Wiki and Pat-chg both generate “(con-

trolling)(type 2 diabetes)”. Also, some sources cannot generate reformulated queries

for certain queries (denoted as “n/a” in Table 4.1).

4.2 Subset Selection for Verbose Queries

The use of verbose (or long) queries helps users to express their information need

naturally and saves efforts in choosing keywords. Previous work (Bendersky and

Croft 2008; Kumaran and Carvalho 2009), however, has shown that current

search engines cannot handle verbose queries well. Thus, dealing with verbose queries

poses a new challenge for information retrieval.

In order to extract the important information from the verbose query, we select a

subset of query words. In other words, we reformulate the verbose query as a set of

subset queries. If the length of the query is n, the total number of subset queries is

2n, since for each query word, we need to decide whether it should be kept or not.

Considering the number of potential subset queries, some strategies are required

to filter the subset queries. Two simple strategies are used according to the study of

Kumaran and Carvalho (2009). First, if the length of a query is more than 10 words,
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Table 4.2. Examples of the subset queries selected from a verbose query

q: give information on steps to manage
control or protect squirrels
steps protect squirrels
steps control squirrels
steps control protect squirrels
steps manage squirrels

all query words are first ranked by their idf scores and then only the top 10 words are

used to generate subset queries. Second, we only keep the subset queries with length

between three to six words, since either too long or too short queries usually cannot

generate good retrieval performance.

Kumaran and Carvalho (2009) also suggest some other useful filtering strategies,

which are currently not used in this dissertation. For example, only the subset queries

containing the named entities are kept. Furthermore, all subset queries can be ranked

by their quality predictor values and only the top ranked queries are kept.

Table 4.2 shows an example of the subset queries selected from a verbose query.

These subset queries keep the important keywords such as “steps”, “control”, “pro-

tect” and “squirrels” and at the same time remove the noisy information such as “give

information on”.

4.3 Q&A Search for Natural Language Questions

Natural language questions can be considered as special cases of verbose queries.

Thus, the subset query selection strategy discussed in previous section can also be

applied here. On the other hand, we notice that various natural language questions

can be formulated to express the same information need. Thus, it is very interesting

to reformulate the original question into a set of alternative questions using different

vocabularies and expressions.

In this section, we generate these alternative questions by searching the large

scale question and answer archives (Q&A archive). These archives include the FAQ
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archives constructed by companies for their products and the archives generated from

Web services such as Yahoo Answers! and Live QnA, where people answer questions

posed by other people. Since these archives contain a large number of questions

that cover a variety of topics, they provide valuable resources to discover alternative

questions.

The major challenge for searching the Q&A archive is the word mismatch between

the user’s question and the questions in the archive. For example, “what is francis

scott key best known for?” and “who wrote the star spangle banner?” are two very

similar questions, but they have no words in common. This problem is more serious

for Q&A retrieval compared with document retrieval, since the question-answer pairs

are usually short and there is little chance of finding the same content expressed using

different wording.

To solve the word mismatch problem, we use translation-based approaches since

the relationships between words can be explicitly modeled through word-to-word

translation probabilities. The word-to-word translation probabilities are estimated

by considering the question-answer pairs as the “parallel corpus”. Furthermore, the

corresponding answer part of a question provides complementary information, thus

considering the answer part also helps solve the word mismatch problem.

4.3.1 Retrieval Model for Q&A Archives

A typical Q&A archive consists of a large number of question-answer pairs. Here,

C denotes the whole archive, C = {(Q,A)}. (Q,A) denotes a question and answer

pair, where Q is a question and A is an answer. Given a natural language question q,

the task is to estimate P ((Q,A)|q), i.e., the probability of observing (Q,A) given q.

The estimation of P ((Q,A)|q) is decided by the estimation of P (q|(Q,A)). Here, we

propose a translation-based language model (TransLM+QL) to calculate P (q|(Q,A))

according to the following equations.
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P ((Q,A)|q) ∝ P (q|(Q,A)) (4.1)

P (q|(Q,A)) =
∏

w∈q

P (w|(Q,A)) (4.2)

P (w|(Q,A)) =
|(Q,A)|

|(Q,A)|+ λ
Pmx(w|(Q,A)) +

λ

|(Q,A)|+ λ
Pml(w|C) (4.3)

Pmx(w|(Q,A)) = αPml(w|Q) + β
∑

t∈Q

P (w|t)Pml(t|Q) + γPml(w|A) (4.4)

In the above equations, q is the query, w is a query word, (Q,A) is a question and

answer pair, C is the background collection, λ is the smoothing parameter, |(Q,A)|

is the length of (Q,A).

Pml(w|C) is the background probability of generating w, which is calculated in

Eq. 4.5.

Pml(w|C) =
#(w,C)

|C|
(4.5)

where #(w, c) is the frequency of w in the collection and |C| is the total number of

words in the collection.

Pml(w|Q) is the probability of generating w fromQ and Pml(w|A) is the probability

of generating w from A. They are calculated in Eq. 4.6.

Pml(w|D) =
#(w,D)

|D|
(4.6)

where #(w,D) is the frequency of w in the document D and |D| is the total number

of words in the document. Pml(w|Q) and Pml(w|A) can be calculated by considering

the question Q and the answer A as the document D, respectively.

P (w|t) is the word-to-word translation probability. The estimation of P (w|t) is

described in the following section.

The most interesting part comes from Eq. 4.4, which consists of three components:

Pml(w|Q),
∑

t∈Q P (w|t)Pml(t|Q) and Pml(w|A). Pml(w|Q) uses the maximum likeli-

hood estimation. Using this estimation, only the questions containing the exact word
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w will generate w with high probabilities. In this way, those questions using different

vocabularies to express the same information need will not generate high probability

for w. In order to solve this problem, the component
∑

t∈Q P (w|t)Pml(t|Q) is intro-

duced, which uses a translation-based estimation. Using this estimation, every word

t in the question has some probability of being “translated” into a target word w and

these probabilities are added up to calculate the sampling probability. Therefore, if

a question has many semantically related words to a target word, then the target

word also gets high probability from this question. This sampling approach consid-

ers word-to-word relationships and helps to overcome the word mismatch problem.

Furthermore, the answer part A provides complementary information to the question

part Q. Thus, it is helpful to incorporate the component Pml(w|A), which conducts

the maximum likelihood estimation on the answer part.

4.3.2 Learning Word-to-Word Translation Probabilities

The estimation of P (q|(Q,A)) heavily depends on the quality of the learned word-

to-word translation probabilities P (w|t). Techniques for estimating word-to-word

translation probabilities are discussed in this part.

IBM translation model 1 (Brown et al. 1993) incorporated an EM-based algo-

rithm to learn the word-to-word translation probabilities. Suppose there is a parallel

corpus consisting of English-French sentence pairs, S = {(e1, f1), (e2, f2), ..., (eN , fN)}.

The translation probability from an English word e to an French word f is calculated

as:

P (f |e) = λ−1
e

N
∑

i=1

c(f |e; fi, ei) (4.7)

c(f |e; fi, ei) =
P (f |e)

P (f |e1) + ...+ P (f |el)
#(f, fi)#(e, ei) (4.8)

Here, λe =
∑

f

∑N

i=1 c(f |e; fi, ei) is a normalization factor to make the sum of

translation probabilities for the word e equal to 1. {e1, ..., el} are English words that
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appear in ei. #(f, fi) and #(e, ei) are the number of times the French word f appears

in fi and the number of times the English word e appears in ei.

Given the initial value of P (f |e), Eq. 4.7 and Eq. 4.8 are used to calculate the

updated P (f |e) repeatedly until the probability converges. Brown et. al. (1993)

showed that this process converges to the same final probability no matter what

initial values are set.

In a Q&A archive, question-answer pairs can be considered as a type of parallel

corpus, which is used for estimating word-to-word translation probabilities. In IBM

translation model 1, English is the source language and French is the target language.

Since the questions and answers in a Q&A archive are written in the same language,

the word-to-word translation probability can be calculated through setting either as

the source and the other as the target. P (A|Q) is used to denote the word-to-word

translation probability with the question as the source and the answer as the target.

P (Q|A) is used to denote the opposite configuration.

For a given word, the related words differ when it appears in the question or in

the answer. For example, when the word “cheat” appears in the question part, words

such as “trust”, “forgive”, “dump” and “leave” usually appear in the corresponding

answer part. These words represent the answerer’s suggestion when the asker poses

some question about how to react to cheating behaviors. On the other hand, when

the word “cheat” appears in the answer, words such as “husband” and “boyfriend”

will be observed in the question, which implies most cheating related questions are

about the asker’s husband and boyfriend. Clearly, all these words are useful to attack

the word mismatch problem, thus it is reasonable to combine P (Q|A) and P (A|Q)

instead of choosing just one of them.

In addition, the correspondence of words in the question-answer pair is not as

strong as in the English-French sentence pair, thus noise will be inevitably introduced

for both P (Q|A) and P (A|Q). Suppose a word w2 appears in the corresponding
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answer or question part whenever the word w1 appears in the question or answer

part. Another word w3 only appears in the corresponding answer part when w1

appears in the question part. Intuitively, w2 should be more similar to w1 than w3.

This intuition will be considered implicitly by combining P (Q|A) and P (A|Q), since

P (w2|w1) will get contributions from both P (Q|A) and P (A|Q), but P (w3|w1) only

gets the contribution from P (A|Q).

Two methods are used to combine P (Q|A) and P (A|Q). These two methods

differ in the stage that the combination occurs. The first method linearly combines

the trained word-to-word translation probabilities, which is shown as follows:

Plin(wi|wj) = (1− δ)P (wi, Ques|wj, Answ) + δP (wi, Answ|wj, Ques) (4.9)

The second method first pools the question-answer pairs used for learning the prob-

abilities P (A|Q) and the answer-question pairs used for learning the probabilities

P (Q|A) together, and then uses the translation model to learn the combined word-

to-word translation probabilities. Suppose we use the collection {(Q,A)1, ..., (Q,A)n}

to learn P (A|Q) and use the collection {(A,Q)1, ..., (A,Q)n} to learn P (Q|A), then

{(Q,A)1, ..., (Q,A)n, (A,Q)1, ..., (A,Q)n} is used here to learn the combination trans-

lation probability Ppool(wi|wj).

Table 4.3 shows some example word-to-word translations learned using three dif-

ferent ways of estimating the translation probabilities. It can be seen that most top

target words are semantically related to the source word, regardless of the estimation

method.

To clarify the differences between using questions and answers as sources and

targets, consider the word “everest”. When this word appears in the question part,

the words “29,035”, “8,850”, “feet” and “height” often appears in the corresponding

answers, as shown by the P (A|Q) column, since the user often asks about the height

of the mountain everest. On the other hand, if this word appears in the answer part,
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Table 4.3. Word-to-word translation probability examples. Each column shows
the top 10 target terms for a given source term. TTable denotes the type of the
word-to-word translation probability table.

Source everest xp
TTable P (A|Q) P (Q|A) Ppool P (A|Q) P (Q|A) Ppool

1 everest mountain everest xp xp xp
2 29,035 tallest mountain drive window window
3 ft everest tallest install computer install
4 mount highest 29,035 click system drive
5 8,850 mt highest system pc computer
6 feet discover mt window version system
7 measure hillary ft computer edition click
8 expedition edmund measure pc install pc
9 height mountin feet program software program
10 nepal biggest mount microsoft 98 microsoft

the corresponding question part often contains words such as “tallest”, “highest”,

and “mountain” as shown by the P (Q|A) column, because “everest” is used as the

answer to the questions such as “what is the highest mountain?”. Furthermore, Ppool

shows that after combining P (A|Q) and P (Q|A), we can obtain both these important

words.

It is also interesting to note that for the source term “xp”, the rank of “drive”

is higher than “window” according to P (A|Q). However, Ppool assigns the opposite

order for these two words, since “window” is also among the top words according

to P (Q|A) but “drive” is not. Intuitively, “window” should be more similar to “xp”

than “drive”. This intuition supports our assumption that two words are more similar

when they are related with different source-target configurations. Also, our proposed

combination method indeed boosts such words implicitly.

4.3.3 Examples

Table 4.4 shows some reformulated questions generated. For example, given the

original question “who is the prime minister of india”, the reformulated questions

include “who is current vice prime minister of india” and “who is the army chief of
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Table 4.4. Examples of the reformulated questions.

Query: who is the leader of india
1 who is the prime minister of india
2 who is current vice prime minister of india
3 who is the army chief of india
4 who is the finance minister of india
5 who is the first prime minister of india

Query: who made the first airplane that could fly
1 what is the oldest aiirline that still fly airplane
2 who was the first one who fly with plane
3 who was the first person to fly a plane
4 who the first one fly to the spase
5 who the first one who fly to sky

india”, which are semantically related to the original question but use quite different

vocabularies.

4.4 Patent Transformation For Prior-art Queries

Prior-art search in patent retrieval is to find previously published patents on a

given topic. It is a common task when the patent examiner needs to decide whether a

patent application is novel or when the searcher in the Intellectual Property Division

of commercial companies needs to check whether some techniques have been patented.

As a legal document for protecting the invention, a patent has complex structures

and technical content, which can create significant challenges for the retrieval system.

Furthermore, some additional factors can make the problem even worse. In order to

extend the coverage of a patent, the writers often intentionally use vague words and

expressions in the claim, which increases the difficulty of capturing the real content

of a patent. Also, in order to pass the patent examination, writers tend to develop

their own terminologies, which can cause serious word mismatch problems. The

combination of these factors make prior-art search significantly different with other

search tasks, such as web search.
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Currently, patent retrieval systems use a typical keyword search approach, such as

the retrieval system of USPTO3. In this approach, the success of the prior-art search

relies on the quality of the keywords posed by the user. However, due to the length

of the patent and the professional knowledge required to understand the content,

selecting keywords can be a difficult task.

Therefore, we consider a novel scenario for patent search, where the user directly

pose the patent application as the query instead of the keywords. This strategy

significantly reduces the burden of users. However, how to transform a whole patent

into a set of operational queries poses a new challenge for the retrieval system.

Fig. 4.2 shows an example patent. The <TITLE>, <ABST>, <BSUM>, <DRWD>,

<DETD> and <CLMS> tags indicate the title, the abstract, the summary, the de-

scription of the figures, the main body and the claim fields, respectively. The <CLAS>

field provides the category information. The <UREF> is a citation field, which indi-

cates a patent’s prior-art references decided by the patent examiner.

4.4.1 Operational Queries Generation

The operational queries considered are Indri queries (Metzler andCroft 2004)4.

As a well-developed query language, Indri provides abundant operators to satisfy dif-

ferent search requirements. For example, we can use the field operator to indicate the

structure information. It is also easy to provide weights for each word and use the

phrase operator.

To transform a patent into Indri queries, we need to consider several factors: Num,

how many query words should be kept, Field, where to extract query words; Weight,

which weighting method is used; NP, whether to use noun-phrases as a complement.

3United States Patent and Trademark Office, http://www.uspto.gov/.

4The details of the Indri query language can be found in the Appendices.
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Figure 4.2. An example patent.

A general transforming algorithm is provided in Fig. 4.3, where the discussed factors

are used as parameters.

For Num, we consider words from 10-100. For Field, we consider six fields of a

patent with explicit tags, the title field (ttl), the abstract field (abst), the brief sum-

mary field (bsum), the description of the figures (drwd), the detailed text description

field (detd) and the claim field (clms). Besides them, we also extract the primary

claim field (pclms), which is the most important claim in the claim field. Also, we

ALGORITHM: Transforming Patent to Query
INPUT: Patent, Num, Field, Weight, NP
OUTPUT: Query
PROCESS: Rank words in Field according to their tfidf scores and then
select Num top ranked words as the query words. Assign Weight to each
query word to get Queryw. Repeat the above steps for noun-phrases to
get Querynp. If NP is true, set Query as the combination of Queryw and
Querynp; otherwise set Query as Queryw.

Figure 4.3. General algorithm for transforming the query patent to an effective
search query.
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Table 4.5. Possible values of the parameters

Name Parameter Values
Num 10-100
Field ttl, abst, bsum, drwd, detd, clms, pclms, all
Weight tf, tfidf, bool
NP true, false

Table 4.6. Examples of Search Queries

Field Num Weight NP
Param Config 1 ttl 3 bool false

Query 1 #weight( 1.0 piezo 1.0 assist 1.0 magnetic)
Param Config 2 ttl 3 tfidf false

Query 2 #weight( 3.8 piezo 1.7 assist 1.5 magnetic)
Param Config 3 abst 3 tf true

#weight(
0.8 #weight( 1.0 piezo 2.0 magnet 3.0 seat)
0.2 #weight( 1.0 #1(piezoelectric actuator)

Query 3 1.0 #1(fluid control valve)
1.0 #1(nozzle type seat)

)
)

consider the case that the query words or noun-phrases are extracted from the whole

patent (all), which ignores the structure information. For Weight, we consider us-

ing equal weights (bool), term frequency (tf) and the combination of term frequency

and the inverted document frequency (tfidf). For NP, we consider using noun-phrase

(true) or not (false). Table 4.5 shows the possible values of different parameters.

4.4.2 Examples

Table 4.6 shows the Indri queries generated from the example patent (as shown in

Fig. 4.2) using different parameter configurations. Query 1 extracts the words from

the title field and weights them equally, while Query 2 weights these words using their

term frequencies. Query 3 combines the words and the noun phrases extracted from

the abstract field.
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4.5 Summary

In this chapter, we described four techniques of generating reformulated queries.

These techniques are designed for different types of queries such as a short keyword

query, a verbose query, a natural language question and a patent query. Note that,

as an early attempt of using the whole patent as a query, we currently generate a set

of Indri queries as a simulation of the realistic user queries. How to directly generate

the realistic queries from a query patent will be studied in the future.
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CHAPTER 5

PROBABILITY ESTIMATION

In this chapter, we study how to estimate the probability for each reformulated

query. We first introduce the probability estimation framework. Then, two ap-

proaches are described in detail, where the first one optimizes the performance of

using a single reformulated query, while the second one optimizes the performance

of using a set of reformulated queries. Part of the content of this chapter has been

published in our previous work (Xue et al. 2010) (Section 5.2) and (Xue and Croft

2011) (Section 5.3).

5.1 Framework

We first assume that the probability assigned to each reformulated query is a

combination of their query feature values as shown in Eq. 5.1.

P (qr|q) =
exp

∑

k λkfk(qr)

Z(q)
(5.1)

Z(q) =
∑

q′r

exp
∑

k

λkfk(q
′
r) (5.2)

where fk(qr) denotes the query feature value extracted to characterize a reformulated

query qr and λk is the parameter corresponding to fk. θ = {λk} denotes all the

parameters of the model. Z(q) serves as a normalizer.

Fig. 5.1 shows the framework of probability estimation. In the training phase,

given a training query q, a set of reformulated queries {qr} and the relevance judg-

ments of q, i.e., rel(q), are provided. We first extract the query features {fk(qr)} for
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Figure 5.1. The framework for probability estimation
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each reformulated query qr. Then, we run qr over the collection using the underlying

retrieval model M to obtain the retrieval scores of documents {logP (qr|D)}. Taking

{fk(qr)}, {logP (qr|D)} and rel(q) as the input, the learning process will learn the

parameters {λk} by directly optimizing the retrieval performance.

In the predicting phase, given an unseen query qnew and its reformulated queries

{qnewr }, we first extract the query features {fk(q
new
r )} for each reformulated query qnewr .

Then, we use the learned parameters {λk} to calculate the probability P (qnewr |qnew)

according to Eq. 5.1.

In the rest of this chapter, we describe two learning models. Both of them are

designed to directly optimize the retrieval performance of using the reformulated

queries.

5.2 Optimizing the performance of using a single reformu-

lated query

Intuitively, we want to learn a model that assigns high probability to the reformu-

lated query with good performance. Since the output of this model is a probability,

it can be solved as a standard regression problem, where each reformulated query is

treated as an instance and its retrieval performance is treated as the target value. A

standard regression method will minimize the distance between the estimated prob-

ability of a reformulated query and its retrieval performance as shown in Eq. 5.3.

argmin
θ

∑

q

∑

qr

|P (qr|q)−m(qr)| (5.3)

where m(qr) denotes the performance measure of qr, which is calculated using rel(q)

and {logP (qr|D)}. Specifically, we first use {logP (qr|D)} to rank documents and

then calculate any standard performance measure such as average precision and pre-

cision at the position k using rel(q). θ = {λk} are the parameters of the model.
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However, Eq. 5.3 has two drawbacks. First, Eq. 5.3 does not directly optimize

the retrieval performance of training queries. Thus, the learned parameters may not

necessarily bring good retrieval performance. Second, the reformulated queries {qr}

generated from different training queries q are treated equally. Since some training

queries may generate many more reformulated queries than others, the calculation of

Eq. 5.3 will be easily dominated by those training queries.

Therefore, we propose a new objective function in Eq. 5.4.

argmin
θ

GM-perf(θ) (5.4)

where GM-perf(θ) = (
∏

q

∑

qr

P (qr|q)m(qr))
1

T

In Eq. 5.4, T is the number of queries in the training set.
∑

qr
P (qr|q)m(qr) is the

expected retrieval performance using a reformulated query qr given the original query

q. Eq. 5.4 directly optimizes the Geometric Mean of the expected retrieval perfor-

mance of each query q in the training set. For example, if m(qr) measures average

precision (AP), Eq. 5.4 optimize the geometric mean average precision (GMAP) on

the training set, which is a widely used performance measure in information retrieval.

According to Robertson (2005), GMAP is sensitive to improvements on the difficult

queries.

Since Eq. 5.4 directly optimizes the geometric mean of the retrieval performance

of training queries, it solves the first drawback of Eq. 5.3. In addition, for each

query in the training set, we calculate the expected retrieval performance over its

reformulated queries, which solves the second drawback of Eq. 5.3.

Since T is a constant value after the training set is provided, optimizing Eq. 5.4

is equivalent to optimizing Eq. 5.5.

GM-perf ′(θ) =
∏

q

∑

qr

P (qr|q)m(qr) (5.5)
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The corresponding log-likelihood expression of Eq. 5.5 is shown in Eq. 5.6.

l(θ) =
∑

q

log
∑

qr

exp(
∑

k

λkfk(qr))m(qr)

−
∑

q

logZ(q)−
∑

k

λ2
k

2δ2
(5.6)

From this, we can show that the partial derivatives of λk can be calculated by Eq.

5.7.

∂l(θ)

∂λk

=
∑

q

∑

qr

Pm(qr|q)fk(qr) (5.7)

−
∑

q

∑

qr

P (qr|q)fk(qr)−
∑

k

λk

δ2

Pm(qr|q) is a distribution weighted by m(qr), which is shown as follows.

Pm(qr|q) =
exp(

∑

k λkfk(qr))m(qr)

Zm(q)
(5.8)

Zm(q) =
∑

qr

exp(
∑

k

λkfk(qr))m(qr) (5.9)

In Eq. 5.7, the first term is the expected value of fk weighted by the retrieval

performance and the second term is the expected value of fk without weighting.

Setting Eq. 5.7 to zero means making the distribution of the reformulated queries

correlates the distribution of their retrieval performance.

According to Eq. 5.7, L-BFGS is used for optimization, which is a limited-memory

version of the BFGS (Byrd et al. 1994) method.

Fig. 5.2 shows the process of optimizing the performance of using a single refor-

mulated query.
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Parameters 
θ={ λk}

Query Features 
fk (qr)

Retrieval Scores 
log P (qr|D)

Relevance 
Judgments 

rel(q)

Performance 
Measure m(qr)

Document 
Rank

Optimizing 
GM-perf (θ)

Figure 5.2. The process of optimizing the performance of a single reformulated
query.

5.3 Optimizing the performance of using a set of reformu-

lated queries

In the previous section, we optimize the retrieval performance of using a single

reformulated query qr. However, Eq. 3.1 shows that the query distribution model will

use a set of reformulated queries {qr} instead of a single one. Thus, there is still some

gap between the objective function used in Eq. 5.4 and the retrieval model using

the query distribution. In this section, we study how to jointly optimize performance

when using a set of reformulated queries.

The general idea of jointly optimizing a set of reformulated queries is to insert

their probabilities (Eq. 5.1) into the retrieval model of the query distribution (Eq.

3.1). Then, we directly optimize the retrieval model of the query distribution to

obtain the parameters used to calculate the probabilities of the reformulated queries.
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In order to facilitate the following inference, we simulate P (qr|q) using a weight

w(qr) which is calculated in Eq. 5.10.

w(qr) =
∑

k

λkfk(qr) (5.10)

Compared with Eq. 5.1, Eq. 5.10 removes the normalizer Z(q) =
∑

q′r
w(q′r),

which guarantees the definition of the probability. Note that we only use w(qr) as

a substitution of P (qr|q) for optimization. After we obtain the parameters, we still

use Eq. 5.1 to calculate the probability assigned to each reformulated query. Similar

assumptions have been made in previous work (Bendersky et al. 2010; Wang et al.

2010).

We replace P (qr|q) with w(qr) in Eq. 3.1 and obtain the following equations.

score(q,D) =
∑

qr

P (qr|q) logP (qr|D)

=
∑

qr

w(qr) logP (qr|D)

=
∑

qr

∑

k

λkfk(qr) logP (qr|D)

=
∑

k

λk

∑

qr

fk(qr) logP (qr|D) (5.11)

=
∑

k

λkFk({qr}, D) (5.12)

In Eq. 5.12, the retrieval score using the query distribution score(q,D) is rewritten

as a linear combination of a set of retrieval features Fk, where Fk and fk share the

same parameter λk. Comparing Eq. 5.11 and Eq. 5.12, Fk is calculated as follows.

Fk({qr}, D) =
∑

qr

fk(qr) logP (qr|D) (5.13)
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Parameters 
θ={ λk}

Query Features 
fk (qr)

Retrieval Scores 
log P (qr|D)

Relevance 
Judgments 

rel(q)

Retrieval Feature 
Fk({ qr}, D)

Learning-to-rank

Figure 5.3. The process of optimizing the performance of a set of reformulated
queries

Eq. 5.13 shows how to transform fk into Fk. Basically, Fk is the weighted combi-

nation of the retrieval scores using all reformulated queries in {qr}, where the weight

is the query feature value fk(qr).

Next, we need to optimize the performance of the retrieval model as indicated in

Eq. 5.12. Many learning-to-rank models have been proposed to directly optimize this

type of retrieval model, which is a linear combination of a set of retrieval features.

Here, a variant of ListNet (Cao et al. 2007) is selected to learn the parameters.

Instead of using the neural network, a limited-memory version of BFGS (Byrd et al.

1994) is used for optimization due to its efficiency.

Fig. 5.3 shows the process of optimizing the performance of a set of reformulated

queries.
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5.4 Summary

In this chapter, we described two approaches for probability estimation. Both

of them directly optimize the retrieval performance, where the first approach uses a

single reformulated query and the second one uses a set of reformulated queries.
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CHAPTER 6

APPLICATION I: QUERY DISTRIBUTION FOR SHORT

QUERIES

In ad hoc retrieval, a user poses a short query, i.e., a small number of keywords,

to a search system and the system will return a ranked list of relevant documents.

Depending on the application, a document could be a news report or a web page.

Many effective techniques have been developed to improve ad hoc retrieval. For

example, the query likelihood language model (Ponte and Croft 1998; Zhai and

Lafferty 2001b) performs consistently well on a variety of collections. The relevance

model (Lavrenko and Croft 2001) is a typical pseudo relevance feedback approach

that expands the original query using new words. The sequential dependence model

(Metzler and Croft 2005) provides a principled way to incorporate phrases and

proximity features. Passage-level evidence has been shown to be useful for ad hoc

retrieval especially when a document is long and contains multiple topics (Liu and

Croft 2002).

6.1 Implementation of Query Distribution Model

In order to implement the Query Distribution Model for short queries, we need

to instantiate three components, namely query generation, probability estimation

and retrieval model. For query generation, we use the passage analysis technique

described in Section 4.1. For probability estimation, we optimize the performance of

a set of reformulated queries as shown in Section 5.3. The query features used will

be described in this section. For the retrieval model, the query likelihood language
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Table 6.1. Implementation of the Query Distribution Model for short queries.

Query Generation passage analysis (Section 4.1)
Probability Estimation optimizing a set of queries (Section 5.3)
Retrieval Model query likelihood language model

model is used. Some extension is also described in this section. The above choices

are summarized in Table 6.1.

6.1.1 Query Features

Three types of query features are used to characterize a reformulated query.

The first type of features (PSG) is information extracted from the target corpus.

Specifically, we consider the number of passages that contain the whole reformulated

query as a feature, which provides evidence about whether this reformulated query

is widely used in the target corpus. Different passage sizes are considered. A smaller

passage size indicates stronger dependencies between query terms, but has lower

coverage since a lot of reformulated queries can not be observed within a tighter

window. On the other hand, using a bigger passage size increases the coverage at the

cost of sacrificing some quality. Thus, it is interesting to consider features extracted

based on different passage sizes. We also consider the number of documents where a

reformulated query appears.

The second type of features (NGRAM) is based on query logs and the web corpus.

Query logs record the frequencies of the queries used by search engine users, which

can be directly used as features of a reformulated query. On the other hand, the

web corpus used by search engine companies provides better coverage than the target

corpus used for retrieval, and thus can be used as a complement. Furthermore,

different fields of a web page serve different purposes, thus additional information can

be obtained by splitting the frequencies of a reformulated query in the web corpus

according to different fields. Using the Web N-gram Services provided by Microsoft

(Huang et al. 2010), the above information can be efficiently obtained, where raw
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Table 6.2. Three types of features for the reformulated query qr

PSG Features
psgN -count count of passages with size N containing qr
doc-count count of documents containing qr

NGRAM Features
qlog probability estimated from query logs
title probability estimated from title
body probability estimated from body
anchor probability estimated from anchor text

OPER Features
Orig whether it is the original query
Sub whether it is a substituted query
Morph whether it is a substituted query using Morph
Pat-add whether it is a substituted query using Pat-add
Pat-chg whether it is a substituted query using Pat-chg
Wiki whether it is a substituted query using Wiki
Seg whether it is a segmented query

frequencies are simulated by the N-gram language model probabilities. Particularly,

these probabilities calculated from query logs and different fields of a web page (body,

title and anchor) are provided, respectively.

The third type of features (OPER) indicates the operations applied to the original

query to generate the concerned reformulated query. These features correspond to

questions such as whether the reformulated query is the original query, or a substi-

tuted query, or a segmented query. For a substituted query, we further consider what

kind of methods are used (Morphologically Similar Words, Adding Word Patterns,

Changing Word Patterns and Wikipedia Redirect Page, see Section 4.1 for details).

The above three types of features are summarized in Table 6.2. psgN -count can

be instantiated to a variety of features by taking different values of the passage size

N .

6.1.2 Retrieval Model

In this subsection, we first describe two types of retrieval models and then discuss

how to combine different retrieval models within the query distribution framework.
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The query likelihood language model is considered as a document-level model

(doc), since it generates query words from the whole document. The details of the

query likelihood language model can be found in the Appendices. The retrieval score

is calculated using Eq. 6.1.

logP (qr|D) =
∑

w∈qr

P (w|D) (6.1)

where w is a query word and P (w|D) is estimated using the language modeling

approach (Ponte and Croft 1998; Zhai and Lafferty 2001b). Sometimes, qr

contains a phrase such as “(petroleum industry)(history)”. In this case, we treat the

phrase “petroleum industry” as a special word.

A passage-level model (psg) is also considered, which prefers documents where the

whole query is observed within a passage. The retrieval score is calculated using Eq.

6.2.

logP (qr|D) =
#psgN(qr, D)

#psgN(D)
(6.2)

where #psgN(qr, D) denotes the number of passages with size N containing qr in

document D and #psgN(D) denotes the total number of passages with size N in

document D. This maximal likelihood estimation (Eq. 6.2) can be smoothed with

the background model. Based on the value of N , different passage-level models can

be generated.

The Indri query language (Metzler and Croft 2004) provides an implemen-

tation of the above retrieval models. For example, the Indri queries for a reformu-

lated query “(petroleum industry)(history)” are displayed in Table 6.3 by using the

document-level model and the passage-level model, respectively. In this query lan-

guage, the operator “#combine” is an implementation of Eq. 6.1 and the operator

“#uwN” is an implementation of Eq. 6.2 where N is the passage size. “#1” is an
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Table 6.3. The Indri queries for “(petroleum industry)(history)”

document-level:
#combine( #1(petroleum industry) history)

passage-level:
#uw20( #1(petroleum industry) history)

operator for a phrase. After running these Indri queries, the retrieval scores returned

by the system are log(P (qr|D)).

Given a set of reformulated queries {qr}, different query distributions are gener-

ated according to the retrieval modelM , since the parameters {λk} learned are depen-

dent on M . Table 6.4 shows the query distributions learned using the document-level

model QDist(doc) and the passage-level model QDist(psg), respectively. The pas-

sage size used in this example is 20. Note that in order to explicitly indicate the

retrieval model, we use the Indri queries to represent the reformulated queries in the

query distribution.

The document-level model potentially retrieves more relevant documents, while

the passage-level model retrieves higher quality documents by imposing more restric-

tions. Considering their different properties, it is reasonable to combine these two

types of models. Suppose that there are p retrieval models. One possible solution

is to first generate p query distributions respectively and then linearly combine the

generated query distributions. However, it is not easy to decide the combination

weights. Instead, an alternative approach is considered in our work. Each query

feature fk is now transformed into p retrieval features F 1
k ∼ F

p
k using different re-

trieval models. Then, p sets of parameters {λk}
1 ∼ {λk}

p are learned. Using different

sets of parameters, a reformulated query qr is expanded as p Indri queries with dif-

ferent probabilities, where each Indri query corresponds to a retrieval model. Since

the parameters for different retrieval models are learned within the same framework,

the learning procedure automatically takes care of how to balance the weights as-
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Table 6.4. Query distributions learned for the original query “oil industry history”

QDist(doc)
0.78 #combine(oil industry history),
0.08 #combine(#1(oil industry) history),
0.05 #combine(#1(petroleum industry) history),
0.05 #combine(oil industrialized history),
0.04 #combine(#1(oil and gas industry) history),...
QDist(psg)
0.59 #uw20(oil industry history),
0.19 #uw20(#1(oil industry) history),
0.12 #uw20(#1(petroleum industry) history),
0.05 #uw20(oil industrialized history),
0.05 #uw20(#1(oil and gas industry) history),...
QDist(doc+psg)
0.804 #combine(oil industry history),
0.054 #combine(#1(oil industry) history),
0.043 #combine(oil industrialized history),
0.042 #combine(#1(petroleum industry) history),
0.032 #combine(#1(oil and gas industry) history),
0.015 #uw20(oil industry history),
0.005 #uw20(#1(oil industry) history),
0.003 #uw20(#1(petroleum industry) history),
0.001 #uw20(oil industrialized history),
0.001 #uw20(#1(oil and gas industry) history),...
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signed to different models. Table 6.4 shows the query distribution that combines the

document-level model and the passage-level model QDist(doc+psg).

6.2 Experimental Configuration

Three TREC collections, Gov2, ClueWeb (Category B) and Robust04, are used

for experiments. The details of these collections can be found in the Appendices.

Gov2 and ClueWeb are large web collections with large and varied vocabulary, while

Robust04 is a newswire collection that uses a more homogeneous vocabulary. For

each collection, two indexes are built, one not stemmed and the other stemmed using

the Porter Stemmer (Porter 1980). Stemming transforms a word into its root form,

which is conducted either during indexing or during query processing. The latter case

treats stemming as a part of query reformulation, which has been shown to be effective

for web search (Peng et al. 2007). Both cases are considered in the experiments using

two types of indexes. No stopword removal is done during indexing. For each topic,

the title part is used as the query.

The query set is split into a training set and a test set. On the training set,

the parameters λk are learned according to Section 5.3. On the test set, the learned

parameters λk are used to generate the query distribution for each test query and

the performance of using the generated query distribution is reported. Specifically,

ten-fold cross validation is used, where the query set is randomly split into ten folds.

Each time nine folds are used for training and one fold is used for test. This process

repeats ten times.

Two passage sizes are used in our work, i.e., 20 and 100, which represent a tight

window and a loose window, respectively. Passages are first used to generate refor-

mulated queries as described in Section 4.1. The reformulated queries generated from

different passage sizes are put together to form the final set of reformulated queries

after removing duplicates. Then, two query features related to the passages are ex-
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tracted, i.e. psg20-count and psg100-count (see Table 6.2). For the retrieval models,

two passage-level retrieval models are considered, i.e. “#uw20” and “#uw100” (see

Table 6.3).

Two types of query distributions are considered: the first one only uses the

document-level model (“#combine”, see Table 6.3), which is denoted asQDist(doc);

the second one combines both the document-level model (“#combine”) and two

passage-level models (“#uw20” and “#uw100”), which is denoted asQDist(doc+psg).

Several baselines are compared. QL denotes the query likelihood language model

(Ponte and Croft 1998; Zhai and Lafferty 2001b). SDM denotes the sequential

dependence model (Metzler and Croft 2005). The details of SDM can be found in

the Appendices. The parameters of SDM are set according to (Metzler and Croft

2005). RM denotes the relevance model (Lavrenko and Croft 2001). The param-

eters of RM are set according to (Xu et al. 2009). Seg-SVM denotes a SVM-based

query segmentation method (Bendersky et al. 2009), which is trained on a corpus

of 500 pre-segmented noun phrases (Bergsma and Wang 2007). The parameters of

Seg-SVM are set according to (Bendersky et al. 2009). These methods represent

the state-of-the-art reformulation models on TREC collections. Reformulation mod-

els used in web search (Jones et al. 2006; Wang and Zhai 2008) are not compared

here, since they require large scale query logs. QL-psg denotes a passage-augmented

language model (Liu and Croft 2002), which augments the retrieval score of a docu-

ment using its best passage. The same passage sizes (20 and 100) as used in the query

distribution model are considered in QL-psg respectively and better performance is

reported. The baselines used are summarized in Table 6.5.

The standard performance measures, mean average precision (MAP) and preci-

sion at 10 (P10) are used to measure the retrieval performance. The details of the

performance measures can be found in the Appendices. In order to improve readabil-
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Table 6.5. Summary of Baselines

Name Description
QL query likelihood language model
SDM sequential dependency model
RM relevance model
Seg-SVM SVM-based query segmentation
QL-psg passage-augmented language model

ity, we report 100 times the actual values of these measures. The two-tailed t-test is

conducted to measure significance.

6.3 Examples

First, we present examples of the query distribution learned by using the document-

level retrieval model QDist(doc). Table 6.6 shows an example on the non-stemmed

index. The retrieval performance of using the original query and using the query

distribution is compared. The retrieval performance of the top ranked reformulated

queries in the query distribution is also displayed.

Table 6.6 shows that the learned query distribution obviously outperforms the orig-

inal query. In the query distribution, the appropriate probability is assigned to the

original query. In most cases, the original query receives the highest probability, since

it is not safe to deviate from the original query too much. In some cases, the refor-

mulated queries receive higher probabilities than the original one. For example, given

the original query “prostate cancer treatments”, the reformulated queries “prostate

cancer treatment” and “#1(prostate cancer) treatment” receive higher probability

and they both outperform the original query, since “treatment” is more likely to be

used with “prostate cancer” in actual queries. “kudzu pueraria lobata” is another

example, where the reformulated query “kudzu” receives higher probability, since

“pueraria lobata” is another and less popular name of “kudzu” and not very useful

for retrieval.
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Table 6.6. Example of the query distribution learned on the non-stemmed index
using the document-level retrieval model. Top ranked reformulated queries (qr) are
displayed. In the query distribution, the original query (q) is italicized. Average
Precision (AP) is reported as the retrieval performance.

P (qr|q) Reformulated Query (qr) AP

q: prostate cancer treatments 41.21
QDist(doc) 50.23
0.1390 #combine(prostate cancer treatment) 42.51
0.1118 #combine(#1(prostate cancer) treatment) 48.88
0.0920 #combine(prostate cancer treatments) 41.21
0.0485 #combine(#1(prostate cancer treatment )) 11.50

q: cruise ship damage sea life 6.75
QDist(doc) 25.83
0.1820 #combine(cruise ship damage sea life) 6.75
0.0950 #combine(#1(cruise ship) damage sea life) 21.69
0.0544 #combine(cruise ship damage #1(sea life)) 9.80
0.0544 #combine(#1(cruise ship) damage #1(sea life)) 7.43

q: kyrgyzstan united states relations 25.88
QDist(doc) 39.18
0.1652 #combine(kyrgyzstan united states relations) 25.88
0.1128 #combine(kyrgyzstan #1(united states) relations) 36.56
0.0573 #combine(kyrgyzstan united states foreign relations) 14.99
0.0566 #combine(kyrgyzstan us relations) 35.74

q: school mercury poisoning 10.29
QDist(doc) 16.64
0.2161 #combine(school mercury poisoning) 10.29
0.1284 #combine(school mercury exposure) 20.26
0.0441 #combine(school #1(mercury exposure)) 13.64
0.0335 #combine(schools mercury poisoning) 9.11

q: blue grass music festival history 16.65
QDist(doc) 38.06
0.1953 #combine(blue grass music festival history) 16.65
0.1456 #combine(bluegrass music festival history) 50.10
0.0698 #combine(#1(bluegrass music) festival history) 23.90
0.0411 #combine(bluegrass #1(music festival) history) 22.46

q: kudzu pueraria lobata 44.96
QDist(doc) 51.83
0.2778 #combine(kudzu) 52.69
0.1244 #combine(kudzu pueraria lobata) 44.96
0.0596 #combine(#1(kudzu pueraria lobata)) 22.08
0.0580 #combine(#1(kudzu kudzu)) 1.93
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Besides the original query, many reasonable and effective reformulated queries

can also be observed in the learned query distribution. For example, “#1(cruise

ship) damage sea life” and “kyrgyzstan #1(united states) relations” are segmented

queries, where much better retrieval performance is achieved by discovering the con-

cepts “cruise ship” and “united states” in original queries. “school mercury exposure”

and “bluegrass music festival history” are substituted queries where the original query

words “mercury poisoning” and “blue grass” are replaced with “mercury exposure”

and “bluegrass”, respectively. Significant performance improvement can be observed

by using these substituted queries.

Furthermore, we present the query distribution learned by using both the document-

level and the passage-level retrieval models QDist(doc+psg). Table 6.7 displays the

example of this type of query distribution using the non-stemmed index.

Table 6.7 shows that besides using the document-level retrieval model, QDist(doc+psg)

also applies the passage-level retrieval models to some important reformulated queries

such as “#uw100(ephedra deaths)” and “#uw20(ephedra deaths)”. These passage-

level queries help further improve the performance of QDist(doc).

6.4 Results

The first experiment is conducted to compare the query distribution model with

other reformulation models. RM and SDM represent the Concept Distribution (CDist)

models. Seg-SVM generates a single segmented query and combines it with the orig-

inal query, which can be considered as a variant of the Single Reformulated Query

(SRQ) model. The results are provided in Table 6.8.

Table 6.8 shows that the two query distribution models outperform both the CDist

models (SDM and RM) and the SRQ model (Seg-SVM), which supports the advan-

tages of modeling reformulation as a distribution of queries instead of a distribution of

concepts and a single reformulated query. Furthermore, QDist(doc+psg) outperforms
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Table 6.7. Example of the query distribution learned on the non-stemmed index
using the document-level and the passage-level retrieval models. Top ranked reformu-
lated queries are displayed. In the query distribution, the original query is italicized.
Average Precision (AP) is reported as the retrieval performance.

P (qr|q)Reformulated Query (qr) AP

q: ephedra ma huang deaths 47.42
QDist(doc) 57.07
QDist(doc+psg) 62.58
0.1682 #combine(ephedra deaths) 61.78
0.1434 #combine(ephedra ma huang deaths) 47.42
0.0439 #combine(ephedra ma huang death) 47.12
0.0395 #combine(ephedra #1(ma huang) death) 47.41
0.0394 #combine(#1(ephedra sinica ma huang ) deaths) 1.49
0.0392 #combine(ephedra sinica ma huang deaths) 28.83
0.0284 #uw100(ephedra deaths) 44.34
0.0276 #combine(#1(ephedra ephedra) deaths) 4.69
0.0233 #combine(#1(ephedra ma huang) death) 2.66
0.0193 #uw20(ephedra deaths) 36.45

QDist(doc), which shows that the dependencies imposed by the realistic queries are

useful for both estimating the distribution and for retrieving the documents. Specif-

ically, on Gov2, QDist(doc+psg) significantly outperforms SDM and RM in terms

of both MAP and P10. SDM and RM are both strong baselines that represent the

state-of-the-art techniques. The only exception happens on the Porter-stemmed in-

dex, where QDist(doc+psg) improves SDM by 1.9% on P10, which is not significant.

On Robust04, QDist(doc+psg) significantly improves SDM and RM on MAP. Some

improvement on P10 is also observed, but it is not significant. On ClueWeb, P10

is significantly improved by QDist(doc+psg), where the improvement over SDM and

RM is as large as 15%-30%. Large improvements are also observed on MAP, but they

are not significant. In addition, QL-psg is also worse than QDist methods, which

shows that the benefits of QDist come from modeling the original query as a query

distribution instead of simply using the passage information.

It is interesting to observe that the behavior of QDist(doc+psg) varies with differ-

ent collections, although it generally achieves the best performance on all collections.
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Table 6.8. The results of different reformulation models. The best performance is
bolded. ? denotes significantly different with baselines.

Gov2 Robust04 ClueWeb
MAP P10 MAP P10 MAP P10

Non-stemmed index
QL 26.89 54.56 22.73 40.92 17.88 28.06
SDM 28.29 55.77 23.76 42.85 18.88 31.22
RM 28.72 56.04 24.82 42.21 18.18 28.88
Seg-SVM 27.66 56.71 23.38 41.49 18.30 30.71
QL-psg 26.52 54.43 22.99 41.41 16.73 27.35
QDist(doc) 31.09 60.87 25.76 44.42 20.23 35.92
vs. QL 15.6% ? 11.6% ? 13.3% ? 8.6% ? 13.1% ? 28.0% ?

vs. SDM 9.9% ? 9.1% ? 8.4% ? 3.7% 7.2% 15.1% ?

vs. RM 8.3% ? 8.6% ? 3.8% 5.2% ? 11.3% 24.4% ?

QDist(doc+psg) 32.02 62.82 26.16 44.10 20.28 36.63
vs. QL 19.1% ? 15.1% ? 15.1% ? 7.8% ? 13.4% ? 30.5% ?

vs. SDM 13.2% ? 12.6% ? 10.1% ? 2.9% 7.4% 17.3% ?

vs. RM 11.5% ? 12.1% ? 5.4% ? 4.5% 11.6% 26.8% ?

Porter-stemmed index
QL 29.27 53.49 24.98 42.37 17.70 24.08
SDM 32.40 58.93 26.78 45.14 19.28 28.16
RM 31.07 54.83 26.71 42.85 18.03 25.00
Seg(SVM) 31.42 58.86 26.49 45.34 19.02 27.76
QL-psg 29.25 52.89 25.59 42.49 16.83 24.08
QDist(doc) 33.31 60.67 27.48 45.50 19.53 30.92
vs. QL 13.8% ? 13.4% ? 10.0% ? 7.4% ? 10.3% 28.4% ?

vs. SDM 2.8% ? 3.0% 2.6% ? 0.8% 1.3% 9.8%
vs. RM 7.2% ? 10.7% ? 2.9% 6.2% ? 8.3% 23.7% ?

QDist(doc+psg) 33.98 60.07 27.88 45.50 20.13 32.55
vs. QL 16.1% ? 12.3% ? 11.6% ? 7.4% ? 13.7% ? 35.2% ?

vs. SDM 4.9% ? 1.9% 4.1% ? 0.8% 4.4% 15.6% ?

vs. RM 9.4% ? 9.6% ? 4.4% ? 6.2% ? 11.6% 30.2% ?
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One possible explanation for QDist(doc+psg)’s behavior is based on the properties

of these three collections. Robust04 is a newswire collection containing high quality

documents and its size is relatively small. On this collection, it is not difficult to

retrieve some relevant documents using the original query, thus the baseline meth-

ods usually have good performance for the top end of the ranked list. Since RM

and SDM already perform well on P10, it is not easy for QDist to significantly im-

prove them. The effect of QDist is mainly shown on MAP (both SDM and RM are

significantly improved), where the reformulated queries help retrieve more relevant

documents that contain variations of the original query. In contrast, ClueWeb is a

large web collection that contains significant “noise”. QDist can significantly improve

the quality of the top ranked documents (measured by P10) by considering evidence

provided by the reformulated queries. In other words, QDist favors documents that

are recommended by many reformulated queries not just the original query, which

helps remove the noise. However, the improvement on MAP is not significant, since

some relevant documents are difficult to retrieve in such a collection even using the

reformulated queries. Gov2 is also a large web collection but the quality of web pages

is higher than ClueWeb, thus it could be considered to be between Robust04 and

ClueWeb in terms of its properties. QDist significantly improves MAP by retrieving

more relevant documents and significantly improves P10 by increasing the quality of

top-ranked documents.

Another observation is about the non-stemmed index and the Porter-stemmed

index. In general, QDist provides more improvements over baselines using the non-

stemmed index than using the Porter-stemmed one. It is not difficult to understand,

since some of the effect of using the reformulated queries, especially morphologically

similar queries is already provided by the Porter stemmer.

The second experiment is conducted to further analyze the query distribution

model. Specifically, we consider two additional baselines. The first baseline is to use
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Table 6.9. Further analysis of query distribution. QDist denotes QDist(doc).

Gov2 Robust04 ClueWeb
MAP P10 MAP P10 MAP P10

Non-stemmed index
QL 26.89 54.56 22.73 40.92 17.88 28.06
SDM 28.29 55.77 23.76 42.85 18.88 31.22
RM 28.72 56.04 24.82 42.21 18.18 28.88
single 23.26 50.34 19.37 36.63 13.29 24.80
equal 28.21 57.52 24.62 42.73 17.40 31.22
QDist 31.09 60.87 25.76 44.42 20.23 35.92

Porter-stemmed index
QL 29.27 53.49 24.98 42.37 17.70 24.08
SDM 32.40 58.93 26.78 45.14 19.28 28.16
RM 31.07 54.83 26.71 42.85 18.03 25.00
single 25.88 51.07 22.33 39.80 15.11 25.20
equal 31.31 58.86 26.55 44.46 16.97 30.00
QDist 33.31 60.67 27.48 45.50 19.53 30.92

the best reformulated query (except the original one) in the learned query distribution,

which is denoted as “single”. Compared with Seg-SVM, i.e., the variant SRQ method

used in the previous experiment, “single” is an exact SRQ method and it uses the

same set of reformulated queries as QDist. Thus, the comparison between “single”

and QDist will focus on the effect of using the query distribution or a single best

reformulated query. The second baseline assigns equal probabilities to all reformulated

queries in the distribution, which is denoted as “equal”. The comparison between

“equal” and QDist helps show the effect of the probability estimation method used by

QDist. Table 6.9 shows the results, where QDist(doc) is used as the query distribution

method and QL, SDM and RM are used as references.

Table 6.9 shows that as with Seg-SVM, “single” is worse than QDist, which clearly

indicates that using the whole query distribution is much better than using a single

reformulated query. “single” is even worse than QL, which supports the observations

of previous research (Bendersky and Croft 2008) that it is important to combine

the original query and the reformulated query to achieve good performance on TREC
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collections. “equal” is better than QL, comparable with SDM and RM, but it is still

worse than QDist. This shows that the query probability estimation method proposed

in this dissertation is effective. In addition, it is expensive to use the “equal” method,

since it has to use all reformulated queries generated for retrieval. When the number of

reformulated queries is big, this causes considerable computational cost. In contrast,

QDist assigns appropriate probabilities to reformulated queries, thus it is easy to pick

the top ranked reformulated queries for retrieval in practice. The effect of the number

of reformulated queries chosen is explored in the third experiment.

In the third experiment, the effect of using the top ranked reformulated queries in

the learned query distribution is shown in Fig. 6.1. QDist(doc) is used to represent

the query distribution method. The results are reported using the non-stemmed

index. Similar results are observed by using the Porter-stemmed index.

Fig. 6.1 shows that, on all collections, only using the top three to five reformulated

queries can outperform both RM and SDM. The performance of using the top 15

reformulated queries is already very close to the performance of using the whole

distribution.

The fourth experiment explores the effect of different types of features (PSG,

NGRAM, OPER, see Table 6.2). We are particularly interested in their effects on

picking the top ranked queries. The performance of the top three reformulated queries

in QDist(doc) using different types of features is reported in Table 6.10. The best

performance is bolded.

Table 6.10 shows that the best feature type is not consistent over collections.

Generally, combining different types of features together is more effective than using

a single type of feature. In addition to the top three reformulated queries, we also

explore other numbers of top ranked reformulated queries. In general, when more

reformulated queries are used, the performance of using different feature sets becomes

more similar.
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Figure 6.1. The effect of the number of reformulated queries. Non-stemmed index
is used. x-axis is the number of top ranked reformulated queries and y-axis is MAP.
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Table 6.10. The performance of top three queries in QDist(doc) using different types
of features. p denotes PSG, n denotes NGRAM and o denotes OPER.

Gov2 Robust04 ClueWeb
MAP P10 MAP P10 MAP P10

Non-stemmed index
p 30.36 58.39 24.52 42.49 19.18 30.82
n 29.45 57.58 24.93 43.45 19.40 32.04
o 27.86 55.64 24.67 42.53 18.81 31.43
p+n 30.29 59.19 25.16 43.98 19.57 33.98
p+o 30.14 58.19 24.61 42.81 18.43 31.53
n+o 28.63 56.38 25.22 43.82 18.60 31.22
all 30.06 57.85 25.23 43.82 18.62 33.06

Porter-stemmed index
p 31.94 56.91 25.90 43.21 18.60 28.27
n 31.93 57.38 26.64 44.62 19.14 29.69
o 30.98 56.31 26.75 44.54 19.11 29.59
p+n 32.02 56.64 26.73 44.50 19.07 30.31
p+o 32.06 57.38 26.59 44.06 18.86 29.29
n+o 31.36 56.38 27.00 44.78 19.19 29.39
all 32.10 57.11 27.01 44.78 18.91 29.80

6.5 Summary

In this chapter, we described an implementation of the query distribution model

for short queries. Experiments on TREC collections have shown that the query

distribution model significantly outperforms the state-of-the-art techniques.
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CHAPTER 7

APPLICATION II: QUERY DISTRIBUTION FOR

VERBOSE QUERIES

Verbose (or long) queries have become popular in ad hoc retrieval recently, since

they help users express their information needs naturally. However, current search

engines cannot handle verbose queries well. It seems that the additional information

provided in verbose queries is more likely to confuse current search engines rather

than help them. Thus, dealing with verbose queries poses a new challenge for ad hoc

retrieval.

Previous work on processing verbose queries generally falls into two areas, selecting

a subset of the verbose query and weighting all query words of the verbose query.

Kumaran and Allan (2007) studied reducing the verbose query into a subset

through human interaction. The subset queries with high mutual information scores

are displayed to users. Their experiments show that a user can select good subset

queries using snippet information. Bendersky and Croft (2008) proposed a method to

find key concepts from a verbose query using different types of features. A key concept

can be considered as a special subset query, which improves the retrieval performance

when combined with the verbose query. Kumaran and Carvalho (2009) used Ranking

SVM to learn selecting sub-queries using several query quality predictors. Ranking

SVM learns to rank subset queries according to their retrieval performance.

Lease et al (2009) improved verbose queries by weighting query terms, which

assigned more weight to important words and less weight to unimportant ones. They

trained a regression model to learn how to map the secondary features to the optimal
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Table 7.1. Implementation of the Query Distribution Model for verbose queries.

Query Generation subset selection (Section 4.2)
Probability Estimation optimizing a single query (Section 5.2)
Retrieval Model four types of retrieval models (Section 7.1.2)

weights of query words. Lease (2009) further incorporated their regression model into

the framework of the sequential dependence model (Metzler and Croft 2005) and

observed significant performance improvement. Bendersky et al (2010) proposed a

unified framework to measure the importance of concepts underlying the verbose

queries and extended the conventional sequential dependence model to a weighted

version.

In this chapter, we describe how to apply the query distribution model for verbose

queries. The content of this chapter has been published in our previous work (Xue

et al. 2010).

7.1 Implementation of Query Distribution Model

In order to implement the Query Distribution Model for verbose queries, we need

to instantiate three components, i.e., query generation, probability estimation and

retrieval model. For query generation, we use the subset selection technique described

in Section 4.2. For probability estimation, we optimize the performance of a single

reformulated query as shown in Section 5.2. For the retrieval model, four types of

retrieval models are developed. The query features used for probability estimation

and the retrieval models will be described in the rest of this section. The above

choices are summarized in 7.1.

7.1.1 Query Features

Three types of features are used to characterize a reformulated query qr (or a

subset query in this chapter). Some of the features used here are the same as the

features used by Bendersky and Croft (2010) and by Kumaran and Carvalho (2009).

81



Independency Features (ID) characterize a single query word. This type of feature

includes the standard term frequency and document frequency in the target corpus,

the frequency of the query word observed in external resources such as Google Ngram,

Wikipedia and some commercial query logs. Besides statistical information, they also

include some syntactic features such as POS-tags. For a given independency feature,

the feature value of each word is summed together to characterize qr.

Local Dependency Features (LD) capture the dependencies between query words.

Since they characterize some query words but not all, they are called local depen-

dency features. This type of feature includes bigrams, noun phrases, the dependency

relations returned by a dependency parser (De Marneffe and Manning 2008) and

named entities. All statistical features used for single words can also be applied to

bigrams. Noun phrases have been shown to be effective when they are combined with

the original query (Bendersky andCroft 2008). A dependency parser (De Marn-

effe and Manning 2008) can return different types of relations between two query

words. For example, given the sentence “How frequently does the Mississippi River

flood its banks?”, “river” and “flood” satisfies the subject relation, since “river” is

the subject of “flood”. Also, “flood” and “banks” have the object relation, since

“banks” is the object of “flood”. It helps sometimes to include words satisfying a cer-

tain relation in a subset query. Named entities including names of people, locations

and organizations are usually important and may be included in subset queries. For

a local dependency feature, the feature values of all local dependencies are summed

together to characterize qr.

Global Dependency Features (GD) describe a subset query as a whole. Thus,

they are called global dependency features. As indicated by Kumaran and Carvalho

(2009), query quality predictors are good features to characterize subset queries. Here,

several types of query quality predictors have been used, such as Mutual Information

(Kumaran and Allan 2007), Query Scope (He and Ounis 2004), Query Clarity
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(Cronen-Townsend et al. 2002) and so on. Passage-level evidence can also be used

to describe a subset query. If a subset query appears frequently within a passage,

it is very likely that query words of this subset query are closely related. Thus, the

number of passages containing a subset query is used as a feature. The parsing tree

(Klein and Manning 2003) of the input query also provides valuable information.

It is interesting to consider whether query words of a given subset query concentrate

on a small part of the parsing tree or spread over the whole tree. This property is

partly measured by the height of the lowest common ancestor of all query words in

the parsing tree.

Finally, all features used are summarized in Table 7.2.

7.1.2 Retrieval Model

A retrieval model takes into a reformulated (or subset) query qr and outputs the

retrieval score. Four types of retrieval models are developed as follows.

The first two types of models only use qr, where SubQL uses the query likelihood

language model and SubSDM uses the sequential dependence model. Here, “Sub”

is used to emphasize that it is used for a subset query.

The other two types of retrieval models combine the subset query qr with the

original query q.

QL+SubQL denotes a combination of the original query and the subset query,

where both parts use the query likelihood language model. The score of a document

using this model can be calculated as follows:

score(D, q, qr) = αscoreQL(D, q) + (1− α)scoreQL(D, qr) (7.1)

where scoreQL(D, q) is the retrieval score of using the query likelihood language model

and α is a parameter weighting the original query and the subset query. α is set as

0.8 in this chapter.
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Table 7.2. Three types of features

Independency Features (ID)
uTF unigram term frequency
uDF unigram document frequency
uNGram unigram count in Google nGram
uWiki unigram count of matching Wiki titles
uMSNLog unigram count in MSN query logs
uPosTag unigram pos-tag=“NN”, “VB”, “JJ”

Local Dependency Features (LD)
bTF bigram term frequency
bDF bigram document frequency
bNGram bigram count in Google nGram
bWiki bigram count of matching Wiki titles
bMSNLog bigram count in MSN query logs
np noun phrases
dep-obj the object relation
dep-subj the subject relation
dep-nn the noun compound modifier relation
PER person names
LOC location names
ORG organization names

Global Dependency Features (GD)
MI mutual information
SQLen sub-query length
QS query scope
QC query clarity score
SOQ similarity to original query
psg count of passages containing sub-query
h-pnode height of the parent node covering sub-query
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Table 7.3. Example of Indri queries.

q : jobs outsourced india
qs: jobs india
SubQL:

#combine(jobs india)
SubSDM:

#weight(
0.85 #combine(jobs india)
0.1 #combine(#1(jobs india))
0.05 #combine(#uw8(jobs india))

)
QL+SubQL:

#weight(
0.8 #combine(jobs outsourced india)
0.2 #combine(jobs india)

)
SDM+SubQL:

#weight(
0.8 #wegiht(

0.85 #combine(jobs outsourced india)
0.1 #combine(#1(jobs outsourced) #1(outsourced india))
0.05 #combine(#uw8(jobs outsourced) #uw8(outsourced india))

)
0.2 #combine(jobs india)

)

SDM+SubQL uses the sequential dependency model for the original query and

uses the query likelihood model for the subset query. The score of a document is

calculated as follows:

score(D, q, qr) = αscoreSDM(D, q) + (1− α)scoreQL(D, qr) (7.2)

where scoreSDM is the retrieval score of using a sequential dependence model and α

is a parameter. α is set as 0.8 in this chapter.

The above four retrieval models can all be implemented using the Indri query

language (Metzler and Croft 2004). Table 7.3 shows an example of Indri queries

used for each retrieval model.
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7.2 Experimental Configuration

Experiments are conducted on three TREC collections (Gov2, Robust04 and

WT10g). The details of these collections can be found in the Appendices.

For each collection, the index is built using the Porter Stemmer (Porter 1980).

No stopword removal is performed during indexing. For each topic, the description

part is used as the query. Following Bendersky et al (Bendersky et al. 2010), a

short list of 35 stopwords and some frequent stop patterns (e.g., “find information”)

are removed from the description query in order to improve the retrieval performance

of the baseline methods.

The query set is split into a training set and a test set. On the training set,

the parameters λk are learned according to Section 5.2. On the test set, the learned

parameters λk are used to generate the subset distribution for each test query and

the performance of using the generated subset distribution is reported. Ten-fold cross

validation is conducted.

Several baseline methods are compared. Besides the query likelihood language

model (QL) and the sequential dependence model (SDM), we also include Kumaran

and Carvalho’s method (Kumaran and Carvalho 2009), which considers sub-query

selection as a ranking problem. This method is denoted as SRank. Rank SVM

(Joachims 2002) is used as the ranking model. According to their suggestions, the

parameters of Rank SVM are set as follows: RBF kernel is used with γ set as 0.001

and C is set as 0.01. Another baseline is Bendersky and Croft’s method (Bendersky

and Croft 2008) that augments the original query by discovering key concepts. This

method is denoted as KC. The baselines are summarized in Table 7.4.

The standard performance measures, mean average precision (MAP) and precision

at 10 (P@10), are used to measure retrieval performance1. The details of the perfor-

1In order to improve readability, we report 100 times the actual values of each performance
measure.
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Table 7.4. Summary of Baselines

Name Description
QL query likelihood language model
SDM sequential dependency model
SRank Rank SVM
KC discovering key concept

mance measures can be found in the Appendices. The two-tailed t-test is conducted

for significance.

7.3 Examples

First, we present some examples of the subset distribution in Table 7.5. The

average precision (AP) of the original query and subset queries is reported on the

Gov2 collection. As mentioned previously, some stopwords and stop patterns are

removed from the original query. Those words are kept to improve readability. Note

that they are not used for retrieval and sub-query generation.

Table 7.5 shows that the subset distribution learned is reasonable, which success-

fully assigns high probabilities to subset queries that perform better than the original

query. For example, given the original query “steps manage control protect squir-

rels”, the top three subset queries “steps protect squirrels”, “steps control squirrels”

and “steps control protect squirrels” receive most of the probability and all of them

perform much better than the original query.

Furthermore, it is interesting to compare the subset distributions learned based

on different retrieval models. Table 7.6 compares the top one subset query returned

by SubQL and QL+SubQL and some examples are also provided to compare SubDM

with SDM+SubQL.

Table 7.6 shows that when the subset queries are used alone (SubQL and SubDM),

the subset distribution learned tends to assign high probabilities to longer subset

queries, since it is safer to cover most of the concepts in the original query. When the
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Table 7.5. Example of the subset distribution learned using SubQL. Top four subset
queries are displayed. In the original query q, the words actually used are bolded and
stopwords and stop structures are italicized.

P (qr|q) subset query (qr) AP
q: what is the history and location of scottish highland games 49.53
in the united states
0.564 scottish highland games united states 54.28
0.341 location scottish highland games united states 57.04
0.074 history scottish highland games united states 43.73
0.010 history location scottish highland united states 18.38
q: give information on steps to manage control or protect squirrels 21.03
0.621 steps protect squirrels 31.13
0.324 steps control squirrels 28.59
0.048 steps control protect squirrels 30.35
0.002 steps manage squirrels 25.46
q: how have humans responded and how should they respond 10.47
to the appearance of coyotes in urban and suburban areas
0.452 humans responded appearance coyotes urban suburban 31.54
0.103 humans responded respond appearance coyotes urban 26.90
0.086 humans responded respond appearance coyotes suburban 14.09
0.045 humans responded appearance coyotes urban 50.80
q: what is known about the culture and history of the chaco people 30.77
from features of the chaco culture national historic park
0.214 culture history chaco people features chaco 53.16
0.119 culture chaco people features chaco park 46.98
0.102 known chaco people features chaco park 38.60
0.069 history chaco people features chaco park 42.01
q: the remedies and treatments given to lessen or stop effects of 13.53
ovarian cancer
0.835 remedies treatments given effects ovarian cancer 23.92
0.073 remedies treatments given lessen ovarian cancer 17.31
0.066 remedies treatments given ovarian cancer 20.37
0.010 remedies treatments lessen effects ovarian cancer 16.79
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Table 7.6. Comparisons of the top subset queries in the subset distributions learned
using different retrieval models. In the original query q, the words actually used are
bolded and stopwords and stop structures are italicized.

q: what evidence is there that aspirin may help prevent cancer
SubQL: evidence aspirin may help cancer
QL+SubQL: aspirin prevent cancer
q: what states or localities offer programs for gifted talented students
SubQL: localities offer programs gifted talented students
QL+SubQL: gifted talented students
q: illicit activity involving diamonds to include diamond smuggling
SubQL: illicit activity diamonds diamond smuggling
QL+SubQL: diamonds diamond smuggling
q: what allegations have been made about enrons culpability in the
california energy crisis
SubSDM: allegations enrons culpability california energy crisis
SDM+SubQL: enrons culpability california energy crisis
q: what is the history and location of scottish highland games in the
united states
SubSDM: location scottish highland games united states
SDM+SubQL: scottish highland games
q: where do yew trees grow anywhere on the globe
SubSDM: yew trees grow globe
SDM+SubQL: yew trees globe

subset queries are combined with the original query (QL+SubQL, SDM+SubQL),

the subset distribution learned tends to favor shorter queries, since it is reasonable

to focus on important concepts when the original query has covered all concepts. For

example, given the original query “history location scottish highland games united

states”, SubSDM selects a sub-query “location scottish highland games united states”

which covers almost all concepts of the original query, while SDM+SubQL simply

picks up the most important concept “scottish highland games”. Similarly, SubQL

selects a subset query “localities offer programs gifted talented students” which only

removes “states” from the original query, while QL+SubQL selects the key concept

“gifted talented student”.
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Table 7.7. Performance of retrieval models using the subset distribution.q denotes
significantly different with QL and d denotes significantly different with SDM.

Gov2 Robust04 Wt10g
MAP P@10 MAP P@10 MAP P@10

QL 25.43 52.21 25.49 43.13 19.61 32.68
SDM 27.85 54.03 26.83 44.94 20.87 35.77
SRank 24.99 50.74 24.78 41.57 19.98 32.06
KC 27.52 53.83 25.97 41.65 21.01 34.02

QDist Methods
SubQL 26.66q 53.36 25.96 41.93 19.27 31.75
QL+SubQL 26.76q 53.15 26.20q 43.21 19.94 33.20
SubSDM 28.60q 53.76 27.07q 43.69 20.70 34.74
SDM+SubQL 28.70q

d 55.37q 27.37q
d 45.14q 22.17q 35.15q

7.4 Results

The first experiment is conducted to compare the subset distribution models

with baseline methods. The models using the subset distribution include SubQL,

QL+SubQL, SubSDM and SDM+SubDM. For each model, the top ten subset queries

within the subset distribution are kept. The results are shown in Table 7.7. The best

performance of each column is bolded.

Table 7.7 shows that SubQL performs better than QL on Gov2. QL+SubQL

performs better than QL on all three collections, which indicates that combining

the sub-query with the original query is promising. SubSDM is slightly better than

SDM on Gov2 and Robust04 according to MAP. The best performance is achieved by

SDM+SubQL, which performs significantly better than SDM, a very strong baseline,

on Gov2 and Robust04. It indicates that the most effective way is to use the sequential

dependence model for the original query, use the query likelihood model for the sub-

query and combine them together. SDM+SubQL also performs better than KC, the

state-of-the-art technique for improving verbose queries.

The second experiment is conducted to explore the relative effect of different types

of features (Independency Features, Local Dependency Features and Global Depen-
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dency Features). Table 7.8 reports the mean average precision (MAP) of different

retrieval models using different types of features.

Table 7.8 shows that the best feature set is not consistent over different retrieval

models and different collections. On Gov2, different retrieval models prefer different

features. On Robust04, combining all three types of features together is clearly the

best choice. On Wt10g, only using the Independency Features and the Global De-

pendency Features (I+G) seems to be the best choice. It is also interesting to notice

that the best feature set almost always involves Global Dependency Features, which

shows that capturing global dependencies of queries is important. Generally, combin-

ing different types of features together is more effective than only using a single type

of features.

Table 7.7 has shown the performance of using the top ten subset queries. In the

third experiment, we explore the effect of the number of subset queries used. The

results are displayed in Fig. 7.1. The retrieval model used is SubQL.

Fig. 7.1 shows that on three collections the most obvious performance improve-

ment happens when k increases from one to five and there is not much difference

when k is bigger than five. The reason is that the top five sub-queries usually receive

most of the probability of the distribution. The above observations support using

a distribution of sub-queries for improving retrieval performance. Thus, instead of

returning a single sub-query, the model that can generate the sub-query distribution

is preferred.

7.5 Summary

In this chapter, we described an implementation of the query distribution model

for verbose queries. Experiments on TREC collections have shown that the query

distribution model significantly outperforms the state-of-the-art techniques.

91



Table 7.8. The mean average precision (MAP) of using different types of features.
“I” denotes the Independency Features, “L” denotes the Local Dependency Features
and “G” denotes the Global Dependency Features.

SubQL QL+SubQL SubSDM SDM+SubQL

Gov2
I 26.20 26.55 29.04 28.71
L 26.27 26.32 28.57 28.54
G 25.78 26.19 28.30 28.49
I+L 26.02 26.78 28.23 28.62
I+G 26.49 26.62 28.84 28.96
L+G 26.57 26.90 28.79 28.60
I+L+G 26.66 26.76 28.60 28.70

Robust04
I 25.53 25.63 26.77 26.86
L 25.04 25.88 26.44 27.25
G 25.69 25.81 26.87 26.99
I+L 25.46 26.08 26.70 27.32
I+G 25.77 26.12 26.75 27.25
L+G 25.59 26.19 26.44 27.06
I+L+G 25.96 26.20 27.07 27.37

Wt10g
I 21.00 20.34 22.19 22.73
L 19.33 20.10 20.51 21.55
G 21.15 20.11 22.14 21.98
I+L 19.54 19.92 20.55 21.96
I+G 21.84 21.11 23.21 22.76
L+G 19.38 19.99 20.59 22.47
I+L+G 19.27 19.94 20.70 22.17
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(a) Gov2

(b) Robust04

(c) Wt10g

Figure 7.1. The influence of the number of subset queries
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CHAPTER 8

HIERARCHICAL QUERY DISTRIBUTION

Dealing with complex queries usually requires a series of query operations. For

example, a reasonable process of dealing with a verbose query can be described as

follows. The system first selects a subset of query words from the original query

to remove noisy information. Then, the generated subset query is further modified

to handle vocabulary mismatch. Finally, weights are assigned to queries generated

at each step. Depending on the application, the above process could become more

complicated. For example, in cross-lingual retrieval, the original verbose query needs

to be translated into a foreign language query before applying any further operation.

The above process will generate multiple sequences of reformulated queries, where

each sequence records a way of modifying the original query using several query

operations. These reformulation sequences capture the relationships between the

reformulated queries. Fig. 8 displays some examples of the reformulation sequences,

where the subset query is selected from the original query at the first step of the

sequence and the second step further substitutes the subset query.

The query distribution model proposed earlier in this dissertation indeed considers

a reformulated query as the basic unit, but it fails to capture the relationships between

Reformulation Sequence

Q→reductions iraqs foreign debt→reduce iraqs foreign debt
Q→iraqs foreign debt→iraqs foreign debts
Q→iraqs foreign debt→iraqs external debt

Figure 8.1. The reformulation sequences generated for the verbose query q “any
efforts proposed or undertaken by world governments to seek reduction of iraqs foreign
debt”
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Query Distribution

{ 0.55 seek reduction iraqs, 0.23 seek reduction iraqs debt,

0.05 undertaken iraqs debt, 0.03 efforts seek reduction iraqs … }

Hierarchical Query Distribution

Original Query 
0.36

reductions iraqs foreign debt 
0.20

iraqs foreign debt 
0.12

reduce iraqs foreign debt 
0.20

iraqs foreign debts 
0.08

iraqs external debt 
0.04

Subset Selection:

Query Substitution:

Figure 8.2. From the query distribution to the hierarchical query distribution for
the verbose query “identify any efforts proposed or undertaken by world governments
to seek reduction of iraqs foreign debt”

the reformulated queries. Thus, the sequences of reformulated queries cannot be

modeled. In this chapter, we propose a hierarchical query distribution model that

extends the standard query distribution model to capture the dependence between

reformulated queries. Using the hierarchical query distribution, a query is transformed

into a reformulation tree, where the nodes at each level of this tree correspond to the

reformulated queries generated using a specific query operation. A reformulation

sequence is naturally modeled as a path from the root node to the leaf node. The

construction of the reformulation tree simulates the process of applying a series of

query operations to the complex query.

Using a verbose query as an example, we implement the hierarchical query distri-

bution framework as a two-level tree structure, where the first level corresponds to

the subset query selection operation and the second level corresponds to the query

substitution operation.

95



Fig. 8.2 illustrates the hierarchical query distribution. The first level of this tree

consists of two subset queries extracted from the original query, i.e., “reductions iraqs

foreign debt” and “iraqs foreign debt”. At the second level, each subset query is

further modified to generate query substitutions. For example, “iraqs foreign debt”

has been modified to “iraqs external debt”. Furthermore, the probability is assigned

to each node of this tree, which measures the importance of each reformulated query.

The content of this chapter has been published in our previous work (Xue and

Croft 2012).

8.1 Framework

Suppose that n query operations {r1, r2, ..., rn} are required to process a complex

query q. Then, q is transformed into a n-level tree T . Each node of T represents

a reformulated query qr. From now on, if not explicitly indicated, we use qr to

represent both a node of T and the corresponding reformulated query. The root node

of T represents the original query q, which can be considered as a special reformulated

query. The ith level of T are generated by applying the ith operation ri to the nodes

at the (i − 1)th level. An arc is added between the nodes at the (i − 1)th level and

the nodes at the ith level if the latter is the output of applying ri to the former.

Therefore, each path of T corresponds to a reformulation sequence. Furthermore, the

probability P (qr|q) is assigned to each node of T , which measures the importance of

the corresponding reformulated query qr. Since the sum of the probability assigned to

each reformulated query is equal to one, i.e.,
∑

qr∈T
P (qr|q) = 1, P (qr|q) is considered

as a multinomial distribution. Furthermore, all reformulated queries are organized

into a hierarchial structure, thus this query distribution is called the hierarchical

query distribution.

When a series of query operations are applied, this representation helps model the

reformulation sequences generated using these operations, which cannot be captured
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by the query distribution model. Similar to the query distribution model (as shown

in Fig. 3.1), the framework of the hierarchical query distribution also consists of three

major components.

First, the reformulated queries are generated by applying a series of reformulation

operations. The reformulated queries are further organized into a tree structure,

which captures different reformulation sequences.

Second, the probability is estimated for each node (or reformulated query) in the

tree. This probability should characterize both the properties of this node itself and

the relationships with other nodes. Specifically, the probability of qr is not only

decided by its own query features {fk} but also by the weight of its parent node

par(qr). In this way, the relationships between reformulated queries are incorporated

into the probability estimation.

Third, when the reformulation tree T , the retrieval score of a document D is

calculated using Eq. 8.1.

score(q,D) =
∑

qr∈T

P (qr|q) logP (qr|D) (8.1)

Eq. 8.1 is the same as the retrieval score of using the query distribution as shown in

Eq. 3.1, where the retrieval score is a linear combination of using each reformulated

query.

8.2 Hierarchical Query Distribution for Verbose Queries

In this section, we instantiate the general hierarchical query distribution for ver-

bose queries and describe a two-level reformulation tree. We first describe the query

operations used to construct the reformulation tree, i.e. subset query selection and

query substitution. Then, we introduce a stage-based weight estimation method to

assign weight to each node. These weights are finally transformed into probabilities.
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8.2.1 Building Tree Structure

The construction of the reformulation tree for verbose queries consists of two steps:

first, subset queries are selected from the original query; second, the subset queries

generated in the previous step are further modified to generate query substitutions.

The subset query selection is described in Section 4.2. We follow Kumaran and

Carvalho (2009)’s method to generate subset queries. All query words from the

original verbose query are considered. If the length of the verbose query is bigger

than ten, we first rank all query words by their idf values and then pick the top ten

words for the subset query generation. Then, all subset queries with length between

three and six words are generated.

The passage analysis technique is used to generate query substitutions, where the

details can be found in Section 4.1. Briefly, in order to replace one word from the orig-

inal query, all the passages containing the rest of the query words are first extracted.

Then, the three methods introduced in Section 4.1 are used to generate candidates for

query substitution from these passages. Morph considers the morphologically similar

words as candidates. Pattern considers the words matching the patterns extracted

from the original query as candidates. Wiki considers the Wikipedia redirect pairs

as the candidates. Finally, the top ranked candidates are used as query substitutions.

Given the above two query operations, the reformulation tree for the verbose query

can be generated in this way. First, all subset queries with length between three to

six are extracted from the original query. Each subset query is assigned a weight.

How to estimate the weight will be described later. According to this weight, we will

pick the top ranked subset queries to construct the first level of the reformulation

tree. SubNum is a parameter that controls the number of top ranked subset queries

used for the first level construction. Second, among these SubNum subset queries,

we further modify the top ModNum queries to generate query substitutions, which
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Original Query  

  

reductions iraqs foreign debt  

  

iraqs foreign debt  

  

reduce iraqs foreign debt 

  

iraqs foreign debts  

  

iraqs external debt  

  

Original Query  

  

Original Query  

  

reductions iraqs foreign debt  

  

iraqs foreign debt  

  

Step 1 

Step 2 

Figure 8.3. The process of constructing a reformulation tree

constructs the second level of the reformulation tree. ModNum is another parameter

that controls the number of the top ranked subset queries used for query substitution.

For example, the reformulation tree displayed in Fig. 8.2 can be constructed

in two steps. This process is illustrated in Fig. 8.3. First, we pick the top two

subset queries “reductions iraqs foreign debt” and “iraqs foreign debt” to construct

the first level of the reformulation tree. Second, we modify these two subset queries

respectively. For the first subset query, “reduce iraqs foreign debt” is generated

by replacing “reduction” with “reduce”. For the second subset query, two query

substitutions, i.e. “iraqs foreign debt” and “iraqs external debt” are generated.

8.2.2 Weight Estimation

Similar to Section 5.3, we use w(qr) to replace P (qr|q) for learning the parameters.

w(qr) can be calculated in Eq. 8.2.
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w(qr) = w(par(qr))
∑

k

λkfk(qr) (8.2)

Eq. 8.2 indicates that the weight of a node in the reformulation tree depends on

both its intrinsic features and the weight of its parent nodes. In this part, we describe

a stage-based weight estimation method.

In the initial stage, the root node (the original query q) is assigned the weight 1,

i.e. w(q) = 1.

In Stage I, after the subset queries qsub are generated, we calculate the weight of

qsub using Eq. 8.3.

w(qsub) = w(q)
∑

k

λsub
k f sub

k (qsub)

=
∑

k

λsub
k f sub

k (qsub) (8.3)

Eq. 8.3 instantiates Eq. 8.2 by focusing on the subset queries. f sub
k is the query

feature extracted from qsub and λsub
k is the corresponding parameter. Since the root

node is the parent of every subset query, its weight w(q) = 1, is used in Eq. 8.3.

In order to estimate {λsub
k } by directly optimizing the retrieval performance, we

use the same approach described in Section 5.3. Specifically, we transform each query

feature f sub
k into the corresponding retrieval feature F sub

k , where F sub
k is calculated in

Eq. 8.4.

F sub
k ({qsub}, D) =

∑

qsub

f sub
k (qsub) logP (qsub|D) (8.4)

where logP (qsub|D) is the retrieval score of using qsub to retrieve D. The calculation

of logP (qsub|D) depends on the retrieval model. The retrieval feature F sub
k combines

the retrieval score of each subset query qsub using their corresponding query feature

f sub
k (qsub) as the combination weight. In general, F sub

k indicates how well documents

are ranked if f sub
k is used as the weight to combine subset queries.
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Now, we obtain a set of retrieval features {F sub
k }. The problem of estimating {λsub

k }

to combine the query features {f sub
k } is transformed into the problem of combining

the corresponding retrieval features {F sub
k } to achieve the best retrieval performance.

The latter problem is typically solved using learning to rank techniques. Here, the

ListNet method (Cao et al. 2007) is adopted to learn {λsub
k } on the training set.

After obtaining {λsub
k }, we can assign the weight for each subset query according

to Eq. 8.3.

In Stage II, we assign weights to the substituted queries. The weight of a sub-

stituted query qmod is calculated using Eq. 8.5.

w(qmod) = w(qsub)
∑

k

λmod
k fmod

k (qmod) (8.5)

where qsub is the parent node of qmod. Compared with Eq. 8.3, the weights of the

subset queries w(qsub) generated in Stage I are incorporated in Eq. 8.5.

Similarly, in order to estimate {λmod
k }, we transform fmod

k to the corresponding

retrieval feature Fmod
k using Eq. 8.6.

Fmod
k ({qmod}, D) =

∑

qmod

w(qsub)f
mod
k (qmod) logP (qmod|D) (8.6)

where qsub is the parent node of qmod. In general, Fmod
k tells how well the documents

are ranked if fmod
k is used as the weight to combine the substituted queries. Thus, the

parameters {λmod
k } are learned by combining these retrieval features {Fmod

k } using

ListNet.

Finally, we normalize the weights of every nodes in the reformulation tree to make

them sum to one.
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Table 8.1. Summary of features

Features for subset selection
MI mutual information
SQLen sub-query length
QS query scope
QC query clarity score
SOQ similarity to original query
psg count of passages containing qsub
h-pnode height of the parent node covering sub-query
KeyCpt whether contains the key concept
Features for query substitution
Morph generated using Morph
Pattern generated using Pattern
Wiki generated using Wiki
psg count of passages containing qmod

seg-type the number of possible segmentations

8.2.3 Query Features

In this part, we describe the query features used to characterize the subset queries

and the substituted queries.

The features used to characterize the subset queries are mainly the Global Depen-

dency Features described in Table 7.2. In addition, whether a subset query contains

key concepts is also considered as a feature. These key concepts were discovered using

the method proposed by Bendersky and Croft (2008).

The features used to characterize the substituted queries are borrowed from Table

6.2, which are the type of the substitution methods and the passage information.

Furthermore, the number of possible segmentations of a substituted query is used

as another feature. This feature can be directly obtained using the passage analysis

technique as described in Section 4.1.

The details of the features are summarized in Table 8.1.
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8.2.4 Retrieval Model

The retrieval score of using a reformulation tree T can be calculated using Eq.

8.1. For example, given the reformulation tree shown in Fig. 8.2, the retrieval score

can be calculated as follows:

sc(T,D) = 0.36× sc(Original Query, D)

= +0.2× sc(“reductions iraqs foreign debt”, D)

= +0.12× sc(“iraqs foreign debt”, D)

= +0.2× sc(“reduce iraqs foreign debt”, D)

= +0.08× sc(“iraqs foreign debts”, D)

= +0.04× sc(“iraqs external debt”, D)

where sc(qr, D) represents logP (qr|D), which is the retrieval score of a reformulated

query qr. In our work, the sequential dependence model (SDM) is used to calculate

logP (qr|D).

8.3 Experimental Configuration

Four TREC collections, Gov2, Robust04, ClueWeb (Category B) and Wt10g are

used for experiments. Robust04 is a newswire collection, while the rest are web

collections. The details of the collections can be found in the Appendices. As in

previous work described in this dissertation, two indexes are built for each collection,

where one index is not stemmed and the other is stemmed using the Porter Stemmer

(Porter 1980). No stopword removal is done during indexing. For each topic, the

description part is used as the query. A short list of 35 stopwords and some frequent

stop patterns (e.g., “find information”) are removed from the description query.
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Table 8.2. Summary of Baselines

Name Description
QL query likelihood language model
SDM sequential dependency model
KC discovering key concept
QL+SubQL the subset distribution approaches
SDM+SubQL as described Chapter 7

The query set of each collection is split into a training set and a test set. On the

training set, the parameters λk are learned. On the test set, the learned parameters

λk are used to assign weight to the reformulation tree generated from each test query.

Ten-fold cross validation is conducted.

Similar to previous work described in Chapter 7, the baselines include the query

likelihood language model (QL), the sequential dependence model (SDM) and the key

concept model (KC). Note that we do not report KC on ClueWeb, since the key con-

cept query is not provided on ClueWeb in (Bendersky and Croft 2008). We also

consider two subset query distribution models described in Chapter 7 (QL+SubQL

and SDM+SubQL). They combine the original query with a distribution of subset

queries. QL+SubQL uses QL for both the original query and the subset queries, while

SDM+SubQL uses SDM for the original query and uses QL for the subset queries. In

this chapter, QL+SubQL and SDM+SubQL are trained using the global dependency

features as described in Table 7.2. The baselines used are summarized in Table 8.2.

The proposed hierarchical query distribution or reformulation tree is denoted as

RTree, which uses SDM as the underlying retrieval model. Two parameters are used

during the tree construction, SubNum and ModNum, where SubNum denotes how

many subset queries are kept in the reformulation tree and ModNum denotes among

those kept subset queries how many are further modified to generate query substitu-

tions. In this chapter, SubNum takes all subset queries generated and ModNum is set

as 10. The effect of these parameters will be explored in the following discussion.
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The standard performance measures, mean average precision (MAP) and precision

at 10 (P10) are used to measure retrieval performance. The details of the performance

measures can be found in the Appendices. In order to improve readability, we report

100 times the actual values of these measures. The two-tailed t-test is conducted to

measure significance.

8.3.1 Example

In Table 8.3, we show some examples of the generated reformulation trees. As

mentioned previously, some stopwords and stop patterns are removed from the original

query. Those words are kept to improve readability. Note that they are not used for

retrieval and subset query generation.

Table 8.3 shows that the subset queries and the substituted queries are effectively

combined within the same framework. For example, given the original query “what

allegations have been made about enrons culpability in the california energy crisis”,

the reformulation tree first generates high quality subset queries “enrons culpability

california energy crisis” and “california energy crisis” and then further modifies “cali-

fornia energy crisis” as two substituted queries “california gas prices” and “california

electricity crisis”.

8.3.2 Retrieval Performance

The first experiment is conducted to compare the retrieval performance of the

proposed RTree method with the baselines. The results are shown in Table 8.4. The

best performance is bolded.

Table 8.4 shows that RTree outperforms all the baseline methods. Specifically,

RTree performs better than the “bag of word” representations, SDM and KC. Using

the non-stemmed index, RTree significantly improves SDM and KC on all four col-

lections. For example, on ClueWeb, RTree improves SDM by 12.2% and 16.1% with

respect to MAP and P10, respectively. On Wt10g, RTree improves KC by 11.4% and
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Table 8.3. Examples of the reformulation tree. The top ranked nodes are displayed.
In the original query q, the stopwords and stop structures are italicized.

q: what allegations have been made about enrons
culpability in the california energy crisis
0.194 q

0.133 enrons culpability california energy crisis
0.047 california energy crisis

0.009 california gas prices
0.008 california electricity crisis

q: give information on steps to manage control
or protect squirrels
0.148 q

0.060 control protect squirrels
0.048 control squirrels

0.013 control of ground squirrels
0.012 control squirrel

q: what is the state of maryland doing to clean up
the chesapeake bay
0.089 q

0.063 maryland chesapeake bay
0.015 md chesapeake bay
0.009 maryland chesapeake bay watershed

0.034 chesapeake bay
0.007 chesapeake bay watershed
0.006 chesapeake bay river
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Table 8.4. Comparisons of retrieval performance. ? denotes significantly different
from the baseline.

Gov2 Robust04 Wt10g ClueWeb
MAP P10 MAP P10 MAP P10 MAP P10

Non-stemmed Index
QL 22.46 49.13 22.40 39.12 16.44 28.97 10.97 21.63
SDM 23.98 51.01 23.30 40.04 16.76 31.65 11.53 22.76
KC 24.88 50.87 23.87 40.76 17.45 30.82 n/a n/a
QL+SubQL 23.36 50.81 22.85 39.28 16.81 29.79 11.01 21.84
SDM+SubQL 24.82 53.36 23.65 40.32 18.25 31.13 11.54 21.94
RTree 26.70 53.96 25.07 42.33 19.44 34.02 12.94 26.43
vs. QL 18.9%? 9.8%? 11.9%? 8.2%? 18.2%? 17.4%? 18.0%? 22.2%?

vs. SDM 11.3%? 5.8%? 7.6%? 5.7%? 16.0%? 7.5%? 12.2%? 16.1%?

vs. KC 7.3%? 6.1%? 5.0%? 3.9%? 11.4%? 10.4%? n/a n/a
vs. QL+SubQL 14.3%? 6.2%? 9.7%? 7.8%? 15.6%? 14.2%? 17.5%? 21.0%?

vs. SDM+SubQL 7.6%? 1.1% 6.0%? 5.0%? 6.5% 9.3%? 12.1%? 20.5%?

Porter-stemmed Index
QL 25.43 52.21 25.49 43.13 19.61 32.68 12.64 23.57
SDM 27.85 54.03 26.83 44.94 20.87 35.77 13.01 24.90
KC 27.52 53.83 25.97 41.65 21.01 34.02 n/a n/a
QL+SubQL 26.19 53.36 25.81 43.01 20.11 32.06 12.94 25.00
SDM+SubQL 28.49 55.91 26.99 44.86 21.98 35.05 13.29 24.08
RTree 29.85 56.38 28.00 45.10 23.80 37.42 13.69 25.82
vs. QL 17.4%? 8.0%? 9.8%? 4.6%? 21.4%? 14.5%? 8.3% 9.5%
vs. SDM 7.2%? 4.3%? 4.4%? 0.4% 14.0%? 4.6% 5.2%? 3.7%
vs. KC 8.5%? 4.7% 7.8%? 8.3%? 13.3%? 10.0%? n/a n/a
vs. QL+SubQL 14.0%? 5.7%? 8.5%? 4.9%? 18.3%? 16.7%? 5.8% 3.3%
vs. SDM+SubQL 4.8%? 0.8% 3.7%? 0.5% 8.3% 6.8%? 3.0% 7.2%
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10.4% with respect to MAP and P10, respectively. On the Porter-stemmed index,

similar results are also observed. These results show that the “reformulation tree”

representation is more effective than the “bag of words” representation on modeling

verbose queries, since the former explicitly models the reformulated query, while the

latter only considers words and phrases.

Furthermore, RTree also outperforms the “query distribution” representations,

QL+SubQL and SDM+SubQL. Using the non-stemmed index, RTree outperforms

QL+SubQL and SDM+SubQL on all four collections. Most of the improvements

are significant. For example, on ClueWeb, RTree improves QL+SubQL by 17.5% and

21.0% with respect to MAP and P10, respectively. Also, RTree improves SDM+SubQL

by 12.1% and 20.5% with respect to MAP and NDCG10, respectively. The results

using the Porter-stemmed index are similar. These observations indicate that the

“reformulation tree” representation is better than the “query distribution” represen-

tation, since the former effectively combines different reformulation operations within

the same framework.

It is not surprising that RTree brings more improvements over the baselines us-

ing the non-stemmed index than using the Porter-stemmed index, since some effect

of query substitutions, especially those generated using the morphologically similar

words, is already provided by the Porter stemmer.

8.3.3 Further Analysis

Table 8.4 shows that RTree significantly outperforms the baseline methods. In this

section, we make detailed comparisons between RTree and the baseline approaches.

First, we compare RTree with SDM and KC. Specifically, we analyze the number

of queries each approach increases or decreases over QL. Fig 8.4 shows the histograms

of SDM, KC and RTree based on the relative increases/decreases of MAP over QL.
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Table 8.5. Comparisons with QL+SubQL and SDM+SubQL. “+”, “=” and “-” de-
note that RTree performs better, equal or worse than QL+SubQL and SDM+SubQL
with respect to MAP.

RTree vs. QL+SubQL vs. SDM+SubQL
+ = - + = -

Gov2 71.81% 0.67% 27.52% 63.09% 0.67% 36.24%
Robust04 68.27% 0.00% 31.73% 63.05% 0.00% 36.95%
Wt10g 62.89% 2.06% 35.05% 62.89% 1.03% 36.08%
ClueWeb 65.31% 2.04% 32.65% 70.41% 2.04% 27.55%

The non-stemmed index is used in Fig. 8.4. Similar results are observed using the

Porter-stemmed index.

Fig. 8.4 shows that RTree improves more queries than SDM and KC. For example,

on Gov2, RTree improves 110 queries out of the total 150 queries, while SDM and KC

improve 89 and 91, respectively. On Robust04, RTree improves 174 queries out of the

total 250 queries, while SDM and KC improve 129 and 153 queries, respectively. At

the same time, RTree also hurts less queries than SDM and KC. These observations

indicate that RTree is more robust than both SDM and KC.

Furthermore, we compare RTree with QL+SubQL and SDM+SubQL. QL+SubQL

and SDM+SubQL only consider subset query selection, while RTree combines both

subset query selection and query substitution. The comparisons between them in-

dicate whether RTree effectively combines two query operations to improve verbose

queries. Specifically, we analyze the percent of queries where RTree performs better

than QL+SubQL and SDM+SubQL, respectively. The results using the non-stemmed

index are reported in Table 8.5.

Table 8.5 shows that RTree consistently outperforms QL+SubQL and SDM+SubQL

for 60%-70% queries on all four collections. These results indicate that RTree provides

an effective way to combine different query operations, which significantly improves

the retrieval performance of verbose queries.
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Figure 8.4. Analysis of relative increases/decreases of MAP over QL.
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Table 8.6. The effect of subset query selection and query substitution with respect
to MAP

MAP Gov2 Robust04 Wt10g ClueWeb
SDM 23.98 23.30 16.76 11.53
KC 24.88 23.87 17.45 n/a
QL+SubQL 23.36 22.85 16.81 11.01
SDM+SubQL 24.82 23.65 18.25 11.54
RTree-Subset 25.80 24.76 18.11 11.73
RTree 26.70 25.07 19.44 12.94

8.3.4 Subset Selection vs. Query Substitution

RTree combines subset query selection and query substitution together using a

two-level reformulation tree. Previous experiments have demonstrated the general

effect of this approach. In this part, we split the effect of subset query selection

and query substitution. Specifically, we propose a one-level reformulation tree, which

only consists of subset queries. This one-level reformulation tree is denoted as RTree-

Subset. The comparisons between RTree-Subset and other approaches using the non-

stemmed index are shown in Table 8.6.

In Table 8.6, RTree-Subset outperforms the baseline methods, which indicates

the effect of subset queries in the reformulation tree. When query substitutions

are introduced, RTree further improves RTree-Subset. Thus, both subset selection

and query substitution account for the performance of RTree. RTree-Subset also

performs better than other subset query selection methods such as QL+SubQL and

SDM+SubQL.

8.3.5 Parameter Analysis

As described in Section 4.1, there are two parameters used during the process of

constructing the reformulation tree, SubNum and ModNum. SubNum denotes the

number of subset queries used in the reformulation tree and ModNum denotes the

number of subset queries that are modified to generate query substitutions. In this

subsection, we explore the effect of these two parameters. The Porter-stemmed index
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Table 8.7. The effect of the parameter ModNum with respect to MAP

ModNum Gov2 Robust04 Wt10g ClueWeb
3 29.52 27.08 22.61 13.77
5 29.63 27.11 22.72 13.75
10 29.66 27.16 22.75 13.71

is used. Fig. 8.5 shows the effect of the parameter SubNum, where SubNum takes

the values 5, 10, 20, 30 and “all”, where ModNum is fixed as 10. Here, “all” indicates

using all subset queries generated.

Fig. 8.5 shows that the best number of subset queries used in the reformulation

tree is inconsistent. On Gov2, the performance becomes stable after using the top

20 subset queries. On Robust04 and Wt10g, the performance keeps increasing when

more subset queries are considered. On ClueWeb, the performance drops when more

than the top 20 queries are used. One possible explanation for these observations

is provided. Robust04 and Wt10g are relatively small collections, thus using more

subset queries is likely to retrieve more relevant documents. However, when the size

of the collection becomes very large such as Gov2, using more subset queries does not

help much for retrieving more relevant documents. If the collection is not only big

but also contains much noise such as ClueWeb, using more subset queries even hurts

the performance.

Table 8.7 displays the retrieval performance when ModNum takes three different

values, i.e. 3, 5 and 10, where SubNum is set as 10.

Table 8.7 shows that there is little performance change when ModNum is bigger

than 3, which indicates that modifying the top three subset queries is enough to

achieve similar performance to RTree.

8.4 Summary

Complex queries pose a new challenge to search systems. In order to combine dif-

ferent query operations and model the relationships between the reformulated queries,
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Figure 8.5. The effect of the parameter SubNum. x-axis denotes SubNum and y-axis
denotes MAP.

113



a new query representation is proposed, where the original query is transformed into a

reformulation tree. A specific implementation is described for verbose queries, which

combines subset query selection and query substitution within a principled framework.

In the future, this query representation will be applied to other search tasks involving

complex queries such as the cross-lingual retrieval and diversifying the search results.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

Query reformulation modifies the original query posed by a user to provide a bet-

ter representation of the underlying information need for a search system. In this

dissertation, we propose a novel reformulation framework that transforms the origi-

nal query into a distribution of reformulated queries, where each reformulated query

is associated with a probability indicating its importance for retrieval. The query

distribution model considers a reformulated query as the basic unit, thus explicitly

modeling how query concepts are used together to form a realistic or actual query.

Since a reformulated query is the output of applying single or multiple query op-

erations, different reformulation operations such as query segmentation and query

substitution are combined within the same framework. Also, this model provides a

joint view of the reformulation model and the retrieval model, where the probability

assigned to the reformulated query is estimated by directly optimizing the retrieval

performance.

In this chapter, we first summarize the content of this dissertation and then restate

our contributions. We also discuss future directions.

9.1 Summary

The summary of this dissertation is as follows.

• Chapter 3 Framework of Query Distributions. We introduce the gen-

eral framework of the query distribution model (QDist), which consists of three

major components, reformulated query generation, probability estimation and
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retrieval. Then, we compare the query distribution model with two types of re-

formulation models, i.e, Concept Distribution (CDist) and Single Reformulated

Query (SRQ). Compared with CDist, QDist explicitly models how query con-

cepts are used to form realistic or actual queries and thus capture the query-level

dependencies of concepts. Compared with SRQ, QDist considers alternative re-

formulated queries.

• Chapter 4 Reformulated Query Generation. We describe four approaches

of generating reformulated queries according to different types of queries and

applications. Specifically, for short keyword queries, we develop the passage

analysis technique that uses the passages containing all query words or most

query words to generate query segmentation and substitution. For verbose

queries, we select a subset of query words to form the subset queries. Several

strategies are used to filter the number of subset queries. For natural language

questions, we search a large scale Q&A archive to find semantically related

questions and use them as reformulated queries. A translation-based language

model is proposed to search the Q&A archive. In patent retrieval, we transform

the patent application into several Indri queries.

• Chapter 5 Probability Estimation. We develop two probability estimation

approaches that estimate the probability of each reformulated query by directly

optimizing the retrieval performance. Specifically, the first approach optimizes

the retrieval performance of using a single reformulated query, while the second

approach optimizes the performance of using a set of reformulated queries.

• Chapter 6 Application I: Query Distribution for Short Queries. We

present an implementation of the query distribution model for short queries.

This implementation uses the passage analysis technique to generate reformu-

lated queries and optimizes the performance of using a set of reformulated query.
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The query likelihood language model is used as the underlying retrieval model.

Experiments conducted on three TREC collections show the advantages of the

query distribution model over state-of-the-art techniques.

• Chapter 7 Application II: Query Distribution for Verbose Queries. We

present an implementation of the query distribution model for verbose queries.

This implementation uses the subset selection to generate subset queries and

optimizes the performance of using a single reformulated query. The query

likelihood language model and the sequential dependence model are used as the

underlying retrieval models. Experiments conducted on three TREC collections

show that the query distribution model outperforms other query processing

techniques developed for verbose queries.

• Chapter 8 Hierarchical Query Distribution. We propose the hierarchial

query distribution model to process complex queries and capture the relation-

ships between the reformulated queries. A two-level reformulation tree is im-

plemented for verbose queries, which combines the subset selection and the

query substitution. A stage-based probability estimation approach is devel-

oped. Experiments on four TREC collections show that the hierarchical query

distribution model performs better than state-of-the-art techniques and also

outperforms the standard query distribution model.

9.2 Contributions

Our major contributions through this dissertation are restated as follows:

1. Novel Reformulation Framework. We propose a novel framework for query

reformulation, where the original query is transformed into a distribution of

reformulated queries and the retrieval model is considered as an integrated part

of this framework.
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2. Novel Probability Estimation Approaches. We develop two approaches

to estimate the probability of each reformulated query by directly optimizing

the retrieval performance. These probability estimation approaches consider

the reformulation model and the retrieval model jointly.

3. Hierarchical Query Distribution for Complex Queries. We propose a hi-

erarchical query distribution that extends the standard query distribution model

to capture the dependencies between the reformulated queries. This model is

useful for dealing with complex queries that require a series of reformulation

operations.

4. Effective Reformulated Query Generation Approaches. We design sev-

eral effective approaches to generate the reformulated queries that are semanti-

cally related to the original query. These approaches work well for short queries,

verbose queries, natural language questions and patent applications.

5. State of the art retrieval performance. We test the query distribution

model on different applications and achieve consistent and significant perfor-

mance improvement over state-of-the-art techniques.

9.3 Future Work

In this dissertation, we build the foundation of the query distribution model for

query reformulation. Although we have solved several critical issues, some challenges

still exist, which will be explored in the future work.

• Utilizing Query Logs. In this work, we use different approaches such as

passage analysis and subset selection to generate the reformulated queries as

a simulation of realistic or actual user queries. Although these techniques are

effective on TREC collections, we expect to show the full potential of the query

distribution model when large scale query logs are available. On one hand,
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realistic user queries that are semantically related to the original query can

be extracted using the clickthrough data and the session information. On the

other hand, many valuable features characterizing the whole query are available.

These features include the query log frequency and the number of clicks after

issuing a query. Using these high quality reformulated queries and features, the

performance of the query distribution model can be further improved.

• Efficient implementation. The efficiency issue is critical for implementing

the query distribution model in a practical system. The online cost of the

query distribution model comes from three aspects, i.e., generating reformulated

queries, extracting query features and running multiple queries. The first two

aspects can be efficiently implemented when large scale query logs are available.

We can limit the reformulated queries to those appearing in query logs. In this

way, instead of generating queries, we simply search the query logs, which can

be efficiently implemented using the index. Also, all query features can be

precomputed, which speeds up the query feature extraction. For the retrieval

aspect, instead of running multiple reformulated queries, we reuse the retrieval

scores of the words and phrases shared by these queries.

• Modeling the dependencies between the reformulated queries. There

are different types of relationships between the reformulated queries. In Chap-

ter 8, we model the sequence of generating reformulated queries as a hierarchi-

cal query distribution. Another type of relationship between the reformulated

queries is their similarities. In the query distribution, instead of assigning high

probabilities to similar reformulated queries, we may want to diversify the prob-

abilities to the reformulated queries with different properties. In particular, how

to incorporate query similarities into the objective function of probability esti-

mation is an interesting research issue. Furthermore, it would also be interesting
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to investigate the connection between diversifying the reformulated queries and

diversifying the search results.

• Jointly optimizing reformulation and retrieval. In Chapter 5, we study

optimizing the reformulation model for a given retrieval model. On the other

hand, many learning-to-rank techniques focus on optimizing the retrieval model

using a given query. It is natural to consider jointly optimizing both the re-

formulation model and the retrieval model. In other words, the parameters of

the reformulation model and the parameters of the retrieval model should be

learned in a unified framework. How to design the joint learning strategy is a

very important research issue.
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APPENDIX A

BACKGROUND

A.1 Retrieval Models

The query likelihood language model (Ponte and Croft 1998; Zhai and Laf-

ferty 2001b) is widely used in information retrieval, where the ranking score of a

document is calculated as the probability of generating the query from this document.

All retrieval models discussed in this dissertation use the language model as the basis.

Given a query q, a document D in the collection C is ranked by logP (q|D), which is

calculated as follows:

logP (q|D) =
∑

w∈q

logP (w|D) =
∑

w∈q

log[λPml(w|D) + (1− λ)Pml(w|C)] (A.1)

In Eq. A.1, P (w|D) is the probability of generating a word w from a document D.

It is a mixture of the maximum likelihood estimation Pml(w|D) and the background

model Pml(w|C). Pml(w|D) and Pml(w|C) are calculated as follows.

Pml(w|D) =
#(w,D)

|D|
(A.2)

Pml(w|C) =
#(w,C)

|C|
(A.3)

where #(w,D) is the frequency of w in a document D and #(w,C) is the frequency

of w in the whole collection C. |D| is the number of words in D. Similarly, |C| is the

total number of words in the whole collection.
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In Eq. A.1, λ is the smoothing parameter. Several smoothing methods are studied

for the language model (Zhai and Lafferty 2001b). The Jelinek-Mercer method

assigns a fixed value to λ. The Dirichlet method set λ as |D|
|D|+µ

, where µ is a Dirichlet

parameter. This method assigns high λ values to long documents. The two-stage

method combines the Jelinek-Mercer method and the Dirichlet method.

The sequential dependence model (SDM) (Metzler and Croft 2005) provides

a unified framework to model the phrase and the term proximity. Using SDM, the

retrieval score of a document D, i.e., logP (q|D), is calculated as follows:

logP (q|D) = λT

∑

t∈T (q)

logP (t|D) + λO

∑

o∈O(q)

logP (o|D)

+λU

∑

u∈U(q)

logP (u|D) (A.4)

where T (q) denotes a set of query words of q, O(q) denotes a set of ordered bigrams

extracted from q and U(q) denotes a set of unordered bigrams extracted from q. λT ,

λO and λU are parameters controlling the weights of different parts and are usually

set as 0.85, 0.1 and 0.05 (Metzler and Croft 2005). P (t|D), P (o|D) and P (u|D)

are calculated using the language modeling approach.

A.2 Indri Query Language

Indri1 is a search engine that combines the inference network with the language

model (Metzler and Croft 2004). The Indri query language supports many ad-

vanced features such as phrase, synonym, term proximity and weighted expressions.

The query likelihood language model and the sequence dependence model can be

easily implemented using the Indri query language. For example, given the original

1http://www.lemurproject.org/indri/
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Figure A.1. Indri queries implementing the query likelihood language model (QL)
and the sequential dependence model (SDM) .

q : iraqs foreign debt

QL: #combine(iraqs foreign debt)

SDM: #weight(
0.85 #combine(iraqs foreign debt)
0.10 #combine(#1(iraqs foreign) #1(foreign debt))
0.05 #combine(#uw8(iraqs foreign) #uw8(foreign debt))

)

query “iraqs foreign debt”, the Indri queries that implement the query likelihood

language model and the sequential dependence model are displayed in Fig. A.1.

In Fig. A.1, “#combine” is an unweighted combinator that equally combines the

scores of several expressions. An expression could be a word, a phrase, term proxim-

ity or a combination of them. “#combine(iraqs foreign debt)” implements Eq. A.1,

where the score of each query word, i.e., logP (w|D), is equally combined. “#1” in-

dicates a phrase or an ordered bigram, while “#uwN” indicates an unordered bigram

in a word window with the size N. In Fig. A.1, “#combine(#1(iraqs foreign) #1(for-

eign debt))” and “#combine(#uw8(iraqs foreign) #uw8(foreign debt))” implement

the ordered bigram part, i.e.,
∑

o∈O(q) logP (o|D), and the unordered bigram part, i.e.,
∑

u∈U(q) logP (u|D), of Eq. A.4, respectively. “#weight” is a weighted combinator

that combines several expressions using their corresponding weights. In Fig. A.1,

SDM combines three expressions using the weight 0.85, 0.10 and 0.05, respectively.

A.3 Collections

Four TREC collections are used in this dissertation. The properties of these

collections are quite different. The details are summarized in Table A.1. Robust04 is

a small newswire collection, thus it is a homogeneous collection with the controlled

vocabulary. Wt10g is a relatively small web collection. Compared with Robust04,
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Table A.1. TREC collections used in experiments

Name Description Docs Topics
Robust04 newswire from different sources 528,155 301-450,601-700
Wt10g small web collection 1,692,096 451-550
Gov2 crawl of .gov domain in 2004 25,205,179 701-850
ClueWeb crawl of web in 2009 50,220,423 1-100
(Category B)

Figure A.2. An example of TREC topic

Number: 705

Title: iraqs foreign debt reduction

Description: Identify any efforts, proposed or undertaken, by world
governments to seek reduction of Iraq’s foreign debt.

Narrative: Documents noting this subject as a topic for discussion (e.g.
at U.N. and G7) are relevant. Money pledged for reconstruction is
irrelevant.

it is a heterogenous collection and contains much noise. Gov2 is a large scale web

collection. Since only the .gov domain is crawled, it contains less noise. Clueweb is

the largest collection currently available. It contains around 1 billion web pages in

ten languages and these web pages were crawled in 2009. The category B consists

of the first 50 million English pages with relatively high quality. Also, there is much

noise in Clueweb.

The topics used in each collection represent users’ information needs. Fig. A.2

provides an example of TREC topic, which consists of several fields, i.e., Number,

Title, Description and Narrative. Number indicates the identity of a TREC topic.

Title and Description both describe the information need. Title uses a small number

of keywords , while Description uses the natural language. In this disseration, Title

and Description are used as short keyword queries and verbose queries, respectively.

The Narrative field provides the instructions for human annotators, who are asked to

decide the relevance of a document.
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Given a topic, the relevance judgments are also provided in TREC collections.

Specifically, a set of documents are manually judged for relevance. Besides the binary

judgments, the graded judgments are also provided, especially for web collections.

Due to the size of a collection, it is impossible for human annotators to judge every

document for a given topic. Instead, the pooling strategy is adopted to collect a

reasonable amount of documents for judging and ensure that these judgments are

reusable for future systems.

A.4 Evaluation Metrics

Given the relevant judgments of each topic, several evaluation metrics can be

calculated to measure the performance of a system. Two types of metrics are used in

this dissertation, mean average precision (MAP) and precision at k (P@k).

The average precision and the precision at k of a given query are calculated as

follows.

AP =
1

R

∑

i: rel(i)=1

R(1, i)

i
(A.5)

P@k =
1

k
R(1, k) (A.6)

R(1, i) =

i
∑

j=1

rel(j)

rel(i) denotes the relevance of a document at the position i of a ranked list. If this

document is relevant, rel(i) = 1, otherwise rel(i) = 0. R(1, i) denotes the number of

relevant documents till the position i. R is the total number of relevant documents.

The average precision measures the quality of the entire ranked list, while the precision

at k measures the quality of the top ranked documents.

In order to aggregate the above metrics over a set of queries, we calculate the

arithmetic mean as follows.
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MAP =
1

N

N
∑

i=1

AP (qi) (A.7)

Pk =
1

N

N
∑

i=1

P@k(qi) (A.8)

N is the total number of queries. MAP denotes the mean average precision. Pk

denotes the average precision at k.
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APPENDIX B

PROOFS

Claim 1

P (c|q) =
∑

qr∈{qr |c∈qr}

P (qr|q), given that P (qr|q) = δ(|qr|)

|qr|
∏

i=1

P (ci|q)

Proof.

P (c|q)

= P (c|q)

∞
∑

l=1

δ(l) (B.1)

= P (c|q)

∞
∑

l=1

δ(l)

l−1
∏

i=1

∑

ci

P (ci|q) (B.2)

= P (c|q)

∞
∑

l=1

δ(l)
∑

q′r∈{|q
′

r|=l−1}

∏

ci∈q′r

P (ci|q) (B.3)

=
∞
∑

l=1

∑

qr∈{(q′r ,c)}

δ(l)
∏

ci∈q′r

P (ci|q) · P (c|q) (B.4)

=
∞
∑

l=1

∑

qr∈{c∈qr,|qr|=l}

P (qr|q) (B.5)

=
∑

qr∈{qr|c∈qr}

P (qr|q) (B.6)

Eq. B.1 is obtained, since δ is a distribution over the possible length of a query, i.e.,

∑∞
l=1 δ(l) = 1. Eq. B.2 is obtained, since P (ci|q) is a multinomial distribution, i.e.,

∑

ci
P (ci|q) = 1. Then, we reorder the sequence of production and summation to

obtain Eq. B.3, where q′r represents any query with the length of l − 1. In Eq. B.4,
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we concatenate q′r and c to get qr, where the length of qr is l. Eq. B.5 is obtained

using the condition provided, i.e., P (qr|q) = δ(|qr|)
∏|qr|

i=1 P (ci|q). Finally, in Eq. B.6,

we sum over all possible lengths l to prove the claim.
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