
Disambiguation of Residential Wired
and Wireless Access in a Forensic Setting

Sookhyun Yang Jim Kurose Brian Neil Levine
Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA, 01003

{shyang, kurose, brian}@cs.umass.edu

Abstract—Thousands of cases each year of child exploitation
on P2P file sharing networks lead from an IP address to a home.
A first step upon execution of a search warrant is to determine if
the home’s open Wi-Fi or the closed wired Ethernet was used for
trafficking; in the latter case, a resident user is more likely to be
the responsible party.

We propose methods that use remotely measured traffic
to disambiguate wired and wireless residential medium access.
Our practical techniques work across the Internet by estimating
the per-flow distribution of inter-arrival times for different home
access network types. We observe that the change of inter-arrival
time distribution is subject to several residential factors, including
wireless channel contention, differences between OS network stacks,
and cable network mechanisms. We propose a model to explain the
observed patterns of inter-arrival times, and we study the ability of
supervised learning classifiers to differentiate between wired and
wireless access based on these remote traffic measurements.

I. INTRODUCTION

Images of child sexual exploitation are common on Bit-
Torrent, Gnutella, and other file-sharing networks [10], [19].
The end result of network-based investigations of these crimes
is evidence that supports a court-issued warrant to enter and
search the home associated with the observed IP address. A
common alibi is that a third party used the home’s open Wi-
Fi. Thus, a useful first step during execution of the warrant
would be to determine if contraband was distributed on the P2P
network using the house’s Ethernet network, therefore making
the resident user more likely to be the responsible party, or if
Wi-Fi was used and the alibi is justified. Indeed, drive-by abuse
of open Wi-Fi by criminals has been a documented practice
for years [9], [15], but methods to distinguish such access are
not available.

In this paper, we investigate methods that use remotely
measured traffic to disambiguate wired and wireless residential
medium access. Importantly, we place our work in a practical
forensic setting by constraining our approaches to only use
remotely gathered “plain view” data that can be gathered
legally from p2p networks before a warrant or wiretap is re-
quired (in the US). This constraint distinguishes our work from
previous research on wired/wireless disambiguation, which has
assumed that measurements are taken from the target’s gateway
router, which is not only a much less challenging problem but
impractical from a forensic setting since it violates the Wiretap
Act. Our goal is to provide information to investigators as they
execute a search warrant inside a home. In addition to checking
alibis and supplying information for a suspect’s interview, our
techniques are also useful for forensic triage. Backlogs of six

months are typical for criminal forensics labs, and the easiest
way to reduce the queue is to not add to it by eliminating
computers from consideration (for example, those that have no
wired interface) [13].

Our techniques work across the Internet by estimating the per-
flow distribution of inter-arrival times of packets transmitted
over different types of home access networks, as measured
by an investigator at a remote Internet P2P client. Using a
set of traces that we collected, we evaluate the ability of
a number of classifiers to remotely distinguish wired from
wireless access within the same house. We also develop a
model of packet spacing for residential traffic sent via a cable
modem through the Internet that illuminates and explains
our classification results. We find that that our approach for
classifying wired from wireless traffic can work well, but
is subject to several residential factors, including differences
between OS network stacks, cable modem mechanisms, and
wireless channel contention. Our analysis reveals the following:

• We use a simple decision tree classifier that uses remotely
measured traces and identify 25th percentiles or entropy
of inter-arrival times distribution of the traces as classifi-
cation features, achieving a true positive rate (TPR) of 9.0
to 1.0 and false positive rate (FPR) of 0.0 to 0.1 in our
studies. For Linux, we can precisely classify wired from
wireless using 25th percentiles or entropy in accordance
with a cable network’s state. But for Windows, we can
depend on only entropy as a good classification feature.

• High contention for a wireless channel locally at the target
greatly affects classification accuracy, though this can be
overcome.

• We evaluate the cases of single and multiple P2P flows
from the source, but we find that this distinction does not
affect our result. Only the individual throughput of each
flow has an impact on the classifier.

• Our classifier must be trained separately for different
throughputs from the target; fortunately, this throughput
is easily observable at the receiver. Such training can
be performed when the search warrant is executed from
within the house; there is no reason to train a general
classifier for all houses ahead of the warrant’s execution.

In a separate technical report [23], we also show that measure-
ments from points “near” the target (i.e., in the same cable
network) do not guarantee better classification results. In sum,
a second cable modem at the observer adds noise.



2

Overall, our findings suggest that it is difficult at best to find
a foolproof classifier for remote identification in all scenarios.
Our goal is to determine the scenarios in which network access
type can be accurately determined, and to understand when
and why these techniques cannot be reliably used in other
scenarios.

II. INVESTIGATIVE METHOD AND JUSTIFICATION

The general criminal procedure for child pornography (CP)
cases is as follows. Investigators search for content on P2P
networks.

1) CP files offered in plain view by a peer, identified by IP
address, are downloaded by investigators.

2) The download provides sufficient probable cause as part
of an application for a magistrate-issued search warrant
of the home associated with the IP address’s billing
records.

3) The warrant is issued, and once inside the home, a triage-
style search begins for evidence associated with CP,
which might not be the previously downloaded content.
Users of the home’s computers are interviewed.

4) Seized devices are sent to an off-site lab for detailed
forensic examination.

5) Evidence found during search is then used to support a
criminal trial for receipt, possession, or distribution of
CP.

The step of searching a home is time consuming. Homes
have an increasing number of devices that can contain evidence,
including Xboxes and ebook readers with Web browsers, smart
phones, desktops, and laptops. Investigators have three main
triage aims: (a) reducing the numbers of devices that must
be examined on-scene since warrants are time-limited; (b)
reducing the number of devices that must be sent to an off-
site central forensics lab for in-depth examination since work
queues are months-long; and (c) quickly locating a subset of
evidence, if it exists, so as to obtain an admission of guilt by
a suspect via an interview. All of these practical goals are met
more efficiently by knowing whether a computer used over the
Internet is likely wired or wireless.

Our goal is to examine whether it is possible to remotely infer
the target’s access type. Our technique would be used as follows.
During Step (1) above, investigators would keep a packet-
level trace of the file download, which is already common
practice. Using the packet-level trace, investigators identify
a criminal’s computer setting (such as operating systems,
TCP parameters and P2P applications), and characterize the
download throughput and concatenation rate (as we see in
Section V). This information is not a part of the warrant
application. During Step (3), the classifier is trained, which
can be completed in minutes with a pre-configured program
and a laptop with both wired and wireless interfaces. The
pre-configured program regenerates the flow, having equivalent
throughput and concatenation rate observed in Step (1) via
wired and wireless interfaces. The results of classification tests
are used on scene to inform triage and user interviews. We

note that it would only reduce accuracy to pre-train a classifier
from general Internet scenarios.

Importantly, our collection takes place at the investigator’s
end host. This measurement is possible without warrant or
wiretap since the investigator is a party to the communication.
In contrast, previous work proposes to collect packets at a
network gateway, which is illegal in our forensics context. It is
also impractical as investigators cannot know which gateway
until they have a suspect; going back to the gateway after the
suspect has uploaded the CP to the investigator is too late.

A number of legal issues restrict the initial process of
gathering the data we use to infer a target’s medium access
type [2], [8]. First, US law prohibits government search and
seizure of evidence without a warrant if and only if the source of
the data has a reasonable expectation of privacy (REP) [8]. US
courts have found consistently that users of P2P file sharing
networks have no REP when investigators are peers in the
network; see U.S. v. Breese, 2008 WL 1376269 and U.S. v.
Gabel, 2010 WL 3927697. Collecting information at a user’s
gateway without a warrant is certainly illegal.

Second, prior to obtaining a warrant, law enforcement
cannot use technology that is not in “general public use”
to obtain information that would otherwise be unavailable.
This restriction is a result of Kyllo v. U.S., 533 U.S. 27
(2001). For example, recently the court ruled that software
designed for law enforcement to monitor activity on P2P
networks does not violate 4th Amendment protections since
if it follows the protocol as any peer on the network does.
Similarly, in Massachusetts v. Karch (2011), the court ruled
that law enforcement programs that do not search the remote
computer, but “merely gather and evaluate publicly available
information with greater efficiency and with an eye toward
obtaining evidence of criminal activity” do not violate Kyllo,
even if the software itself is unavailable for general public use.

Related work, in Section VII, that has been motivated by
network monitoring and measurement is also governed by
several US federal laws. Sicker et al. [16] provide an excellent
overview and discussion of these laws and their consequences
for the network traffic measurement research community.
Criminal investigations are not included in that analysis since
they lack the provider protection motive, which is measurement
with the aim of protecting the network infrastructure, e.g.,
detecting or characterizing network attacks. In monitoring
settings, clients typically consent to monitoring by the provider
as part of an acceptable use policy.

Information gathered in a criminal investigation ideally meets
the standards of criminal trials (beyond a reasonable doubt).
However, information that meets the probable cause (PC)
standard used to issue search warrants is still useful. There is no
quantification of PC by courts; often it is defined qualitatively as
a “fair probability”; see U.S. v. Sokolow, 490 U.S. 1 (1989). We
evaluate our work with these standards in mind by quantifying
true and false positive rates. Finally, we note that we expect
that the techniques we introduce in this paper are most useful
as simple, practical information to inform the process of search
and triage, as noted above, rather than as evidence.



3

III. PROBLEM STATEMENT

Fig. 1. An illustration of our expected network topology.

Our problem setting is illustrated in Fig. 1. As described in
Section II, we begin by assuming that investigators have already
identified a peer, denoted as A in the figure, who is a target
that uploads illegal content to the investigator. Our challenge
is to determine whether A is connected to the home AP via a
wireless 802.11 network or via a wired Ethernet. Investigators,
denoted as B in the figure, can make this determination using
only traces measured from a remote location.

We assume the AP used by A is connected to the Internet
via a cable modem (CM). The coordination system of a
regional head-end, known as a Cable Modem Termination
System (CMTS), regulates the use of upstream and downstream
bandwidth based on A’s level of contracted service with the
cable network service provider. The CM communicates with
the CMTS using the Data Over Cable Service Interface Speci-
fication (DOCSIS) [1], [4] protocol stack. In the downstream
direction, the CMTS broadcasts data and control frames to
a set of CMs. The upstream channel consists of a stream of
time slots shared among CMs. Using the DOCSIS, the CMTS
replants to CM time-slots requests and grants time-slots to
the CM using MAP messages every 2ms. Once the CM has
acquired time slots from the CMTS, it usually transmits a
TCP segment per DOCSIS frame. In the case of congestion,
the CM can buffer multiple TCP segments and concatenate
the segments in a DOCSIS frame after waiting for a longer
time-slot-granting delay. One manifestation of buffering at the
CM has been recently noted in bufferbloat [6].

We consider measurements taken at B, where an investigator
can legally make such measurements. B records the inter-arrival
times of TCP data packets sent from A during file-sharing
uploads to B. To provide the most general solution, we assume
measurement is from a typical Internet end-point, and not
a gateway router or other specialized device. In this case,
the investigator is located outside of the cable network. A’s
traffic will be transmitted through the cable network and then
through a number of additional networks before arriving at B.
In our evaluation scenarios, we assume B has rich, high-speed
connectivity to the Internet.

A. Factors Affecting TCP segment spacing and burst size

Since we will use the inter-arrival times between segments to
distinguish between wired and wireless access in the sender’s
home, let us next consider how the TCP and DOCSIS protocols
shape the time between transmission of A’s TCP segments.
TCP’s sliding window algorithm typically results in bursts of
packets that are sent back-to-back. i.e., with only short inter-
departure times between back-to-back segments. These bursts

are then separated by a relatively longer interval of time, while
the sender waits for the receiver’s ACK.

When the CM transmits segments, the inter-departure time
between two segments can be different from those segments’
inter-arrival time to the CM. These changes can be small or
significant, and can depend on the level of congestion in the
cable network. Since the segments’ inter-arrival times to the
CM follow their departure from the (wired or wireless) access
network to the CM, and since our goal is to distinguish between
wired and wireless access times based on these inter-arrival
times, we will focus on segments whose inter-departure time
from the CM closely matches their inter-arrival time to the
CM. In Section VI.A we present key insights that allow us
to identify segments whose inter-departure time is relatively
unchanged from their inter-arrival time.

Several other factors found in a typical setting also affect
TCP burst sizes and segment inter-arrival times at the CM.

P2P application rate limit. As a file sender, peer A is
assumed to always have file data to send. In some cases, a
P2P application may use a rate-limiting algorithm [17] to
purposefully limit TCP throughput. In this case, TCP might
not send segments fast enough to fill the congestion window.
Such a rate-limited flow may have a larger number of smaller
bursts (i.e., fewer segments with short inter-departure times)
and a larger number of longer inter-departure times than
an unconstrained TCP sender. But TCP’s burst-followed-by-
an-inter-burst-delay behavior - a feature we exploit in our
classification - is still observed.

Multiple flows from A. A P2P peer often exchanges data
with multiple peers simultaneously. Since upstream bandwidth
is shared among these multiple flows, each individual flow
will experience a lower throughput than in a single flow
scenario. This decreased throughput is evidenced in a decreased
burst size and increased inter-burst spacing. We find, however,
that for accurate classification, we only need determine (by
measurement) the throughput of a target flow; the number of
competing flows need not be known.

TCP send buffer size and TCP algorithms. The TCP
send buffer size and TCP algorithm play an important role
in determing the burst size. Linux has a large maximum
send buffer size and disables Nagle’s algorithm by default.
Consequently, Linux’s burst sizes adaptively change over
congestion window or P2P application rate limit algorithms;
conversely, Windows’s burst size is often equal to its very small
default send buffer size of 8 KB [11]. Windows buffers and
transmits send-buffer-sized data. This buffering of data larger
than the MSS (Maximum Segment Size) bypasses Nagle’s
algorithm, which is enabled by default for Windows. These
TCP send buffer sizes can be overriden by P2P applications,
including eMule and ktorrent, and cause a flow to have
different burst sizes. (We verified these applications’ behavior
by examining their source code.)

Wireless channel contention. Packets ready for departure
from A must gain access to a wired or wireless medium in
order to reach the local CM. Significant differences between
PHY and MAC protocols of wired and wireless access networks



4

result in distinguishable distributions of inter-frame arrival (and
therefore inter-packet arrival) at the CM; these differences can
survive through the Internet as we show in Section V. These
differences are easier to detect when local contention for the
medium increases, as wireless MACs introduce much greater
delays between frames during contention than Ethernet MACs.

IV. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY

This section describes the experimental setting in which
we obtained measurement traces. Our experiments do not
include results from law enforcement trials. It would violate
IRB protocols to experiment on Internet users without consent.

A. Experimental setting

Fig. 2. Our measurement network topology for experiments.

Fig. 2 illustrates the experimental setting for our packet
measurements. We have two monitoring points: Bsniff, and
Bremote. Node A generates TCP traffic to Bremote using iPerf
to transmit TCP data at the maximum rate possible; hence the
TCP transmit queue is never starved for data. At Bsniff we place
a sniffer that captures frames before they are transmitted via the
CM. We stress that Bsniff is used here only for experimental
research purposes here; as discussed above, our practical
forensic setting would preclude making measurements at this
point in practice. Our classification results are performed using
only traces gathered at Bremote.
Bremote is located at the Univ. of Massachusetts Amherst.

A is located in a house in a town near UMass Amherst, using
Comcast’s residential cable network. The number of hops
between A and Bremote varies, as determined via traceroute.
We used a node C as the sink for TCP flows originating at
A that compete with traffic to B. Node C was located at
Purdue University. AP0 is the link type we seek to classify.
A’s connection to AP0 was either IEEE 802.11g with 54Mbps
or 1 Gbps Ethernet in our study. For 802.11g measurement,
we located A less than 1m away from the AP0 to obtain the
wireless traces least distinguishable from wired traces. For
emulating contention traffic for the wireless network, we set up
an independent subnet near A as shown in Fig. 2. The subnet
consisted of nodes E, F , and AP1, all using the same wireless
channel as AP0. The Comcast cable network supports DOCSIS
v2.0 with 4 ticks per time-slot as an upstream modulation and
8,160 bytes as a maximum burst frame size. Thus, we can
instantaneously see an upstream throughput up to 10 Mbps,
although the upstream capacity of a contract is 3 Mbps.

We varied the experimental environment as follows.
1) P2P application rate limiting algorithm. For some

experiments, instead of iPerf, we ran our own emulator

that generates TCP data with different inter-departure delays
between application chunks and with different chunk sizes.

2) Competing flows. We separately evaluated cases of single
and multiple competing TCP flows. In the single flow case, A
generated a single TCP flow sent to Bremote. In the multiple
flow case, A generated one TCP flow sent to Bremote and four
competing TCP flows in parallel that were sent to C. These
five flows generated from A were delivered to a single CM
via either wired or wireless access.

3) Linux vs. Windows. Our traffic source was either Ubuntu
with Linux Kernel 2.6.22 or Windows Vista at node A. Linux
Kernel 2.6.22 uses CUBIC [7] and Windows Vista uses CTCP
[18]. In operating systems, the TCP send buffer size can be
globally assigned by the kernel, or applications can individually
override its maximum size using SO SNDBUF socket option.
Since Kernel 2.4, Linux takes 4 KB as minimum, 16 KB
as default, and 4 MB as maximum, and TCP dynamically
adjusts the size of the send buffer based on these three values.
However, Windows Vista has a TCP send buffer size of 8 KB
by default; the same 8 KB default is also found in Windows
XP and Windows 7. We observed different inter-arrival time
distributions for default or overriden send buffer sizes.

4) Wireless channel contention (0 Mbps or 10 Mbps). F
continuously received 0 Mbps or 10 Mbps TCP traffic from E
on the same channel as A and aritificially generated 0 Mbps
or 10 Mbps contention. In both cases, we characterized non-
aritificial wireless channel contention caused by actual in-range
wireless transmitters as background traffic near A during our
measurement. We used monitor mode that captures all the
traffic generated with the same or overlap wireless channels
across different SSIDs [12]. The measured background traffic
was commonly less than 1 Mbps.

Each above experiment setting was performed ten times for
10 sec, 1 min, or 10 mins. We captured a target flow via tcpdump
at Bsniff and Bremote and then derived inter-arrival time datasets.
We calculated the inter-arrival time as the time interval between
the first bit of a first packet and the first bit of a second packet of
two back-to-back TCP segments and considered only segments
that experienced neither retransmission nor loss. The datasets
mainly consisted of inter-arrival times generated during the
congestion avoidance phase.

V. PROPERTIES OF CLASSIFICATION FEATURES

This section identifies the properties of the sender’s TCP
and CM access protocol that influence segment inter-departure
times as they leave the CM and enter the cable network, in
some cases allowing the differences in inter-segment spacing
introduced by a wired versus wireless access network at the
sending host to be preserved and manifested at the receiver. We
then introduce percentiles and entropy of the inter-arrival time
distribution for a TCP flow observed at the receiver (Bremote)
as classification features, and discuss how to select inter-arrival
times that have preserved the difference between wired versus
wireless access networks as a classification feature.



5

Fig. 3. An example on a TCP flow’s time-sequence diagram during the
congestion avoidance phase.

A. Model

In order to preserve the differences in access delays between
a wired versus wireless access network at the sender (which
will be central to our classification), a segment’s inter-departure
time from the sending host into the CM should not be greatly
changed by the CM. By carefully analyzing the change of the
spacing between two successive TCP segments, measured on
their arrival to the CM at A and at Bremote, we will see that a
long segment inter-departure time from the sending host into
the wired or wireless channel at A, reflecting the characteristics
of the PHY and MAC layers at A, can be preserved when
the segment arrives at Bremote. For simplicity, we assume the
following about the flow (which we will see generally hold in
practice in our experimental evaluation):

• All TCP segment sizes are equal.
• An Internet path traversed by the flow is stable, i.e., that

there is little delay variation from the CM to Bremote.
• The propagation delay at a wired or wireless link is

negligible.

Fig. 3 shows a TCP flow’s time-sequence diagram observed
at A, at the CM, and at Bremote. A generates a series of short
segment inter-departure times as a burst (sometimes referred to
as a ”flight” of segments) followed by a relatively longer
inter-departure time. Let τwired(n) be segment n’s access
and transmission delays at a wired link. (τwired reflects the
characteristics of the PHY and MAC protocols of wired access.)
Let τcable(n) be the sum of time-slot-granting and transmission
delays at the CM for segment n.

A bad inter-arrival time, shown in Fig. 3(a), occurs when
the inter-segment spacing at the receiver has been completely
re-shaped (from the original inter-segment spacing on arrival
to the CM at A) by the CM; in this case, any difference in
access times due to the wired or wireless nature of the access
network at A would be lost. A bad inter-arrival time between
two segments happens if (i) the latter segment is queued before
being served at the CM, or (ii) the CM concatenates these two
segments in a single DOCSIS frame. In Fig. 3(a), segments

n-1 and n show an example of case (i). When segment n (the
latter segment associated with an inter-arrival time) arrives at
time tn, the CM is serving segment n-1 and hence enqueues
segment n. After segment n-1 has been transmitted, segment n
is transmitted and experiences τcable(n) delay at the CM. Thus,
the (bad) inter-arrival time (a) at Bremote equals τcable(n).

A good inter-arrival time, as shown in Fig. 3(b), occurs
when the inter-segment spacing is long enough to be less
affected by the CM, thus preserving the difference between
wired versus wireless access delay at A when the segments
arrive at Bremote. A good inter-arrival time occurs if no
segments are being transmitted (or are queued for transmission)
at the CM when the second segment arrives. For instance,
suppose that segment n+ 1 (as the latter segment associated
with an inter-arrival time) arrives at tn+1 when the CM is
empty, and is instantly transmitted without being queued. Then,
a part of the inter-segment spacing (marked as a “blue” bar
in Fig. 3) is unchanged by the CM and the difference between
wired versus wireless access networks would be preserved in
the segment inter-arrival time at Bremote.

A consequence of the above observations is that the segment
inter-arrival time distribution observed at Bremote will consist
of more good inter-arrival times when the flow sends smaller
bursts after longer inter-burst delays and when flow segments
rarely experience congestion or concatenation at the CM. A
flow having smaller bursts and longer inter-burst delays results
in a lower throughput at Bremote than a flow with long bursts
separated by short inter-arrival times. Thus, in the following
discussion, we will characterize a target TCP flow using burst
size, throughput, and concatenation rate.

Burst size observed at Bsniff. α denotes the burstiness
of a segment arrival process to the CM after leaving the
host computer but before reaching the CM. Using the dataset
measured at Bsniff, we calculate α as

α=
(

no. of inter-arrival times below 1ms at Bsniff

total number of inter-arrival times at Bsniff

)
.

In our setting, 802.11g uses neither the RTS/CTS option
nor CTS protection but supports frame-burst. Since 802.11g
spends 322µs on transmitting a full-sized TCP segment without
random-backoff and frame-burst [5], most short inter-depature
times in a burst are less than 1ms at Bsniff. We stress α would
not be used during a forensic investigation, nor do we employ it
in our classification procedure. However, we will find it useful
to use α to explain our classifier results, as α characterizes
the burstiness of the (unobservable) source.

Throughput observed at Bremote. We calculate an average
A-to-Bremote throughput observed at Bremote and denote it
by T . We will see that a flow with a lower throughput is
more likely to have more good inter-arrival times than a flow
with a higher throughput, and thus is more likely to result
in more accurate classification. Throughput is an important
flow attribute to be considered in assessing the classification
accuracy in Step (1) (described in Section II). During Step (3),
T would be used to generate a flow observed in step (1).



6

Concatenation rate observed at Bremote. A flow’s concate-
nation rate (denoted by β) is the fraction of segment inter-
arrival times at Bremote that indicate that these two segments
were concatenated in a single DOCSIS frame by the CM. We
calculate β using the dataset measured at Bremote as

β=
(

no. of inter-arrival times below 1ms at Bremote

total number of inter-arrival times at Bremote

)
.

A receiver can easily identify concatenated TCP segments as
those segments having an inter-arrival time of less than 1ms
since the CM must wait for at least 2ms to be granted a time
slot from the CMTS. As in the case of T , β would be used
to generate a flow having equivalent values of T and β as
observed in step (1). As we will see, the value of β will be
an important factor in deciding whether to use percentiles or
entropy values of the inter-arrival time distribution observed at
Bremote as classification features.

B. Percentiles and entropy of a distribution observed at Bremote

This subsection discusses and motivates the use of percentiles
and entropy of the segment inter-arrival time distribution as
classifiers at Bremote and the dependence of this use on
observed values of T and β. We will also use the (unobserved)
values of α to provide additional insight into the discussion.

995 1000 1005 1010 1015
0

0.5

1

Inter−arrival times (ms)

C
D

F

 

 

wired
wireless

2 4 6 8 10
0

0.5

1

Inter−arrival times (ms)

C
D

F

 

 

wired
wireless

(a) (b)
Fig. 4. CDF of segment inter-arrival times at Bremote, wired versus wireless
access at A. (a): T = 80 bps (α = 0.00); (b): T = 2.3 Mbps (α = 0.50).
No concatenation (β = 0.00).

Percentiles. Fig. 4(a) and (b) plot the CDF of segment inter-
arrival times at Bremote, for the case of wired versus wireless
access at A. Fig. 4(a) is for the case of low throughput and low
burstiness; these curves are for the case that the sender sends
only one 10-byte segment per second. Since 1 sec is much
longer than the 100ms RTT in our setting, the CM handles
only a single segment at a time (α = 0). Fig. 4(b) is for the
case of higher throughput and higher burstiness (α = 0.5).
Here, the sender transmits at the fastest possible rate using
iPerf, but we observed that no concatenation occurred.

In Fig. 4(a) and (b), the differences between the curves for
wired and wireless access suggest those features of the segment
inter-arrival time distribution that might best be used as a
classifier to distinguish wired from wireless access. Specifically,
we note that the difference between wired versus wireless access
networks is manifested most obviously in segment inter-arrival
time percentiles lower than median.

In the case of concatenation (not shown), we observed only
a small number of ”good” inter-arrival times, since most of
segments are buffered and concatenated at the CM. In this
case, it is difficult to guarantee that those good inter-arrival
times are located at the lower percentiles and (as we will see),

percentiles are not a reliable classifier. This motivates our use
of entropy (below) as a classifier in these cases.

2 4 6 8 10
0

0.5

1

1.5

Measurement sequence

E
nt

ro
py

 

 

wired
wireless

2 4 6 8 10
0

0.5

1

1.5

Measurement sequence

E
nt

ro
py

 

 

wired
wireless

(a) (b)

2 4 6 8 10
0

0.5

1

1.5

Measurement sequence

E
nt

ro
py

 

 

wired
wireless

2 4 6 8 10
0

0.5

1

1.5

Measurement sequence

E
nt

ro
py

 

 

wired
wireless

(c) (d)
Fig. 5. Entropy of segment inter-arrival times at Bremote, wired versus
wireless access at A. (a): T = 80 bps, β = 0.00, α = 0.00; (b): T =
2.3 Mbps,β = 0.00, α = 0.50; (c): T = 2.5 Mbps, β = 0.17, α = 0.83;
(d): T = 3.5 Mbps, β = 0.78, α = 0.83.

Entropy. Fig. 5 shows the entropy of the inter-arrrival
time distribution at the receiver for ten wired and wireless
access datasets with minimal and with high concatenation rates,
respectively. These datasets were obtained as described in the
previous section. Fig. 5(a) and 5(b) were generated in the same
manner as Fig. 4(a) and 4(b), respectively. Fig. 5(c) and 5(d)
were generated via iPerf when a cable network experienced
different amount of congestion.

A classifier using entropy would conceptually construct a
horizontal line (representing a given entropy value) separating
the wired points from wireless points in Fig. 5. In an ideal case,
all the entropy values for wireless access would fall above the
horizontal line and all the entropy values for wired access would
fall below the horizontal line. The blue dotted lines in Fig. 5
are the result of running the entropy-based classifier algorithms
that we will discuss in the following section. Fig. 5(a) and 5(d)
show that entropy is a good classifier, but Fig. 5(b) and 5(c)
show that entropy is not a good classifier.

Fig. 5(a) has the small values of throughput, α and β and
indicates that there are few bad inter-arrival times. Thus, we
conjecture that the inter-arrival time distributions are different
enough that inter-arrival time entropy (which considers the
entire distribution) is also sufficient (as is the lower percentile
of inter-arrival time distributions) to distinguish wired from
wireless access.

In Fig. 5(b), the increased throughput (see earlier discussion)
results in larger bursts of arrivals (and likely queueing) at the
sender, and consequently has fewer good inter-arrival times.
Although entropy is not a good classifier in this case, we
saw earlier that the lower percentile of the inter-arrival time
distribution is a good classifier in this case.

Fig. 5(c) is a scenario similar to Fig. 5(b), except with a non-
negligible amount of concatenation, and thus the explanation
is similar to that of Fig. 5(b).



7

In Fig. 5(d), there are even fewer good inter-arrival times
than in Fig. 5(b). However, we conjecture that with a higher
concatenation rate, many of the bad inter-arrival times are
due to concatenation. Recall from our earlier discussion
that concatenation leads to nearly constant inter-arrival times
between segments at the receiver. Thus, when considering the
difference in the entropy of the inter-arrival time distribution
for the wired and wireless access cases, these identical,
deterministic delays due to concatenation cancel each other
out. This then leaves a proportionally larger fraction of good
inter-arrival times that then contribute to the entropy difference
of the wired and wireless access cases.

VI. EVALUATION OF CLASSIFIER PERFORMANCE

In this section, we describe the classification algorithms that
we use to distinguish wireless from wired access at the sending
host A and the experimental procedure for evaluating these
classifiers using the traces described in Section IV. We present
our empirical evaluation of decision tree (DT) classification
and verify our conjectures above regarding the circumstances
in which different classifiers would work well. We also discuss
the relationship of the classification results with other factors
discussed in Section III.

A. Classification algorithms

The decision tree (DT) classification algorithm [14] builds a
tree that predicts the value of output based on several features
as an input. Each interior node represents a feature, each branch
descending from a feature node is one of the possible values
for that feature, and each leaf is an output value. During a
training phase, a DT is built by selecting the feature making
the most difference to the classification at the root and testing
a path to a leaf.

In the course of our research, we also ran logistic regression
(LR), and support vector machine (SVM) classifiers. The LR
classification produces linear decision boundaries between data
using a logistic function when the predicted output has only
two possible values. SVM projects data into a new space using
a kernel function that seeks to create a clear gap between
two possible output values and builds a hyperplane to classify
data. We found that LR and SVM typically provided similar
classification accuracy as DT and thus due to space limitations,
we do not report the results for LR and SVM here; see [23]
for these details.

B. Experimental procedure

For each experimental trace (consisting of ten wired and ten
wireless datasets taken in the same house using the methodology
discussed in section IV), we evaluated DT classification as
follows. We trained and cross-validated the classifier using
datasets of wired and wireless traffic “without channel con-
tention” and investigated various features such as the 25th,
50th, 75th percentiles of the inter-arrival time distribution at
the receiver, and the entropy of this distribution. We did not use
cross-validation for the following two cases. (i) The 10 Mbps
wireless access cases were evaluated using the trained model

based on wired and wireless traffic without channel contention.
We expect to see that the classifier trained with less wireless
contention traffic performs well for classification when there
is more contending traffic, since the gap between wireless and
wired access features would only increase as the amount of
interfering wireless traffic increases. (ii) A flow generated with
competing flows was evaluated using the trained model based
on a single rate-limited flow. During Step (3) in Section II,
it is not easy for an investigator to generate multiple flow
cases (for training purposes). Moreover, an investigator cannot
remotely distinguish a single rate-limited flow from a flow
generated with multiple competing flows. We will see that a
single rate-limited flow’s training dataset can indeed be applied
to evaluating the multiple flow case.

We quantify classification accuracy using the true positive
rate (TPR) and false positive rate (FPR). TPR denotes the
fraction of cases where the access network type is classified as
wired given that it is wired. FPR denotes the fraction of cases
when the access network type is classified as wired given that
it is actually wireless. If the TPR were to be low, the classifier
would wrongly argue for accepting the false alibi of a wired
user. If the FPR were to be high, the classifier would wrongly
argue for not accepting a valid alibi (i.e., that the CP distributor
actually did use a wireless network). For our purposes here,
we consider it as an acceptable result when the TPR is located
between 0.9 and 1 and the FPR is located between 0 and 0.1.

The tables in the following subsections show an average
of ten classification results for each experimental setting. All
the traces shown in the tables were generated from a single
house. Each dataset contained at least one thousand inter-arrival
times. The inter-arrival times were produced by two successive
full-sized (1,460 bytes) TCP segments. But approximately 30%
of the inter-arrival times in the Windows with an 8 KB send
buffer traces were observed to be transmissions of a burst of
five full-sized segments followed by a 892-byte TCP segment.
The tables show averages of α, β and T values of ten datasets
for wired and wireless access networks. The rows in the tables
show the TPR and FPR when we used the 25th-percentiles and
the entropy of inter-arrival time distributions as features. We
do not show results for the use of the 50th and 75th percentiles
as classifiers, as we found that that they do not work well
as classification features. We mark acceptable results using a
bold-faced font marked with a star (e.g., 1.0*) in the tables.

C. Evaluating classifiers for single full-rate flow cases

Let us begin our discussion of our DT classification results
by considering what we found to the most difficult classification
scenario: classifying a single full-rate flow (i.e., a flow whose
sending rate is not constrained by the application, in this
case, iPerf), when there is no artificially generated wireless
channel traffic. Intuitively, we might expect this to be the most
challenging case, since in this high throughput scenario, there
are a large number of long bursts and minimal inter-burst-
delay. In our discussions, we distinguish between the OSes
used at A (Linux, Windows), since sometimes our classification
results will differ based on the OS type. Also, for the same



8

Linux Trace 1 Trace 2 Trace 3
wired wireless wired wireless wired wireless

α 0.50 0.48 0.74 0.72 0.73 0.73
β 0.00 0.00 0.80 0.80 0.79 0.79

Features TPR FPR TPR FPR TPR FPR
25th-percentile 1.0* 0.1* 0.7 0.1 0.7 0.1

entropy 0.6 0.1 0.9* 0.0* 0.5 0.1

Windows Trace 4 Trace 5 Trace 6
wired wireless wired wireless wired wireless

α 0.83 0.81 0.83 0.81 0.83 0.81
β 0.17 0.17 0.78 0.78 0.78 0.78

Features TPR FPR TPR FPR TPR FPR
25th-percentile 0.5 1.0 0.1 0.0 0.5 0.3

entropy 0.9 0.3 0.9* 0.1* 0.2 0.4
TABLE I

DT CLASSIFICATION RESULTS FOR A SINGLE FLOW CASE.

send buffer size, we find that Windows and Linux can generate
quite different values of α and β and that Windows consistently
generates traffic with a non-negligible amount of concatenation.
This result requires that an investigator identify the OS type
and P2P application’s send buffer configuration during Step
(1). For a detailed discussion of OS-related issues, see [23].

Table I shows the classification results for a single full-rate
flow with no concatenation (very low values of β) and higher
concatenation, using the default send buffer size. For the six
traces in the table, throughput saturated at a value less than
the contracted upstream service rate of 3 Mbps.

Linux. Trace 1, a case with no concatenation, shows that
the 25th-percentile classifier worked well but that the entropy
classifier does not work well. Traces 2 and 3, cases with
concatenation, show that the 25th-percentile classifier has a
lower TPR (.7) and that neither the 25th-percentile classifier
nor the entropy classifier work well in both traces 2 and 3
(although entropy works well as a classifier for trace 2).

In additional traces (not shown here) taken at nine other
houses in western MA, we again found that neither classifier
worked consistently well for single full-rate flows with high
concatenation rates. Also, for cases with low concatenation,
the 25th-percentile classifier generally worked well, but did
not always perform well in densely populated areas, where we
might expect more cable network congestion.

Windows. Windows (with an 8 KB send buffer) consistently
generated large bursts (α ≈ 0.8) as a result of Winsock
buffering, resulting in the CM performing a mild degree of
concatenation (0.17 ≤ β), regardless of a cable network’s
congestion state. Consistent with our discussion in the previous
section, we thus see that 25th-percentile classification does not
work well for Windows. Additionally, we find that as with
Linux, the entropy classifier does not work consistently well
for single full-rate flows with high concatenation rates. Our
observations for these three Windows traces are consistent with
what we observed in experiments run at other locations.

In summary, we found that accurate classification of a single
full-rate flow is difficult, with either classifier. We will see
shortly that we find much better classification results in other
circumstances (e.g., non-full-rate single flows, or the case of
multiple flows). Accurate and reliable classification of single
full-rate flows remains an open challenge.

D. Other Scenarios

In this subsection, we examine the classification results for
the following three scenarios.

D1) Wireless channel contention. We consider a scenario
when a host transmits a single full-rate flow via a wireless
access network, but in the presence of other wireless hosts
(not attached to the access point under study) that transmit
interfering traffic.

D2) Application-limited rate. In this case, a flow is limited
by the application. Here, we would expect that the inter-burst-
delay at a sending host is often greater than the RTT, resulting
in a proportionally larger number of good inter-arrival times.

D3) Multiple competing flows at the sending host, A.
The sender A transmits full-rate multiple flows to the CM via
either the wired or wireless access network.

We use the default send buffer size for Windows and Linux
for above three cases. As we will see, these cases show
classification performance that is more consistent than that
of the full-rate single flow scenario.

Linux (Trace 1) Windows (Trace 5)
10 Mbps wireless 10 Mbps wireless

α, β 0.46, 0.00 0.81, 0.77
Features TPR FPR TPR FPR

25th-percentile 1.0* 0.0* 0.0 0.0
entropy 1.0 1.0 1.0* 0.0*

TABLE II
DT CLASSIFICATION RESULTS WITH 10 Mbps wireless cases

1) 10 Mbps wireless channel contention: Table II shows
the classification results for scenario D1 (10 Mbps wireless
contention) using the classifiers trained by wired and wireless
(without contention) access datatsets for Linux and Windows.
The values of α, and β for 10 Mbps wireless datasets are shown
in the table. The traces used for training purposes are indicated
at the top of columns two and three. For Linux, the 25th-
percentile classifier shows perfect performance in classifying
10 Mbps wireless access, a trace with no concatenation.
Similarly, for Windows the entropy classifier also shows perfect
performance for identifying 10 Mbps wireless datasets. We
note that, as we expected, the 25th-percentile classifier does not
perform well in this high concatenation case, and the entropy
classifier does not perform well for the non-concatenation case.

Linux (Trace 7) Windows (Trace 8)
wired wireless wired wireless

α, β 0.00, 0.00 0.00, 0.00 0.81, 0.69 0.79, 0.68
T (Mbps) 0.11(±0.00) 0.11(±0.00) 0.10(±0.00) 0.10(±0.00)
Features TPR FPR TPR FPR

25th-percentile 1.0* 0.1* 0.1 0.1
entropy 0.9* 0.0* 1.0* 0.1*

TABLE III
DT CLASSIFICATION RESULTS, APPLICATION-LIMITED RATES

2) Application-limited rates: Table III shows the classification
results for Linux and Windows. Here, traffic was generated
by transmitting one full-sized TCP segment every 100ms,
thus mimicking the behavior of a rate-limited application.
Comparing Tables I and III, we see that classification of
rate-limited flows results in more accurate classification than
classification of full-rate flows for Linux and Windows. For
Linux, both the 25th-percentile and entropy classifiers indeed
provide acceptable classification. For Windows, a rate-limited



9

flow consistently generates α ≈ 0.8. Thus, the entropy classifier
works well but the 25th-percentile classifier does not work well.

Linux (Trace 9) Windows (Trace 10) Windows (Trace 11)
wired wireless wired wireless wired wireless

α 0.29 0.28 0.83 0.81 0.83 0.81
β 0.00 0.00 0.65 0.65 0.65 0.65
T 0.53 0.54 0.89 0.86 0.89 0.85

(Mbps) (±0.00) (±0.01) (±0.01) (±0.03) (±0.00) (±0.03)
Features TPR FPR TPR FPR TPR FPR

25th- 1.0* 0.0* 0.0 0.0 0.0 0.0percentile
entropy 0.0 0.0 0.9* 0.0* 1.0* 0.1*

TABLE IV
DT CLASSIFICATION RESULTS FOR MULTIPLE FLOW CASES.

3) Multiple flow cases: Traces 9 and 10, shown in Table IV
show the cross-validated classification results for the multiple
flow case. Comparing Tables I and IV, we see that classification
of the multiple-flow scenario results in more accurate classifica-
tion than classification of full-rate, single flows. We performed
experiments with other multiple-flow traces and consistently
found these observations across all of the experiments. The
trace 11 column shows classification results for evaluating trace
10 when we use a classifier trained based on trace 11. Trace
11 is a rate-limited flow and has equivalent values of β and T
with trace 10 as we see in trace 11 column. In this case, we
see good classifier performance.

VII. RELATED WORK

Several past studies have addressed the problem of classify-
ing a sender’s access network type using traffic measurements.
Wei et al. [22] classified sender network access types into
802.11b, Ethernet, and low-bandwidth access (e.g., dial-up,
cable modem, ADSL) categories, using cooperatively trans-
mitted back-to-back UDP packet pairs between sender and
receiver. Like our work, Wei et al. took measurements of
packet inter-arrival times at the receiver. However, unlike our
work, they assume UDP packet pairs are sent by a cooperative
sender; instead we perform classification without the target’s
knowledge, using only (P2P application) TCP traffic, with the
sender potentially engaging in multiple TCP sessions with
multiple receivers.

In subsequent work, Wei et al. [20], [21] monitored ACK
packets exiting a university gateway and built a classifier
for distinguishing between Ethernet and 802.11b/g traffic.
Gateway measurement is not possible in our forensic setting,
as this would violate the Wiretap Act. In contrast, we are
focused on measurements taken from outside the source’s
network domain. Additionally, we see our problem as more
challenging: we expect bottleneck links in a heavily managed
and shaped residential cable modem network to more often
obscure distinctions between wired and wireless, as compared
to a high-capacity university network.

More recently, Chen et al. [3] address the problem of
identifying a suspect’s mobile device despite being located
behind a wireless AP/NAT router. However, they mark the
traffic flow and sniff wireless traffic. This marking and
monitoring of traffic broadcast without a warrant is a violation
of the Wiretap Act. Moreover, courts require that applications to
wiretap traffic meet a significantly higher standard than warrants

issued to allow search and seizure of machines located in a
residence.

VIII. CONCLUSIONS

This paper proposed legal methods that use remotely
measured traffic to disambiguate wired and wireless residential
medium access of a criminal in a practical forensic setting,
leveraging the difference in inter-arrival times in the wired and
wireless access networks. We justified our method’s legality
based on US law and extensively considered the effect of
unknown or hidden factors in a forensic setting (such as
wireless channel contention, network stack parameters, and
P2P application configuration) on classification performance.
We identified 25th-percentile or entropy of inter-arrival times
as the best performing features and figured out when and why
these features worked reliably or poorly in diverse scenarios.

REFERENCES

[1] CableLabs. Data-Over-Cable Service Interface Specifications (DOCSIS).
[2] E. Casey. Digital evidence and computer crime: forensic science,

computers and the Internet. Academic Pr, 2004.
[3] Y. Chen, Z. Liu, B. Liu, X. Fu, and W. Zhao. Identifying Mobiles Hiding

behind Wireless Routers. In Proc. IEEE INFOCOM, pages 2651–2659,
Apr 2011.

[4] Cisco.com. Understanding Data Throughput in a DOCSIS World.
[5] M. Gast. 802.11 Wireless Networks: The Definitive Guide Creating and

Administering Wireless Networks. O’Reilly Media, 2002.
[6] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet. Queue,

9(11):40:40–40:54, Nov. 2011.
[7] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly high-speed tcp

variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.
[8] O. Kerr. Computer Crime Law. Thomson/West, 2006.
[9] D. Kravets. Wi-Fi–Hacking Neighbor From Hell Sentenced to 18 Years.

Wired Magazine (Threat Level) http://www.wired.com/threatlevel/2011/
07/hacking-neighbor-from-hell/, July 2011.

[10] M. Liberatore, R. Erdely, T. Kerle, B. N. Levine, and C. Shields. Forensic
Investigation of Peer-to-Peer File Sharing Networks. In Proc. DFRWS,
August 2010.

[11] Microsoft.com. Sending small data segments over tcp with winsock.
[12] Microsoft.com. Network Monitor 3.4, 2011.
[13] R. P. Mislan, E. Casey, and G. C. Kessler. The growing need for on-scene

triage of mobile devices. Digital Investigation, 6(3-4):112–124, 2010.
[14] S. Russell and P. Norvig. Artificial intelligence: a modern approach.

Prentice Hall.
[15] R. Shore. Pedophiles exploiting wireless loopholes. The Van-

couver Sun, http://www.canada.com/vancouversun/news/story.html?id=
cff3073b-ceea-4ba4-877f-d020715358e9, February 13 2007.

[16] D. Sicker, P. Ohm, and D. Grunwald. Legal issues surrounding monitoring
during network research. In Proc. ACM IMC, pages 141–148, Oct. 2007.

[17] M. Siekkinen, D. Collange, G. Urvoy-Keller, and E. Biersack. Perfor-
mance limitations of ADSL users. In Proc. PAM Conference, pages
145–154, 2007.

[18] K. Tan and J. Song. A compound tcp approach for high-speed and long
distance networks. In In Proc. IEEE INFOCOM, 2006.

[19] U.S. General Accounting Office. File-Sharing Programs – Child
Pornography Is Readily Accessible over Peer-to-Peer Networks. GAO-
03-537T. Statement Before Congress of Linda D. Koontz, March 2003.

[20] W. Wei, S. Jaiswal, J. Kurose, and D. Towsley. Identifying 802.11 Traffic
from Passive Measurements Using Iterative Bayesian Inference. In Proc.
IEEE INFOCOM, April 2006.

[21] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, and D. Towsley. Passive
online rogue access point detection using sequential hypothesis testing
with TCP ACK-pairs. In Proc. ACM IMC, pages 365–378, Oct. 2007.

[22] W. Wei, B. Wang, C. Zhang, J. Kurose, and D. Towsley. Classification
of access network types. In Proc. IEEE INFOCOM, pages 1060–1071,
March.

[23] S. Yang, J. Kurose, and B. Levine. Disambiguation of residential wired
and wireless access in a forensic setting. Tech. Rep. UM-CS-2011-032,
U. of Massachusetts Amherst.


