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We demonstrate the achievability of a square root limit on the amount of information transmitted reliably and
with low probability of detection (LPD) over the single-mode lossy bosonic channel if either the eavesdropper’s
measurements or the channel itself is subject to the slightest amount of excess noise. Specifically, Alice can
transmit O(+/n) bits to Bob over n channel uses such that Bob’s average codeword error probability is upper-
bounded by an arbitrarily small § > 0 while a passive eavesdropper, Warden Willie, who is assumed to be able
to collect all the transmitted photons that do not reach Bob, has an average probability of detection error that is
lower-bounded by % — e for an arbitrarily small e > 0. We analyze the thermal noise and pure loss channels. The
square root law holds for the thermal noise channel even if Willie employs a quantum-optimal measurement,
while Bob is equipped with a standard coherent detection receiver. We also show that LPD communication is
not possible on the pure loss channel. However, this result assumes Willie to possess an ideal receiver that is
not subject to excess noise. If Willie is restricted to a practical receiver with a non-zero dark current, the square

root law is achievable on the pure loss channel.

Typically wireless data transmission is secured from an
eavesdropping third party by a cryptographic encryption pro-
tocol. However, there are real-life scenarios where encryp-
tion arouses suspicion and even theoretically robust encryp-
tion can be defeated by a determined adversary using a non-
computational method such as side-channel analysis. Thus,
protection from interception is often insufficient and the ad-
versary’s ability to even detect the presence of a transmission
must be limited. This is known as low probability of detection
(LPD) communication.

While practical LPD communication on radio frequency
(RF) channels has been explored in the context of spread-
spectrum communications [1, Part 5, Ch. 1], our recent
work [2, 3] addressed the fundamental limits of LPD com-
munication on an additive white Gaussian noise (AWGN) RF
channel. However, free-space communication at optical fre-
quencies offers significant advantages over RF, motivating the
need to analyze the LPD communication capability of op-
tical communication. Electromagnetic waves are quantum-
mechanical and since modern high-sensitivity optical detec-
tion systems are limited by noise of quantum-mechanical ori-
gin, assessing the fundamental limits of LPD optical commu-
nication necessitates an explicit quantum analysis.

Refs. [2, 3] analyze the LPD communication on an AWGN
channel. This corresponds to an optical channel where: (i)
transmitter Alice uses ideal laser light to modulate her infor-
mation, and (ii) both the adversary Warden Willie as well as
the legitimate receiver Bob use coherent detection receivers.
However, coherent detection receivers can be decidedly sub-
optimal for both the intended receiver Bob and Warden Willie,
and thus a more general analysis of LPD communication with
no structural assumptions on Willie’s receiver other than its re-
alization being permissible by the laws of physics is desirable.
The sub-optimality of coherent detection is particularly pro-
nounced in the low photon number regime [4, 5], which is rel-
evant to LPD communication. It is also preferable to show the
possibility of LPD communication when Bob is equipped with
a conventional (coherent detection or direct detection) optical
receiver, while Willie remains quantum-powerful. Demon-
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strating how such is possible, even on a highly lossy and noisy
channel, is our main contribution.

In this paper we provide the fundamental scaling limits for
LPD communication on a lossy optical channel. We limit
our analysis to pure input states since, by convexity, using
mixed states as inputs can only deteriorate the performance
(since that is equivalent to transmitting a randomly chosen
pure state from an ensemble and discarding the knowledge of
that choice). We consider two types of channels: the thermal
noise and the pure loss channel. We show that if Willie has a
thermal noise channel from Alice, then meaningful LPD com-
munication between Alice and Bob is possible even if Willie
is able to collect all the transmitted photons that do not reach
Bob and employ an arbitrarily complex receiver measurement
constrained only by the laws of quantum physics. On the other
hand, if Willie has a pure loss channel from Alice, then there
is a receiver he can employ that is capable of perfectly deter-
mining when Alice is not transmitting. Even though this re-
ceiver can err when Alice is transmitting, we show that Willie
can utilize it to prevent LPD communication even when Bob
is equipped with an optimal receiver. However, while Willie’s
receiver is theoretically conceivable, it has not been and is
unlikely to be built. Practical receivers suffer from dark cur-
rent due to a spontaneous emission process. We thus show
that LPD communication is possible if Willie has a pure loss
channel from Alice but is limited to a direct detection receiver
with non-zero dark current.

In order to state the theorems that govern the LPD scal-
ing laws, we denote Willie’s average error probability ]P’((aw) =
W, where P4 is the probability that Willie raises a
false alarm when Alice did not transmit and Py, p is the prob-
ability that Willie misses the detection of Alice’s transmission.

We say that Alice communicates to Bob reliably when Bob’s

average decoding error probability ]P’gb) < ¢ for an arbitrary
0 > 0 given large enough n. We use asymptotic notation
where f(n) = O(g(n)) denotes an asymptotically tight upper
bound on f(n), and f(n) = o(g(n)) and f(n) = w(g(n)) de-
note upper and lower bounds, respectively, that are not asymp-



totically tight [6, Ch. 3.1].

First we present a theorem that establishes the achievabil-
ity of the LPD communication when Willie’s capabilities are
limited only by the laws of quantum physics but his channel
from Alice is subject to thermal noise.

Theorem 1 (Square root law for the thermal noise channel)
Suppose Willie has access to an arbitrarily complex receiver
measurement as permissible by the laws of quantum physics
and can capture all the photons transmitted by Alice. Let
Willie’s channel from Alice be subject to the noise from a ther-
mal environment that injects Ng > 0 photons per channel use

on average. Then Alice can lower-bound Pgw) > % — € for
any € > 0 while reliably transmitting O(~/n) bits to Bob in
n channel uses even if Bob only has access to a (sub-optimal)
coherent detection receiver.

Next we present a partial converse to Theorem 1. It is
partial because Alice is restricted to using input states with
bounded photon number variance. However, such restriction
is not onerous since this restricted set subsumes all physically-
realizable states of a bosonic mode (such as coherent states,
squeezed states, number states, photon-subtracted squeezed
vacuum, etc.). We show that, under this restriction, reliable
transmission of w(+/n) LPD bits to Bob in n channel uses is
impossible.

Theorem 2 (Partial converse to Theorem 1) Suppose Alice
only uses quantum states with bounded photon number vari-
ance to communicate with Bob. Then, if she attempts to trans-
mit w(y/n) bits in n channel uses, as n — oo, she is either
detected by Willie with arbitrarily low ]P’éw)
code with arbitrarily low error probability.

or Bob cannot de-

Now we show that LPD communication using any quantum
state is impossible when Willie has a pure loss channel from
Alice and is limited only by the laws of physics in his receiver
measurement choice.

Theorem 3 (No LPD communication with quantum-
powerful Willie on a pure loss channel) Suppose Willie has a
pure loss channel from Alice and is limited only by the laws
of physics in his receiver measurement choice. Then Alice
cannot reliably communicate to Bob using arbitrary pure
states while limiting IPS“") > € for any € > 0 even if Bob
employs a quantum-optimal receiver.

While Theorem 3 seems to preclude Alice from using a
pure loss channel for LPD communication, its proof requires
Willie to build an ideal single photon direct detection re-
ceiver that detects vacuum perfectly. However, practical pho-
ton counting receivers are subject to “dark clicks”, or photon
detection events when no photons are impinging on the detec-
tor’s active surface. We show that in this case LPD communi-
cation is possible.

Theorem 4 (Square root law when Willie experiences dark
current) Suppose that Willie has a pure loss channel from Alice
but is limited to a receiver with a non-zero dark current. Then
Alice can lower-bound Péw) > % — € for any € > 0 while

reliably transmitting O(+\/n) bits to Bob in n channel uses.

We start this letter by introducing our optical channel model
and hypothesis testing. We then prove Theorems 1, 2, 3, and
4 in succession, and conclude the letter.

I. PREREQUISITES

Channel model—Consider a single spatial mode free space
optical channel, where each channel use corresponds to one
signaling interval that carries one modulation symbol. We fo-
cus on single-mode quasi-monochromatic propagation, since
our results readily generalize to multiple spatial modes (near-
field link) and/or a wideband channel with appropriate power-
allocation across spatial modes and frequencies [7]. For sim-
plicity of exposition we limit our analysis to vacuum propa-
gation, i.e., we do not address the effect of atmospheric tur-
bulence. The Heisenberg-picture input-output relationship of
the single-mode bosonic channel is captured by a ‘beamsplit-
ter’ relationship, b = \/ﬁd + /1 —né, where a and b are
modal annihilation operators of the input and output modes
respectively, and n € [0, 1] is the power transmissivity, the
fraction of power Alice puts in the input mode that couples
into Bob’s aperture. Classically, a power attenuation is cap-
tured by the relationship b = /na, where a and b are com-
plex field amplitudes of the input and output mode functions.
The quantum description of the channel requires the ‘environ-
ment’ mode € in order to preserve the commutator brackets,

ie., {37 IA)T} = 1, which translates to preserving the Heisenberg

uncertainty relationship of quantum mechanics. For the pure
loss channel, the environment mode € is in a vacuum state,
i.e., p¥ = |0)(0|”. The vacuum state captures the minimum
amount of noise that must be injected when ‘nothing happens’
other than pure power attenuation. For a thermal noise chan-
nel, é is in a thermal state with mean photon number Ng > 0,
ie. pf = 67(Np) where 67 (Np) is a mixture of coherent
states weighted by a Gaussian distribution:

6T(ﬁ):;(1+n)l_‘_ii><i|]§:/ " o) (alBd2a.
(1)

The mean number of photons injected by the thermal envi-
ronment is Np ~ 7r106)\3N,\/hw2, where NV, is the back-
ground spectral radiance (in W/m? sr-um) [8]. A typical day-
time value Ny ~ 10 W/m? sr-pym at A = 1.55um leads to
Np ~ 1076 photons/mode. For Np = 0, the thermal noise
channel reduces to the pure loss channel.

Hypothesis Testing—Willie collects part of the transmitted
light during the transmission of Alice’s n modulation sym-
bols and performs a hypothesis test on whether Alice trans-
mitted or not. Willie’s null hypothesis Hj is that Alice does
not transmit, and thus he observes vacuum plus noise photons,
injected either by a thermal environment or due to dark cur-
rent generated by a spontaneous emission process in his own
measurement apparatus. His alternate hypothesis H; is that
Alice transmits.



II. THERMAL NOISE CHANNEL (Ng > 0)

We begin by providing a constructive proof of achievabil-
ity of O(y/n) LPD bits in n channel uses: we describe Alice
and Bob’s communication system and prove that Willie’s av-
erage probability of detection error is lower-bounded arbitrar-
ily close to %, while Bob’s average probability of codeword
decoding error is upper-bounded arbitrarily close to zero.
Proof. (Theorem 1). Construction: Let Alice use a
zero-mean isotropic Gaussian-distributed coherent state in-
put {p(a),|e)}, where & € C, p(a) = e~ 1°"/% /zi with
mean photon number per symbol 7 JclalPp(e)d®a
Alice encodes M-bit blocks of input into codewords of
length n symbols at the rate R = M /n bits/symbol by

generating 2"% codewords {@, |a;), }2";, each accord-
ing to p(@, ) = [11, plas). where @ |a;) =
|y ... @) is an n-mode tensor-product coherent state. The
codebook is used only once to send a single message and
is kept secret from Willie, though he knows how it is
constructed.[18]

Analysis (Willie): Suppose that Willie captures all of
Alice’s transmitted energy that does not reach Bob’s re-
ceiver. This is a fairly strong assumption for a line-of-sight
diffraction-limited far-field optical link. Since Willie does not
have access to Alice’s codebook, the n-channel use average
quantum states at Willie’s receiver under the two hypotheses
are given respectively by the density operators,

. ®n
con _ [N~ (NB)'
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The quantum-limited minimum average probability of error in

discriminating the n-copy states p5" and p{" is:
U 1 ARN Xn
P =y [1- g0 "] @

where ||p — &||1 is the trace distance between states p and
(w)

6. We can lower-bound[19] P,

Inequality [9, Th. 11.9.2]:

using quantum Pinsker’s

16 =6l < v2D(p]16), )

where D(p||6) = Tr{p(In(p) — log(5))} is the quantum rel-
ative entropy (QRE) between states p and &. We thus have:

w 1 ~@n|| A
B > B > 0 [SDGET. ©

Since QRE is additive for tensor product states,
D(pE™M1pY™) = nD(polp1). Since po and p; are diag-
onal in the photon-number basis, the QRE is:
(1+ (1 —=n)n+nNg)nNg
(1 -n)n+nNg)(1+nNg)
1+ (1 —n)n+nNg

1+ ’I7NB ’

D(pollp1) = nNpIn (

+In

)

The details of the derivation of (7) are given in the Supple-
ment. The first two terms of the Taylor series expansion of (7)
around i = 0 are zero and the fourth term is negative. Thus,
using Taylor’s Theorem we can upper-bound (7) by the third
term as follows:

D(pollpr) < i (8)
PONPL) = 9 Np(1+ yNp)”
Therefore, setting
4 Ngp(1+nN
mo 2€ nNs(1+nNg) )
V(1 —m)
ensures that Willie’s error probability is lower-bounded by

]P’&w) > % — e over n optical channel uses by Alice.

Analysis (Bob): Suppose Bob uses a coherent detec-
tion receiver. A homodyne receiver, which is more effi-
cient than a heterodyne receiver in the low photon number

regime [4], induces an AWGN channel with noise power
of = 2(1_1)#. Since Alice uses Gaussian modulation

with symbol power 7 defined in (9), we can upper-bound ]P’gb)
as follows [2, Eq. (7)]:

]p(b) < § = 2Brom(n,6,0)— % 1ogy (14+7/207 o) (10)
Substituting the expression for 72 from (9) and o7, and solv-
ing for the maximum number of bits Byom (7, €, §) that can be
transmitted from Alice to Bob in n channel uses, we obtain:

Bhom(n,E, 5) = Cd((s) + \/ECC(GﬂnvNB) + O(l)a (11)

where Cy(0) = log, d is the ‘cost’ of upper-bounding Bob’s
decoding error probability by P < 5, and Ce.(e,n,Np) =
nNp(1+nNp)

€= 5= ;lﬁv 77 1s the cost of lower-bounding
(w) 1

Willie’s probability of detection by P, \;,, > 5 —€. ®
Remark. Eq. (11) illustrates that while the cost of reducing
Bob’s decoding error has an additive impact that is insignifi-
cant at large enough n, the cost of limiting Willie’s detection
capabilities is multiplicative and proportional to e. We plot
Brom(n, €,0) using transmissivity = 0.1 for various values
of € and 0 on Figure 1, illustrating the square root law and that
the probability of decoding error imposed on Bob has insignif-
icant impact, while the tolerance of being detected by Willie
greatly affects the amount of information that can be covertly
transmitted. The small number of bits that can be sent across
the channel (200 bits in 10,000 seconds, or roughly 2 hours 45
minutes, with e = 0.1) is likely due to the very conservative
assumptions we make on Willie’s capability.

III. PARTIAL CONVERSE TO THEOREM 1

Here Alice’s objective is to transmit a message W that
is M = w(y/n) bits long to Bob at the rate R = M/n
bits/channel use using a codeword containing n pure states
with arbitrarily small probability of decoding error as n gets
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FIG. 1: Buom(n,€,0) plotted for n = 0.1 and several values of € and §. Here Np = 10
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~% and each modulation symbol duration is 100ps.

Figures clearly illustrate that while the choice of § is hardly noticeable, choice of € has a significant multiplicative impact on the number of

covert bits that can be sent across the channel.

large, while limiting Willie’s ability to detect her transmission.
For an upper bound on the reduction in entropy, the messages
are chosen equiprobably. We now show that if Alice violates
the square root law by attempting to transmit w(+/n) bits in
n channel uses, as n — o0, she is either detected by Willie

with arbitrarily low ]P’gw) or Bob’s probability of decoding er-
ror is lower-bounded by a positive constant. We restrict Alice
to transmitting only the states with bounded photon number
variance, that is, for any state [¢)) = >~ by |k) that Alice
uses, we require that >, o k?|bx|?> < 0?5 < co. While
we note that all practical states meet this requirement, in the
future we would like generalize this result to arbitrary pure
states.

Willie uses a simple heterodyne receiver to detect Alice’s
transmissions. We demonstrate that this is enough to detect
with arbitrarily small error probability as n — oo those code-
words with mean photon number per symbol 7 = w(1/y/n).
We then use Fano’s inequality to show that when Alice at-
tempts to transmit w(+/n) bits of information, while prevent-
ing the upper bound on the error probability of Willie’s hetero-
dyne receiver from being arbitrarily close to zero, Bob suffers
non-zero decoding error probability.

Proof. (Theorem 2). Suppose Alice uses a codebook
{Qd,u = 1,...,2"} where a state Q2 = @, pi(u)
encodes message W, out of M possible messages, with
pil(w) = [i(w) (i(u)| and [i(w) = S0 B (w) k)
where v;(u) can, in principle, be infinite. First we analyze
Willie’s detector and assume that an arbitrary message W,
was transmitted. At each channel use, Willie observes an
output state p!” (a) of a thermal noise channel from Alice,
where the channel is described by a beamsplitter relationship
w = ,/7a + +/1 — € with a and € being the input and envi-
ronment modes and 0 < v < 1 — 7. We subsume any sub-
unity detection efficiency of Willie’s heterodyne receiver in 7.
Then Willie’s hypothesis test reduces to choosing between the

states,
o) N ) ®n
N O B . .
oy = (Z T+ (1= )Np)TH ) (z|> , and (12)
A =i (a) (13)

where p!" (a) is the output state of a thermal noise channel
with transmissivity ~y corresponding to an input state ;' (a).
Willie uses a heterodyne receiver and only considers the
squared magnitude of the complex output of this receiver (thus
discarding the in-phase component of his readings). After
collecting a sequence of n such observations of his channel
from Alice {|y1|%, ..., |yn|?}, Willie compares their average
S =15 |yi|* to a threshold. The probability distribution
for the test statistic S depends on which hypothesis is true:
we denote by Py the distribution when Hj holds with Alice

not transmitting, and P(la) when H; holds with Alice trans-
mitting message W,. We first show that Willie’s error proba-
bilities Pr 4 and Pp;p can be bounded for this receiver given
Alice’s codeword parameters. Then we show that if Alice uses
a codebook that makes this bound fail, Bob cannot decode her
transmissions without error even with an quantum-optimal re-
ceiver.

The statistics of heterodyne receiver measurements are
given by the Husimi Q representation Q(a) = 2 (o p|a)
of the received quantum state p. If the null hypothesis is
true and Alice is not transmitting, then Willie observes a se-
quence of attenuated thermal states, each with mean photon
number (1 — v)Np. Each squared magnitude of the hetero-
dyne receiver reading is independently and identically dis-
tributed (i.i.d.) and the Q-function of the attenuated ther-
mal state is QT (o) = me_“)"z/(HNB). Therefore,
under the null hypothesis, E[S] = 1 + (1 — v)Np and

Var[S] = M Since the test statistic S should be
close to 1 + (1 —v) N when Alice is not transmitting, Willie



picks a threshold ¢ and compares S to 1 + (1 — v)Np + t.
Using the Chebyshev’s inequality, we can upper bound the
probability of the false alarm as follows:

SP(IS =+ A =y)Np)|=2t) (15
2
_ (L+(1L=7)Np) 06
nt?

Thus, to obtain desired P% 4, Willie sets ¢t = %, where

d= %. Note that the threshold decreases with more
FA
observations.

Now, when Alice transmits a codeword Q2 =
i, p(a), Willie receives the output state @, oY (a) of
the thermal noise channel with transmissivity v. Since the
output state is a tensor product, the heterodyne detector read-
ings are independent but not identical. The expected squared

magnitude of each reading is:

Ellyil’] /|04| Q\wq(a) a)d? (17)
=1+ (1—=9)Np +7ni(a) (13)

where 7i;(a) = Z vi(a )kb( )( ) denotes the mean photon
number of state p2(a) and QI i a»( «) is the Q representa-

tion of p! (a). Similarly, the variance is:

Var(|y; || = 7?07 (a) + c17i(a) + c2 (19)

where 02(a) = ,ug )( )—(72;(a))? denotes the photon number
variance of p(a), and c; = 2v((2+ Ng)(1 —7) — 1), co =

(1 + (1 —4)Np)?. To obtain Qm(a»(a), we convolve [20]

the Q representation of the thermal environment Q7 (a) with
that of the input state |1, (a)),

N

i(a) vi(a

_ 1 i
1 b
s

k=0 1

—~
N

Qo)

Il
=]

(20)

using [10, Eq. (2.17)], with the details of the derivation of (18)
and (19) in the supplement. Since the photon number vari-
ance of p7'(a) is bounded by o2 5, we have 02(a) < o&p.
Denoting the average photon number of the codeword €2, by
n(a) = £ 3" 7i;(a), the probability of missing the detec-
tion of codeword €2, can thus be bounded using Chebyshev’s
inequality as follows:

Pl =P{(S < 1+ (1—7)Np +1) Q1)
<P{(|S —1— (1 —~)Ng — ya(a)| > ya(a) — t)
(22)
Szz 1703()+01nzg)+02 (23)
2 (vi(a) — t)
< Yop g + c1ii(a) (24)

"~ (v/nn(a) - d)°

If the average photon number 7i(a) = w(1/v/n),
lim,, 0 IP’S\‘/’[)D = 0. Thus, given enough observations, Willie
can detect Alice’s codewords that have the average photon
number 7i(a) = w(1/4/n) with arbitrarily low probability of
error ]P’éw). Note that not only is Willie oblivious to any details
about Alice’s codebook construction, but he also only needs a
simple heterodyne detector to detect Alice.

Now, only when the transmitted codeword has average pho-
ton number 7iz; = O(1/+/n), the upper bound in (24) fails to

approach zero as n — oo. In other words, if Alice wants to

lower-bound ]P’gw), her codebook must contain a positive frac-

tion x of such low photon number codewords. Denote the sub-
set of messages that have codewords with the average photon
number 7iyy = O(1/4/n) by U. Let’s examine Bob’s proba-

bility of decoding error ]P’éb). Denote by E,_,; the event that
a transmitted message W, is decoded as Wy, # W,. Since
the messages are equiprobable, the average probability of er-
ror for the codebook containing only the codewords in I/ is as
follows:

1
PO (U) = Tl 37 P(Uwanwa)Basrk) . (25)
=
where | - | is the set cardinality operator. The probability of

Bob’s decoding error is lower-bounded by Pgb) > /dP’gb) U,
since the equality holds only when Bob errorlessly receives
messages that are not in / and knows when the messages from
U are sent (in other words, the equality holds with the set of
messages on which decoder can err is reduced to Uf). The
probability that a message is sent from U/ is x, which means
that if Alice’s coding rate is R, then there are x2"* messages
in Y. Denote by W, € U the message transmitted by Alice,
and by W, Bob’s decoding of W,,. Then, since each message
is equiprobable,

logy k +nR = H(W,) (26)
= I(Wa§Wa) +H(Wa|Wa) 27
< I(WasWa) + 1+ (logy s+ nR)PL ()

(23)

QA}) + 1+ (logy & + nR)PY) (1)
(29)

where (27) is from the definition of mutual information,
(28) is due to classical Fano’s inequality [11, Eq. (9.37)],
and (29) is the Holevo’s bound I(X;Y) < x({p:,p:i})s
with x({ps, p;}) being the Holevo information for a channel
with input alphabet X, {p;, p;} the priors and the modulat-
ing states, and Y the resulting output alphabet (assuming a
POVM {II, }) [12]. Since the Holevo information of a single-
mode bosonic channel with mean photon number constraint
is maximized by a coherent state ensemble with a zero-mean
circularly-symmetric Gaussian distribution [4], we have:

logy & +nR < x ((p%)*") + 1+ (logy & + nR)PL (U)
(30)



where p? = 67 (nny), with 67 (i) defined in (1). Now,
x(pB) = H(pP) since coherent states are pure, and
¥ (%)) = n (1ogy(1 + nine) + niesTogy (1+ 51 ))
is due to the additivity of the Holevo information across the
modes of the bosonic channels. This implies:

log (1 -+ 1igs) + 1 logy (1 n ﬁ) 41

P(b)(U) >1-—
e — log, K
<82 4 R

€29

Since Alice transmits w(+/n) bits in n channel uses, her rate is
R = w(1/4/n) bits/symbol. However, 7i;; = O(1/4/n), and,
asn — oo, P (U) is bounded away from zero. Since xk >

0, Pgb) is also bounded away from zero when Alice tries to
transmit w(+/n) bits in n channel uses while beating Willie’s
heterodyne receiver. m

IV. PURE LOSS CHANNEL (Np = 0) WITH
QUANTUM-POWERFUL WILLIE

Now we prove that Alice and Bob cannot hide their com-

munication from Willie if Willie has a pure loss channel from
Alice and a choice of a receiver restricted only by the laws of
quantum physics. First, we let Willie pick a receiver that does
not necessarily capture all the transmitted energy that does not
reach Bob’s receiver. Alice uses an arbitrary pure state code-
book. While Willie is oblivious to its structure, we show that
Alice must constrain her codewords to limit the detection ca-
pability of Willie’s particular receiver. We then show that this
constraint prevents Bob from decoding Alice’s transmissions
without error, proving the theorem.
Proof. (Theorem 3). Suppose Alice uses a codebook where
a state Q7 = @;_, p(u) encodes message W, out of
M possible messages, with p(u) = [th;(u)) (;(u)| and
[t (w)) = Z:’(g) aff)( ) |k) where v;(u) can, in principle,
be infinite. First we analyze Willie’s detector and assume that
an arbitrary message W, was transmitted. Willie captures a
fraction of the transmitted energy, v, where 0 < v < 1 — 7.
Then Willie’s hypothesis test reduces to choosing between the
states,

Py = \0> (0", and (32)
o = ® (33)

where p!¥ (a) is the output state of a pure loss channel with

transmissivity v corresponding to an input state p;'(a). Let

Willie use an ideal single photon sensitive direct detection

receiver given by positive operator-valued measure (POVM)
Xn

{\0} (O, 32521 14) <]\} over all n channel uses. Then

Willie’s probability of error is

=] (ol (34)

i=1

[p(w)

1\9\»—*

Note that the error is entirely due to the missed codeword
detections, as Willie’s receiver detects vacuum perfectly and
never raises a false alarm.

The diagonal elements of p}" (a) expressed in the photon
number basis are as follows (see Supplement for derivation):

v;(a)
(s] P2 ( Z\ \ ()(1—@’“‘%5 (35)
=0
Therefore,
vi(a) 9
O @ 10) = Y- | @) (1—7)* (36)
k=0

@)+ 0= @[Ha -7 @7

=1-7 (1 - \ag;) (@’2) (38)

< |af’(

Thus, substituting (38) into (34) and using the Taylor series
expansion of log(1 — z) yields:
)] ) (39)

]p(w) < exp [ 72 (1 — ’ao
. 2
(1- [

with ¢, a constant, for every codeword in her codebook with
a positive probability of being transmitted. Next we show that
the codewords constructed this way are “too close” to one an-
other to allow reliable communication.

Let’s analyze Bob’s receiver. Denote by p,, the a priori
probability that W,, is transmitted. Then, given that W, is
transmitted, the probability of the decoding error is the prob-
ability of the union of events Uj_ , ., £y, where E, is the

event that the received state is decoded as W = W,, v #+ u.
Let Bob choose a POVM {A;} that minimizes the average
probability of error:

M
b) = inf Zpu]P’
Aj}u:l

Now, any scheme used to transmit a positive number of bits
has to have at least two messages with positive prior trans-
mission probabilities. Thus, let’s pick a pair of messages
{W,., W} from Alice’s codebook with a positive prior prob-
abilities {p, > 0,ps > 0} of transmission. Then we have:

implying that Alice must set >,

= C(,h

(Un—0,00 Bu| Wy sent) (40)

P®) > p, P (Es|W, sent) + p,P (E,|W, sent) (41)
= (pr + pS)PZHS (42)

The lower bound in (41) is due to the exclusion of a non-
negative elements from the sum in (40), as well as the events
E, and E being contained in the unions Uy_ ., E, and

v=0,v5Ev, respectively. In (42) we reduced the analytlcally
intractable problem of discriminating between many states
in (40) to a quantum binary hypothesis test, since PL* =



SE-P (Es|W, sent) + B -P (E, [W, sent) is Bob’s aver-
age probability of error in a scenario where Alice only sends
messages W, and W with priors proportional to p, and p;.
We note that the probabilities are with respect to the POVM
{A,} that minimizes (40) over the entire codebook, and thus
may be suboptimal for a test between W, and Ws.

Recall that Alice transmits messages by sending codewords
through a single mode lossy bosonic channel. The lower
bound on the probability of error in discriminating two re-
ceived states can be obtained by lower-bounding the proba-
bility of error in discriminating two codewords before they
are sent (this is equivalent to Bob having a channel from Al-
ice with unity transmissivity). Since the codewords are tensor
products of pure states, we can apply the Helstrom bound [13,
Eq. 2.34] for discriminating pure states as follows:

proe s (V1 i 1;12"_1 () i() )

(43)

Lower bounding [[;, [(: (1) |1bs (s))]° yields the lower
bound on (43). Now, [T, [(vi(r)[(s))| is the fidelity
F(Q4,Q%) between the pure state codewords Q4 and Q2,
which can be represented using the trace distance as follows:

1
FQF,97) =1- 219 - |IF (44)

(|22 — Qo1 + |24 — Qo|1)?
4

>1- (45)

7

where Qg = |0) (0" is the vacuum codeword and (45) is due
to the triangle inequality for trace distance. To lower bound
(45), we can upper bound the respective trace distances be-
tween codewords and vacuum using fidelity as follows:

12 — ol

IN

1- H 1(0]¢bi ()| (46)

= 1= e - a0 ) (47

< V1= e (ero@) (48)

where (48) follows from the Taylor series expansion of

L2

log(1 — ), the fact that |(0]¢;(r))]?) = ’a(()z)(r) , the fact
L2

that Alice has to set > ., {1 — ‘a((f) (r)' = ¢, for some

constant ¢, to avoid detection by Willie, and that the square
of the sum is greater than the sum of the squares when the
sequence contains only non-negative numbers. Analogously,

195 = Qo1 < V1 — e (et (49)

Combining (42), (43), (45), (48) and (49) yields:

2
Pgb) > m <1 — \/1 — (41)% (1 — i (\/1 — e~ (ert0O(c?)) + \/1 - e—(05+0(c§))) >> (50)

2 Pr + Ds)

Therefore, by (50), the probability of error is bounded away
from zero as the codeword length n — oo and reliable covert
communication is not possible using pure states when Willie
has a pure loss channel from Alice and ability to construct an
ideal single photon sensitive direct detection receiver. m

We have shown above that there exists a quantum measure-
ment that Willie can employ to prevent Alice from covertly
using a pure loss channel. However, Alice’s situation is not
completely hopeless, since the ideal direct detection is nearly
impossible to realize in practice.

V. PURE LOSS CHANNEL (Np = 0) WITH WILLIE
LIMITED BY PRACTICAL RECEIVER

Let us reconsider the pure loss channel but assume that
Willie’s photon counting receiver registers a Poisson dark
count process with rate A\z. On each symbol interval (channel
use) of 7 seconds, the probability of a dark count at Willie’s

(

receiver pg ~ Aq7. For instance, pg = 1077 for a typical
superconducting nanowire detector with 100 counts/sec dark
count rate and 1 ns time slots. The constructive structure of
the proof below is similar to that of Theorem 1.

Proof. (Theorem 4). Let Alice use a coherent state on-off key-
ing (OOK) modulation {m;,S; = |¢;){(1;|}, ¢ = 1,2, where
m =1—gq, m = q, |th1) = |0), [1)2) = |a). When Alice
transmits |ar), Bob receives |,/7c). Alice and Bob generate
a random codebook with each codeword symbol chosen i.i.d.
from the above binary OOK constellation. Since the code-
book is kept secret from Willie, Willie observes a sequence
of n ii.d. Bernoulli random variables {X;}, 1 < i < n,
where X; denotes the output of Willie’s receiver on the i ob-
servation. When Alice is not transmitting (i.e., when Hy is
true), the distribution of X, is Py = Bernoulli(ps). When
Alice is transmitting a codeword (i.e. when H; is true), it
is P; = Bernoulli(pg + q(1 — pg)(1 — e~ (=m1e1")) since,
as in the proof of Theorem 1, Willie captures all of the
transmitted energy that does not reach Bob’s receiver and



[(VT=nal0)[? = e~(A=mlal’,
Willie’s hypothesis test here is classical and we can thus use
the classical relative entropy (CRE) as we do for the AWGN

channel in [2, 3] to lower-bound ]P(w). CRE is given by
D(Po|[P1) = e po() log 25 where po(z) and p ()
are the respective densities of Py and P, and &’ is the support
of p1(z). CRE is additive for independent distributions, and

lower-bounds P > 1 — §D(Pol[P1). The Taylor series
expansion of D(]P’O||P1) around |a|? = 0 yields (via Taylor’s

Theorem) the following upper bound:

(1 = pa)(q(1 —n)|ef*)?
2pq

D(Py||Py) < (€29)

Thus, to ensure that IP’(ew) > % —
symbol power to

€, Alice can set her average

4e Pd

Va(l—=n)\ 1-p

This allows Alice to transmit O(+/n) covert bits reliably to
Bob if he also uses a direct detection receiver. The details of
the reliability proof are available in the Supplement. m

Theorems 1 and 4 suggest that some form of noise in the ad-
versary’s measurements, however small, is essential in mak-
ing LPD communication possible, as LPD communication
masquerades as noise. The nature of the noise appears to be
immaterial. It can come from the thermal environment, be
Johnson noise, or be generated locally at the adversary’s re-
ceiver as dark current due to a spontaneous emission process.

n=qla]* = (52)

Essentially, Alice takes advantage of Willie’s measurement
noise by transmitting messages, which, when mixed with
noise, closely resemble the noise that Willie expects to see
on his channel when Alice is quiet. Bob also has to deal with
noise in his measurements while decoding, but he has a crucial
advantage over Willie: his knowledge of the codebook allows
him to reduce the size of his search space, allowing him to
compare only the codewords to their received noisy versions.

VI. CONCLUSION

We demonstrated that, provided Willie experiences noise
in his measurements (either due to thermal noise in the chan-
nel or excess local noise in his receiver), Alice can transmit
O(y/n) bits in n channel uses to Bob such that Bob’s aver-
age decoding error probability approaches zero as n gets large
while Willie’s average probability of detection error is lower-
bounded arbitrarily close to % Surprisingly, this scaling law
holds even if Willie obtains a quantum-optimal joint-detection
measurement over n channel uses and Alice’s transmissions
are subject to thermal noise on the channel. We also showed
that in the absence of any excess noise in Willie’s measure-
ments (i.e., on a pure loss channel and an ideal detector for
Willie), reliable LPD communication is not possible.

The full converses of Theorems 1 and 4 are open problems
that we plan on tackling in the future work.
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Supplementary material
1. Derivation of (7)

Quantum relative entropy D(pl||o) = Tr{p(In(p) — log(c))} = — Tr{p(In(c))} — H(p), where H(p) is the von Neumann
entropy of the state p. Both py and p; are diagonal in the photon-number basis, which greatly simplifies the calculation of the
QRE. First, let’s calculate —H (pg):

—H(po) = Tr

(,;)(1457717153))1% ) (Zl 1+nn153 | ><n>]

_ N~ _ (Np)" (nNg)"
=> (1+ nNg)i+n In (1+7Ng)l+ (33)

n=0
1 1 = N "
- In S (12m) +
L+nNg  14+nNp Z= \1+1Np
NNE 1 nNg \"
+1In n 54
1+’I7NB; 1+7}NB (1+7}NB) ( )
1 ’I]NB
=In +nNpln 55
1+gNg BTN, (55)

n —1 n
where (55) is due to geometric series > - (%) = (1 - 11%’}3) and 327 Ny (112{153) = 1)Np being the

expression for the mean of geometrically distributed random variable X ~ Geom (ﬁ) We can compute — Tr[pg In(p1)]

using similar techniques:

— _ (uNs)" (1 =n)n+nNp)"
— Tr[pqg 1 = — 1
r[po In(p1)] Z) TN ™ T (L= )i+ N T (56)
1 1 =
_ In _ z( 1Nz ) -
1+nNg 1+ (1 —-n)a+nNp = \1+19Np
1—n)a+nN > 1 N "
1+ (1 —nn+nNp = 1+nNg \1+nNp
1 1—n)a+nN
— Ny ln L=+ nNs (58)

2. Derivation of (18) and (19)

To obtain (18) and (19) we need the Q representation of the output state observed by Willie 5}V (a). Given the beamsplit-
ter relationship w = /va + \/1 — ~é between the input modes a and b, and the output mode w, the Husimi Q function

Qu(a) = ﬁ f(c Qa(B8)Qp ( — ) d?B [10, Eq. (2.17)]. One of our input modes is the thermal environment 5 with the Q
representation
1 2
T( o\ —lal*/(1+Np) 59
Q)= TNy (59)

The other input mode is Alice’s input state p7*(a) = |1;(a)) (1);(a)| with the Q representation

v;i(a) v;(a) (Oz*)k !

QWH Z Z b ( ))* 7\/}6'71? e_|04‘27 (60)

k=0 =0

Using [10, Eq. (2.17)], we have:
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i vi(a) (1) 1219126 vila) vila) () (&) ¢ \\*( g*\k gl
1 _ lamyms? g |6, (a)|?]8] by, (a)(b; " ()" (B*)"B 2
QW (@) = /e T-—"1+NE) Dk A7 WL k L d°g
i@ (@) (1+ Np)1 —~)72 Jc kgo k! kz_()l_%k VE!
(61)

vi(a) 2 oo 27 r2 4yrd -2, Frarg cos(0a—03)
— Z |b ( )l / / o RAN] (1_"7)(1+€VB) ] ,T§T2k+1d95d7ﬂﬁ
1 + NB ’}/)772k| 0 0 B

w(a) vi(a) () () * oo p2m 72ty — rarg cosBa—05)
+ Z Z % (a)(bl ! / / e — <121/j>(1+€vm Pe O 7T/3Tg+l+16j(l7k)9/idQBdTﬁ
=0 1=ozer 1+ NB)(1 - )2kl

(62)

vi(a) () \[2 2 —Np)r3
_Z 2[b;,” (a)| /wemI()( 2,/ ars ) Betigy,
(1+ Np)(1 —~)wk! J, (1-7)(1+ Np)
ui(a) v;(a)
Y 261" (a) (0} (a) /
(14+ Np)(1 - 7T\/k'

k=0 1=0,l#k

r2+(1+(1—-y)Np)r
WWIH (( 2@;@1@\] )) T§+l+1ej(l—k)0adrﬁ
v B

(63)

where in (62) we substituted the polar form of complex variables o = r,e/% and B = rze% as well as changed the order of
integration and summation. The latter is justified by Tonelli’s theorem as Q-functions are positive. (63) is due to the integral-
based definition of the modified Bessel function of the first kind I,,(z) = + = " e#°039 cos(nb)do.

We obtain the expected squared magnitude of heterodyne detector readlng when Alice transmits [)f(a) using (63):

Bl = [ 1oPQl, wy (0)e? (64
27
/ / T QW} (@) rae] *)dlydr,, (65)
v;(a)
= Z 6 (@)|2(1+ (1 = y)Ng + vk) (66)
=1+( — )NB + yni(a). ©67)
When evaluating (65) we note that the second (double) summation in (63) is zero because f e?(1=k)fadg, = 0 when I # k.

Thus, we only need to integrate the first summation in (63). We substitute the summation-based definition of the modified Bessel

function of the first kind Io(z) = Y~ _, % and change in the order of summation and integration, using Tonelli’s theorem

to justify the latter step since the arguments in summations are non-negative. The the integrals with respect to r, and 7 take a
form with the following solution [16, Eq. (3.326.2)]: fo e dy = ( ) where k = (m + 1)/n. Finally, to arrive at (66)
we use the identity 70 Tl — pyy§roe m (mbny
case.

Similarly, the second moment of the square magnitude of heterodyne detector reading when Alice transmits ﬁ{‘(a) is obtained
as follows:

(wa Wthh is valid for any r satisfying 0 < r < 1 as is our

|y1 / |Oé| QW,?(Q)) ) (68)
27
- /o /0 TaQlii(ay) (ra€’*)dbadra (69)
-2 0 (a) 2 (7?2 + 2(1 + (1 — 7)Np)? + 4v(1 = 7)(1 + Np)k) (70)
k=0

72 u (@) + 2(1 + (1 = 7)Np)? + 4y(1 —3)(1 + Np)a(a) (71)
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where $% (a) = S2Y% k2|p{" (4)[2. The variance of the squared magnitude of heterodyne detector reading when Alice

transmits /7 (a) is then:
Var(lyi|?] = %07 (a) + c17ii(a) + 2 (72)

= u§2) (a) — (7;(a))? denotes the photon number variance of p#(a), and ¢; = 27((2 + Ng)(1 — v) — 1),

3. Derivation of (35)

A beamsplitter can be described as a unitary transformation Upg from two input modes to two output modes. In our scenario,
the inputs are Alice’s input state p* = |z/J>A A<1/J| and vacuum environment 5¥ = |0)” (0|. The outputs are Willie’s output

state " and Bob’s output state 5. First, suppose Alice transmits a number state |¢>A = |k>A. Then the inputs and outputs of
a beamsplitter with transmissivity ~y are related as follows:

k
Ups k)" = Z \/( ) —y)k=m )W |k —m) P (73)

=0

Now suppose that Alice transmits an arbitrary pure state expressed in the number basis as follows: |¢>A =ik |k>A. Since
Upgg is a linear transformation,

[e%S) k k
Uss (Z ax k) ) DS \/(m)vmﬂ = m) " Jk = m)® = o)™ P (74)

k=0 m=0

with the output state p"V' 5 = W;)WB WB(@/}|. However, we desire only Willie’s output state "', which we obtain using the
partial trace over the Bob’s output state:

PV =g [l VP ] 75)
=" Plnlp)" PV (yln) P (76)
n=0

where

0o k k
Pp)"P =3 "ar Y \/(m) v (1 =)k m) Y F (nfk — m)® (77)

k=0 m=0
= k

= Zak <n)7’“—"(1 —’y)”|k—n>W (78)
k=0

with (78) due to the orthonormality of number states. Thus,

o0

617 1) = X ()1 = 19

n=0

where we use the convention that (‘;) =0whena < b.

4. Reliability of LPD Communication Using OOK Modulation

Dark current in Bob’s receiver induces a binary asymmetric channel (BAC) between Alice and Bob depicted in Figure 2. Since
the channel between Alice and Bob is a classical discrete memoryless channel (DMC), by [17, Th. 5.6.1] and the discussion that

follows it in [17], Bob’s average probability of decoding error IP’S’) can be upper-bounded as follows:

}P’gb) < e Eo(s)=sR) (80)
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[ 1-5

FIG. 2: The binary asymmetric channel between Alice and Bob. Input probabilities are p(|0)) = 1 —¢g and p(|cr)) = ¢. Transition probabilities
are § = e~ (1 = p,) and B = py.

where n is the size of the codeword, p;, is Bob’s receiver dark click probability, R is the coding rate, 0 < s < 1, and Ey(s) is
defined as follows:

1+s 1+s
nlal? s 1/(1+s)
Ey(s) = —1In [(1—191)) (1—(](1—6_1“)) + <(1—q)p}7/(1Jr )—I—q(l—(l—pb)@_mal?) ) (81)
However, the Taylor series expansion around |a|? = 0 has a zero first-order term:
1- 1 —pp)sn?lalt
Eo(s) = L= 0al =po)silalt 5 6 82)

2pb(1 + S)

Therefore, Alice and Bob have to set their per-symbol mean photon number |«|? = w(1/4/n) to upper-bound Bob’s probability
of decoding error by an arbitrary § > 0. However, recall that to prevent the detection by Willie, they must set the mean photon
number 7 = ¢g|a|? to (52). Thus, using a method similar to the one described in [2, App. A], they can construct a covert
codebook in two stages. First, Alice and Bob randomly select the symbol periods that they will use for their transmission by
flipping a biased coin n times and selecting the i symbol period with probability c¢/\/n < 1 for some constant c. Denote the
number of selected symbol periods by 7 and note that mean 7 = ¢4/n. Second, set

4en Pd
Tvn(l—=n)\ 1 - pa

and generate the codebook with codewords of length 7 on the selected 7 symbol periods. Since the symbol location selection is
independent of both the symbol and the channel noise, the analysis leading to (51) applies. Covert communication criterion (52)

is satisfied, and |a|? = w(1/y/n) with high probability, ensuring reliable transmission of O(y/n) covert bits from Alice to Bob.
[

(83)

jof? =




