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We demonstrate the achievability of a square root limit on the amount of information transmitted reliably and
with low probability of detection (LPD) over the single-mode lossy bosonic channel if either the eavesdropper’s
measurements or the channel itself is subject to the slightest amount of excess noise. Specifically, Alice can
transmit O(

√
n) bits to Bob over n channel uses such that Bob’s average codeword error probability is upper-

bounded by an arbitrarily small δ > 0 while a passive eavesdropper, Warden Willie, who is assumed to be able
to collect all the transmitted photons that do not reach Bob, has an average probability of detection error that is
lower-bounded by 1

2
−ε for an arbitrarily small ε > 0. We analyze the thermal noise and pure loss channels. The

square root law holds for the thermal noise channel even if Willie employs a quantum-optimal measurement,
while Bob is equipped with a standard coherent detection receiver. We also show that LPD communication is
not possible on the pure loss channel. However, this result assumes Willie to possess an ideal receiver that is
not subject to excess noise. If Willie is restricted to a practical receiver with a non-zero dark current, the square
root law is achievable on the pure loss channel.

Typically wireless data transmission is secured from an
eavesdropping third party by a cryptographic encryption pro-
tocol. However, there are real-life scenarios where encryp-
tion arouses suspicion and even theoretically robust encryp-
tion can be defeated by a determined adversary using a non-
computational method such as side-channel analysis. Thus,
protection from interception is often insufficient and the ad-
versary’s ability to even detect the presence of a transmission
must be limited. This is known as low probability of detection
(LPD) communication.

While practical LPD communication on radio frequency
(RF) channels has been explored in the context of spread-
spectrum communications [1, Part 5, Ch. 1], our recent
work [2, 3] addressed the fundamental limits of LPD com-
munication on an additive white Gaussian noise (AWGN) RF
channel. However, free-space communication at optical fre-
quencies offers significant advantages over RF, motivating the
need to analyze the LPD communication capability of op-
tical communication. Electromagnetic waves are quantum-
mechanical and since modern high-sensitivity optical detec-
tion systems are limited by noise of quantum-mechanical ori-
gin, assessing the fundamental limits of LPD optical commu-
nication necessitates an explicit quantum analysis.

Refs. [2, 3] analyze the LPD communication on an AWGN
channel. This corresponds to an optical channel where: (i)
transmitter Alice uses ideal laser light to modulate her infor-
mation, and (ii) both the adversary Warden Willie as well as
the legitimate receiver Bob use coherent detection receivers.
However, coherent detection receivers can be decidedly sub-
optimal for both the intended receiver Bob and Warden Willie,
and thus a more general analysis of LPD communication with
no structural assumptions on Willie’s receiver other than its re-
alization being permissible by the laws of physics is desirable.
The sub-optimality of coherent detection is particularly pro-
nounced in the low photon number regime [4, 5], which is rel-
evant to LPD communication. It is also preferable to show the
possibility of LPD communication when Bob is equipped with
a conventional (coherent detection or direct detection) optical
receiver, while Willie remains quantum-powerful. Demon-

strating how such is possible, even on a highly lossy and noisy
channel, is our main contribution.

In this paper we provide the fundamental scaling limits for
LPD communication on a lossy optical channel. We limit
our analysis to pure input states since, by convexity, using
mixed states as inputs can only deteriorate the performance
(since that is equivalent to transmitting a randomly chosen
pure state from an ensemble and discarding the knowledge of
that choice). We consider two types of channels: the thermal
noise and the pure loss channel. We show that if Willie has a
thermal noise channel from Alice, then meaningful LPD com-
munication between Alice and Bob is possible even if Willie
is able to collect all the transmitted photons that do not reach
Bob and employ an arbitrarily complex receiver measurement
constrained only by the laws of quantum physics. On the other
hand, if Willie has a pure loss channel from Alice, then there
is a receiver he can employ that is capable of perfectly deter-
mining when Alice is not transmitting. Even though this re-
ceiver can err when Alice is transmitting, we show that Willie
can utilize it to prevent LPD communication even when Bob
is equipped with an optimal receiver. However, while Willie’s
receiver is theoretically conceivable, it has not been and is
unlikely to be built. Practical receivers suffer from dark cur-
rent due to a spontaneous emission process. We thus show
that LPD communication is possible if Willie has a pure loss
channel from Alice but is limited to a direct detection receiver
with non-zero dark current.

In order to state the theorems that govern the LPD scal-
ing laws, we denote Willie’s average error probability P(w)

e =
PFA+PMD

2 , where PFA is the probability that Willie raises a
false alarm when Alice did not transmit and PMD is the prob-
ability that Willie misses the detection of Alice’s transmission.
We say that Alice communicates to Bob reliably when Bob’s
average decoding error probability P(b)

e ≤ δ for an arbitrary
δ > 0 given large enough n. We use asymptotic notation
where f(n) = O(g(n)) denotes an asymptotically tight upper
bound on f(n), and f(n) = o(g(n)) and f(n) = ω(g(n)) de-
note upper and lower bounds, respectively, that are not asymp-
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totically tight [6, Ch. 3.1].
First we present a theorem that establishes the achievabil-

ity of the LPD communication when Willie’s capabilities are
limited only by the laws of quantum physics but his channel
from Alice is subject to thermal noise.

Theorem 1 (Square root law for the thermal noise channel)
Suppose Willie has access to an arbitrarily complex receiver
measurement as permissible by the laws of quantum physics
and can capture all the photons transmitted by Alice. Let
Willie’s channel from Alice be subject to the noise from a ther-
mal environment that injectsNB > 0 photons per channel use
on average. Then Alice can lower-bound P(w)

e ≥ 1
2 − ε for

any ε > 0 while reliably transmitting O(
√
n) bits to Bob in

n channel uses even if Bob only has access to a (sub-optimal)
coherent detection receiver.

Next we present a partial converse to Theorem 1. It is
partial because Alice is restricted to using input states with
bounded photon number variance. However, such restriction
is not onerous since this restricted set subsumes all physically-
realizable states of a bosonic mode (such as coherent states,
squeezed states, number states, photon-subtracted squeezed
vacuum, etc.). We show that, under this restriction, reliable
transmission of ω(

√
n) LPD bits to Bob in n channel uses is

impossible.

Theorem 2 (Partial converse to Theorem 1) Suppose Alice
only uses quantum states with bounded photon number vari-
ance to communicate with Bob. Then, if she attempts to trans-
mit ω(

√
n) bits in n channel uses, as n → ∞, she is either

detected by Willie with arbitrarily low P(w)
e or Bob cannot de-

code with arbitrarily low error probability.

Now we show that LPD communication using any quantum
state is impossible when Willie has a pure loss channel from
Alice and is limited only by the laws of physics in his receiver
measurement choice.

Theorem 3 (No LPD communication with quantum-
powerful Willie on a pure loss channel) Suppose Willie has a
pure loss channel from Alice and is limited only by the laws
of physics in his receiver measurement choice. Then Alice
cannot reliably communicate to Bob using arbitrary pure
states while limiting P(w)

e ≥ ε for any ε > 0 even if Bob
employs a quantum-optimal receiver.

While Theorem 3 seems to preclude Alice from using a
pure loss channel for LPD communication, its proof requires
Willie to build an ideal single photon direct detection re-
ceiver that detects vacuum perfectly. However, practical pho-
ton counting receivers are subject to “dark clicks”, or photon
detection events when no photons are impinging on the detec-
tor’s active surface. We show that in this case LPD communi-
cation is possible.

Theorem 4 (Square root law when Willie experiences dark
current) Suppose that Willie has a pure loss channel from Alice
but is limited to a receiver with a non-zero dark current. Then
Alice can lower-bound P(w)

e ≥ 1
2 − ε for any ε > 0 while

reliably transmitting O(
√
n) bits to Bob in n channel uses.

We start this letter by introducing our optical channel model
and hypothesis testing. We then prove Theorems 1, 2, 3, and
4 in succession, and conclude the letter.

I. PREREQUISITES

Channel model—Consider a single spatial mode free space
optical channel, where each channel use corresponds to one
signaling interval that carries one modulation symbol. We fo-
cus on single-mode quasi-monochromatic propagation, since
our results readily generalize to multiple spatial modes (near-
field link) and/or a wideband channel with appropriate power-
allocation across spatial modes and frequencies [7]. For sim-
plicity of exposition we limit our analysis to vacuum propa-
gation, i.e., we do not address the effect of atmospheric tur-
bulence. The Heisenberg-picture input-output relationship of
the single-mode bosonic channel is captured by a ‘beamsplit-
ter’ relationship, b̂ =

√
η â +

√
1− η ê, where â and b̂ are

modal annihilation operators of the input and output modes
respectively, and η ∈ [0, 1] is the power transmissivity, the
fraction of power Alice puts in the input mode that couples
into Bob’s aperture. Classically, a power attenuation is cap-
tured by the relationship b =

√
η a, where a and b are com-

plex field amplitudes of the input and output mode functions.
The quantum description of the channel requires the ‘environ-
ment’ mode ê in order to preserve the commutator brackets,
i.e.,

[
b̂, b̂†

]
= 1, which translates to preserving the Heisenberg

uncertainty relationship of quantum mechanics. For the pure
loss channel, the environment mode ê is in a vacuum state,
i.e., ρ̂E = |0〉〈0|E . The vacuum state captures the minimum
amount of noise that must be injected when ‘nothing happens’
other than pure power attenuation. For a thermal noise chan-
nel, ê is in a thermal state with mean photon number NB > 0,
i.e. ρ̂E = σ̂T (NB) where σ̂T (NB) is a mixture of coherent
states weighted by a Gaussian distribution:

σ̂T (n̄) =

∞∑
i=0

n̄i

(1 + n̄)1+i
|i〉〈i|E =

∫
C

e−
|α|2
n̄

πn̄
|α〉〈α|Ed2α.

(1)

The mean number of photons injected by the thermal envi-
ronment is NB ≈ π106λ3Nλ/~ω2, where Nλ is the back-
ground spectral radiance (in W/m2 sr-µm) [8]. A typical day-
time value Nλ ≈ 10 W/m2 sr-µm at λ = 1.55µm leads to
NB ≈ 10−6 photons/mode. For NB = 0, the thermal noise
channel reduces to the pure loss channel.

Hypothesis Testing—Willie collects part of the transmitted
light during the transmission of Alice’s n modulation sym-
bols and performs a hypothesis test on whether Alice trans-
mitted or not. Willie’s null hypothesis H0 is that Alice does
not transmit, and thus he observes vacuum plus noise photons,
injected either by a thermal environment or due to dark cur-
rent generated by a spontaneous emission process in his own
measurement apparatus. His alternate hypothesis H1 is that
Alice transmits.
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II. THERMAL NOISE CHANNEL (NB > 0)

We begin by providing a constructive proof of achievabil-
ity of O(

√
n) LPD bits in n channel uses: we describe Alice

and Bob’s communication system and prove that Willie’s av-
erage probability of detection error is lower-bounded arbitrar-
ily close to 1

2 , while Bob’s average probability of codeword
decoding error is upper-bounded arbitrarily close to zero.
Proof. (Theorem 1). Construction: Let Alice use a
zero-mean isotropic Gaussian-distributed coherent state in-
put {p(α), |α〉}, where α ∈ C, p(α) = e−|α|

2/n̄/πn̄ with
mean photon number per symbol n̄ =

∫
C |α|

2p(α)d2α.
Alice encodes M -bit blocks of input into codewords of
length n symbols at the rate R = M/n bits/symbol by
generating 2nR codewords {

⊗n
i=1 |αi〉k}2

nR

k=1, each accord-
ing to p(

⊗n
i=1 |αi〉) =

∏n
i=1 p(αi), where

⊗n
i=1 |αi〉 =

|α1 . . . αn〉 is an n-mode tensor-product coherent state. The
codebook is used only once to send a single message and
is kept secret from Willie, though he knows how it is
constructed.[18]

Analysis (Willie): Suppose that Willie captures all of
Alice’s transmitted energy that does not reach Bob’s re-
ceiver. This is a fairly strong assumption for a line-of-sight
diffraction-limited far-field optical link. Since Willie does not
have access to Alice’s codebook, the n-channel use average
quantum states at Willie’s receiver under the two hypotheses
are given respectively by the density operators,

ρ̂⊗n0 =

( ∞∑
i=0

(ηNB)i

(1 + ηNB)1+i
|i〉 〈i|

)⊗n
, and (2)

ρ̂⊗n1 =

( ∞∑
i=0

((1− η)n̄+ ηNB)i

(1 + (1− η)n̄+ ηNB)1+i
|i〉 〈i|

)⊗n
. (3)

The quantum-limited minimum average probability of error in
discriminating the n-copy states ρ̂⊗n0 and ρ̂⊗n1 is:

P(w)
e,min =

1

2

[
1− 1

2
‖ρ̂⊗n1 − ρ̂⊗n0 ‖1

]
, (4)

where ‖ρ̂ − σ̂‖1 is the trace distance between states ρ̂ and
σ̂. We can lower-bound[19] P(w)

e,min using quantum Pinsker’s
Inequality [9, Th. 11.9.2]:

‖ρ̂− σ̂‖1 ≤
√

2D(ρ̂‖σ̂), (5)

where D(ρ̂‖σ̂) ≡ Tr{ρ̂(ln(ρ̂) − log(σ̂))} is the quantum rel-
ative entropy (QRE) between states ρ̂ and σ̂. We thus have:

P(w)
e ≥ P(w)

e,min ≥
1

2
−
√

1

8
D(ρ̂⊗n0 ‖ρ̂

⊗n
1 ). (6)

Since QRE is additive for tensor product states,
D(ρ̂⊗n0 ‖ρ̂

⊗n
1 ) = nD(ρ̂0‖ρ̂1). Since ρ̂0 and ρ̂1 are diag-

onal in the photon-number basis, the QRE is:

D(ρ̂0‖ρ̂1) = ηNB ln
(1 + (1− η)n̄+ ηNB)ηNB

((1− η)n̄+ ηNB)(1 + ηNB)
+

+ ln
1 + (1− η)n̄+ ηNB

1 + ηNB
. (7)

The details of the derivation of (7) are given in the Supple-
ment. The first two terms of the Taylor series expansion of (7)
around n̄ = 0 are zero and the fourth term is negative. Thus,
using Taylor’s Theorem we can upper-bound (7) by the third
term as follows:

D(ρ̂0‖ρ̂1) ≤ (1− η)2n̄2

2ηNB(1 + ηNB)
. (8)

Therefore, setting

n̄ =
4ε
√
ηNB(1 + ηNB)√
n(1− η)

(9)

ensures that Willie’s error probability is lower-bounded by
P(w)
e ≥ 1

2 − ε over n optical channel uses by Alice.
Analysis (Bob): Suppose Bob uses a coherent detec-

tion receiver. A homodyne receiver, which is more effi-
cient than a heterodyne receiver in the low photon number
regime [4], induces an AWGN channel with noise power
σ2
b = 2(1−η)NB+1

4η . Since Alice uses Gaussian modulation

with symbol power n̄ defined in (9), we can upper-bound P(b)
e

as follows [2, Eq. (7)]:

P(b)
e ≤ δ = 2Bhom(n,ε,δ)−n2 log2(1+n̄/2σ2

b,hom). (10)

Substituting the expression for n̄ from (9) and σ2
b , and solv-

ing for the maximum number of bits Bhom(n, ε, δ) that can be
transmitted from Alice to Bob in n channel uses, we obtain:

Bhom(n, ε, δ) = Cd(δ) +
√
nCc(ε, η,NB) +O(1), (11)

where Cd(δ) = log2 δ is the ‘cost’ of upper-bounding Bob’s
decoding error probability by P(b)

e ≤ δ, and Cc(ε, η,NB) =
ε
√
ηNB(1+ηNB)

(1−η) × 4η
2(1−η)NB+1 is the cost of lower-bounding

Willie’s probability of detection by P(w)
e,min ≥ 1

2 − ε.
Remark. Eq. (11) illustrates that while the cost of reducing
Bob’s decoding error has an additive impact that is insignifi-
cant at large enough n, the cost of limiting Willie’s detection
capabilities is multiplicative and proportional to ε. We plot
Bhom(n, ε, δ) using transmissivity η = 0.1 for various values
of ε and δ on Figure 1, illustrating the square root law and that
the probability of decoding error imposed on Bob has insignif-
icant impact, while the tolerance of being detected by Willie
greatly affects the amount of information that can be covertly
transmitted. The small number of bits that can be sent across
the channel (200 bits in 10,000 seconds, or roughly 2 hours 45
minutes, with ε = 0.1) is likely due to the very conservative
assumptions we make on Willie’s capability.

III. PARTIAL CONVERSE TO THEOREM 1

Here Alice’s objective is to transmit a message Wk that
is M = ω(

√
n) bits long to Bob at the rate R = M/n

bits/channel use using a codeword containing n pure states
with arbitrarily small probability of decoding error as n gets



4

 0

 50

 100

 150

 200

 0  2000  4000  6000  8000  10000

B
its

Time (secs)

epsilon=0.10
epsilon=0.05

epsilon=0.025

(a) δ = 0.01

 0

 50

 100

 150

 200

 0  2000  4000  6000  8000  10000

B
its

Time (secs)

epsilon=0.10
epsilon=0.05

epsilon=0.025

(b) δ = 0.10

FIG. 1: Bhom(n, ε, δ) plotted for η = 0.1 and several values of ε and δ. Here NB = 10−6 and each modulation symbol duration is 100ps.
Figures clearly illustrate that while the choice of δ is hardly noticeable, choice of ε has a significant multiplicative impact on the number of
covert bits that can be sent across the channel.

large, while limiting Willie’s ability to detect her transmission.
For an upper bound on the reduction in entropy, the messages
are chosen equiprobably. We now show that if Alice violates
the square root law by attempting to transmit ω(

√
n) bits in

n channel uses, as n → ∞, she is either detected by Willie
with arbitrarily low P(w)

e or Bob’s probability of decoding er-
ror is lower-bounded by a positive constant. We restrict Alice
to transmitting only the states with bounded photon number
variance, that is, for any state |ψ〉 =

∑∞
k=0 bk |k〉 that Alice

uses, we require that
∑∞
k=0 k

2|bk|2 ≤ σ2
UB < ∞. While

we note that all practical states meet this requirement, in the
future we would like generalize this result to arbitrary pure
states.

Willie uses a simple heterodyne receiver to detect Alice’s
transmissions. We demonstrate that this is enough to detect
with arbitrarily small error probability as n→∞ those code-
words with mean photon number per symbol n̄ = ω(1/

√
n).

We then use Fano’s inequality to show that when Alice at-
tempts to transmit ω(

√
n) bits of information, while prevent-

ing the upper bound on the error probability of Willie’s hetero-
dyne receiver from being arbitrarily close to zero, Bob suffers
non-zero decoding error probability.

Proof. (Theorem 2). Suppose Alice uses a codebook
{ΩAu , u = 1, . . . , 2nR}, where a state ΩAu =

⊗n
i=1 ρ̂

A
i (u)

encodes message Wu out of M possible messages, with
ρ̂Ai (u) = |ψi(u)〉 〈ψi(u)| and |ψi(u)〉 =

∑νi(u)
k=0 b

(i)
k (u) |k〉

where νi(u) can, in principle, be infinite. First we analyze
Willie’s detector and assume that an arbitrary message Wa

was transmitted. At each channel use, Willie observes an
output state ρ̂Wi (a) of a thermal noise channel from Alice,
where the channel is described by a beamsplitter relationship
ŵ =

√
γâ +

√
1− γê with â and ê being the input and envi-

ronment modes and 0 < γ ≤ 1 − η. We subsume any sub-
unity detection efficiency of Willie’s heterodyne receiver in γ.
Then Willie’s hypothesis test reduces to choosing between the

states,

ρ̂⊗n0 =

( ∞∑
i=0

((1− γ)NB)i

(1 + (1− γ)NB)1+i
|i〉 〈i|

)⊗n
, and (12)

ρ̂⊗n1 =

n⊗
i=1

ρ̂Wi (a) (13)

where ρ̂Wi (a) is the output state of a thermal noise channel
with transmissivity γ corresponding to an input state ρ̂Ai (a).

Willie uses a heterodyne receiver and only considers the
squared magnitude of the complex output of this receiver (thus
discarding the in-phase component of his readings). After
collecting a sequence of n such observations of his channel
from Alice {|y1|2, . . . , |yn|2}, Willie compares their average
S = 1

n

∑n
i=1 |yi|2 to a threshold. The probability distribution

for the test statistic S depends on which hypothesis is true:
we denote by P0 the distribution when H0 holds with Alice
not transmitting, and P(a)

1 when H1 holds with Alice trans-
mitting message Wa. We first show that Willie’s error proba-
bilities PFA and PMD can be bounded for this receiver given
Alice’s codeword parameters. Then we show that if Alice uses
a codebook that makes this bound fail, Bob cannot decode her
transmissions without error even with an quantum-optimal re-
ceiver.

The statistics of heterodyne receiver measurements are
given by the Husimi Q representation Q(α) = 1

π 〈α| ρ̂ |α〉
of the received quantum state ρ̂. If the null hypothesis is
true and Alice is not transmitting, then Willie observes a se-
quence of attenuated thermal states, each with mean photon
number (1 − γ)NB . Each squared magnitude of the hetero-
dyne receiver reading is independently and identically dis-
tributed (i.i.d.) and the Q-function of the attenuated ther-
mal state is QT (α) = 1

π(1+NB)e
−|α|2/(1+NB). Therefore,

under the null hypothesis, E[S] = 1 + (1 − γ)NB and
Var[S] = (1+(1−γ)NB)2

n . Since the test statistic S should be
close to 1 + (1− γ)NB when Alice is not transmitting, Willie
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picks a threshold t and compares S to 1 + (1 − γ)NB + t.
Using the Chebyshev’s inequality, we can upper bound the
probability of the false alarm as follows:

PFA = P0(S ≥ 1 + (1− γ)NB + t) (14)
≤ P0(|S − (1 + (1− γ)NB)| ≥ t) (15)

≤ (1 + (1− γ)NB)2

nt2
(16)

Thus, to obtain desired P∗FA, Willie sets t = d√
n

, where

d = 1+(1−γ)NB√
P∗FA

. Note that the threshold decreases with more

observations.
Now, when Alice transmits a codeword ΩAa =⊗n
i=1 ρ̂

A
i (a), Willie receives the output state

⊗n
i=1 ρ̂

W
i (a) of

the thermal noise channel with transmissivity γ. Since the
output state is a tensor product, the heterodyne detector read-
ings are independent but not identical. The expected squared
magnitude of each reading is:

E[|yi|2] =

∫
C
|α|2QW|ψi(a)〉(α)d2α (17)

= 1 + (1− γ)NB + γn̄i(a) (18)

where n̄i(a) =
∑νi(a)
k=0 kb

(i)
k (a) denotes the mean photon

number of state ρ̂Ai (a) and QW|ψi(a)〉(α) is the Q representa-
tion of ρ̂Wi (a). Similarly, the variance is:

Var[|yi|2] = γ2σ2
i (a) + c1n̄i(a) + c2 (19)

where σ2
i (a) = µ

(2)
i (a)−(n̄i(a))2 denotes the photon number

variance of ρ̂Ai (a), and c1 = 2γ((2 +NB)(1− γ)− 1), c2 =
(1 + (1 − γ)NB)2. To obtain QW|ψi(a)〉(α), we convolve [20]
the Q representation of the thermal environment QT (α) with
that of the input state |ψi(a)〉,

QA|ψi(a)〉(α) =
1

π

νi(a)∑
k=0

νi(a)∑
l=0

b
(i)
k (a)

(
b
(i)
l (a)

)∗ (α∗)kαl√
k!l!

e−|α|
2

,

(20)

using [10, Eq. (2.17)], with the details of the derivation of (18)
and (19) in the supplement. Since the photon number vari-
ance of ρ̂Ai (a) is bounded by σ2

UB , we have σ2
i (a) ≤ σ2

UB .
Denoting the average photon number of the codeword Ωa by
n̄(a) = 1

n

∑n
i=1 n̄i(a), the probability of missing the detec-

tion of codeword Ωa can thus be bounded using Chebyshev’s
inequality as follows:

P(a)
MD = P(a)

1 (S < 1 + (1− γ)NB + t) (21)

≤ P(a)
1 (|S − 1− (1− γ)NB − γn̄(a)| ≥ γn̄(a)− t)

(22)

≤
∑n
i=1 γ

2σ2
i (a) + c1n̄i(a) + c2

n2 (γn̄(a)− t)2 (23)

≤ γσ2
UB + c1n̄(a)

(γ
√
nn̄(a)− d)

2 (24)

If the average photon number n̄(a) = ω(1/
√
n),

limn→∞ P(a)
MD = 0. Thus, given enough observations, Willie

can detect Alice’s codewords that have the average photon
number n̄(a) = ω(1/

√
n) with arbitrarily low probability of

error P(w)
e . Note that not only is Willie oblivious to any details

about Alice’s codebook construction, but he also only needs a
simple heterodyne detector to detect Alice.

Now, only when the transmitted codeword has average pho-
ton number n̄U = O(1/

√
n), the upper bound in (24) fails to

approach zero as n → ∞. In other words, if Alice wants to
lower-bound P(w)

e , her codebook must contain a positive frac-
tion κ of such low photon number codewords. Denote the sub-
set of messages that have codewords with the average photon
number n̄U = O(1/

√
n) by U . Let’s examine Bob’s proba-

bility of decoding error P(b)
e . Denote by Ea→k the event that

a transmitted message Wa is decoded as Wk 6= Wa. Since
the messages are equiprobable, the average probability of er-
ror for the codebook containing only the codewords in U is as
follows:

P(b)
e (U) =

1

|U|
∑
Wa∈U

P
(
∪Wk∈U\{Wa}Ea→k

)
, (25)

where | · | is the set cardinality operator. The probability of
Bob’s decoding error is lower-bounded by P(b)

e ≥ κP(b)
e (U),

since the equality holds only when Bob errorlessly receives
messages that are not in U and knows when the messages from
U are sent (in other words, the equality holds with the set of
messages on which decoder can err is reduced to U). The
probability that a message is sent from U is κ, which means
that if Alice’s coding rate is R, then there are κ2nR messages
in U . Denote by Wa ∈ U the message transmitted by Alice,
and by Ŵa Bob’s decoding of Wa. Then, since each message
is equiprobable,

log2 κ+ nR = H(Wa) (26)

= I(Wa; Ŵa) +H(Wa|Ŵa) (27)

≤ I(Wa; Ŵa) + 1 + (log2 κ+ nR)P(b)
e (U)

(28)

≤ χ({ 1

|U|
; ΩAu }) + 1 + (log2 κ+ nR)P(b)

e (U)

(29)

where (27) is from the definition of mutual information,
(28) is due to classical Fano’s inequality [11, Eq. (9.37)],
and (29) is the Holevo’s bound I(X;Y ) ≤ χ({pi, ρ̂i}),
with χ({pi, ρ̂i}) being the Holevo information for a channel
with input alphabet X , {pi, ρ̂i} the priors and the modulat-
ing states, and Y the resulting output alphabet (assuming a
POVM {Πj}) [12]. Since the Holevo information of a single-
mode bosonic channel with mean photon number constraint
is maximized by a coherent state ensemble with a zero-mean
circularly-symmetric Gaussian distribution [4], we have:

log2 κ+ nR ≤ χ
(
(ρ̂B)⊗n

)
+ 1 + (log2 κ+ nR)P(b)

e (U)

(30)
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where ρ̂B = σ̂T (ηn̄U ), with σ̂T (n̄) defined in (1). Now,
χ(ρ̂B) = H(ρ̂B) since coherent states are pure, and
χ
(
(ρ̂B)⊗n

)
= n

(
log2(1 + ηn̄U ) + ηn̄U log2

(
1 + 1

ηn̄U

))
is due to the additivity of the Holevo information across the
modes of the bosonic channels. This implies:

P(b)
e (U) ≥ 1−

log2(1 + ηn̄U ) + ηn̄U log2

(
1 + 1

ηn̄U

)
+ 1

n

log2 κ
n +R

(31)

Since Alice transmits ω(
√
n) bits in n channel uses, her rate is

R = ω(1/
√
n) bits/symbol. However, n̄U = O(1/

√
n), and,

as n → ∞, P(b)
e (U) is bounded away from zero. Since κ >

0, P(b)
e is also bounded away from zero when Alice tries to

transmit ω(
√
n) bits in n channel uses while beating Willie’s

heterodyne receiver.

IV. PURE LOSS CHANNEL (NB = 0) WITH
QUANTUM-POWERFUL WILLIE

Now we prove that Alice and Bob cannot hide their com-
munication from Willie if Willie has a pure loss channel from
Alice and a choice of a receiver restricted only by the laws of
quantum physics. First, we let Willie pick a receiver that does
not necessarily capture all the transmitted energy that does not
reach Bob’s receiver. Alice uses an arbitrary pure state code-
book. While Willie is oblivious to its structure, we show that
Alice must constrain her codewords to limit the detection ca-
pability of Willie’s particular receiver. We then show that this
constraint prevents Bob from decoding Alice’s transmissions
without error, proving the theorem.
Proof. (Theorem 3). Suppose Alice uses a codebook where
a state ΩAu =

⊗n
i=1 ρ̂

A
i (u) encodes message Wu out of

M possible messages, with ρ̂Ai (u) = |ψi(u)〉 〈ψi(u)| and
|ψi(u)〉 =

∑νi(u)
k=0 a

(i)
k (u) |k〉 where νi(u) can, in principle,

be infinite. First we analyze Willie’s detector and assume that
an arbitrary message Wa was transmitted. Willie captures a
fraction of the transmitted energy, γ, where 0 < γ ≤ 1 − η.
Then Willie’s hypothesis test reduces to choosing between the
states,

ρ̂⊗n0 = |0〉 〈0|⊗n , and (32)

ρ̂⊗n1 =

n⊗
i=1

ρ̂Wi (a) (33)

where ρ̂Wi (a) is the output state of a pure loss channel with
transmissivity γ corresponding to an input state ρ̂Ai (a). Let
Willie use an ideal single photon sensitive direct detection
receiver given by positive operator-valued measure (POVM){
|0〉 〈0| ,

∑∞
j=1 |j〉 〈j|

}⊗n
over all n channel uses. Then

Willie’s probability of error is

P(w)
e (a) =

1

2

n∏
i=1

〈0| ρ̂Wi (a) |0〉 . (34)

Note that the error is entirely due to the missed codeword
detections, as Willie’s receiver detects vacuum perfectly and
never raises a false alarm.

The diagonal elements of ρ̂Wi (a) expressed in the photon
number basis are as follows (see Supplement for derivation):

〈s| ρ̂Wi (a) |s〉 =

νi(a)∑
k=0

∣∣∣a(i)
k (a)

∣∣∣2(k
s

)
(1− γ)k−sγs (35)

Therefore,

〈0| ρ̂Wi (a) |0〉 =

νi(a)∑
k=0

∣∣∣a(i)
k (a)

∣∣∣2 (1− γ)k (36)

≤
∣∣∣a(i)

0 (a)
∣∣∣+ (1−

∣∣∣a(i)
0 (a)

∣∣∣2)(1− γ) (37)

= 1− γ
(

1−
∣∣∣a(i)

0 (a)
∣∣∣2) (38)

Thus, substituting (38) into (34) and using the Taylor series
expansion of log(1− x) yields:

P(w)
e ≤ 1

2
exp

[
−γ

n∑
i=1

(
1−

∣∣∣a(i)
0

∣∣∣2)] , (39)

implying that Alice must set
∑n
i=1

(
1−

∣∣∣a(i)
0 (a)

∣∣∣2) = ca,

with ca a constant, for every codeword in her codebook with
a positive probability of being transmitted. Next we show that
the codewords constructed this way are “too close” to one an-
other to allow reliable communication.

Let’s analyze Bob’s receiver. Denote by pu the a priori
probability that Wu is transmitted. Then, given that Wu is
transmitted, the probability of the decoding error is the prob-
ability of the union of events ∪nv=0,v 6=uEv , where Ev is the
event that the received state is decoded as Ŵ = Wv , v 6= u.
Let Bob choose a POVM {Λj} that minimizes the average
probability of error:

P(b)
e = inf

{Λj}

M∑
u=1

puP
(
∪nv=0,v 6=uEv|Wu sent

)
(40)

Now, any scheme used to transmit a positive number of bits
has to have at least two messages with positive prior trans-
mission probabilities. Thus, let’s pick a pair of messages
{Wr,Ws} from Alice’s codebook with a positive prior prob-
abilities {pr > 0, ps > 0} of transmission. Then we have:

P(b)
e ≥ prP (Es|Wr sent) + psP (Er|Ws sent) (41)

= (pr + ps)Pr↔se (42)

The lower bound in (41) is due to the exclusion of a non-
negative elements from the sum in (40), as well as the events
Er and Es being contained in the unions ∪nv=0,v 6=rEv and
∪nv=0,v 6=sEv , respectively. In (42) we reduced the analytically
intractable problem of discriminating between many states
in (40) to a quantum binary hypothesis test, since Pr↔se ≡
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pr
pr+ps

P (Es|Wr sent) + ps
pr+ps

P (Er|Ws sent) is Bob’s aver-
age probability of error in a scenario where Alice only sends
messages Wr and Ws with priors proportional to pr and ps.
We note that the probabilities are with respect to the POVM
{Λj} that minimizes (40) over the entire codebook, and thus
may be suboptimal for a test between Wr and Ws.

Recall that Alice transmits messages by sending codewords
through a single mode lossy bosonic channel. The lower
bound on the probability of error in discriminating two re-
ceived states can be obtained by lower-bounding the proba-
bility of error in discriminating two codewords before they
are sent (this is equivalent to Bob having a channel from Al-
ice with unity transmissivity). Since the codewords are tensor
products of pure states, we can apply the Helstrom bound [13,
Eq. 2.34] for discriminating pure states as follows:

Pr↔se ≥

(
1−

√
1− 4prps

(pr+ps)2

∏n
i=1 |〈ψi(r)|ψi(s)〉|

2
)

2
(43)

Lower bounding
∏n
i=1 |〈ψi(r)|ψi(s)〉|

2 yields the lower
bound on (43). Now,

∏n
i=1 |〈ψi(r)|ψi(s)〉|

2 is the fidelity
F (ΩAr ,Ω

A
s ) between the pure state codewords ΩAr and ΩAs ,

which can be represented using the trace distance as follows:

F (ΩAr ,Ω
A
s ) = 1− 1

4
‖ΩAr − ΩAs ‖21 (44)

≥ 1− (‖ΩAr − Ω0‖1 + ‖ΩAs − Ω0‖1)2

4
(45)

where Ω0 = |0〉 〈0|⊗n is the vacuum codeword and (45) is due
to the triangle inequality for trace distance. To lower bound
(45), we can upper bound the respective trace distances be-
tween codewords and vacuum using fidelity as follows:

‖ΩAr − Ω0‖1 ≤

√√√√1−
n∏
i=1

|〈0|ψi(r)〉|2 (46)

=

√
1− e

∑n
i=1 log(1−(1−|〈0|ψi(r)〉|2)) (47)

≤
√

1− e−(cr+O(c2r)) (48)

where (48) follows from the Taylor series expansion of

log(1 − x), the fact that |〈0|ψi(r)〉|2) =
∣∣∣a(i)

0 (r)
∣∣∣2, the fact

that Alice has to set
∑n
i=1

(
1−

∣∣∣a(i)
0 (r)

∣∣∣2) = cr for some

constant cr to avoid detection by Willie, and that the square
of the sum is greater than the sum of the squares when the
sequence contains only non-negative numbers. Analogously,

‖ΩAs − Ω0‖1 ≤
√

1− e−(cs+O(c2s)). (49)

Combining (42), (43), (45), (48) and (49) yields:

P(b)
e ≥

pr + ps
2

(
1−

√
1− 4prps

(pr + ps)2

(
1− 1

4

(√
1− e−(cr+O(c2r)) +

√
1− e−(cs+O(c2s))

)2
))

(50)

Therefore, by (50), the probability of error is bounded away
from zero as the codeword length n →∞ and reliable covert
communication is not possible using pure states when Willie
has a pure loss channel from Alice and ability to construct an
ideal single photon sensitive direct detection receiver.

We have shown above that there exists a quantum measure-
ment that Willie can employ to prevent Alice from covertly
using a pure loss channel. However, Alice’s situation is not
completely hopeless, since the ideal direct detection is nearly
impossible to realize in practice.

V. PURE LOSS CHANNEL (NB = 0) WITH WILLIE
LIMITED BY PRACTICAL RECEIVER

Let us reconsider the pure loss channel but assume that
Willie’s photon counting receiver registers a Poisson dark
count process with rate λd. On each symbol interval (channel
use) of τ seconds, the probability of a dark count at Willie’s

receiver pd ≈ λdτ . For instance, pd = 10−7 for a typical
superconducting nanowire detector with 100 counts/sec dark
count rate and 1 ns time slots. The constructive structure of
the proof below is similar to that of Theorem 1.
Proof. (Theorem 4). Let Alice use a coherent state on-off key-
ing (OOK) modulation {πi, Si = |ψi〉〈ψi|}, i = 1, 2, where
π1 = 1 − q, π2 = q, |ψ1〉 = |0〉, |ψ2〉 = |α〉. When Alice
transmits |α〉, Bob receives |√ηα〉. Alice and Bob generate
a random codebook with each codeword symbol chosen i.i.d.
from the above binary OOK constellation. Since the code-
book is kept secret from Willie, Willie observes a sequence
of n i.i.d. Bernoulli random variables {Xi}, 1 ≤ i ≤ n,
where Xi denotes the output of Willie’s receiver on the ith ob-
servation. When Alice is not transmitting (i.e., when H0 is
true), the distribution of Xi is P0 = Bernoulli(pd). When
Alice is transmitting a codeword (i.e. when H1 is true), it
is P1 = Bernoulli(pd + q(1 − pd)(1 − e−(1−η)|α|2)) since,
as in the proof of Theorem 1, Willie captures all of the
transmitted energy that does not reach Bob’s receiver and
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|
〈√

1− ηα|0
〉
|2 = e−(1−η)|α|2 .

Willie’s hypothesis test here is classical and we can thus use
the classical relative entropy (CRE) as we do for the AWGN
channel in [2, 3] to lower-bound P(w)

e . CRE is given by
D(P0‖P1) =

∑
x∈X p0(x) log p0(x)

p1(x) where p0(x) and p1(x)

are the respective densities of P0 and P1, and X is the support
of p1(x). CRE is additive for independent distributions, and
lower-bounds P(w)

e ≥ 1
2 −

√
n
8D(P0‖P1). The Taylor series

expansion of D(P0‖P1) around |α|2 = 0 yields (via Taylor’s
Theorem) the following upper bound:

D(P0‖P1) ≤ (1− pd)(q(1− η)|α|2)2

2pd
(51)

Thus, to ensure that P(w)
e ≥ 1

2 − ε, Alice can set her average
symbol power to

n̄ = q|α|2 =
4ε√

n(1− η)

√
pd

1− pd
(52)

This allows Alice to transmit O(
√
n) covert bits reliably to

Bob if he also uses a direct detection receiver. The details of
the reliability proof are available in the Supplement.

Theorems 1 and 4 suggest that some form of noise in the ad-
versary’s measurements, however small, is essential in mak-
ing LPD communication possible, as LPD communication
masquerades as noise. The nature of the noise appears to be
immaterial. It can come from the thermal environment, be
Johnson noise, or be generated locally at the adversary’s re-
ceiver as dark current due to a spontaneous emission process.

Essentially, Alice takes advantage of Willie’s measurement
noise by transmitting messages, which, when mixed with
noise, closely resemble the noise that Willie expects to see
on his channel when Alice is quiet. Bob also has to deal with
noise in his measurements while decoding, but he has a crucial
advantage over Willie: his knowledge of the codebook allows
him to reduce the size of his search space, allowing him to
compare only the codewords to their received noisy versions.

VI. CONCLUSION

We demonstrated that, provided Willie experiences noise
in his measurements (either due to thermal noise in the chan-
nel or excess local noise in his receiver), Alice can transmit
O(
√
n) bits in n channel uses to Bob such that Bob’s aver-

age decoding error probability approaches zero as n gets large
while Willie’s average probability of detection error is lower-
bounded arbitrarily close to 1

2 . Surprisingly, this scaling law
holds even if Willie obtains a quantum-optimal joint-detection
measurement over n channel uses and Alice’s transmissions
are subject to thermal noise on the channel. We also showed
that in the absence of any excess noise in Willie’s measure-
ments (i.e., on a pure loss channel and an ideal detector for
Willie), reliable LPD communication is not possible.

The full converses of Theorems 1 and 4 are open problems
that we plan on tackling in the future work.
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Supplementary material

1. Derivation of (7)

Quantum relative entropy D(ρ‖σ) ≡ Tr{ρ(ln(ρ) − log(σ))} = −Tr{ρ(ln(σ))} −H(ρ), where H(ρ) is the von Neumann
entropy of the state ρ. Both ρ0 and ρ1 are diagonal in the photon-number basis, which greatly simplifies the calculation of the
QRE. First, let’s calculate −H(ρ0):

−H(ρ0) = Tr

[( ∞∑
n=0

(ηNB)n

(1 + ηNB)1+n
|n〉 〈n|

)( ∞∑
n=0

ln
(ηNB)n

(1 + ηNB)1+n
|n〉 〈n|

)]

=

∞∑
n=0

(ηNB)n

(1 + ηNB)1+n
ln

(ηNB)n

(1 + ηNB)1+n
(53)

=
1

1 + ηNB
ln

1

1 + ηNB

∞∑
n=0

(
ηNB

1 + ηNB

)n
+

+ ln
ηNB

1 + ηNB

∞∑
n=0

n
1

1 + ηNB

(
ηNB

1 + ηNB

)n
(54)

= ln
1

1 + ηNB
+ ηNB ln

ηNB
1 + ηNB

(55)

where (55) is due to geometric series
∑∞
n=0

(
ηNB

1+ηNB

)n
=
(

1− ηNB
1+ηNB

)−1

and
∑∞
n=0 n

1
1+ηNB

(
ηNB

1+ηNB

)n
= ηNB being the

expression for the mean of geometrically distributed random variable X ∼ Geom
(

1
1+ηNB

)
. We can compute −Tr[ρ0 ln(ρ1)]

using similar techniques:

−Tr[ρ0 ln(ρ1)] = −
∞∑
n=0

(ηNB)n

(1 + ηNB)1+n
ln

((1− η)n̄+ ηNB)n

(1 + (1− η)n̄+ ηNB)1+n
(56)

= − 1

1 + ηNB
ln

1

1 + (1− η)n̄+ ηNB

∞∑
n=0

(
ηNB

1 + ηNB

)n
−

− ln
(1− η)n̄+ ηNB

1 + (1− η)n̄+ ηNB

∞∑
n=0

n
1

1 + ηNB
·
(

ηNB
1 + ηNB

)n
(57)

= − ln
1

1 + (1− η)n̄+ ηNB
− ηNB ln

(1− η)n̄+ ηNB
1 + (1− η)n̄+ ηNB

(58)

2. Derivation of (18) and (19)

To obtain (18) and (19) we need the Q representation of the output state observed by Willie ρ̂Wi (a). Given the beamsplit-
ter relationship ŵ =

√
γâ +

√
1− γê between the input modes a and b, and the output mode w, the Husimi Q function

Qw(α) = 1
1−γ

∫
CQa(β)Qb

(
α−√γβ√

1−γ

)
d2β [10, Eq. (2.17)]. One of our input modes is the thermal environment ρ̂E with the Q

representation

QT (α) =
1

π(1 +NB)
e−|α|

2/(1+NB). (59)

The other input mode is Alice’s input state ρ̂Ai (a) = |ψi(a)〉 〈ψi(a)| with the Q representation

QA|ψi(a)〉(α) =
1

π

νi(a)∑
k=0

νi(a)∑
l=0

b
(i)
k (a)

(
b
(i)
l (a)

)∗ (α∗)kαl√
k!l!

e−|α|
2

, (60)

Using [10, Eq. (2.17)], we have:
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QW|ψi(a)〉(α) =
1

(1 +NB)(1− γ)π2

∫
C
e
− |α−√γβ|2

(1−γ)(1+NB)
−|β|2

νi(a)∑
k=0

|b(i)k (a)|2|β|2k

k!
+

νi(a)∑
k=0

νi(a)∑
l=0,l 6=k

b
(i)
k (a)(b

(i)
l (a))∗(β∗)kβl√
k!l!

 d2β

(61)

=

νi(a)∑
k=0

|b(i)k (a)|2

(1 +NB)(1− γ)π2k!

∫ ∞
0

∫ 2π

0

e
−
r2α+γr2β−2

√
γrαrβ cos(θα−θβ)

(1−γ)(1+NB)
−r2

βr2k+1
β dθβdrβ

+

νi(a)∑
k=0

νi(a)∑
l=0,l 6=k

b
(i)
k (a)(b

(i)
l (a))∗

(1 +NB)(1− γ)π2
√
k!l!

∫ ∞
0

∫ 2π

0

e
−
r2α+γr2β−2

√
γrαrβ cos(θα−θβ)

(1−γ)(1+NB)
−r2

βrk+l+1
β ej(l−k)θβdθβdrβ

(62)

=

νi(a)∑
k=0

2|b(i)k (a)|2

(1 +NB)(1− γ)πk!

∫ ∞
0

e
−
r2α+(1+(1−γ)NB)r2β

(1−γ)(1+NB) I0

(
2
√
γrαrβ

(1− γ)(1 +NB)

)
r2k+1
β drβ

+

νi(a)∑
k=0

νi(a)∑
l=0,l 6=k

2b
(i)
k (a)(b

(i)
l (a))∗

(1 +NB)(1− γ)π
√
k!l!

∫ ∞
0

e
−
r2α+(1+(1−γ)NB)r2β

(1−γ)(1+NB) Il−k

(
2
√
γrαrβ

(1− γ)(1 +NB)

)
rk+l+1
β ej(l−k)θαdrβ

(63)

where in (62) we substituted the polar form of complex variables α = rαe
jθα and β = rβe

jθβ as well as changed the order of
integration and summation. The latter is justified by Tonelli’s theorem, as Q-functions are positive. (63) is due to the integral-
based definition of the modified Bessel function of the first kind In(z) = 1

π

∫ π
0
ez cos θ cos(nθ)dθ.

We obtain the expected squared magnitude of heterodyne detector reading when Alice transmits ρ̂Ai (a) using (63):

E[|yi|2] =

∫
C
|α|2QW|ψi(a)〉(α)d2α (64)

=

∫ ∞
0

∫ 2π

0

r3
αQ

W
|ψi(a)〉(rαe

jθα)dθαdrα (65)

=

νi(a)∑
k=0

|b(i)k (a)|2(1 + (1− γ)NB + γk) (66)

= 1 + (1− γ)NB + γn̄i(a). (67)

When evaluating (65) we note that the second (double) summation in (63) is zero because
∫ 2π

0
ej(l−k)θαdθα = 0 when l 6= k.

Thus, we only need to integrate the first summation in (63). We substitute the summation-based definition of the modified Bessel
function of the first kind I0(z) =

∑∞
m=0

(z/2)2m

(m!)2 and change in the order of summation and integration, using Tonelli’s theorem
to justify the latter step since the arguments in summations are non-negative. The the integrals with respect to rα and rβ take a
form with the following solution [16, Eq. (3.326.2)]:

∫∞
0
xme−cx

n

dx = Γ(κ)
ncκ where κ = (m + 1)/n. Finally, to arrive at (66)

we use the identity
∑∞
m=0

rm(m+n)!
m! = n!

∑∞
m=0 r

m
(
m+n
m

)
= n!

(1−r)n+1 which is valid for any r satisfying 0 ≤ r < 1 as is our
case.

Similarly, the second moment of the square magnitude of heterodyne detector reading when Alice transmits ρ̂Ai (a) is obtained
as follows:

E[|yi|4] =

∫
C
|α|4QW|ψi(a)〉(α)d2α (68)

=

∫ ∞
0

∫ 2π

0

r5
αQ

W
|ψi(a)〉(rαe

jθα)dθαdrα (69)

=

νi(a)∑
k=0

|b(i)k (a)|2(γ2k2 + 2(1 + (1− γ)NB)2 + 4γ(1− γ)(1 +NB)k) (70)

= γ2µ
(2)
i (a) + 2(1 + (1− γ)NB)2 + 4γ(1− γ)(1 +NB)n̄i(a) (71)
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where µ(2)
i (a) =

∑νi(a)
k=0 k2|b(i)k (a)|2. The variance of the squared magnitude of heterodyne detector reading when Alice

transmits ρ̂Ai (a) is then:

Var[|yi|2] = γ2σ2
i (a) + c1n̄i(a) + c2 (72)

where σ2
i (a) = µ

(2)
i (a) − (n̄i(a))2 denotes the photon number variance of ρ̂Ai (a), and c1 = 2γ((2 + NB)(1 − γ) − 1),

c2 = (1 + (1− γ)NB)2.

3. Derivation of (35)

A beamsplitter can be described as a unitary transformation UBS from two input modes to two output modes. In our scenario,
the inputs are Alice’s input state ρ̂A = |ψ〉A A〈ψ| and vacuum environment ρ̂E = |0〉E E〈0|. The outputs are Willie’s output
state ρ̂W and Bob’s output state ρ̂B . First, suppose Alice transmits a number state |ψ〉A = |k〉A. Then the inputs and outputs of
a beamsplitter with transmissivity γ are related as follows:

UBS |k〉A |0〉E =

k∑
m=0

√(
k

m

)
γm(1− γ)k−m |m〉W |k −m〉B . (73)

Now suppose that Alice transmits an arbitrary pure state expressed in the number basis as follows: |ψ〉A =
∑∞
k=0 ak |k〉

A. Since
UBS is a linear transformation,

UBS

( ∞∑
k=0

ak |k〉A
)
|0〉E =

∞∑
k=0

ak

k∑
m=0

√(
k

m

)
γm(1− γ)k−m |m〉W |k −m〉B ≡ |ψ〉WB (74)

with the output state ρ̂WB = |ψ〉WB WB〈ψ|. However, we desire only Willie’s output state ρ̂W , which we obtain using the
partial trace over the Bob’s output state:

ρ̂W = TrB

[
|ψ〉WB WB〈ψ|

]
(75)

=

∞∑
n=0

B〈n|ψ〉WB WB〈ψ|n〉B (76)

where

B〈n|ψ〉WB
=

∞∑
k=0

ak

k∑
m=0

√(
k

m

)
γm(1− γ)k−m |m〉W B〈n|k −m〉B (77)

=

∞∑
k=0

ak

√(
k

n

)
γk−n(1− γ)n |k − n〉W (78)

with (78) due to the orthonormality of number states. Thus,

〈s| ρ̂W |s〉 =

∞∑
n=0

|an|2
(
n

s

)
γs(1− γ)n−s (79)

where we use the convention that
(
a
b

)
= 0 when a < b.

4. Reliability of LPD Communication Using OOK Modulation

Dark current in Bob’s receiver induces a binary asymmetric channel (BAC) between Alice and Bob depicted in Figure 2. Since
the channel between Alice and Bob is a classical discrete memoryless channel (DMC), by [17, Th. 5.6.1] and the discussion that
follows it in [17], Bob’s average probability of decoding error P(b)

e can be upper-bounded as follows:

P(b)
e ≤ e−n(E0(s)−sR), (80)
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FIG. 2: The binary asymmetric channel between Alice and Bob. Input probabilities are p(|0〉) = 1−q and p(|α〉) = q. Transition probabilities
are δ = e−η|α|

2

(1− pb) and β = pb.

where n is the size of the codeword, pb is Bob’s receiver dark click probability, R is the coding rate, 0 ≤ s ≤ 1, and E0(s) is
defined as follows:

E0(s) = − ln

[
(1− pb)

(
1− q

(
1− e−

η|α|2
1+s

))1+s

+

(
(1− q)p1/(1+s)

b + q
(

1− (1− pb)e−η|α|
2
)1/(1+s)

)1+s
]

(81)

However, the Taylor series expansion around |α|2 = 0 has a zero first-order term:

E0(s) =
(1− q)q(1− pb)sη2|α|4

2pb(1 + s)
+O(|α|6) (82)

Therefore, Alice and Bob have to set their per-symbol mean photon number |α|2 = ω(1/
√
n) to upper-bound Bob’s probability

of decoding error by an arbitrary δ > 0. However, recall that to prevent the detection by Willie, they must set the mean photon
number n̄ = q|α|2 to (52). Thus, using a method similar to the one described in [2, App. A], they can construct a covert
codebook in two stages. First, Alice and Bob randomly select the symbol periods that they will use for their transmission by
flipping a biased coin n times and selecting the ith symbol period with probability c/

√
n < 1 for some constant c. Denote the

number of selected symbol periods by τ and note that mean τ̄ = c
√
n. Second, set

|α|2 =
4εn

τ
√
n(1− η)

√
pd

1− pd
(83)

and generate the codebook with codewords of length τ on the selected τ symbol periods. Since the symbol location selection is
independent of both the symbol and the channel noise, the analysis leading to (51) applies. Covert communication criterion (52)
is satisfied, and |α|2 = ω(1/

√
n) with high probability, ensuring reliable transmission of O(

√
n) covert bits from Alice to Bob.


