
Considerations for Online Deviation Detection in
Medical Processes

Stefan C. Christov
School of Computer Science
University of Massachusetts

Amherst, MA 01003
christov@cs.umass.edu

George S. Avrunin
School of Computer Science
University of Massachusetts

Amherst, MA 01003
avrunin@cs.umass.edu

Lori A. Clarke
School of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

Abstract—Medical errors are a major cause of unnecessary
suffering and even death. To address this problem, we are
investigating an approach for automatically detecting when an
executing process deviates from a set of recommended ways to
perform that process. Such deviations could represent errors and,
thus, detecting and reporting deviations as they occur could help
catch errors before something bad happens. This paper presents
the proposed deviation detection approach, identifies some of
the major research issues that arise, and discusses strategies to
address these issues. A preliminary evaluation is performed by
applying the approach to a part of a detailed process model. This
model has been developed in an in-depth case study on modeling
and analyzing a blood transfusion process.

I. INTRODUCTION

In 1998, an Institute of Medicine (IOM) report estimated
that preventable medical errors cause the death of 98,000
people each year in the U.S. [1]. Despite considerable work
to reduce errors and their consequences, human errors are still
a major concern for many medical processes. More than a
decade after this IOM report, a 2009 US National Research
Council (NRC) report [2] indicated that the problem with
errors still persists and that “it is widely recognized that
today’s health care . . . suffers substantially as a result of
medical errors”. Moreover it states that “Making environments
safer means looking at processes of care to reduce defects in
the process or departures from the way things should have
been done” (italics ours).

To address this problem, we are investigating an approach
for automatically detecting when an executing process deviates
from a set of recommended ways to perform that process.
Such deviations could represent errors and, thus, detecting
and reporting deviations as they occur could help catch errors
before something bad happens. In complex and time-sensitive
medical processes, simply informing process performers that
deviations have occurred might not be sufficient for identifying
the errors in a timely manner and for deciding how to recover
from them before harm is done. Thus, we are also investigating
techniques for providing information that could be useful for
identifying the errors and deciding how to recover from them.

We adopt the definition of error from the IOM report [1]:
“Error: Failure of a planned action to be completed as intended
(i.e., error of execution) or the use of a wrong plan to achieve
an aim (i.e., error of planning)”. The proposed deviation

detection approach targets primarily planning errors. Examples
of planning errors are omitting an activity that should have
been done (error of omission) or performing an activity that
should not have been done (error of commission).1

The deviation detection approach presented in this pa-
per is part of an overall framework for supporting process
monitoring, deviation detection, and process guidance [3].
As envisioned for this framework, the steps performed by
process performers are recorded in real time, resulting in a
sequence of steps that grows as time passes. The recording
mechanism is not the focus of this research, but it presents,
of course, a difficult research problem on its own. We expect
the increasing use of information technology in healthcare to
facilitate the automatic recognition and recording of performed
steps, hopefully leaving only a small number of steps that need
to be manually logged by humans.

A detailed, formal process model is a key component of
this framework. The process model captures the different rec-
ommended sequences of steps to perform the process. Every
time a step is performed, the sequence of steps performed so
far is compared to the process model to detect deviations. The
detection of deviations could in turn enable the detection of
errors before harm is done.

To support such deviation detection, the process model
needs to be written in a notation with formal semantics. This
facilitates automatically comparing the sequence of performed
steps to the recommended sequences of steps specified by the
model and applying various kinds of formal analyses, such as
model checking and fault-tree analysis, to increase confidence
in the validity of the model. The notation used for the process
model also needs to have rich semantics that support the
representation of complex process behaviors, such as exception
handling and concurrency. Exceptional situations and concur-
rent process execution, which are known to often be the cause
of errors [4], occur frequently in medical processes. Catching
errors in such circumstances would be facilitated if exception
handling and concurrency are adequately represented in the

1The distinction between execution and planning errors often blurs when
decomposition is taken into account. For instance, the error of executing
activity A incorrectly could be represented as a planning error if performing
A consists of sequentially performing subactivities B and C, and the reason
why A was executed incorrectly is that B was omitted.



Fig. 1: Simplified blood transfusion process.

process model. In our investigation of the deviation detection
approach we use the formal and semantically rich Little-JIL
process modeling language [5]. For simplicity and to save
space, however, in this paper we only show simple, mostly
sequential process flow and thus use a control flow graph
notation, based on UML activity diagrams.

In prior work, we constructed Little-JIL models of several
medical processes [6]–[8]. We also constructed a framework
and a set of tools for analyzing such models to detect various
safety problems and evaluate proposed changes (e.g., [8]). We
are now beginning to examine the potential for using such
models, validated by the analyses, for the monitoring and
guidance of executing processes.

There are existing approaches that aim to reduce the number
of medical errors or the harm that might result from them
by encouraging conformance with some specification of the
recommended ways to perform a process (e.g., process aids
such as checklists [9]–[11] and care sets [12]). Such process
aids, however, tend to specify only the major steps during
normal flow, omitting important details such as exceptional
scenarios and concurrent process execution [6], [7]. Some of
these process aids focus on training, but provide no support
during the actual performance of the process. The ones that
could be used while a process is being performed, such as
checklists, add to the workload of already heavily-burdened
medical professionals. The use of checklists, for example,
often requires medical professionals to check what needs to be
done, to remember what steps they completed, and to decide
what the appropriate checklist is to use in a given context.

To remove some of the burdens that process aids, such as
checklists, place on medical professionals, there have been
attempts to create systems that automatically check the compli-
ance of a process that is being performed with a specification
of that process. For example, Fitzgerald et al. designed and
deployed a process guidance system in a trauma center to
guide medical professionals during the first 30 minutes of
trauma resuscitation [13]. This system increased compliance
with the underlying medical algorithms and reduced error
rate, but these algorithms did not support complex process
behaviors, such as concurrency and exception handling. The
framework we are proposing, including the work reported in
this paper on deviation detection and analysis, is intended to
go beyond these limitations.

The rest of the paper is organized as follows. Section II

presents an example application of the proposed deviation
detection approach in a medical process and section III
discusses the approach and some of the issues that arise.
Section IV presents some preliminary experimental results
before section V summarizes the contributions and future
directions.

II. EXAMPLE

Figure 1 shows a model of a simplified blood transfusion
process as a UML activity diagram. The figure focuses on
some of the steps performed by the nurse and, in the interest
of space, leaves out the tasks of others (e.g., blood bank,
physician) as well as most of the exceptional situations that
could arise (e.g., the patient does not speak the language
or is unconscious).2 According to this model, to carry out
a physician’s order for blood transfusion, the nurse needs to
first contact the laboratory to check whether the patient’s blood
type is known. If the blood type is not known, the nurse needs
to obtain a blood specimen and send it to the blood bank for
testing. Once the patient’s blood type is known and the blood
bank has prepared the blood product, the nurse can pick up
the blood from the blood bank.

After picking up the blood and before infusing it into the
patient, the nurse needs to first verify the patient’s identity
and then verify the blood product to ensure that the correct
blood product will be given to the correct patient. Verifying the
patient’s identity involves asking the patient for identification
information, such as name and date of birth, and making sure
that this information matches the patient’s ID band and the
patient chart. Verifying the blood product involves checking
its expiration date and checking that the information on the
product (patient name, date of birth, and blood type) match
the same information on the patient ID band and in the patient
chart.

A common error reported in the medical literature, and one
that can cause severe harm to patients, is not fully following
the procedure for verifying the patient’s identity [7]. A possible
instance of this error is omitting the step verify patient’s
identity altogether. Consider the situation where in a busy
emergency department patient A is wearing the incorrect ID
band—that of patient B. Perhaps a registration clerk had to

2This information is included in the Little-JIL definition of the blood
transfusion process benchmark described in [14] and is necessary if the
detection of deviations that occur in such exceptional situations is of interest.



place ID bands on several patients and inadvertently switched
the ID bands; or there was a shift change and due to a
miscommunication the new clerk placed the ID band for
patient B on patient A. Suppose that patient B is the one
for whom a blood transfusion was ordered. Since patient A
is wearing patient B’s ID band, if the nurse does not check
the identity of patient A prior to infusing the blood, patient
A might receive the blood ordered for patient B. Note that
the nurse might still have successfully performed the blood
product checks since they are done against the ID band and
not against the patient’s real identity.

Potential harm as a result of this error might be avoided
if the nurse is warned that the process is being performed
incorrectly before the infusion is started. One way to achieve
this is by comparing the sequence of steps the nurse has
performed against the process model. A possible sequence of
steps when the nurse forgets to verify the patient’s identity
is contact lab for patient’s blood type, pick up blood from
blood bank, check blood product expiration date. As soon as
the nurse starts the step check blood product expiration date,
the sequence of steps is no longer a sequence allowed by the
model specified in Figure 13. Informing the nurse about such
a deviation might help the nurse recover from the error before
harm is done (i.e., infusing blood into the wrong patient).

Depending on the level of expertise of the process performer
and the complexity of the error, just a warning that an error
might have been committed might be sufficient to identify the
error and to recover from it. In the example above, it might
be fairly easy for an experienced nurse to determine what
went wrong. In more complicated situations, perhaps involving
a less experienced process performer or involving multiple
process performers working concurrently and dealing with
exceptional cases, additional information might help determine
what the error(s) was and how to recover from it.

For instance, a hypothesis about the location(s) in the
sequence of performed steps where the error was committed
could be presented. In the current example, the nurse could
be told that an error might have occurred when the third step
in the sequence, check blood product expiration date, was
performed. In a more complex situation, the actual error might
have occurred earlier than when it was detected (an example is
discussed in section III-A). Pointing the process performers to
that earlier location in the performed sequence of steps could
provide them with the necessary context to determine what
the error is and how to recover from it.

In the interest of space, for the rest of this paper we refer to
the steps in Figure 1 by using the single letters next to them.

3Note that checking the blood product expiration date before verifying the
patient’s identity might not be problematic by itself. The hospital might have
designed the process the way it is shown in Figure 1, however, based on
experience that when the blood product checks are done before verifying the
patient’s identity, the verification of the patient’s identity is more likely to be
omitted, or for efficiency reasons.

III. PROPOSED DEVIATION DETECTION AND ERROR
LOCALIZATION APPROACH

The proposed approach consists of four phases: deviation
detection, trace selection, alignment computation, and error
localization.

The deviation detection phase checks whether the sequence
of performed steps has deviated from the recommended ways
to perform the process. We define process trace (or, for brevity,
a trace), as a prefix of a step sequence from the process model.
For example, based on the process model in Figure 1, ade is
a trace. We define a deviant sequence (or just a deviant) as a
step sequence that is not a trace, for example aed is a deviant.

The trace selection phase selects a set of traces that are
likely candidates for the recommended sequence of steps the
process performers had planned to carry out. Intuitively, the
more similar a trace is to the deviant, the more likely it is
that the process performers planned to perform that trace. The
notion of similarity between two sequences is essential to the
proposed approach. We use the edit distance [15] (described
in more detail in section III-B) between two sequences as a
measure of similarity.

The differences between the deviant and the selected traces
could suggest potential planning errors. To identify such
differences, the alignment computation phase finds alignments
(defined in section III-C) between the deviant and each of the
selected traces that minimize the edit distance between the
deviant and each trace.

Finally, the error localization phase interprets the differences
between the deviant and each of the selected traces to hypoth-
esize locations in the sequence of performed steps where an
error might have occurred. These locations are ranked based on
the edit distances between the deviant and the selected traces.

A. Deviation Detection

Every time a step is performed, the sequence of steps
performed so far is compared to the process model to check
whether that sequence is a trace or whether it has become a
deviant. This check is fairly straightforward. The method that
we currently use explores the process model in a breadth-first
manner from the start, advancing one step at a time as steps
are being performed and recorded. During this exploration,
only traces that match the sequence of performed steps so far
are kept and if at some moment there are no traces left that
match the sequence of performed steps, a deviant is reported.

An interesting issue that arises during deviation detection
is the issue of delayed deviant detection. In some situations,
it is possible for process performers to deviate from the
recommended ways to perform a process, but this deviation
cannot be detected until a later time. For example, consider the
process model in Figure 2(a) and the deviant prsv. Suppose
that during that particular execution of the process, the process
performers planned to carry out the sequence of steps in the
top branch but forgot to perform step q. In this situation,
the deviation has occurred after p was performed, but will
not be detected until v is performed. It will be interesting
to investigate how often the problem of delayed deviant



(a) Example process model and deviant. (b) Distances between the deviant prsv and
some process traces.

(c) Alignments between the de-
viant (2nd column) and the closest
process traces (1st column).

Fig. 2

detection occurs with realistic process models and sequences
of performed steps and also what structures in the process
model tend to be associated with this problem. A preliminary
investigation of this question is discussed in section IV.

B. Trace Selection

After the sequence of performed steps has been detected
to be a deviant, the trace selection phase starts. This phase
involves choosing a subset of all the traces specified by the
process model. The comparison of the deviant to the traces
from this subset will then be used to hypothesize the locations
of potential errors. For a simple process model, like the one in
Figure 1, it is feasible to obtain all possible traces and compare
them to the deviant. A more realistic process model, however,
can specify a very large, or even infinite, number of traces and
comparing all of them to the deviant may be infeasible. Thus,
criteria for selecting a subset of traces are needed.

Based on the intuition given earlier, we expect that traces
that are more similar to the deviant will be more useful for
obtaining information about errors. We use the edit distance
between two sequences [15] as the measure of similarity,
where the edit distance is a function of the costs of the
operations (often called edit operations) needed to transform
one sequence into the other. Other measures of similarity could
be chosen for the purposes of trace selection, but how this
choice is made requires further investigation.

Computing edit distance is expensive (the worst case com-
plexity of the algorithms is usually quadratic in the length
of the two sequences [15]) and computing the edit distance
between the deviant and a large number of traces could
certainly be infeasible. There are techniques, however, for
computing the edit distance incrementally and discarding a
large number of sequences before they need to be compared
in full length to the deviant. One such technique is to keep
track of traces similar to the sequence of performed steps
during the breadth-first exploration of the process model in
the deviation detection phase (this technique is used in [16]
for process model validation). In addition to traces that match
the sequence of performed steps so far (i.e., traces that are
exactly the same as the sequence of performed steps), other
traces that are within some edit distance of the sequence of
performed steps can also be kept under consideration.

There are different kinds of edit distances, depending on the
kinds of edit operations allowed. Edit operations could be used

(a) Distances between the deviant adf and se-
lected process traces.

(b) Alignments between
the deviant (2nd col-
umn) and some process
traces (1st column).

Fig. 3: Example application of the deviation detection approach.

to encode different kinds of errors (e.g., deletion of a single
step vs. deletion of multiple steps could encode omission of a
single step vs. omission of an entire subprocess respectively).
Different edit operation costs could be used to represent
domain knowledge about errors, such as the likelihood or the
severity of an error.

Figure 3(a) shows the edit distances between the deviant adf
and the traces from the model in Figure 1 within edit distance
of 2. In this example, for simplicity, the Levenshtein distance
[17] is used as a measure of similarity between the deviant and
the process traces. The Levenshtein distance is the minimum
sum of the costs of the edit operations needed to transform one
sequence into another. The Levenshtein distance is defined in
terms of the edit operations deletion, insertion and substitution
of a single step. Again, for simplicity, in this example all edit
operations have an equal cost of 1.

Deciding what set of edit operations and what associated
costs to use depends on factors such as the availability of
domain knowledge (e.g., common errors and their frequency)
and the richness of the information in the process model.
For instance, if it is known that process performers omit
subprocess A as frequently as they omit the single step x and
the process model contains information (such as hierarchical
decomposition) to determine what steps are part of subprocess
A, then deletion of the single step x and deletion of all the
sub steps of A could be used as edit operations. Furthermore,
these edit operations could be given equal cost since the
two corresponding errors are known to be equally likely.
Empirical evaluation could also be used to choose the set of
edit operations and associated costs, but how to make this
choice is certainly an issue that requires further research.



C. Alignment Computation

Once a set of traces is selected, each trace in that set is
compared to the deviant to examine how that trace differs
from the deviant. This could be done by computing alignments
between each selected trace and the deviant. An alignment of
two sequences is a list of ordered pairs (a, b) such that (i) a
is an element of the first sequence or is the “blank” element
“–”, (ii) b is an element of the second sequence or is “–”,
(iii) the pair (–, –) does not appear in the list, and (iv) the
order of the non-blank elements in the first and second slots
of the pairs in the list is the same as the order of elements in
the first and second sequences, respectively. Figure 3(b) shows
some alignments. An alignment indicates how one sequence
could be transformed into the other, where the blank elements
indicate that elements were inserted in one sequence or deleted
from the other at the corresponding places.

Optimal alignment(s) (i.e., the alignment(s) that minimize
the edit distance between two sequences) are computed by the
sequence comparison techniques for computing edit distances
[15]. There could be more than one alignment between the
same two sequences depending on the choice of edit operations
and their associated costs. In fact, there could be more than
one optimal alignment between two sequences for a fixed set
of edit operations and costs. As mentioned earlier, this choice
of edit operations and associated costs depends on various
factors, such as domain knowledge, and approaches to make
this choice require further research.

D. Error Localization

Once alignments are computed, they can be used to obtain
information about the location(s) of potential error(s). We
define a potential error index (PEI) as an index in the
sequence of performed steps, such that the performance of
the step at that index is suspected to be an error. The intuition
behind using alignments to obtain PEIs is that non-matching
alignment pairs (such as the shaded pairs in Figure 3(b)) may
represent locations where an error has been committed.

For example, based on the three alignments in Figure 3(b),
it could be hypothesized that the nurse adhered to the recom-
mended ways to perform the process while performing the first
two steps, a and d, but not after that. Thus, 3 could be a PEI
as the nurse might have committed an error when performing
the third step. This seems to be a reasonable hypothesis in
this example as the nurse performed f (check blood product
expiration date) when the nurse should have performed e
(verify patient’s identity) instead, which would have kept the
sequence of performed steps a process trace.

An alignment can have more than one non-matching align-
ment pair and, thus, more than one PEI could be identified
based on these pairs. A strategy that we currently use is to
identify a single PEI per alignment. This PEI is based on the
first non-matching alignment pair. One reason for this strategy
is the assumption that if the first non-matching alignment
pair represents the location of deviation, then subsequent non-
matching alignment pairs might be less informative about
possible errors. This is because after the deviation, the process

Fig. 4: Results from the preliminary experiment. The averages for deletion
and insertion mutants are obtained over 10 replications of the experiment.

performers might not have “returned to” the trace in the
alignment under consideration, assuming this was the trace
they were following before the deviation. Thus, comparing the
suffixes of the deviant and the trace after the first non-matching
alignment pair might not reveal useful error information.
Deciding how PEIs should be identified from an alignment
is subject to further research.

Given that the set of selected traces could be large (espe-
cially for a realistic process model and deviant), that there
could be multiple alignments between each selected trace and
the deviant, and that there could be more than one PEI per
alignment, the number of PEIs could be large. Providing all
PEIs to process performers upon deviation detection, however,
could be overwhelming rather than useful. Thus, a strategy
may be needed to rank the possible PEIs in terms of usefulness
for error localization.

The ranking strategy we currently use is based on the edit
distance between the deviant and each of the selected traces. A
PEI is ranked according to the minimum edit distance to a trace
with an alignment suggesting that PEI. Using this PEI ranking
strategy and the strategy discussed above for identifying a PEI
from an alignment, 3 would be the single top-ranked PEI in the
sequence of performed steps adf in the example in Figure 3.

In general, there could be multiple top-ranked PEIs, how-
ever. For example, in Figure 2 the alignments based on
aligning the deviant to the closest traces suggest two PEIs—2
and 4. It will be interesting to explore how often there are
multiple equally top-ranked PEIs and how many PEIs there
are in such cases in realistic process models and sequences
of performed steps. We are currently investigating this issue,
which is also related to the issue of delayed deviant detection
since multiple highly-ranked PEIs seem to arise in situations
where the deviant is detected with delay (as is the case in
Figure 2). A preliminary investigation of this question is
discussed in section IV.

IV. PRELIMINARY EXPERIMENT

To perform an initial evaluation of the proposed deviation
detection approach, we applied it to a model of a blood
transfusion process and deviants created by mutating traces
from that model.



A. Experiment Description

We used the Little-JIL process model from the blood
transfusion benchmark [14], but replaced each of the verify
patient’s identity and specimen labeling subprocesses by a
single step to make the model smaller. The resulting model was
still of significant size. It contained 144 Little-JIL steps (53
leaf steps) and it specified 18 exception handling situations.
All traces consisting of up to 15 leaf steps (a total of 164
such traces) were generated4. These generated traces were then
mutated to represent sequences of performed steps where the
process performers have deviated from the recommended ways
to perform the process.

In this preliminary experiment, we used three kinds of
mutations to represent simple errors of omission, commission,
and substitution: deletion, insertion, and substitution, each of a
single step. Errors, however, could also involve multiple steps,
such as the omission or commission of sequences of steps, or
even entire subprocesses. Thus, future evaluation will need to
incorporate more complex mutations to represent such errors.

In this experiment, a deletion mutant was created by deleting
a step from a trace. A step from every index (except the last
index) was deleted from each of the original 164 traces. A
deletion of the last step in a trace was not performed because
that would not make the trace a deviant. An insertion mutant
was created by inserting a step, chosen uniformly and at
random from all leaf steps, into a trace. A step was inserted
between every two steps (including before the first step, but
not after the last step) in each of the original traces, unless
the inserted step was the same as the step before which it
is to be inserted (because, in this case, the resulting mutant
would always exhibit the delayed deviant detection issue). A
substitution mutant was created by substituting a step in a
trace with another step chosen uniformly and at random from
all leaf steps. A substitution mutation was done at every index
of each of the original traces. For all three mutation kinds,
mutants that remained traces were discarded.

The deviation detection approach was then applied to each
mutant and statistics related to delayed deviant detection and
PEI determination were collected. The results are shown in
Figure 4. A deviation detection delay is defined as the number
of steps between the index in the sequence of steps where
the mutation was done and the index where that sequence
was recognized to be a deviant. The breadth-first method
mentioned in section III-A was used for deviation detection.

To compute PEIs, all traces from the process model up to 17
steps long were selected to be compared against the mutants.
The Levenshtein distance was used as a sequence similarity
measure. The edit operations were deletion, insertion, and
substitution of a single step with equal cost of 1. The PEIs
for each mutant were based on the alignments between that
mutant and the traces that have minimum distance to it. For

4Only leaf steps were included in traces because in Little-JIL, the leaf
steps are the ones that agents perform and are thus most likely the steps to be
recorded. Non-leaf steps are used primarily to provide abstraction and specify
control flow among leaf steps in a Little-JIL process model.

each such alignment, a single PEI was produced based on the
first non-matching alignment pair.

B. Discussion

Delayed deviant detection occurred rarely for insertion and
substitution mutants—for less than 1% of the mutants the
deviation was detected after the mutation index. The main
reason for the delay was the presence of what we call shuffle
regions, which are subsequences in the original traces where
steps are allowed to occur in any order based on the process
model. For example, the fork-join structure in the model in
Figure 1 would be responsible for shuffle regions in traces
from that model, because the steps f and g are allowed to
occur in any order with respect to each other. When a step
from such a shuffle region is inserted or substituted in that
same region in a trace, the resulting mutant sometimes cannot
be recognized as a deviant until several steps into the shuffle
region, because the step that was inserted or substituted in,
followed by several of the other steps in the shuffle region
often are allowed to occur in that order based on the model.

Shuffle regions cause even more cases of delayed deviant
detection for deletion mutants. When a step is deleted from
a shuffle region (except for the last step in that region), the
deviation is detected with delay, because the steps remaining
in the shuffle region are allowed to occur before the deleted
step. Given that deletion mutants are created by deleting a
step at every index of each of the original traces, every time a
step is deleted from a shuffle region (except for the last step
in such a region), the resulting mutant is detected as deviant
after the index of mutation. Insertion and deletion mutants
are also generated by inserting/substituting at every index of
each of the original traces, but a step from a shuffle region
is inserted/substituted into that same region less often since
steps are chosen uniformly at random from the set of all leaf
steps. This is the main reason the deviation is detected with
delay less often for insertion and substitution mutants than it
is for deletion mutants.

Branching in the process model was also the cause for
delayed deviant detection. For example, given the model in
Figure 1, if the trace ade is mutated by inserting b after the
a, so that the mutant is abde, then the deviation will not be
detected until d, which is one index after the index of mutation.

For all three kinds of mutants, the deviation detection delay
was small—at most 3 steps after the mutation index and less
than 1.5 steps on average.

For most of the insertion and deletion mutants (more than
97.5%), a single top-ranked PEI was identified. For almost
75% of the deletion mutants a single top-ranked PEI was
identified. The percentage for deletion mutants is lower, again,
mostly due to mutations in shuffle regions. For all three kinds
of mutants with a single top-ranked PEI, that PEI was the
same as the mutation index.

In the cases when there were more than one top-ranked
PEIs, the number of PEIs was small—maximum 3 and less
than 2.1 on average—and the mutation index was always
among the top-ranked PEIs.



V. CONCLUSION AND FUTURE WORK

This paper outlines an approach for online deviation detec-
tion that can be used within a larger framework for process
monitoring, deviation detection and process guidance. The
goal of the proposed approach is to support performers of
medical processes by detecting errors before harm is done
as a result of these errors. Major research issues with this
approach are identified and potential strategies to tackle them
are discussed. A preliminary evaluation of the approach is
performed by applying it to part of the blood transfusion
process included in a benchmark for evaluating software
engineering techniques for improving medical processes.

In the future, we plan to pursue the research issues discussed
in section III. In particular, we will investigate strategies for
selecting a set of traces to be compared against the deviant
upon deviant detection. This selection influences both the
efficiency of the approach as well as its usefulness for error
localization. We plan to leverage information from applying
static analysis to the process models. For instance, informa-
tion about process structure, such as forward and backward
dominator steps, could be used to focus the search for traces
to be compared against the deviant.

We plan to evaluate the proposed deviation detection ap-
proach with larger and more realistic models and to use real
sequences of performed steps from medical processes. We
plan to investigate how often and under what circumstances
the issue of delayed deviant detection arises as well as the
usefulness of PEIs for error localization. We are currently
considering other kinds of information that could help process
performers localize and identify potential errors. For example,
if process performers are comfortable reading some represen-
tation of the process model, then, upon deviation detection,
they could be given potential locations in the process model
where an error might have occurred. Unlike PEIs, which
are locations in the sequence of performed steps, locations
in the process model can also provide information about
the recommended ways to perform the process, which could
further facilitate process performers with identifying errors and
deciding how to recover from them.

Even though the preliminary investigation of the proposed
process guidance approach seems promising, there are many
research issues that need to be tackled before the approach
can be applied in clinical settings. In addition to the deviation
detection issues described in this paper, the success of the
proposed approach also depends on other aspects of the overall
framework, such as the quality of the sequence of performed
steps captured by the recording mechanism. Furthermore, even
if deviations and the location of errors that cause the deviations
can be identified with great accuracy, there are significant
human factors issues that need to be addressed, such as when
and how information about potential errors should be presented
to process performers. We believe, however, that the use
of a detailed process model in a formal and semantically-
rich notation combined with the increasing use of electronic
devices that can capture performed steps in real-time, could

enable the proposed deviation detection approach to address
some of the limitations of current process aids in terms of
detecting medical errors before harm is done.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Award(s) IIS-1239334 and
CNS-1258588. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

The authors gratefully acknowledge the contributions of Lee
Osterweil, Heather Conboy, Elizabeth Henneman, and Jenna
Marquard.

REFERENCES

[1] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, Eds., To Err is Human:
Building a Safer Health System. Washington DC: Nat. Acad. Press, 1999.

[2] W. W. Stead and H. S. Lin, Eds., Computational Technology for Effective
Health Care: Immediate Steps and Strategic Directions. Nat. Acad.
Press, 2009.

[3] G. Avrunin, L. Clarke, L. Osterweil, et al., “Smart checklists for human-
intensive medical systems,” in 42nd Intl. Conf. on Dependable Systems
and Networks (DSN-W), Workshop on Open, Resilient, Human-aware,
Cyber-physical Systems, IEEE/IFIP, 2012, pp. 1–6.

[4] N. Leveson, Safeware: System Safety and Computers. Addison-Wesley,
1995.

[5] A. G. Cass, B. S. Lerner, J. Stanley M. Sutton, et al., “Little-JIL/Juliette:
a process definition language and interpreter,” in ICSE ’00: Proceedings
of the 22nd Intl. Conf. on Softw. Eng.. ACM, 2000, pp. 754–757.

[6] B. Chen, G. S. Avrunin, E. A. Henneman, et al., “Analyzing medical
processes,” in ICSE ’08: Proceedings of the 30th Intl. Conf. on Softw.
Eng. ACM, 2008, pp. 623–632.

[7] E. A. Henneman, G. S. Avrunin, L. A. Clarke, et al., “Increasing
patient safety and efficiency in transfusion therapy using formal process
definitions,” Transfusion Medicine Review, vol. 21, no. 1, pp. 49–57,
2007.

[8] G. S. Avrunin, L. A. Clarke, L. J. Osterweil, et al., “Experience
modeling and analyzing medical processes: Umass/Baystate medical
safety project overview,” in Proceedings of the 1st ACM Intl. Health
Informatics Symposium, ACM, 2010, pp. 316–325.

[9] B. M. Hales and P. J. Pronovost, “The checklist: a tool for error
management and performance improvement,” Journal of Critical Care,
vol. 21, pp. 231–235, 2006.

[10] J. M. Wilkinson and K. V. Leuven. Procedure checklist for administering
a blood transfusion. [Online]. Available: http://davisplus.fadavis.com/
wilkinson/Procedure Checklists/PC Ch36-01.doc

[11] World Health Organization, “Surgical safety checklist,” 2008. [Online].
Available: http://www.who.int/patientsafety/safesurgery/tools resources/
SSSL Checklist finalJun08.pdf

[12] W. C. Mertens, D. E. Brown, R. Parisi, et al., “Detection, classification,
and correction of defective chemotherapy orders through nursing and
pharmacy oversight,” Journal of Patient Safety, vol. 4, no. 3, pp. 195–
200, 2008.

[13] M. Fitzgerald, P. Cameron, C. Mackenzie, et al., “Trauma resuscitation
errors and computer-assisted decision support,” Archives of Surgery,
vol. 146, no. 2, pp. 218–225, 2011.

[14] S. C. Christov, G. S. Avrunin, L. A. Clarke, et al., “A benchmark
for evaluating software engineering techniques for improving medical
processes,” in Proceedings of the 2010 ICSE Workshop on Softw. Eng.
in Health Care, ACM, 2010, pp. 50–56.

[15] D. Sankoff and J. Kruskal, Time warps, string edits, and
macromolecules: the theory and practice of sequence comparison.
Addison-Wesley Pub. Co., Advanced Book Program, 1983.

[16] J. E. Cook and A. L. Wolf, “Software process validation: quantitatively
measuring the correspondence of a process to a model,” ACM Transac-
tions on Softw. Eng. and Methodology, vol. 8, pp. 147–176, 1999.

[17] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp.
845–848, 1965.


