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Abstract—Smart meter deployments are spurring renewed
interest in analysis techniques for electricity usage data. An
important prerequisite for data analysis is characterizing and
modeling how electrical loads use power. While prior work has
made significant progress in deriving insights from electricity
data, one issue that limits accuracy is the use of general and often
simplistic load models. Prior models often associate a fixed power
level with an “on” state and either no power, or some minimal
amount, with an “off” state. This paper’s goal is to develop a new
methodology for modeling electric loads that is both simple and
accurate. Our approach is empirical in nature: we monitor a wide
variety of common loads to distill a small number of common
usage characteristics, which we leverage to construct accurate
load-specific models. We show that our models are significantly
more accurate than binary on-off models, decreasing the root
mean square error by as much as 8X for representative loads.
Finally, we demonstrate the use of our models in data analysis to
i) generate device-accurate synthetic traces of building electricity
usage and ii) filter out stable min-max loads that generate rapid
and random power variations in building electricity data.

I. INTRODUCTION

Computing for sustainability—where real-world physical
infrastructure leverages sensing, networking, and computation
to mitigate the negative environmental and economic effects of
energy use—has emerged as an important new research area.
As a result, in addition to improving the energy efficiency
of information technology (IT) infrastructure such as mobile
devices, servers, and data centers, computing researchers are
expanding their focus to now include building energy effi-
ciency. Since buildings account for nearly 40% of society’s
energy use [1], compared to an estimated 1-2% for IT infras-
tructure [2], this research has the potential to make a significant
impact. In particular, managing electricity is critical because
buildings consume the vast majority (73%) of their energy in
the form of electricity [1]. Existing management techniques
typically employ sense-analyze-respond control loops: various
sensors monitor the building’s environment (including electric-
ity) via a smart meter, and transmit collected data in real-time
to servers, which analyze it to reveal detailed building usage
and occupancy patterns, and finally respond by automatically
controlling electrical loads1 to optimize energy consumption.

Research challenges exist at each stage of the control loop.
For example, despite much prior research [3], [4], [5], [6]
accurate, fine-grained, in situ sensing of electricity use in real
time at large scales remains impractical—it is prohibitively
expensive, invasive, and unreliable. Unfortunately, timely and
detailed knowledge of per-load electricity use is a prerequisite
for implementing sophisticated automated load control policies
that increase energy efficiency. Even small residential homes
require such large-scale sensing systems [7], since they often

1We use the term electrical load, or simply load, to refer to any distinct
appliance or device that consumes electricity.

operate hundreds of individual loads. A promising approach
to address this problem is to use fewer sensors that generate
less data, and compensate by employing more intelligence
in the analysis phase to infer rich information from the
data. For example, prior research indicates that analyzing
changes in a building’s aggregate electricity usage at small
time granularities, e.g., every 15 minutes or less, reveals a
wealth of information: Non-Intrusive Load Monitoring (NILM)
techniques use the data to infer electricity usage for individual
loads [8], while recent systems use it to infer building oc-
cupancy patterns [9]. The derived insights then inform control
policies. In this case, NILM might enable buildings to identify
opportunities for reducing peak demand by scheduling elastic
background loads [10], such as air conditioners and heaters,
while occupancy patterns are critical in determining when to
turn loads off without disturbing people’s lives [11].

Since electric utilities are rapidly deploying digital smart
meters capable of measuring and transmitting a building’s
aggregate electricity usage in real time, a substantial amount
of fine-grained electricity data for buildings is now available.
For example, Pacific Gas and Electric now operates over
nine million smart meters in California [12]. While today’s
deployed smart meters typically measure average power usage
at intervals ranging from five minutes to an hour, commodity
meters are now available that measure and transmit, via the In-
ternet, energy usage at intervals as small as every second [13],
[14]. Combined with the emergence of “big data” cloud storage
systems, these smart meter deployments are spurring renewed
interest in analysis techniques for electricity usage data. While
prior research has made progress in deriving insights from
smart meter data, one issue that often limits accuracy is the
use of general, and often simplistic, load models. In particular,
many prior techniques for analyzing and modeling building
electricity data characterize loads using simple on-off models,
which associate one (or a small number) of fixed power usage
levels with the “on” state and either no power consumption,
or some minimal amount, with the “off” state.

On-off models do have a number of advantages. For
instance, they exactly capture many simple loads, including
light bulbs and other low-power resistive devices with me-
chanical switches. In addition, on-off models allow researchers
to describe buildings as state machines that associate each
building state with a fixed power level that implies the set of
loads that are on, and where state transitions occur whenever a
load turns on or off. Characterizing buildings as state machines
admits a plethora of analysis techniques. For instance, much
prior work maps building state machines to Hidden Markov
Models (HMMs), and applies HMM-based techniques, such as
Viterbi’s algorithm [15], [16], to determine which loads are on
in each state. In this case, using only a few (often two) power
states per load is advantageous, since it minimizes the number
of distinct power states for the entire building and reduces
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Fig. 1. An LCD TV’s power usage varies rapidly, significantly, and
unpredictably while on, and does not conform to a simple on-off load model.

the complexity of analyzing the resulting state machine. Of
course, even with only two power states per load, the number
of building power states is still exponential in the number of
loads, i.e., 2n for n loads. Thus, even assuming simple load
models, precise analysis may still be intractable, i.e., require
enumerating an exponential number of states.

Unfortunately, while on-off load models are simple, they
are often inaccurate, since they fail to capture the complex
power usage patterns common to many loads. As a simple
motivating example, Figure 1 shows a time-series of an LCD
TV’s electricity usage each second. In this case, the TV’s
switched mode power supply (SMPS) causes power variations
as large as 120 watts (W) by rapidly switching between a full-
on and full-off state to minimize wasted energy. The magnitude
of these variations is effectively random—determined by the
color and intensity of the TV’s pixels. An on-off model clearly
does not accurately capture the TV’s power usage. As a result,
modeling the TV as an on-off load may complicate higher-
level analysis techniques for building data. For example, the
TV may obscure the use of low-power loads, such as a 60W
light bulb, since its power usage varies rapidly by >60W.

Our premise is that simple on-off models discard a sig-
nificant amount of information that is potentially useful in
analyzing data. As a result, in this paper, we focus explicitly on
accurately characterizing and modeling a variety of common
household loads. Our methodology is empirical: we i) gather
fine-grained electricity usage data from dozens of loads across
multiple homes, ii) characterize their behavior by distilling a
small number of common usage attributes, and then iii) derive
accurate load-specific models based on these attributes. One
of our contributions is to show that a small number of model
types accurately describe nearly all household loads. Many of
our findings stem from basic knowledge of power systems that
has not yet been fully exploited in data analysis. Thus, one of
our goals is to highlight how many identifiable load attributes,
which are well-known in power systems, manifest themselves
in electricity data collected by smart meters. Our hypothesis is
that accurate load models, which leverage domain knowledge
from power systems, provide a foundation for designing new
electricity data analysis techniques. In evaluating our hypoth-
esis, we make the following contributions:

Empirical Data Collection and Characterization. We instru-
ment a wide variety of common electrical loads in multiple
homes, and collect electricity usage data for each load, every
second, for over two years. We show empirically that homes
operate similar types of loads, e.g., lighting, AC motors,

heating elements, electronic devices, etc., which results in sig-
nificant commonality in power usage profiles across loads. We
then characterize the data to identify distinguishing attributes
in per-load power usage, forming the building blocks of our
models. While many of these attributes are well-known in
power systems, we show how they manifest in sensor data.

Modeling Methodology. We use our empirical characteriza-
tion to construct a small number of load-specific model types.
We show that our basic model types, or a composition of them,
capture nearly all of our household loads. Our models go be-
yond on-off models, by capturing power usage characteristics
that i) decay over time, ii) have frequent variations (as with
the TV in Figure 1), iii) exhibit complex repetitive patterns of
simpler internal loads, and iv) are composites of two or more
simpler loads. We show that our models are significantly more
accurate than on-off models, decreasing the root mean square
(RMS) error by as much as 8X for representative loads. Since
our methodology is general, it applicable to modeling other
loads or appliances beyond those in this paper.

Case Studies. Finally, while we expect our models to have
numerous uses, we illustrate two specific examples of novel
applications we have designed using them. First, we use our
models to generate device-accurate synthetic traces of building
electricity usage for use by NILM researchers. One barrier to
evaluating NILM techniques is deploying sensors to collect
ground truth data from every building load for evaluation.
Using our models, NILM researchers could quickly generate
different types of synthetic building traces by composing
together a representative collection of load models. Second,
we design filters capable of identifying and removing loads,
such as the LCD TV, that exhibit rapid power variations. Since
these loads introduce numerous spurious building power states,
removing them may improve the accuracy of HMM-based
analysis techniques that describe buildings as state machines.

II. EMPIRICAL DATA COLLECTION AND
CHARACTERIZATION

A typical home consists of dozens of electrical loads,
including heating and cooling equipment, lights, appliances of
various kinds and electronic equipment. A partial lists includes:

• Heating, cooling, and climate control equipment such as
a central air conditioner, window air conditioner, space
heater, electric water heater, dehumidifier, fan, air purifier;

• Kitchen appliances such as an electric range, microwave,
refrigerator, coffee maker, toaster, blender, dishwasher;

• Laundry appliances such as a washing machine and dryer;
• Lighting including incandescent and fluorescent lights;
• Miscellaneous electronic devices such as a television,

audio receiver, radio, battery charger, laptop and desktop
computer, and gaming console; and

• Other appliances such as a vacuum and carpet cleaner.

Below, we briefly describe the data collection infrastructure
we use to gather data from these common household loads.
We then derive several insights from our data, which we use
to design different types of load models in the next section.

A. Data Collection Infrastructure

Since our methodology is empirical, we instrument three
homes with a large number of energy monitoring sensors to



gather ground truth electricity usage data from a wide variety
of loads. Each instrumented home consists of a smart home
gateway in the form of an embedded Linux server that queries
each sensor to collect data. We have deployed several different
types of energy monitoring sensors, as described below.

We use current transducer (CT) sensors to monitor electric-
ity usage for large loads wired to dedicated circuits, such as
air conditioners, washing machines, dryers, dishwashers, and
refrigerators. These sensors connect to in-panel meters, such as
The Energy Detective (TED) [14] or eGuage [13] and sample
per-circuit electricity usage each second. We use plug-level
energy sensors to track energy use for smaller loads plugged
into wall outlets. Our plug-level sensors are commodity Insteon
iMeters [17] and Z-Wave Smart Energy Switch meters [18],
which use powerline and wireless communication, respectively,
to transmit readings to our smart home gateway. These sensors
also collect electricity usage data up to every second. Finally,
we use Insteon-enabled wall switches to monitor switched
loads wired directly into the electrical system. These switches
replace normal wall switches, and transmit on-off-dim events
to the gateway whenever a user manually toggles the switch.

Our system has been continually monitoring hundreds of
individual loads every second for nearly two years in each of
our three instrumented homes. Since our level of instrumen-
tation is time-consuming and expensive to replicate, we have
made much of our collected data available to benefit other
researchers [7]. We leverage our data to characterize various
loads based on a few elemental types, described below.

B. Characterizing Different Types of Loads

Despite their tremendous variety, most residential loads
fall into one of a few elemental load types based on how
they consume power in an alternating current (AC) system. In
particular, loads are categorized as either resistive, inductive,
capacitive, or non-linear based on how they draw current in
relation to voltage, which in an AC system varies along a
smooth sinusoidal pattern. These categories reveal properties
of the loads that we leverage in our models. Since many
researchers outside of power systems may be unfamiliar with
these load types, for each type of load we first review its
salient characteristics. We then empirically characterize data
from multiple representative loads of each type to observe how
their specific characteristics manifest themselves in the data.

Resistive Loads. Loads that consist of any type of heating
element are resistive. Incandescent lights, toasters, ovens,
space heaters, coffee makers, etc., are examples of common
resistive loads in a home. Formally, if a load draws current
along a sinusoidal pattern in the same phase as the voltage,
i.e., the maximum, minimum, and zero points of the voltage
and current sine waves align, then the load is purely resistive.

Figure 2 depicts a time-series of the power usage for four
different resistive loads with heating elements: an incandescent
light bulb, a toaster oven, a coffee maker, and a sandwich press.
In general, the power usage of these loads resembles a “step”
when turned on, with usage that remains relatively stable and
flat. The incandescent light acts as a nearly perfect resistive
load with a power usage that equals the bulb’s wattage. While
the toaster oven, coffee maker, and sandwich press act similarly
to the light bulb, they each experience an initial higher power

usage that slowly decays to a relatively stable usage, as
highlighted in Figure 2. This initial higher power is due to
the large inrush current that occurs until the device warms up
and the resistance decreases, after which it stabilizes.

Observation 1: Resistive loads exhibit stable power usage
when turned on, with high-power heating elements exhibiting
an initial surge followed by a slow decay to stable power.

Inductive Loads. AC motors are the most common and
widely-used examples of inductive loads. Motors are the
primary component of many household devices, including
fans, vacuum cleaners, dishwashers, washing machines, and
compressors in refrigerators and air conditioners. Formally,
if a load draws current along a sinusoidal pattern that peaks
after the voltage sine wave, i.e., the current waveform lags the
voltage waveform, then the load is purely inductive.

Figure 3 depicts a time-series of the power usage for four
inductive loads: two refrigerators, a freezer, and a vacuum
cleaner. All four loads operate AC motors. Unlike the resistive
loads above, each inductive load experiences a significant, but
brief, initial power usage. The surge is also due to inrush (or
surge) current that occurs when starting an AC motor, although
it is typically much higher than for heating elements. Intu-
itively, the underlying reason is that, while heating elements
heat up slowly, the rotor inside a motor must transition from
completely idle to full speed within seconds. As before, power
usage exhibits a decay that eventually stabilizes. In contrast to
resistive loads, however, motors exhibit small variations even
during this “stable” phase. For instance, the first refrigerator
shown in Figure 3(a) exhibits small fluctuations that repeat
during each cycle of the compressor. The second refrigerator,
the freezer and the vacuum cleaner depicted in Figures 3(b), (c)
and (d) all show an initial spike and a sharper, smoother decay,
with small variations as the usage stabilizes. These patterns
demonstrate that, unlike resistive loads, modeling inductive
loads using simple on-off step functions is problematic.

Observation 2: Inductive loads with AC motors exhibit a large
initial spike in power usage, followed by a decay to a stable
power level. The decay rate is load-dependent, with the stable
power level also exhibiting smaller time-scale variations.

Capacitive Loads. Capacitive loads are the dual of inductive
loads. While many loads have capacitive elements, inductive
and resistive characteristics dominate their overall behavior.
Thus, there are no significant capacitive loads in buildings.
Formally, if a load draws current along a sinusoidal pattern that
peaks before the voltage sine wave, i.e., the current waveform
leads the voltage waveform, then the load is purely capacitive.

Non-linear Loads. Finally, any load that does not draw current
along a sinusoidal pattern is called non-linear. Non-linear
loads may also be resistive, inductive, or capacitive according
to when their current waveform peaks. The most predominant
non-linear (and largely inductive) loads are electronic devices,
including desktop computers and TVs. The non-linear nature
of these loads is primarily due to the use of switched-mode
power supplies (SMPS). Fluorescent lights are another exam-
ple of a non-linear (inductive) load. Smaller electronic devices
that convert AC to low-voltage DC, such as battery chargers
for portable devices and digital clocks, are also non-linear.

Figure 4 shows the power usage of four different non-
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(a) Light bulb (b) Toaster (c) Coffee maker (d) Sandwich press

Fig. 2. Example resistive loads, demonstrating “step” behavior with a possible initial surge.
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Fig. 3. Example inductive loads, demonstrating significant surge current and subsequent decay.
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Fig. 4. Example non-linear loads, demonstrating random variations and possible ceilings and/or floors.
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Fig. 5. Example composite loads, demonstrating combinations of simpler loads arranged in phases.

linear loads: an LCD TV, a Mac Mini desktop computer, a
microwave oven, and an actively-heated heat recovery ventila-
tor (HRV). These loads exhibit significant power fluctuations
when active, but also have a stable floor or ceiling from
which these fluctuations derive. The LCD TV shown in Figure
4(a) exhibits a stable maximum usage with random power
reductions from this ceiling. These fluctuations result from
displaying a variety of color and pixel intensities on the screen.
In contrast, the desktop computer shown in Figure 4(b) has a
stable minimum power draw, with random power spikes above
this floor depending on its workload, e.g., causing the CPU
to ramp up, etc. Both the TV and desktop computer consist
of a switched mode power supply (SMPS) that regulate the

power usage of the device and switch between a full-on and
full-off state to minimize wasted energy. The HRV shown in
Figure 4(c) demonstrates two regular modes of operation; an
active heating mode—with instantaneous intensity managed
by the HRV controller—and a passive recirculation mode.
In both modes, there are large, random variations in power
usage. In the active state, there is also a clear stable maximum
usage. Finally, the microwave shown in Figure 4(d) has what
initially appears to be a straightforward step, similar to the
resistive loads. However, zooming into the figure shows the
microwave’s non-linear behavior, with rapid, albeit small,
variations in the second-to-second usage, along with larger
periodic power shifts. These examples demonstrate that on-off



models are inappropriate for non-linear loads, since two power
states cannot capture their wide range of power variations.

Observation 3: Non-linear loads exhibit significant random
variations in power usage. These fluctuations are often range-
bound and capped by a floor or ceiling in the power level.

C. Reactive Power and Composite Loads

Reactive Power. Another important characteristic of the ele-
mental load types above is how they consume reactive power.
While real power is the amount of power delivered to a load,
and is often referred to as simply electricity or power (without
the qualifier), reactive power is the amount of power generated,
but not delivered, to the load; it is also measured in units
of watts, but written as voltage-amperes reactive (VAR) to
distinguish it from real power. Reactive power arises when
a load draws current out of phase with the voltage. Thus, only
non-resistive loads generate reactive power. At a high level,
reactive power is the result of the instantaneous power (the
product of current and voltage) occasionally becoming negative
within each cycle of AC power, due to out-of-phase current
and voltage. This state causes power to flow towards the
generator and away from the load. Reactive power is typically
dissipated as heat in power lines. For our purposes, reactive
power provides additional useful information for modeling,
and many commodity power meters are capable of measuring
it. As a result, our models include both real and reactive power.

Figure 6 depicts companion graphs for selected loads that
shows their reactive, rather than real, power usage. Figure 6(a)
shows that, similar to their real power usage, dimmable incan-
descent lights produce a stable—zero if not dimmed—amount
of reactive power when on, although the magnitude of the draw
peaks at 50% dim level and decreases as the light approaches
either 0% or 100% dim level. Likewise, the refrigerator in
Figure 6(b) exhibits a mostly flat reactive draw, while the HRV
in Figure 6(c) has a rapidly varying power usage. Both patterns
are similar to each load’s pattern of real power usage.

Observation 4: While the magnitude of reactive power differs
from real power, a load’s pattern of reactive power consump-
tion is qualitatively similar to its real power consumption.

Composite Loads. Finally, many household loads, particularly
large appliances, are not purely resistive, inductive or non-
linear. Instead, these loads consist of multiple components,
each of which may be one of the simpler load types. For
instance, a central air conditioner may consist of a compressor,
a fan to blow air into ducts, duct dampeners to control air flow,
and central humidifiers to control humidity. A refrigerator,
which has compressor that is an inductive load, may also
consist of door lights, an ice maker, and a water dispenser.
Similarly, electric dryers, washing machines, and dishwashers
also consist of a motor—to spin clothes and circulate water
via a pump—and a heating element—to dry clothes or warm
water. In addition, these appliances often operate in repetitive
cycles that operate each of their constituent loads differently,
such as washing, draining, and then drying for a dishwasher.

Figure 5 depicts the power usage of a washing machine,
a dryer, and two dishwashers. As shown, these loads exhibit
distinct behavior in different parts of their cycle depending
on which component of the appliance is in use. For example,

based on the observations above, distinguishing when a com-
plex load, such as the dryer, activates its heating element versus
its motor is straightforward. Finally, an appliance may activate
its various components in sequence, in parallel, or both. For
instance, a central air conditioner may operate the compressor,
the fan and the dampeners concurrently, while a dishwasher
may operate its motor, pump and heater in sequence.

Observation 5: Composite loads consist of simpler resistive,
inductive and non-linear loads that operate in parallel, in
sequence, or both. As a result, composite loads exhibit distinct
behaviors in different operating regions of their active cycle.

D. Summary

In classifying loads in terms of the elemental load types
above, we observe that nearly every common household elec-
tric load is a composition of one or more of the small number
of resistive, inductive, and non-linear loads described above,
with heating elements and AC motors consuming the majority
of electricity in homes. Further, each type of elemental load
exhibits similar characteristics when active: heating elements
have a stable power usage or one that decays slowly over time,
AC motors have a spike in power on startup and then vary
their power usage smoothly over time, while SMPSs exhibit
rapid and significant power variations. As we discuss in the
next section, the presence of only a few elemental load types
in homes simplifies model design, enabling us to accurately
capture their behavior using a few basic types of models.

III. MODELING ELECTRIC LOADS

Based on our empirical observations from the previous
section, we develop models to capture key characteristics of
each load type. We first present four basic model types—on-off,
on-off decay, stable min-max, and random range— to describe
simple loads, and then use these models as building blocks
to form compound cyclic and composite models that describe
more complex loads. Ideal models describe i) how much real
and reactive power a load uses when active, ii) how long a
load is active, and iii) when a load is active. However, in many
cases, users manually control loads, such that when a load is
active and for how long is non-deterministic. For example, a
user may run a microwave any time for either ten seconds or
ten minutes. For these loads, we assume a random variable
captures this non-determinism, and focus our efforts, instead,
on modeling how each load behaves when active.

Given each model type, we employ an empirical methodol-
ogy to construct accurate load-specific models: we leverage our
empirical observations of the load’s power usage as a training
set, and employ curve-fitting methods to map one of the model
types onto the time-series data. If the best model type is not
clearly evident a priori, we fit multiple models and then choose
the one that yields the best fit. As described below, depending
on the model type, we may employ simple regression or more
complex curve-fitting methods, such as LMA [19], to construct
a load-specific model for a given model type. As discussed in
Section II, reactive power for loads exhibits similar behavior as
real power, and thus constructing a model of a load’s reactive
power consumption uses the same methodology as above.
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Fig. 6. Reactive power demonstrates the same types of patterns as real power and can help in identifying devices.

A. Basic Model Types

On-off Model. As discussed in Section I, prior work often uses
simple on-off models for loads. An on-off model includes two
states—an on state that draws some fixed power pactive and an
off state that draws zero, or some minimal amount of, power
poff . Conventional, non-dimmable incandescent lights are the
canonical example of a load that conforms to an on-off model.
Dimmable lights also conform to on-off models, although pon
depends on the dim level. As shown empirically in Figure 6(a),
a dim-level of N% yields a proportionate reduction in real
power usage. In addition, while real power usage is a simple
linear function of the dim level, reactive power is a quadratic
function that peaks at 50% dim level.

Constructing an on-off model is simple—we use regression
to determine appropriate values pon and poff . In particular, we
partition the time series of load power usage into two mutually
exclusive time-series with data for the on and off periods, to
determine the best values of pon and poff .

On-off Decay Model. An on-off decay model is a variant
of the on-off model that accounts for an initial power surge
when a load starts, followed by a decrease in power usage
over time. As discussed in Section II, AC motors are the
most common example of a load that has this behavior, e.g.,
refrigerator, freezer, vacuum cleaner. Resistive loads with high-
power heating elements, such as the toaster or coffee maker,
also conform to an on-off decay model, although the surge
and the decay in these devices is far less prominent than
in AC motors. We characterize on-off decay models using
four parameters: pactive, poff , ppeak, and λ. The first two
parameters are the same as in on-off models, while ppeak
represents the level of inrush current when a device starts
up and λ represents the rate of decrease to the stable pactive
power level. We model decay using an exponential function as
follows, where tactive is the length of the active interval:

p(t) =

{
pactive + (ppeak − pactive)e

−λt , 0 ≤ t < tactive

poff , t ≥ tactive

As with the on-off models above, the length of the active
interval for on-off decay models is not known a priori and
often depends on user behavior. However, we have observed
that in many cases users repeatedly operate devices in the same
way, e.g., a toaster that toasts a bagel every morning. In many
cases, the device determines the length of tactive automatically,
e.g., the compressor for a refrigerator or freezer may turn on
for an average of 20 minutes in each cycle. In these cases, we
incorporate the mean value of tactive into the model.
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Constructing an on-off decay model requires fitting an
exponentially decaying function onto the time-series data, in
addition to determining ppeak, pactive, and poff . We employ
the well-known LMA algorithm [19] to numerically find the
exponential decay function that best fits, i.e., based on a least-
squares nonlinear fit, the time-series data.

Figure 7(a) shows the specific the on-off decay model for
a coffee maker in parallel with its real power data. The figure
demonstrates that the exponential decay is a highly accurate
approximation of the coffee maker’s power usage. In this case,
pactive = 905, ppeak = 990, poff = 0, and λ = 0.045.
Likewise, Figures 7(b) and (c) show on-off decay models and
real power data for a toaster and a portion of a dryer cycle.
For each of the three loads in Figure 7, we also fitted an on-
off model. After fitting the best on-off model, we calculated
root mean square error (RMSE) for both the on-off and on-
off decay models for each load’s duration of activity and for
its first 30 seconds of activity (since capture ‘on’ events is
particularly important). Figure 8 shows the results: the decay
model decreases the error in the on-off model by as much 8X,
particularly in the first 30 seconds where the on-off model is
unable to capture the rapid decay behavior.

Stable Min-Max Model. While on-off and on-off decay mod-
els accurately capture the behavior of resistive and inductive
loads, they are inadequate for modeling non-linear loads. As
seen in Section II, many non-linear loads maintain a stable
maximum or minimum power draw when active, but often vary
randomly and frequently from this stable state. These varia-
tions are due to the device regulating their electricity usage at a
fine grain to instantaneously “match” the needs of the tasks the
device is performing Our stable min-max model captures this
behavior. We model stable min-max devices as having a stable
maximum or minimum power denoted by pactive when active.
The power usage then deviates, or “spikes,” up or down from
this stable value at some frequency. The magnitude of the spike
is a random value uniformly distributed between pactive and
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pspike, where pspike denotes the maximum deviation in power
per spike. The interarrival time of the spikes are exponentially
distributed with mean λ. Thus, the stable min-max model has
three parameters: a stable max or min power usage pactive,
the maximum deviation pspike for each spike, and λ, which
governs the interarrival time of spikes. Note that pactive may
denote either the stable maximum or minimum power, with
power deviations decreasing or increasing, respectively.

Empirically constructing a load-specific stable mix-max
model requires both determining the stable power level pactive
and characterizing the magnitude and frequency of the power
spikes. We employ simple regression to determine the stable
power level pactive from the time series data, e.g., after filtering
out the data for spikes and finding the fit for pactive. The mean
observed duration between spikes then yields the parameter
λ. Figure 9 shows our stable-max model for the LCD TV
(from Figure 1) using a maximum pactive of 160W and a λ of
10.82, which we derive from the TV’s real power usage data.
Importantly, as we discuss in Section IV, both the model and
the raw data have similar statistical properties, which simple
filters can recognize by detecting when power variations are
significant, frequent, and symmetric, e.g., a decrease and then
immediate increase in power of similar magnitude.

Random Range. Finally, we found that some devices draw
a seemingly random amount of power within a fixed range
when active. This is likely due to the fact that taking average
power readings each second is too coarse a frequency to
capture the device’s repetitive behavior. We model such loads
by determining upper and lower bounds on their power usage,
denoted by pmax and pmin. When active, our model randomly

varies power within these bounds using a random walk. Note
that the random range model is similar to the stable min-max
model in that both employ upper and lower bounds on power
usage. However, while the deviations in the stable min-max
model are spikes from a stable value, those in the random range
model are power variations within a range. The microwave is
an example of a load that exhibits this behavior. As shown in
Figure 4(d), when turned on, the power usage of the microwave
fluctuates continuously between 1400W and 1480W.

Random range models require determining the minimum
and maximum of the load’s range of power usage. We de-
termine these values by simply choosing the minimum and
maximum power values observed in training data, or by
deriving a distribution of power values from the data and
choosing a high and low percentile of the distribution to be
the minimum and maximum, pmin and pmax. We then model
the variations with a random walk within the range.

B. Compound Model Types

While the models above accurately capture the behavior
of simple loads, many loads, including large appliances, ex-
hibit complex behavior from operating a variety of smaller
constituent loads. We devise two types of compound models
for complex loads that use the basic building blocks above.

Cyclic Model. Cyclic loads repeat one of the basic model
types in a regular pattern, often driven by timers or sensors.
For example, the HRV heater employs a timer that activates
for 20 minutes each hour. Similarly, a refrigerator duty-cycle
is based on sensing its internal temperature, which rises and
falls at regular intervals and fits our model well, as shown in
Figures 3(a) and (b). A cyclic model augments a basic model
by specifying the length of the active and inactive period,
tactive and tinactive, each cycle. Constructing cyclic models is
straightforward, since it only requires extracting the duration
of the active and inactive periods from the empirical time-
series power data. We currently use the mean of the active
and inactive periods from the time-series observations to model
tactive and tinactive.

Composite Model. Composite loads exhibit characteristics
of multiple basic model types either in sequence or parallel.
Example composite loads include dryers, washing machines,
and dishwashers, as shown in Figure 5. Sequential composite
loads operate a set of basic load types in sequence; we
model them as simple piecewise functions that encode the
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sequence of basic load models, including how long each
load operates. For instance, a model for a dishwasher is a
sequence of stages: modeled as the operation of the motor
(wash stage), pump (drain stage), motor (rinse stage), pump
(drain stage) and heater (dry stage), where each individual
stage uses an inductive or resistive load. Some loads also
exhibit characteristics of two or more basic models in parallel
if two basic loads operate simultaneously. For example, a
refrigerator may simultaneously activate both a compressor and
an interior light. We model parallel composite loads by adding
together the power usage for two or more of the basic model
types. Finally, composite loads may also be cyclic, referred to
as cyclic composite loads, which repeat a pattern of individual
model types at regular intervals. Our methodology permits
arbitrary compositions of sequential, parallel or cyclic loads.

Constructing load-specific composite models is more com-
plex and requires additional manual inputs. For example,
constructing a sequential composite model requires manually
partitioning and isolating load time-series data into individual
sequences that reflect the activation of the various load com-
ponents. We must then construct basic models from above for
each component in the sequence. The composite model is then
simply a concatenation of these piecewise models in sequence.

As an example, Figure 10 shows an extended operating
cycle of the washing machine with the annotations for different
basic load model types in the sequence. We represent these
models as large piecewise functions of the basic models that
describe each constituent load. We omit these functions here
for brevity. In addition, many of the large appliances that have
composite models also have numerous operating states. For
example, the washing machine and dryer in one of our homes
each has over 25 different types of cycles. In this case, an
accurate model requires a different piecewise functions for
each type of cycle. However, in the homes we monitor we
have found that most residents operate devices using only a
small number states—in most cases one.

Constructing parallel composite models poses additional
challenges. Since the time-series data for a load captures the
power usage for all components that are concurrently active,
there is no straightforward general-purpose technique to extract
individual models from the composite time-series data. In
practice, however, extracting basic models is often possible
through exogenous means. For instance, many loads permit
operating individual components to isolate them for profiling,
e.g., such as a running a dryer on tumble mode without any
heat or using an air conditioner’s fan without any cooling. After

separately profiling a constituent load, such as the tumbler or
fan, it is possible to operate the compressor and the fan, and
then infer the compressor power usage by “filtering out” the
tumbler or fan usage from the aggregate. In some devices, such
as a refrigerator, it also might be possible to deploy additional
sensors that monitor important events, such as a door opening
that triggers lights, to filter them out.

IV. USING THE MODELS

While we expect our models to have numerous uses in a
variety of analysis and optimization tasks in building energy
management, below, we illustrate two initial examples of novel
applications we have designed: i) generating device-accurate
synthetic data of a building’s aggregate electricity usage and ii)
designing filters to identify and remove random and frequent
power variations from stable min-max loads. As we discuss,
both applications should prove useful to researchers.

A. Device-accurate Synthetic Building Data

Evaluating new techniques for analyzing electricity data
requires actual building data for testing. Unfortunately, while
recording a building’s aggregate electricity usage is simple,
requiring only a single smart meter, recording detailed aspects
of the building’s environment is not. For instance, evaluat-
ing the accuracy of a NILM algorithm, which disaggregates
building electricity data into power data for individual loads,
requires power data from both the entire building and each
of its constituent loads. However, NILM’s entire purpose is
to prevent the need for recording such ground truth data at
each load, since setting up even a test infrastructure for this is
prohibitively expensive, invasive, and time-consuming. While
there are now a small number of data sets for a few buildings
available for NILM researchers to use in evaluation [7], [20],
[21], they typically do not instrument every load nor do they
cover a wide range of building types or load characteristics.

To address this problem, we use our models to automat-
ically generate device-accurate synthetic electricity data for
buildings. Being device-accurate means that we include both
the synthetic aggregate time-series power data for a building,
as well as time-series power data for each of the constituent
loads in the building generated using our models. While prior
work targets generating synthetic traces of building power
usage [22], we are not aware of any previous work that focuses
on being device-accurate. We expect device-accurate modeling
to enable researchers to evaluate new techniques for data
analytics on a variety of building types without requiring them
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to deploy a large number of power meters. Importantly, our
device-accurate synthetic building data has similar statistical
properties as real data. Figure 11 shows both a real trace of
the aggregate power usage of one of the homes we monitor
(a), and a synthetically derived trace using our models (b).

We generate the synthetic trace from the “on” events for
the home’s loads, where we insert our model for a load
whenever it comes on. Not only do the traces in Figure 11
look qualitatively similar, but they also have similar properties:
the real data has an average power of 1200W, a standard
deviation of 1072W, and 5591 changes in power >15W, while
the synthetic data has an average power of 1165W, a standard
deviation of 1073W, and 5833 changes in power >15W.
Since the synthetic data is composed of data from models
of individual loads, it is useful for analysis techniques that
look for patterns in the aggregate usage data. By comparison,
if we generate on-off models that include at most 4 power
states per load (as in recent work [20]), there are only 1985
changes in power >15W, which eliminates many identifiable
load-specific characteristics. We are currently using our models
to design a general workload generator that automatically
produces synthetic trace data for different types of buildings,
while also providing users control over the trace’s statistical
properties, e.g., number of loads, average power, variance, etc.,
since some analysis techniques may be appropriate for some
types of buildings and not for others. We plan to release our
device-accurate synthetic data and workload generator as part
of our public Smart* data set [7].

B. Stable Min-max Filters

Since stable min-max loads account for the large majority
of power variations in a home, filtering out the variations
can significantly improve subsequent data analysis techniques,
including HMM-based techniques that model buildings as state
machines composed of on-off loads. Figure 12 shows a bar
graph of the number of power variations in a single day for
each of 19 active circuits in one of the homes we monitor. The
graph demonstrates that a small number of circuits account
for the vast majority of the power variations in the home—
notably resulting from two non-linear loads (the active HRV
and the living room TV) and two composite loads with non-
linear components (the washing machine and dryer), each of
which is highlighted in Figure 4. Our stable min-max filter

works by scanning through the power data time-series for a
home and maintaining a stable power parameter, which only
updates if power deviates from the current parameter setting for
more than time T by some threshold power Pthreshold. Time
T and threshold Pthreshold are based on the load’s model. For
T , the goal is to select a value large enough to ensure that a
power variation is a stable load (and not a sequence of random
variations in the stable min-max model), but short enough to
prevent filtering out legitimate short-lived loads, e.g., a lamp
that is only on for 30 seconds. For Pthreshold, the goal is to
select a value large enough to capture significant variations.

Figure 13 applies the filter to aggregate data from a home
that includes the TV and HRV (from Figure 4) combined with
a 60W light bulb. Since the TV and the HRV exhibit rapid
power variations every few seconds (see Figure 4), due to
controllers that rapidly switch between a fully-on and fully-
off state, the value of T need only be slightly greater than
the typical frequency of the variations. In both cases we set
T = 5 seconds. In addition, we select a value of 10W for
Pthreshold since both loads have a narrow maximum power
usage that varies by less than 10W. As the figure shows, the
filter makes the HRV and TV appear to be simpler loads with
discrete power states, making it possible to easily identify a
60W light bulb turning on or off by observing changes in
power in the filtered data. However, without filtering, any data
analysis technique, e.g., HMMs, that uses changes in aggregate
power usage to identify when the light bulb turns on or off
would have difficulty, since operating either the TV or HRV
would obscure changes in the light bulb’s power by introducing
significant and frequent power variations. In fact, the HRV’s
power variations alone are large enough—greater than 800W
in some cases—to obscure all but the largest loads in the home.

V. RELATED WORK

In this paper, we focus explicitly on modeling the power
usage of common electrical loads. While recent work targets
modeling for specific appliances, e.g., a particular brand of
refrigerator [23], it does not generalize to a broad range
of devices. Much of the prior research on modeling power
usage for individual loads has been done in the context of
Non-Intrusive Load Monitoring (NILM). While we expect our
models to be broadly useful for data analysis, including, but
not limited to, NILM, we survey related work in NILM below.
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Fig. 12. A few highly variable (non-linear) loads are responsible for the
majority of changes in a home’s aggregate power.

NILM techniques differ significantly based on the granular-
ity of the current, voltage, and power readings. For instance,
fine-grain readings that sample current or voltage frequently
within each cycle, e.g., �60Hz, differ significantly from the
models we present, since they attempt to capture the behavior
of the AC current and voltage waveform. In addition, gathering
data at such high frequencies presents challenges: it requires
expensive and highly calibrated equipment, while storing and
transmitting the data in real time is beyond the capabilities of
today’s embedded power meters. Instead, our models target
a data granularity of one reading per second, since this is
the finest granularity that commodity low-cost power meters
support. We could also build load models using the coarse-
grain data, e.g., 5 minutes to an hour, supported by today’s
utility-installed smart meters [24]. Unfortunately, coarse-grain
data measured every minute or more eliminates important
details of each load’s operation that are useful in analysis.

Recently, a number of researchers have focused on NILM
approaches for the per-second power data we use to build our
models. Most of these approaches employ generic on-off load
models that, as we show, are not accurate. The techniques
generally use these simple models to either i) detect changes in
load power states by observing changes in building power, [8]
or ii) use Viterbi-style algorithms [15] to determine the most
likely set of “hidden” states, e.g., combinations of power states
for multiple loads, from a sequence of changes in building
power [25]. These prior techniques generally do not scale to
the large numbers of, often low-power, loads found in typical
buildings. For instance, we are not aware of any prior approach
that focuses on large-scale scenarios—>100 loads—with many
low-power loads <50W, which is a common characteristic of
many homes. The lack of research may be due, in part, to the
inaccuracy of the underlying load models.

VI. CONCLUSION

This paper presents a new methodology for modeling com-
mon electrical loads. We derive our methodology empirically
by collecting data from a large variety of loads and showing the
significant commonalities between them. Finally, we illustrate
examples of how to use our models for data analysis.
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