
Combining Dynamic Reward Shaping and Action
Shaping for Coordinating Multi-Agent Learning

Xiangbin Zhu
College of Mathematics, Physics and Information Engineering

Zhejiang Normal University,
Jinhua Zhejiang, 321004, China

zhuxb@zjnu.cn

Chongjie Zhang
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US
chongjie@cs.umass.edu

Victor Lesser
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US

lesser@cs.umass.edu

Abstract—Coordinating multi-agent reinforcement learning
provides a promising approach to scaling learning in large
cooperative multi-agent systems. It allows agents to learn local
decision policies based on their local observations and rewards,
and, meanwhile, coordinates agents’ learning processes to ensure
the global learning performance. One key question is that how
coordination mechanisms impact learning algorithms so that
agents’ learning processes are guided and coordinated. This
paper presents a new shaping approach that effectively integrates
coordination mechanisms into local learning processes. This
shaping approach uses two agents levels and combines reward
shaping and action shaping. The higher-level agents dynamically
and periodically produce the shaping heuristic knowledge based
on the learning status of lower-level agents. The lower-level agents
then uses this knowledge to coordinate their local multi-agent
learning processes. Experimental results show our approach
effectively speeds up the convergence of multi-agent learning in
large systems.

Index Terms—Multi-agent Learning; Organization Control;
Supervision; Reward Shaping; Action Shaping

I. INTRODUCTION

A central question in developing cooperative multi-agent
systems is to design distributed coordination policies for
agents so that they work together to optimize the global perfor-
mance. Multi-agent reinforcement learning (MARL) provides
an attractive approach to this question. MARL allows agents
to explore environment through trial and error, adapt their
behaviors to the dynamics of the uncertain and evolving
environment, and gradually improve their performance through
experiences.

One of key research challenges is to scale MARL to large
cooperative systems. Coordinating MARL [7, 8, 13, 16, 15]
provides a promising direction to address this challenge. Using
coordinating MARL, agents learn their policies based on
their local observations and interactions, while their learning
processes are coordinated and guided by exploiting non-local
information to improve the overall learning performance. One
important problem of coordinating MARL is how agents’
learning processes need to be modified in order to integrate
non-local knowledge. Existing approaches for coordinating
MARL use a technique, called action shaping, i.e., biasing
action selection by directly manipulating learned policies [7,
8, 13, 16, 15]. Action shaping can prohibit an agent from
taking some actions in specified states, and can encourage

or discourage an agent to take some actions in specified
states. Action shaping is immediately effective on the specified
states, but only limited to these specified states. However, it is
difficult and complex to use action shaping to exploit common
situations where neighboring states of ”bad” states (i.e., with
low expected rewards) are more likely bad and neighboring
states of ”good” states are more likely good.

In this paper, we demonstrate that an alternative technique,
called reward shaping, can potentially address this issue in
coordinating MARL. Reward shaping [2, 10, 11] has been
extensively studied for single agent reinforcement learning.
It exploits heuristic knowledge by providing an agent with
additional reward signals to accelerate its learning process.
By utilizing the backup operation of reinforcement learn-
ing (updating the value of a state using values of future
states), reward shaping implicitly exploits situations where
neighboring states of ”bad” states (i.e., with low expected
rewards) are more likely bad and neighboring states of ”good”
states are more likely good. Unlike other work on multi-agent
reward shaping [3, 6, 4, 5], our reward shaping approach
dynamically generates additional reward signals for agents
based on their current learning status and is used to coordinate
agents’ learning processes. Moreover, this paper illustrates that
reward shaping and action shaping are complementary to each
other and combining them for coordinating MARL can further
improve the learning performance.

In this paper, we illustrate our approach using a coordinating
MARL framework [13] (see Figure 1 and 5), called Multi-
Agent Supervisory Policy Adaptation (MASPA). This frame-
work employs low-overhead, periodic organizational control
to coordinate multi-agent reinforcement learning to ensure the
global learning performance. MASPA is general and extensible
and can work with most existing MARL algorithms. MASPA
provides an action shaping technique, which will be used
as our evaluation baseline in a distributed task allocation
application domain.

The rest of the paper is organized as follows: Section 2
introduces MASPA and its action shaping. Section 3 presents
reward shaping in multi-agent learning. Section 4 discusses in
detail the advantages and disadvantages of action shaping and
reward shaping and how they are complementary to each other.
Section 5 illustrates how to dynamically generate shaping

rewards in a distributed task allocation problem. Section 6
shows the empirical results and analyzes these results. Finally,
Section 7 concludes the paper.

II. MASPA AND ACTION SHAPING

Many realistic settings have a large number of agents and
communication delay between agents. To achieve scalability,
each agent can only interact with its neighboring agents
and has a limited and outdated view of the system (due to
communication delay). In addition, using MARL, agents learn
concurrently and the environment becomes non-stationary
from the perspective of an individual agent. As shown in [13],
MARL may converge slowly, converge to inferior equilibria,
or even diverge in realistic settings. To address these issues, a
supervision framework was proposed in [13]. This framework
employed low-overhead, periodic organizational control to
coordinate and guide agents’ exploration during the learning
process.

The supervisory organization has a multi-level structure.
Each level is an overlay network. Agents are clustered and
each cluster is supervised by one supervisor. Two supervisors
are linked if their clusters are adjacent. Figure 1 shows a
two-level organization, where the low-level is the network of
learning agent and the high-level is the supervisor network.

The supervision process contains two iterative activities:
information gathering and supervisory control. During the
information gathering phase, each learning agent records its
execution sequence and associated rewards and does not
communicate with its supervisor. After a period of time, agents
move to the supervisory control phase. As shown in Figure 1,
during this phase, each agent generates an abstracted state
projected from its execution sequence over the last period of
time and then reports it with an average reward to its cluster
supervisors. After receiving abstracted states of its subordinate
agents, a supervisor generates and sends an abstracted state
of its cluster to neighboring supervisors. Based on abstracted
states of its local cluster and neighboring clusters, each su-
pervisor generates and passes down supervisory information,
which is incorporated into the learning of subordinates and
guides them to collectively learn their policies until new
supervisory information arrives. After integrating supervisory
information, agents move back to the information gathering
phase and the process repeats.

A supervisor uses rules and suggestions to transmit its
supervisory information to its subordinates. A rule is defined
as a tuple < c, F >, where
• c: a condition specifying a set of satisfied states
• F: a set of forbidden actions for states specified by c
A suggestion is defined as a tuple < c,A, d >, where
• c: a condition specifying a set of satisfied states
• A: a set of actions
• d: the suggestion degree, whose range is [-1,1]
Rules are “hard” constraints on subordinates’ behavior.

Suggestions are “soft” constraints and allow a supervisor to
express its preference for subordinates’ behavior. A suggestion

1

2
4

3

2

1

3

4

5

Supervisors

Agent Networks

Gather Information
Supervisory Control

5

Fig. 1. The two-level hierarchical learning structure

with a negative degree, called a negative suggestion, urges
a subordinate not to do the specified actions. In contrast,
a suggestion with a positive degree, called a positive sug-
gestion, encourages a subordinate to do the specified action.
The greater the absolute value of the suggestion degree, the
stronger the suggestion.

Each learning agent integrates rules and suggestions into
its policy which is learned by a local learning algorithm to
generate an adapted exploration policy. Let R be the rule set.
Let G be the suggestion set. G(s, a)={< c,A, d >∈ G|state s
satisfies the condition c and a ∈ A} is defined. The function
deg(s, a) returns the degree of suggestion, which is defined
as following:

deg(s, a) =

 0 if |G(s, a)| = 0
d if |G(s, a)| = 1

and < c,A, d >∈ G(s, a)
(1)

So the adapted policy πA can be gotten as following:

πA(s, a) =

0 if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

* deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a)) ∗ η(s)

* deg(s, a) else if deg(s, a) > 0
(2)

where πA is the adapted policy, π is the learning policy,
R(s, a) is a set of rules applicable to state s and action a,
deg(s, a) is the degree of the satisfied suggestion, and η(s)
ranges from [0,1] determines the suggestion receptivity. The
η(s) function decreases as learning progresses.

Because this type of integration method use supervisory
information to directly bias the action selection for exploration
without changing the policy update process, we refer to it as
action shaping.

III. REWARD SHAPING IN MULTI-AGENT LEARNING

An alternative form of integrating supervisory information
into local learning processes could potentially involve reward
shaping. Reward shaping has been shown to be a beneficial
in single-agent reinforcement learning and in limited multi-
agent settings [3, 9, 11]. In this section, in the context of our
two-level coordination approach to MARL, we will present a
reward shaping approach to integrating dynamic supervisory

information into local learning algorithm of multiple agents
so that their learning processes are coordinated. In the later
section, we will discuss how to periodically and dynamically
compute appropriate shaping rewards.

MARL can use a model-free multi-agent learning method
that is based on Q-learning, such as PGA-APP [14]. Therefore,
the reward shaping technology of single-agent systems can
be directly integrated in the MARL. The reward shaping of
Q-learning is to provide an additional reward in order to
accelerate the convergence of Q-learning [11, 12]. The one-
step Q-learning with reward shaping is defined by [11]:

Qt+1(s, a)←(1− α)Qt(s, a) + α[r(s, a) + F t(s, a, s′)

+ γmax
a′

Qt(s′, a′)]

where F t(s, a, s′) is the general form of the shaping reward
and r(s, a) is the immediate reward. The reward shaping
presented here can be thought of as dynamic advice because
it is generated online.

In the context of our two-level coordination approach to
MARL, we can convert suggestions and rules to shaping
rewards. So, we can use functions fr and fs for mapping rules
and suggestions to reward respectively. So shaping reward can
be described as follows:

F (s, a, t, s′, a′, t′) = fs(deg(s, a)) + fr(R(s, a)) (3)

Based on the equation (1), fs(deg(s, a)) can be defined by:

fs(deg(s, a)) =

r(s, a) ∗ η(s)

* deg(s, a) if deg(s, a) ≤ 0
(1− r(s, a)) ∗ η(s)

* deg(s, a) else if deg(s, a) > 0
(4)

where r(s, a) is the immediate reward for the action a.
Let rrule(s, a) be the shaping reward that an agent receives

for rules. For the state s and the action a, if there is a R(s, a),
the shaping reward rrule(s, a) can be defined as:

rrule(s, a) =

{
αr(s, a) if r(s, a) < 0
−αr(s, a) else

(5)

where r(s, a) is the immediate reward for the action a and α
is an adjustment parameter.

Based on the equation (5), fr(R(s, a)) can be defined by:

fr(R(s, a)) =

{
0 if R(s, a) = ∅
rrule(s, a) else (6)

IV. COMBINING REWARD SHAPING AND ACTION SHAPING

In this section, we show action shaping and reward shaping
are complementary and the advantages of combining them for
coordinating multi-agent learning.

Zhang et al. [13] have empirically verified that the ac-
tion shaping method is effective for coordinating MARL.
As mentioned early, the action shaping can accelerate the
local Q-learning process via avoiding some bad actions or
selecting some good actions. Thus, it can improve the system
performance by directly changing the local policy. Rules are
used to prune the state-action space. Suggestions bias an

agent’s exploration. But action shaping can not affect more
states temporally and spatially than that of reward shaping.

Fig. 2. The grid world with action shaping

Fig. 3. The grid world with reward shaping

For example, consider a grid world, shown in Figure 2. This
grid world has a start state denoted by ’S’ and a goal state with
reward ’+1’. This grid world also contains a trap with reward -
0.1. Each state has four actions: Right, Left, Up and Down.
The actions are stochastic motion. For example, if an agent
takes the action Up, it will move up with probability 0.8, but
with probability 0.1, it will move right, and with probability
0.1. it will move left. The goal for this grid world is to find an
optimal policy for an agent to travel from the start state to the
goal state. If we use action shaping, there will be some rules
for neighboring states of the trap, which prohibit selecting
the action that leads the agent to the trap with probability
0.8. But these rules do not change the reward of the trap.
So action shaping almost doesn’t change the Q-values of the
neighboring states. It only cuts the trap from the state-action
space. However, because the move is a stochastic move, the
neighboring states of the trap are actually dangerous states. It
is difficult to express these states with rules and suggestions. In
contrast, by exploiting the backup operation of reinforcement
learning, reward shaping can implicitly affect the Q-values of
the neighboring states, which is showed in the Fig.3. This is
because reward shaping makes the negative reward of the trap

to be greater and thus the agent will less likely explore the
neighboring state of the trap.

The explanation above is from the spatial perspective. Sup-
pose that the trap could be moving. After the trap has moved,
the effect of reward shaping will be temporary and, in contrast,
the effect of action shaping almost goes off instantly. So action
shaping is more flexibility and reward shaping has longer-
lasting effect. Thus, reward shaping and action shaping will
bring different impacts from the temporal point. For example,
in the distributed task allocation problem (DTAP) [1], action
shaping will bring more benefits for adjusting the load balance
in a cluster. The Fig.4 shows a simply state transition diagram
for an agent in DTAP. An agent has five states based on its
loads, e.g., s0 indicating the lightest load and s4 representing
the heaviest load. If an agent takes the action a0, the agent’s
load will increase. If an agent takes the action a1, the agent’s
load will be reduced. At an early stage of the learning, the
state s2 may have a rule with regard to its queue length. So
the Q-value of action a0 in state s2 will be reduced if we use
reward shaping. But at the latter stage, the agent has a rule if
its state is the state s3. But the Q-value of action a0 in state
s2 will still be low for some time. This situation will benefit
the balance of queue lengths in a cluster. But if we only use
action shaping, the agent will select the action a0 with high
probability in state s2. So the state of the agent will change
to state s3 more quickly.

Fig. 4. The state transition diagram of DTAP

In general, action and reward shaping can both speed up the
convergence of the MARL by making the exploration phase
of reinforcement learning more effective. Nevertheless, at the
beginning of learning, action shaping almost always provides
better performance than that of reward shaping because action
shaping guides immediately the exploration of MARL while
reward shaping needs more time to improve Q-values. There-
fore, combining action shaping and reward shaping will be a
good idea.

The key issue for combining the two shaping is how to
combine the two shaping in practice. Given the above reasons,
not only the function η(s) is used in action shaping of
suggestions, but also it should be used in action shaping of
rules. Intuitively, at the beginning, let action shaping take a
leading role. Later, as the local policy has sufficiently learnt
to be reasonable, the impact of action shaping should be
decreased via η(s). Therefore, we have a function η(s) for

rules and The adapted policy πA can be changed as following:

πA(s, a) =

(1− η(s)) ∗ π(s, a) if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

* deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1− π(s, a)) ∗ η(s)

* deg(s, a) else if deg(s, a) > 0
(7)

where η(s) is defined as following:

η(s) = k/(k + visit(s)) (8)

where visit(s) is the number of visiting the state and k is a
constant.

V. DYNAMICALLY COMPUTING SUPERVISORY
INFORMATION

One important issue of our two-level approach to MARL
is how to generate supervisory information for action shaping
and reward shaping in order to coordinate learning processes
of multiple agents. In this section, we will first introduce the
idea of a cluster value, which is periodically computed for
each cluster to provide an evolving non-local view and then
discuss how to dynamically compute supervisory information
using the cluster value.

We use DTAP as a domain-dependent example. In DTAP,
each agent receives tasks which arrive based on a Poisson
distribution at a certain rate with exponential execution time.
At each time, when an agent receives a task, the agent
must make a decision whether it executes the task locally or
transmits the task to one of its neighbors. So if an agent has
2 neighbors, it can choose one of three actions when it has
received a task. As mentioned before, we have a hierarchical
structure for multi-agent learning. Fig. 5 shows a 2-layer multi-
agent system.

A. Cluster Value

The cluster value Vc is employed to evaluate how good
a cluster has learned. A cluster evaluation function C(z) is
designed to compute the cluster value, where z is the argument
vector with regards to a specific cluster. Let E be the set of
all agents in a cluster. Let Si be the state space of agent i. Let
Ai be the action space of the agent i. pi(s) is the expected
probability distribution of state s of agent i. Then, Vc can be
calculated by the equation (9).

Vc =
∑
i∈E

∑
s∈Si

Ri(s)pi(s) (9)

where Ri(s) =
∑

a∈Ai
πi(s, a)ri(s, a), πi(s, a) is the policy

value when the agent i selects the action a at the state s based
on the policy πi and ri(s, a) is the reward received when the
agent i selects the action a at the state s. We will later discuss
how this value can be approximated for a real application.

Fig. 5. Supervised MARL

B. Action shaping and Reward Shaping

After we get the cluster value and the policy, we can
compute the shaping reward. Firstly, let dv be the difference
between two neighbor clusters’ values, which express some
measure of the difference between learning processes of these
two clusters. The goal of the supervisory control implemented
action and reward shaping is trying to increase the learning
performance of the cluster with a lower cluster value without
significantly affecting the learning performance of the cluster
with a higher cluster value. To achieve this goal, we need
address following questions:
• How to compute the cluster-level shaping reward with dv ,

which can express the quantitative goodness of distribute
reinforcement learning. The cluster-level shaping reward
is called as rsuggestion, which is used for action shaping
and reward shaping. So there is a function fc for mapping
dv to rsuggestion. It is defined as follows:

rsuggestion = fc(dv) (10)

• Another problem is how to convert rsuggestion to the
shaping reward of a specific agent, that is, how to map a
non-local shaping reward into local shaping rewards.

We assume that there are two clusters: cluster c1 and cluster
c2. Based on the policy of cluster c1, cluster c1 interacts with
one of its neighboring clusters, which is c2 for example. let
Vc1 and Vc2 is the cluster values of cluster c1 and its adjacent
cluster c2, respectively. So we have:

dv = Vc2 − Vc1 (11)

Based on the equation (9) and equation (11), the equation
(10) can be changed as fellows:

rsuggestion = α(Vc2 − Vc1) (12)

where α is an adjustment coefficient.
For DTAP, cluster value Vc is computed based on reports

received from its cluster agents. In each report, the queue

Fig. 6. Propagating shaping reward

length of each agent is the important argument. The supervisor
receives reports from its subordinates at fixed intervals. After
getting all reports, the supervisor can calculate the average
queue length of its cluster, which is also called the average
load. Thus, Vc is equal to the average queue length.

Based on its cluster value, cluster ci chooses one of its
neighboring clusters, e.g., cluster ck. Let Vci and Vck be
the average load of cluster ci and its adjacent cluster ck
respectively. So based on the equation (11), we have:

dv = Vck − Vci
If dv < 0, cluster ci considers cluster ck has a lower average

load. Then, cluster ci will encourage its members forwarding
tasks to cluster ck according to the following reward:

rsuggestion = −dv/Vci
The reward is a positive reward, which means to encourage

forwarding tasks to cluster ck.
If dv > 0, cluster ci considers cluster ck has a higher

average load. Cluster ci encourages the subordinates to process
its tasks by themselves. In other words, we discourage the
subordinates to forward tasks to these neighboring agents
which have a higher average load. Thus, the cluster-level
shaping reward is given by:

rsuggestion = −dv/Vck
Therefore, the next step is how to convert rsuggestion to

the shaping reward for a specific agent. Our method is to
transfer the cluster-level reward to subordinates adjacent to
cluster ck, which is showed in Fig. 6. For the rsuggestion is
based on average loads of clusters, we need more subordinates
to encourage or discourage forwarding tasks to cluster ck. The
cluster-level reward will also be transferred to subordinates
that are not on the boundary to other clusters. But the reward
will attenuate for agents further away from the boundary. If a
cluster-level reward rsuggestion is transferred to subordinate j
and its neighbor n doesn’t receive the same shaping reward,
then a shaping reward with value ξrsuggestion and action j
will be transferred to n, where ξ is the reward decay rate. To
reduce network overhead, if a shaping reward is less than a
threshold(e.g., 0.05), it will not be transferred.

An agent may need to combine two shaping rewards. Let
Rsuggestion be the shaping reward that an agent receives. Our
combination strategy is showed as follows:

Rsuggestion =

{
max(r1, r2) if r ∗ r2 > 0
r1 + r2 else

where r1 and r2 are two shaping rewards that are received by
the agent. This strategy can be generalized to combine more
than two shaping rewards.

Another source of shaping reward is from the rules in
the supervisory information. Rules indicates that the agent
should not choose some specific actions because the action will
cause very bad performance. Our empirical results show the
rules usually can have a large effect on learning performance
because a rule can reduce the state-action space for local
multi-agent reinforcement learning’s exploration. Similarly,
the reward shaping associated with rules has an important
impact on learning performance.

For DTAP, when an agent has too long a queue, it should
forward any tasks that it received to other agents. So we need a
measure to judge whether an agent is overloaded. The measure
is a rule, which is also called as load limit rule. The key idea
is to get a limit Llimit for queues. When the length lqueue is
larger than the limit Llimit, an agent should not add a new
task to its local queue. The limit Llimit is set to the cluster
value Vc for a cluster. In essence, this rule helps balance load
within the cluster. In detail, a rule-message, which includes
the limit Llimit, will be transferred to all subordinates within
a cluster. When the current queue length is already greater
than the limit Llimit , the probability of the action that locally
execute tasks will be set to zero. However, the length lqueue
of the local queue of an agent may be greater than the load
limit so that the average load of the cluster could be higher
than before.

C. Combining Action shaping and Reward Shaping

According to the above analysis, we can get suggestions,
rules and shaping reward. For suggestions, we can change the
equation (1) as follows:

deg(s, a) =

0 if |G(s, a)| = 0
Rsuggestion if |G(s, a)| = 1

and < c,A, d >∈ G(s, a)
(13)

Based on the equation (13), we can compute fs(deg(s, a)).
When the length lqueue is larger than the limit Llimit, an agent
have a rule. So we can use the equation (6) to compute the
fr(R(s, a)). Therefore, we can do the combining work based
on the equation (3) and the equation (7)

In our experiments, the adjustment parameter α in the
equation (5) is 1 and the constant k in the equation (8) is
1000.

VI. EVALUATION

We use DTAP [1] to evaluate our algorithms. The main
goal of DTAP is to minimize the average time of service
time(ATST). The service time means the interval time which
is from the task’s arriving to the end of the task’s execution.
The communication cost among agents is proportional to the
distance between them, one time unit per distance unit.

A. Experimental Design

The experimental setup is almost based on the method in
[13]. But we choose PGA-APP as the MARL algorithm [14].
PGA-APP is a gradient-based algorithm that arguments a
basic gradient ascent algorithm with policy prediction. The
characteristics of PGA-APP is that an agent adjusts its strategy
in response to forecasted strategies of the other agents, instead
of their current ones. The agent chooses an action only based
on its reward.

The state of an agent is mapped from its average work
load over a period of time τ(τ = 500). There are three
measurements:
• ATST(average total service time): The measurement is

used to evaluate the overall system performance. Thus, it
is the main measurement for evaluating MARL.

• AMSG(average number of message per task): The mea-
surement indicates the overall communication overhead
for finishing one task.

• TOC(time of convergence): The value of TOC is calcu-
lated based on the ratio of ATST’s deviation to its means.

The two-dimension grid networks of agents are 27*27 grids
for experiments. All agents have a same execution rate. The
mean of task service time µ is 10. We tested three patterns of
task arrival rates: boundary load, center load and corner load.

In each simulation run, ATST and AMSG are computed
every 500 time units to measure the progress of system
performance. The simulation ran over 10 times to get average
values. We compared four structures: no supervision, action
shaping, reward shaping and combined shaping that combines
action shaping and reward shaping. For three structures with
supervision, there are 81 clusters and each cluster has 3*3
agents.

B. Results

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

S
T

0

50

100

150

200

None

Action Shaping

Reward Shaping

Combined

Fig. 7. ATST with boundary load for different structures

Fig. 7 shows the result of ATST for the pattern of boundary
load. Fig. 8 shows the result of ATST for the pattern of center
load. Fig. 9 shows the result of ATST for the pattern of
corner load. All pattern structures produced similar results.
As expected, reward shaping has a higher ATST than that of
action shaping at the early stage of learning. This is because
action shaping can immediately guide the agent to choose good

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

S
T

0

50

100

150

200

250 None

Action Shaping

Reward Shaping

Combined

Fig. 8. ATST with center load for different structures

Times

0 5000 10000 15000 20000 25000 30000 35000

A
T

S
T

0

100

200

300

400

500

600

700
None

Action Shaping

Reward Shaping

Combined

Fig. 9. ATST with corner load for different structures

actions and to avoid bad actions. But for reward shaping,
although it can also affect the exploration of the agents to
accelerate the convergence of learning process, the agents
may still explore some bad states so that it needs more time
compared to action shaping. Nevertheless, the ATST with
reward shaping is still better than that with no supervision at
the early stage because the supervisor can provide a partial
global view. As time goes by, the algorithm with reward
shaping converges more quickly than that with action shaping.
The reason, as mentioned before, is the agent with reward
shaping may avoid more bad states.

When we combine with reward shaping and action shap-
ing, the algorithm shows significantly improved performance,
which is because the combined algorithm improves the per-
formance of reward shaping at the early stage.

TABLE I
PERFORMANCE OF DIFFERENT STRUCTURES WITH BOUNDARY LOAD

Supervision ATST ATST(20500) AMSG TOC
None 32.2±0.4 32.2±0.4 5.9±0.1 20500

Action
Shaping 31.3±0.6 29.1±0.5 6.8±0.2 15000

Reward
Shaping 28.4±0.3 25.6±0.7 6.5±0.2 12500

Combined 30.4±0.5 28.3±0.5 7.2±0.1 8500

Table I, Table II and Table III show the different measures,
including ATST, AMSG and TOC, where the columns of
ATST and AMSG are calculated at the time of convergence

TABLE II
PERFORMANCE OF DIFFERENT STRUCTURES WITH CENTER LOAD

Supervision ATST ATST(18500) AMSG TOC
None 37.5±2.0 37.5±2.0 9.0±0.1 18500

Action
Shaping 35.6±0.7 31.5±0.5 9.6±0.2 11000

Reward
Shaping 32.7±0.5 31.6±0.5 9.8±0.2 10000

Combined 33.3±0.9 31.0±0.8 9.5±0.2 9000

TABLE III
PERFORMANCE OF DIFFERENT STRUCTURES WITH CORNER LOAD

Supervision ATST ATST(16500) AMSG TOC
None N/A N/A N/A N/A

Action
Shaping 59.1±5.1 59.1±5.1 14.2±0.7 16500

Reward
Shaping 54.2±6.7 52.1±5.5 15.5±0.9 15000

Combined 53.1±7.8 50.2±5.6 13.7±1.4 14500

and ATST(*) is the performance at the latest time of con-
vergence for all four cases. We can see that the algorithms
with shaping technology also decreases system ATSTs while
speeding up the convergence. This is because shaping technol-
ogy can alter an agent’s exploration. Moreover, in multi-agent
systems, this altering will also change other agents’s learning
processes. Many multi-agent applications have multiple points
of equilibrium. So these agents may explore more state-action
space so that MARL will converge to a better equilibrium,
especially when the shaping technology that agents take is
based on supervisory information.

From these tables, we can observe that the algorithm with
shaping technology do not produce heavy communication
overhead. We can also see that the system without supervision
almost always has lower AMSG than that of the others. This is
because these systems with an organizational structure increase
the communication overhead for sending reports, rules and
suggestions.

In experiments, we actually found that the systems with
reward shaping, including only reward shaping and combined
shaping have higher AMSG than that of the systems with
only action shaping at the middle stage. This is because the
systems with reward shaping encourage their agents to do more
exploration so that they have more messages to transfer. But
at the later stage, the systems with reward shaping almost
always have the same AMSG as that of the systems with only
action shaping because the systems with reward shaping have
reduced the exploration in the later stage.

VII. CONCLUSION

Acting shaping has been used for coordinating multi-agent
reinforcement learning (MARL). In this paper, we presented a
reward shaping method for coordinating MARL. Furthermore,
we show action shaping and reward shaping are comple-
mentary and present a two-level new shaping approach that
combine reward shaping and action shaping for coordinating
MARL. To dynamically generate supervisory information for
supporting reward and action shaping, our approach employs

an two-level organizational structure. The higher-level agents
gather information from the lower-level agents and their neigh-
boring supervisory agents and then dynamically generates
supervisory information. This supervisory information is then
integrated into the local learning processes of lower-level
agents by using our new shaping approach so that their
learning processes are coordinated. Experiments show that our
two-level shaping approach effectively speeds up MARL and
improves the learning quality.

VIII. ACKNOWLEDGMENT

This work is supported partially by the National Science
Foundation (NSF) under Agreement IIS-1116078 . Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

[1] S. Abdallah and V. Lesser. Multiagent reinforcement
learning and self-organization in a network of agents.
In Proceedings of the Sixth International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems
(AAMAS-07), pages 172–179, Honolulu, Hawaii, May
2007. (Best Paper Award nominee).

[2] J. Asmuth, M. L. Littman, and R. Zinkov. Potential-
based shaping in model-based reinforcement learning.
In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, pages 604–609, 2008.

[3] M. Babes, E. M. De Cote, and M. L. Littman. Social
reward shaping in the prisoner’s dilemma. In Proceedings
of the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 3, pages 1389–
1392. International Foundation for Autonomous Agents
and Multiagent Systems, 2008.

[4] S. Devlin and D. Kudenko. Theoretical considerations of
potential-based reward shaping for multi-agent systems.
In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 225–
232. International Foundation for Autonomous Agents
and Multiagent Systems, 2011.

[5] S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 433–440. International Foun-
dation for Autonomous Agents and Multiagent Systems,
2012.

[6] S. Devlin, D. Kudenko, and M. Grześ. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 14(02):251–278, 2011.

[7] C. Guestrin, M. G. Lagoudakis, and R. Parr. Coordinated
reinforcement learning. In ICML ’02: Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pages 227–234, San Francisco, CA, USA, 2002.
Morgan Kaufmann Publishers Inc.

[8] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. Journal
of Machine Learning Research, 7:1789–1828, 2006.

[9] A. D. Laud. Theory and application of reward shaping in
reinforcement learning. PhD thesis, University of Illinois,
2004.

[10] B. Marthi. Automatic shaping and decomposition of re-
ward functions. In Proceedings of the 24th international
conference on Machine learning, pages 601–608. ACM,
2007.

[11] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the 16th International
Conference on Machine Learning,, pages 278–287, 1999.

[12] J. Randlov and P. Alstrom. Learning to drive a bicycle us-
ing reinforcement learning and shaping. In Proceedings
of the Fifteenth International Conference on Machine
Learning, pages 463–471, 1998.

[13] C. Zhang, S. Abdallah, and V. Lesser. Integrating organi-
zational control into multi-agent learning. In AAMAS’09,
2009.

[14] C. Zhang and V. Lesser. Multi-agent learning with
policy prediction. In Proceedings of the 24th National
Conference on Artificial Intelligence (AAAI10), 2010.

[15] C. Zhang and V. Lesser. Coordinating multi-agent
reinforcement learning with limited communication. In
AAMAS’13, 2013.

[16] C. Zhang and V. R. Lesser. Coordinated multi-agent
reinforcement learning in networked distributed pomdps.
In W. Burgard and D. Roth, editors, AAAI. AAAI Press,
2011.

