
Supporting Process Undo and Redo in
Software Engineering Decision Making

Xiang Zhao Yuriy Brun Leon J. Osterweil
School of Computer Science
University of Massachusetts

Amherst, MA, USA
{xiang,brun,ljo}@cs.umass.edu

ABSTRACT
This paper presents a provenance-based approach for supporting
undo and redo for software engineers. Writing software entails cre-
ating and reworking intricately intertwined software artifacts. After
discovering a mistake in an earlier-completed task, a developer may
wish to redo this task, but without undoing much of the work done
since. Unfortunately, state-of-the-practice undo and redo mecha-
nisms force the developer to manually redo the work completed
since the mistake. This can cause considerable extra, often error-
prone work.

We propose tracking the software engineering process prove-
nance data, and using it to enable (1) undoing tasks by reverting
the state of the process execution, (2) revisiting an old task while
storing the provenance of undone tasks, and (3) automatically re-
doing those undone tasks that are consistent with the revision. Our
case study of a developer performing a well-understood but com-
plex refactoring demonstrates how our approach can greatly reduce
the cost of mistakes made early but discovered late.

Categories and Subject Descriptors:
D.2.3 [Software Engineering]: Coding Tools and Techniques
D.2.9 [Software Engineering]: Management
General Terms: Design, Languages, Management
Keywords: process, undo, refactoring

1. INTRODUCTION
Software engineers follow a complex process in developing soft-

ware. At any given time, a developer’s todo list likely has multiple
tasks, some parallelizable, with subtasks often intertwined. Like
most creative processes, software development entails making de-
cisions to perform tasks, and then pursuing their consequences. Of-
ten, these consequences reveal that a previous decision was wrong
or an earlier-completed task was done incorrectly. In such cases,
the developer often wants to return to the site of the incorrect deci-
sion and make a different, hopefully better, choice. Today’s state-
of-the-practice undo and redo mechanisms force the developer to
move linearly along the completed tasks. Revisiting a decision
requires undoing all the work accomplished since. Further, after
making a change, all the undone work must be redone manually,
remaking the relevant decisions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP ’13, May 18–19, 2013, San Francisco, USA
Copyright 13 ACM 978-1-4503-2062-7/13/05 ...$15.00.

This paper presents an approach that supports undoing a deci-
sion, setting aside its consequences for possible future reuse, and
exploring the consequences of a different decision. We have previ-
ously argued that tracking a developer’s progress through the exe-
cution of a process, together with recording the history of actions
and decisions, and the provenance of each generated artifact is es-
sential for supporting rework [9]. Now, we explore a specific, chal-
lenging form of rework that allows not only visualizing the process
and artifact history, but also undoing parts of the history, setting
them aside for later use, altering earlier decisions, and then reap-
plying parts of the undone history. We develop a technique that
enables (1) undoing of tasks, while retaining for possible future
reuse the information and artifacts generated by each such undone
task, (2) revisiting an old task while storing the provenance of un-
done tasks, and (3) automatically redoing those undone tasks that
are consistent with the revision.

To observe the need for the capability we have described, con-
sider a developer performing a tease apart inheritance refactoring
(TAIR), a common, complex refactoring task [3]. TAIR deals with
a tangled inheritance hierarchy that must maintain structure in sev-
eral different dimensions, while extracting new class hierarchies.
The goal of TAIR is to reduce code duplications and improve code
readability and understandability. In order to fix the class hierar-
chy, the developer usually has to make several decisions. From the
high-level design perspective, the developer has to identify the ex-
isting dimensions in the original class hierarchy and decide which
to extract. A good decision about which dimension to extract will
greatly simplify the remaining refactoring tasks, while a poor de-
cision may seriously impede the process or even make the process
impossible to complete. The process also involves making many
low-level decisions in refactoring subtasks, such as deciding the
right fields and methods to move and figuring out ways to connect
the different class hierarchies. Evidence of the quality of some
decisions come to light quickly, whereas others take time. For ex-
ample, the repeated collapsing of the class hierarchy whenever the
developer moves desired fields likely indicates that the extracted
dimension choice was poor. Reverting back in the process to this
earlier decision point, affords the developer the opportunities to
reevaluate it with the new knowledge of the recent process execu-
tion history, and to make a better decision. Then, making progress
after making a new extraction dimension choice is likely to be ex-
pedited by being able to select and reapply some of the steps and
tasks that had been undone.

In this paper, we present an approach to managing and support-
ing the undo and redo activities in such scenarios. Our approach
keeps process execution provenance data and uses that data to sup-
port undo and redo, resulting in a process-based linear undo model.

2. OUR UNDO AND REDO APPROACH
To support undo and redo in the software refactoring process,

we have developed a technique that allows the developers to undo
sequences of operations by reverting back to a previous process
execution state, to revisit earlier decisions, and to redo undone op-
erations.

Our technique uses a detailed model of the process the devel-
oper follows to generate a history of the process’ execution as the
developer executes it. The process model contains all the deci-
sion points the developer makes, and the artifacts each process step
uses, modifies, and generates. The history contains the state of the
execution before and after each step. The state consists of two el-
ements, the artifact state (S(t)) and the location in the execution
of the process. S(t), the state of the execution of a process at
time t, is the set the values of all of the artifacts defined at time
t: S(t) = [vt(a0),vt(a1), . . . ,vt(an)], where vt(ai) is the value of
artifact ai at time t in the process execution.

Reverting the artifact state from a point u in a process execution
to another point v consists of replacing the state S(u) with the state
S(v) (by iterating through all defined artifacts in the process and
setting vu(ai) = vv(ai) for all i).

It is insufficient to model the execution state at time t solely as a
set of artifact values. The process execution state must also include
information about the step that was being performed at time t, and
the various scopes within which the step was embedded. For exam-
ple, suppose the developer had performed the sequential steps of
renaming a field in a Java class, compiling the Java code, and run-
ning unit tests over the compiled code, and then decided to undo the
changes made in renaming the field. Our undo capability ensures
that artifacts such as the class definition and the unit test settings
will be restored to the values that these artifacts had at the point
when the developer originally renamed the field. But our undo
capability must also assure that the the developer is returned to a
point in the step-sequencing structure that assures that compiling
the code and running the unit tests will follow immediately after ex-
ecution of the step that results in redoing the naming the field. This
information, the location in the execution of the process, is encoded
directly in the process itself. The process definition specifies where
an undo may be invoked, and where the process execution control
is placed after the undo finished. Section 3 will show an example
of how this can be achieved in a process definition language called
Little-JIL. It is important to note, however, that at least in the case
of our current implementation of the undo capability, this means
that only some process steps can be sources, and the destinations
of an undo operation.

Our approach uses this state definition to capture the history of a
process by recording the artifact states at each of the steps dur-
ing a process execution. Organizing these states in a graph al-
lows a developer to inspect the history and to select the point to
which execution is to be reverted. We make use of a process prove-
nance structure to provide this capability. Provenance structures
have been used in scientific work-flow research to document in de-
tail the series of operations applied to scientific datasets, to ensure
their reproducibility [5]. Now, we observe that such a structure
can also be an effective tool for capturing developer decisions in
software refactoring tasks [9]. In the work we describe here, we
use a provenance structure called a Data Derivation Graph (DDG),
that is automatically generated during a process execution by tools
associated with the Little-JIL [8] process definition language.

Our tool makes the DDG accessible to the developer whenever
that developer wishes to perform an undo operation. The tool sup-
ports navigating through the DDG to find and select the point to
which process execution should revert. As noted above, in our cur-

Tease Apart Inheritance

Load Source Files

Identify Dimensions

Choose a Dimension to Extract

Extract Dimension

Undo Extract Dimension

Revert Choose a Dimension to Extract

Undo Extract Dimension

+

dimension+

out:packagefragmentroot

in: packagefragmentroot
out: dimensionlist

in: dimensionlist
inout: packagefragmentroot

in: dimension<-dimensionlist[]
inout: packagefragmentroot

out: packagefragmentroot
out: dimensionlist

in: dimensionlist
inout: packagefragmentroot

UndoExtractDimensionException:
complete

UndoExtractDimensionException:
complete

Figure 1: Top-level process definition for the tease apart in-
heritance refactoring (TAIR), shown in the Little-JIL graphical
process definition language [8].

rent system, execution can be undone only back to the steps that
have been defined to be “revertible.” But our experience to date
suggests that this restriction is not unduly severe.

3. TAIR CASE STUDY
This section applies our provenance-based undo and redo tech-

niques to a process for performing a TAIR. We present part of the
detailed TAIR process definition and show how our technique uses
the process definition and provenance to support undo and redo.

3.1 Modeling TAIR in Little-JIL
We present our process definition in Little-JIL, a graphical pro-

cess definition language that allows for rigorous specification of
artifacts, resources, and activities of a process [8]. We have previ-
ously shown that Little-JIL is effective in supporting the ability to
do rework [9]. In this paper, we discuss supporting specific kinds
of rework: undo and redo activities. We now elaborate some of the
key features of Little-JIL in the context of explaining the refactor-
ing process shown in Figures 1 and 2.

Figure 1 shows a top-level definition of the TAIR process in
Little-JIL. The definition is a hierarchical decomposition of steps
(denoted graphically by black rectangular bars) into substeps that
need to be performed to complete the refactoring task. Each sub-
step is, itself, a step. A step is a specific task in the workflow,
and a substep is one of several procedures executed as part of its
parent step. The order in which substeps execute is specified by a
sequencing badge on the left the parent’s step bar. For example, the
right-pointing arrow on the left of the Tease Apart Inheritance
step bar indicates its substeps are to be performed in sequential or-
der, from left to right. In contrast, the slashed circle on the left of
the Choose a Dimension to Extract step bar indicates a user
will choose only one of its substeps to execute. A step without a
sequencing badge is a leaf step. Each step has an argument list of
input and output parameters. The input parameters to a step are
artifacts the step needs for execution. The output parameters are
the artifacts the step produces or updates. An edge connecting a
parent step to a substep bounds parameters to the substep’s argu-
ments. For example, in Figure 1, after the Load Source Files
step, the packagefragmentroot artifact — a pointer to a Java
package directory hierarchy — is copied to the parent, the Tease
Apart Inheritance step. Next, packagefragmentroot is bound
as the input to the Identify Dimensions step.

Figure 1 specifies that the dimension list produced by the Iden-
tify Dimension will be the input to the Choose a Dimension
to Extract step. The user can then select a dimension and send it
to the Extract Dimension step for further processing. (Extract
Dimension is further decomposed to lower-level steps, but we omit
that decomposition here.) In addition to the artifact binding specifi-
cations, edges also specify the cardinality of substep instances. The
+ in Figure 1 on the edge connecting Tease Apart Inheritance
and Choose a Dimension to Extract means the latter step will
be instantiated one or more times. For each instantiation, the step
needs to make a choice of which dimension to extract from the pro-
vided dimensionlist artifact. Similarly the notation dimension+
on the edge denotes an Extract Dimension step will be instanti-
ated for each dimension object in the dimensionlist. There is
no limit on how many steps can be instantiated in this way.

Steps in Little-JIL may handle exceptions thrown by their de-
scendants by defining exception handlers as substeps connected to
the right side of the parent step (with red edges leading to them).
For example, the Undo Extract Dimension step will be revoked
when one of its substeps throws an UndoExtractDimensionExcep-
tion. The complete on the red exception edge denotes that the
continuation semantics for this exception handler is to complete
the parent step after the exception is handled. Exception handling
is an important mechanism in Little-JIL for workflow management,
for example, as used by our undo mechanism.

Creating a new class hierarchy for a dimension involves careful
analysis of the current twisted class hierarchy and making many
other decisions in the lower-level steps, ranging from choosing the
correct fields to move to setting up the link among hierarchies.
The initial decision about which dimension to choose is crucial
to the success of the whole refactoring task. But it is often the
case that even if this decision is subsequently recognized as be-
ing suboptimal, the decision is not revisited and reversed because
of the difficulty of undoing work that has been done, and redoing
it to reflect the new (presumably better) decision. On the other
hand, a developer that follows the process defined in Figure 1, will
get the chance to throw an exception in the Extract Dimension
step that will allow the exception handler to guide the developer
through a process of reverting local code changes and restoring
the previous state. This will enable the developer to proceed with
another choice of the dimension to be extracted from the original
class hierarchy. This scenario is modeled in the Undo Exception
Dimension step. The first child, the Revert step, will copy out
new packagefragmentroot and dimensionlist artifacts. These
two artifacts were in existence at the point in the history to which
the developer chooses to revert. To recovering these artifacts, the
developer consults a provenance structure called the Data Deriva-
tion Graph (DDG), which is automatically generated as the process
executes. We will explain in detail how the DDG is used to support
the undo and redo activities in complex decision making processes
in TAIR in Sections 3.2 and 3.3.

Figure 2 defines the TAIR Move Field step, a substep under
Extract Dimension. Move Field is responsible for moving the
field corresponding to the dimension to be extracted to the newly
created class hierarchy. Figure 2 shows that the Undo Move Field
step handles the UndoMoveFieldException by reverting the pro-
cess to a previous point in time, at which the Move Field step was
executed. In addition, UndoExtractDimensionException in the
Move Field step supports reverting of a higher-level action.

3.2 Supporting Undo
This section and the next section introduce the provenance-based

technique for supporting undo and redo in the TAIR process. As

Move Field

Encapsulate Field

Modify Target Class

Create the New Field

Create Getter and Setter

Reference Target from Source

Use Existing Field

Use Existing Method Create New Method

Create New Field

Remove Field in Source

Update References

Undo Move Field

Revert Move Field

Pick a Field
UndoMoveFieldException:
complete

UndoExtractDimensionException

Figure 2: Top-level process definition for the Move Field step.

discussed in Section 2, undo and redo are supported by the DDG, a
data structure that captures a detailed process execution history and
which can be used to retrieve process execution state information.
The DDG faithfully records the data-flow and the control-flow in a
Little-JIL process as the process executes. We now elaborate how
our proposed undo operations exploit the DDG in the TAIR case
study.

Figure 3 shows a simplified representation of a part of a DDG of
the TAIR process, starting from the creating of a separate class for
the extracted dimension. There are two type of DDG nodes: ovals
and rectangles. Ovals are step execution instances and rectangles
are data instances. A step’s start and finish stages are separated
to show how each parent step creates scope for its descendants.
Non-leaf steps are green while leaf steps are yellow. An excep-
tion (brown rectangle) is a special data instance in the DDG. Each
rectangle is labeled with the name of its data instance. Some of the
names are indexed to represent the different values that are taken on
by the named entity at different points during the process execution.
There are two different kinds of edges in the diagram: data-flow
edges and control-flow edges. The data flow edges show the deriva-
tion dependencies between steps and artifacts. For example, the
Create Dimension Class step points to the dimension[0] arti-
fact because that step accepts dimension[0] as an input parame-
ter. Similarly, dimensionclass[0] points to Create Dimension
Class step because it creates a new class with name dimension-
class[0]. Later, the step Update References also uses the di-
mensionclass[0] artifact. The data-flow edges for exceptions are
shown in red for exposition. The control-flow edges show the step
execution sequences. For example, there is an arrow indicating
that the Move Field Start[0] step is executed after the Pick a
field[0] step. As can be expected, a DDG can quickly become
quite large. For exposition, we omit some steps from the derivation
history for the pfroot (packagefragmentroot) artifact represent-
ing the current Java package directory.

The DDG fragment in Figure 3 corresponds to a scenario in
which the developer has reverted twice in the effort to tease apart
the class inheritance hierarchy from Figure 4. This scenario is
adapted from an existing PHP example [7]. In this example, a
system defines a common representation for Facebook and Twitter
data. Since Facebook and Twitter posts are similar entities, the data
can be represented hierarchically, so that the common elements are

UndoMoveFieldException

Move Field
Start

Pick a field
[0]

fieldname[1]
Remove Field

in Source

pfroot[1]

pfroot[2]

Update
 References

pfroot[3]

dimensionclass[0]

Undo Move Field
Start

Create
Dimension

Class

pfroot[0]

fieldname[0]

Revert [0]dimensionclass[1]

fieldname[2]

pfroot[4]

Move Field
Start

Pick a field
[1]

Remove Field
in Source

pfroot[5]
fieldname[3]

Undo Extract Dimension
 Exception

Undo Extract
Dimension

Start

Revert [1]

dimension[0]

pfroot[6]

dimensionlist[0]

dimension[1]

Choose a Dimension
 to Extract

Start

Extract
Dimension

Legend
Leaf Step
Execution

Data

Exception

Data Flow

Non-leaf Step
Start/Finish

Control Flow

Omission

Figure 3: Part of a DDG of the TAIR process execution history
(with some details omitted for clarity).

shared in the same data structure, while unique elements are sep-
arated into social-network-specific data structures. In this exam-
ple, the developer is dealing with a poorly produced, tangled class
hierarchy for these data structures. Specifically, the same class
hierarchy maintains two kinds of data: types and sources of the
NewsFeedItem. The type of a NewsFeedItem controls how the
content field is presented in the HTML (for example, for a Link,
the <a> tag is applied). The source of the NewsFeedItem
controls how to present the author field (Twitter source will add
an @ sign before the author). It is not difficult to see that this
class structure has caused some code duplication (e.g., the presen-
tations of the author field are the same in both FacebookPost and
FacebookLink). If we keep adding new dimensions to this class
hierarchy, there will be even more code duplications and the whole
class hierarchy will become difficult to understand and maintain.
In our example refactoring scenario, a developer follows the TAIR
process from Figure 1 and first incorrectly chooses the type (source

<<Java Class>>

FacebookLink
net.xiangzhao.test

FacebookLink(String,String,String)

authorLink():String

<<Java Class>>

Link
net.xiangzhao.test

url: String

linkText: String

Link(String,String,String)

content():String

authorLink():String

<<Java Class>>

NewsFeedItem
net.xiangzhao.test

author: String

content: String

NewsFeedItem()

content():String

authorLink():String

toString():String

<<Java Class>>

FacebookPost
net.xiangzhao.test

FacebookPost(String,String)

authorLink():String

<<Java Class>>

Post
net.xiangzhao.test

content: String

Post(String,String)

content():String

authorLink():String

<<Java Class>>

TwitterLink
net.xiangzhao.test

TwitterLink(String,String,String)

authorLink():String

Figure 4: A tangled class hierarchy for a social-network data
structure, adapted from an existing PHP example [7].

is a better choice), of the NewsFeedItem to be extracted from the
original hierarchy. The developer then creates a new class to rep-
resent the new dimension (dimensionclass[1]=Type). Accord-
ing to the process, the fields that are tied with this dimension need
to be moved from the original class hierarchy to the Type class.
The developer picks a field fieldname[1]=author and proceeds
with other steps of the refactoring. However, author is actually
not related as strongly to the Type of the NewsFeedItem as to
Source. In this scenario, the developer does not yet realize that
the author field should not have been moved until the Update
References step. After seeing that the references to author in
the original class hierarchy have become type.author (which is
inconsistent with the design of the hierarchy), the developer re-
verts for the first time, throwing an UndoMoveFieldException in
the Update References step. The developer then selects an ar-
bitrary Move Field Start step from the history in the DDG, and
the state of the process execution is restored to the state of Move
Field Start[0]. Notice that the Revert[0] step then outputs
dimensionclass[0], filename[2], and pfroot[4]. The state
of the execution of the process at this point is represented by:

dimensionclass[1]== dimensionclass[0]

fieldname[2]== fieldname[0]

pfroot[4]== pfroot[0]

The developer then proceeds to another Pick a field[1] step
and selects the new fieldname[3]=content to move. This seems
to be a better choice, because content is more closely tied to the
type of the NewsFeedItem. However, upon careful consideration
of this class hierarchy, the developer may find that deciding to ex-
tract the type instead of the source dimension is suboptimal, be-
cause the original decision involves intersecting the hierarchy in
the middle. One of the disadvantages of this decision is that it ne-
cessitates performing complex hierarchical fixes when pulling up
the source-level classes. The operations to connect and disconnect
different levels of classes can be quite error-prone. The developer
detects this issue after some trial and error, as often happens in
software development. Our approach provides the developer with
the option to undo all the way up to the point when the initial

choice between extracting type and source was made. As the DDG
fragment shows, the developer is able to throw another exception
UndoExtractDimensionException and invoke the needed undo
operations. The exception propagates all the way up to the top-level
step in Figure 1 and is handled starting from another Revert step.
The DDG fragment shows that the Undo Extract Dimension step
takes the developer to another Revert[1] step. In this second invo-
cation of the Revert step, the changes are reverted when pfroot[6]
is returned to its original state before the Extract Dimension step.
This enables the developer to make another selection with dimen-
sion[1]=source.

In the above scenario, the provenance data exhibited in the form
of the DDG not only kept a record of the complete execution his-
tory, but also serves as a repository that the developer can explore
in order to retrieve all previous decisions. After the retrieval of
an earlier execution state, our undo mechanism is able to restore
that state to become the current state and to guide the developer in
redoing the same steps in the new context.

We have implemented the capability we have described as an
Eclipse plug-in and have used it to support this particular kind of
refactoring. The tool we have developed automatically pops up a
DDG viewer when the developer wishes to undo, facilitating the
act of selecting the precise execution point to which the developer
wishes to undo.

3.3 Supporting Redo
The undo capability allows the developer to re-execute steps un-

done when revisiting a decision. When our technique reverts the
process execution state during an undo, effectively undoing the ex-
ecution of multiple steps, it keeps the DDG history of all the exe-
cuted steps. This DDG allows (1) the developer to visually explore
the visited process execution states (which we have proposed previ-
ously [9]), and (2) a mechanism to reapply previously undone steps
to potentially modified artifacts.

Changing a decision often effects the subsequent decisions, so it
is typically undesirable to automatically re-execute all the undone
steps after revising a decision. (Situations in which re-executing all
undone steps is desirable are amiable to selective undo [2], as we
discuss further in Section 4, though our approach would reapply
these steps to the potentially modified artifacts.) However, some
steps can likely be safely re-executed, saving the developer time
and effort re-making the relevant decisions. Further, making those
decisions a second time may be more difficult than the first time
because the developer has to keep track not only of which decisions
have been made, but also of which of those have been undone and
are no longer valid. Our approach supports selecting which steps to
automatically apply to the potentially modified artifacts, and which
decisions the developer made the last time (or multiple times) at
each step.

4. RELATED WORK
Undo is an integral part of many software systems and undo

models have received a fair amount of attention in research. Lee-
man proposed a general framework based on a simple computa-
tion model in a programming language for describing a formal ap-
proach to undo operations [4]. Some of the primitives he proposed
are similar to the ones we have explored. The notions of undo
list to keep track of chronologically-ordered, program-state deriva-
tions and time to mark an event in the program, are similar to our
proposed DDG and process control-flow definitions in the process
domain. Rhyne and Wolf proposed to add a log of user actions,
in addition to the history list that only keeps program state deriva-

tions [6]. This joins control-flow and data-flow, similarly to what a
DDG does, but DDG is a history with respect to the process.

The script undo model treats the undo operation as the editing
of a script of commands [1] allowing for a more flexible approach
of recovering from arbitrary script changes by starting from the
initial state and reapplying the script. Thinking of a script as a
piece of process definition allows the script undo model to change
the definition during execution, which a linear undo model does
not allow. However, non-linear undo models potentially disrupt the
predefined control-flow patterns, which may make them unsound
when a change causes an artifact to become incompatible with later
operations.

The selective undo model allows undoing one or more isolated
commands in the history [2]. With selective undo, a user can undo
a number of operations, revisit a process step, and then automati-
cally redo the other undone operations. In contrast, when undoing
operations modifies artifacts, our approach reapplies the redone op-
erations to the modified artifacts.

5. CONTRIBUTIONS
We have outlined a provenance-based approach for supporting

undo and redo activities in software engineering. Our approach al-
lows developers engaged in complex tasks to (1) undo operations,
(2) revisit and revise decisions, modifying artifacts, and (3) redo
the undone operations on the modified artifacts. We have demon-
strated our approach on a refactoring case study, and have devel-
oped a prototype implementation Eclipse plug-in. While a full,
empirical evaluation of the benefits of our approach remains future
work, early results show promise that provenance-based support
of undo and redo activities eases recovering from costly mistakes
made early but discovered late.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under grants IIS-1239334 and CNS-1258588.

7. REFERENCES
[1] J. E. Archer, Jr., R. Conway, and F. B. Schneider. User

recovery and reversal in interactive systems. ACM TPLS,
6(1):1–19, 1984.

[2] T. Berlage. A selective undo mechanism for graphical user
interfaces based on command objects. ACM TCHI,
1(3):269–294, 1994.

[3] M. Fowler and K. Beck. Refactoring: Improving the Design of
Existing Code. Prentice Hall, 1999.

[4] G. B. Leeman, Jr. A formal approach to undo operations in
programming languages. ACM TPLS, 8(1):50–87, 1986.

[5] B. Lerner, E. R. Boose, L. J. Osterweil, A. Ellison, and
L. Clarke. Provenance and quality control in sensor networks.
In EIM, 2011.

[6] J. R. Rhyne and C. G. Wolf. Tools for supporting the
collaborative process. In UIST, pages 161–170, 1992.

[7] G. Sironi. Practical PHP refactoring: Tease apart inheritance.
http://css.dzone.com/articles/
practical-php-refactoring-47, 2012.

[8] A. Wise. Little-JIL 1.5 language report. Technical Report
UM-CS-2006-51, U. of Massachusetts, Amherst, 2006.

[9] X. Zhao and L. J. Osterweil. An approach to modeling and
supporting the rework process in refactoring. In ICSSP, pages
110–119, 2012.

http://css.dzone.com/articles/practical-php-refactoring-47
http://css.dzone.com/articles/practical-php-refactoring-47

	1 Introduction
	2 Our undo and redo approach
	3 TAIR case study
	3.1 Modeling TAIR in Little-JIL
	3.2 Supporting Undo
	3.3 Supporting Redo

	4 Related work
	5 Contributions
	6 Acknowledgments
	7 References

