
Supporting Data Uncertainty in Array Databases

Liping Peng
School of Computer Science

University of Massachusetts Amherst, MA

lppeng@cs.umass.edu

Yanlei Diao
School of Computer Science

University of Massachusetts Amherst, MA

yanlei@cs.umass.edu

ABSTRACT
Uncertain data management has become a key issue in scientific ap-
plications. Recently, array databases have gained popularity for sci-
entific data processing due to performance benefits. In this paper,
we address uncertain data management in array databases, which
may involve both value uncertainty within individual tuples and
position uncertainty regarding where a tuple should belong in an
array given uncertain dimension attributes. In our work, we define
the formal semantics of array operations on uncertain data involv-
ing both types of uncertainty. To address the challenges raised by
position uncertainty, we focus on two key array operations, Sub-
array and Structure-Join. We propose a number of storage and
evaluation schemes for Subarray, with a focus on a scheme that
bounds the overhead of querying by strategically placing a few
replicas of the tuples with large variances. Built on this scheme,
we propose two techniques for Structure-Join with or without us-
ing indexes. Evaluation results show that for common workloads,
our best-performing techniques incur limited storage overheads and
outperform baselines often by a wide margin.

1. INTRODUCTION
Uncertain data management has been studied intensively in ar-

eas such as sensor networks, information extraction, data cleaning,
and business intelligence. Recently, uncertain data management
has also started to play a key role in large-scale scientific appli-
cations such as severe weather monitoring [14, 25], computational
astrophysics [15, 23], and asteroid threat detection [8]. In particu-
lar, recent studies [8, 22, 23] show that almost all scientific data are
noisy and uncertain. Therefore, capturing uncertainty in data pro-
cessing, from data input to query output, has become a key issue in
scientific data management.

We next present two real-world applications that motivated our
work. In the first application, massive astrophysical surveys such
as the Sloan Digital Sky Survey (SDSS) [23] and the Large Syn-
optic Survey Telescope (LSST) [15] aim to generate observations
of 108 stars and galaxies at nightly data rates of 0.5TB to 20TB.
They are expected to enable real-time detection of transient events
and anomalies as well as long-term tracking of objects of inter-
est. However, the observations in digital sky surveys are inherently
noisy as the objects can be too dim to be recognized in the captured
images. SDSS and LSST make repeated observations of faint ob-
jects and derive continuous probability distributions for uncertain
attributes, e.g., the location and luminosity of objects, in the data
cooking process. For example, the Galaxy table in the SDSS as-
tronomy archive has 297 attributes, out of which 151 attributes are
uncertain and described by (multivariate) Gaussian distributions.

In the second domain of severe weather monitoring, the Re-
search Center for Collaborative Adaptive Sensing of the Atmo-
sphere (CASA) has developed distributed radar sensor networks

for detecting hazardous weather events like tornados and severe
storms [14]. The produced radar data are highly noisy due to envi-
ronmental noise, electronic device noise, instability of transmit fre-
quency, and quality issues of the antenna. Hence, recent work [9]
has developed a data cooking process to produce continuous prob-
ability distributions for important meteorological measures such as
wind velocity and reflexivity of each voxel of the air.

For supporting scientific applications, relational technology has
proven useful in some applications like SDSS [23]. However, there
is a recent realization that most scientific data naturally reside in
multi-dimensional arrays rather than in relations. This is because
most scientific data are produced to characterize physical phenom-
ena that rely heavily on the notions of “adjacency” and “neighbor-
hood” in a multi-dimensional space. As a result, array algebra and
native array databases have recently been developed for scientific
data processing [3, 8, 21]. Besides convenient expression of ar-
ray operations, the new array implementation also offers significant
performance benefits over relational database systems [19]. In par-
ticular, its chunk-based storage scheme enables better alignment of
logical locality (i.e., objects close in the logical array) and physical
locality (i.e., objects close to each other are likely to be stored in
the same chunk). Since many array operations exploit logical lo-
cality of data, e.g., finding objects adjacent to a given location, the
associated physical locality can lead to significant I/O savings.

The increasing popularity of array databases has significant im-
plications on uncertain data management: Recent work on array
databases [11, 13, 12] has considered the case that a tuple belongs
to a specific cell of an array and some of its value attributes are
uncertain, which is referred to as the “value uncertainty’’. On the
other hand, a more complicated case arises when the attributes cho-
sen to be the dimensions of an array are uncertain. For example,
the x-y positions of an object in SDSS naturally serve as the di-
mensions of the array, but they are uncertain and characterized by a
bivariate Gaussian distribution. As such, the uncertain location of
an object can cause its tuple to belong to multiple cells in the array,
referred to as the “position uncertainty”. SciDB, a leading effort on
array databases, has acknowledged this issue in real-world applica-
tions but leaves the solution to future work [21].

In this paper, we provide a thorough treatment to uncertain data
management in array databases. We focus on continuous uncertain
data because they are a natural fit for scientific data and harder to
support than discrete uncertain data due to the difficulty in enu-
merating the possible values. In particular, we address two key
questions: (i) What are the intended answers of array operations
on uncertain data that may involve both position and value uncer-
tainty? (ii) What are the storage and evaluation methods for effi-
ciently processing array operations on continuous uncertain data?
By way of addressing these, we make the following contributions:

1. We define the formal semantics of array operations on uncer-
tain data involving both position and value uncertainty (§2). We

1

show that Subarray and Structure-Join are the two most important
array operations that involve position uncertainty; many other array
operations can be transformed into (one of) these two.

2. For Subarray, we provide native support for its operation on
uncertain dimension attributes in the array database. We propose
a number of storage and evaluation schemes to deal with position
uncertainty. In particular, we focus on a novel scheme, called store-
multiple, that bounds the overhead of querying, which can become
very high given tuples with large variances, using modest replica-
tion of such tuples. In addition, store-multiple has the flexibility
to configure the storage for best performance under different work-
loads due to the use of a cost model.

3. For Structure-Join on uncertain dimension attributes, we pro-
pose two techniques (§4): The first is to integrate existing indexes
for relational databases [7, 6, 16] with the store-multiple scheme
for array databases, and minimize the join cost by solving a set
covering problem. We also propose a new subarray-based evalu-
ation strategy for Structure-Join, which works without a pre-built
index. This strategy employs tight conditions for running repeated
subarray queries on the inner array of the join, as well as a cost
model for configuring the storage for best performance.

4. We evaluate our techniques using both synthetic workloads
and a case study of the Sloan Digital Sky Survey (SDSS) [23] (§5).
For Subarray, store-multiple outperforms other alternatives by us-
ing a cost model to configure the storage and bounding the over-
head of querying. For Structure-Join, the index-based join exhibits
high overheads of index I/O and the set covering problem, while the
subarray-based join outperforms it due to the use of tight conditions
for probing the inner array and the accuracy of the cost model. Our
case study shows that for realistic datasets, the storage overhead of
store-multiple is rather limited, e.g., over 79% tuples have only 1
copy and over 92% tuples have at most 3 copies (considering that
3 is the common number for replication in big data systems). In
addition, our best techniques for Subarray and Structure-Join are
shown to outperform the baselines, often by a wide margin.

2. ARRAY MODEL AND ALGEBRA
In this section, we provide background on the array model and

array algebra proposed recently [3, 20]. Furthermore, we extend
the array model to accommodate uncertain data and formally define
the semantics of array algebra under the uncertain data model.

2.1 Array Data Model
Background on the Array Model. An array database contains

a collection of arrays. Each array is represented as A(Dd;Vm),
where Dd denotes the d dimension attributes that define the array,
and Vm denotes m value attributes. We sometimes also use the
shorthand, Ad, to denote a d-dimensional array. Consider an exam-
ple in the Digital Sky Survey domain: A2(x loc, y loc; luminosity,
color, . . .) defines a two-dimensional array using the dimension at-
tributes (x loc, y loc). If a dimension attribute is discrete valued,
the model requires a linear ordering of its values. If a dimension
attribute is continuous valued instead, a user-defined function, e.g.,
bx locc, is assumed to be available for discretizing the domain of
the dimension attribute into an ordered set of values. These ordered
values are used as the index values in a given dimension.

In an array Ad, a unique combination of the index values of the d
dimensions defines a cell, which can contain multiple tuples. Array
cells are addressed by the index values of dimensions, e.g., a single
cell addressed by A[bx locc=1, by locc=2], abbreviated as A[1, 2],
or multiple cells by A[1 :∞, 2 : 4]. By default, tuples in a cell in-
clude both dimension attributes and value attributes. If a dimension
attribute is discrete valued, its values in the tuples can be omitted
because they are the same as the index values of the cell (which is

t0

t2

0 1 2 3 4 5 6

0

1

2

3

floor(x_loc)

t1

4

floor(y_loc)
A

N(32,2)
t1 N(21,3)
t2 N(17,3)

luminosity
1

N(1.8,1.1) N(2,0.6)
N(5,1.0) N(4.5,1)

y_locx-loc
2.5t0

t1: possible range A[0..5,0..4]

t2: possible range A[2..6,1..4]

Figure 1: Array A with dimension attributes, x loc and y loc, and the
value attribute luminosity, all of which can be uncertain.

not true for continuous attributes). Note that this model is an ex-
tension of the SciDB array model [3, 20] as it allows continuous
attributes to be dimension attributes.

To draw a analogy with the relational model, we can translate
an array to a relation R(D1, . . . , Dd, V1, . . . , Vm). That is, we
treat dimension attributes as value attributes in tuples and store
all the tuples in a table with no particular order. To address ar-
ray cells given dimension values, we write explicit predicates like
A[bx locc = 1, by locc = 2].

An Array Model for Uncertain Data. We next extend the ar-
ray model to accommodate uncertain data. When array data are
uncertain, the dimension attributes can be uncertain (e.g., the x-y
locations of a galaxy follow a bivariate Gaussian distribution); the
value attributes can be uncertain (e.g., the luminosity of a galaxy
follows a Gaussian); or both groups of attributes can be uncertain.

Uncertainty of value attributes, referred to as value uncertainty,
is easy to support: we store a (joint) probability distribution of the
uncertain value attributes, instead of fixed values, in each tuple. If
there is uncertainty regarding the existence of a tuple, called exis-
tence uncertainty, we store the existence probability as a special
value attribute in the tuple. Then we model value and existence un-
certainties jointly using a mixed-type distribution [24], which states
that the tuple exists with a certain probability, and if the tuple exists,
its uncertain value attributes follow a joint distribution.

Uncertainty of dimension attributes is harder to support because
a dimension attribute with multiple possible values can cause a tu-
ple to belong to multiple cells in an array, referred to as position
uncertainty. If we take the tuple’s marginal distribution of each
uncertain dimension attribute, we can estimate the possible range
along that dimension where the tuple may belong. Suppose that a
marginal distribution has mean µ and standard deviation σ, we can
define the possible range to be [µ− kσ, µ+ kσ] with a sufficiently
large k chosen based on Chebyshev’s inequality or Gaussian prop-
erties, e.g., when x∼N(µ, σ), Pr (x∈ [µ−3σ, µ+3σ])>0.99.

In this work, we associate each tuple to a default position in
the array, which is the cell indexed by the mean values of uncer-
tain dimension attributes. (In implementation we may consider
other options, which we discuss later.) Fig. 1 illustrates an ar-
ray, A(x loc, y loc; luminosity), where continuous uncertain at-
tributes, x loc and y loc, are dimension attributes, and the floor
function discretizes their values as index values. Tuple t0 has fixed
values for x loc and y loc and hence belongs to a single cell. Tu-
ple t1, however, has a bivariate Gaussian distribution. Therefore,
although it is marked in its default cell, A[1, 2], with a significant
probability it can reside in any cell in a possible range, A[0 : 5, 0 :
3], marked by the red box in the figure. Similarly, t2 also has a
possible range, A[2 : 6, 1 : 4], due to uncertain x loc and y loc.

2.2 Array Algebra
We next survey operators in array algebra and define their formal

semantics under the uncertain data model. These operators were
originally proposed in the Array Functional language (AFL) [18]
where all attributes have deterministic values and dimension at-
tributes must be discrete valued. In this work, we extend the seman-

2

tics of these operators to continuous-valued dimension attributes as
well as uncertain data in both dimension and value attributes.

Value-based: The operators in the first category operate only on
the value attributes of tuples. An example is Filter, which applies
predicates to the value attributes of tuples stored in the array. An-
other example is Apply, which applies arithmetic operations to the
values of tuples. A third example is Project, which projects out
some value attributes from existing tuples. Since the above opera-
tors operate only on the value attributes of tuples, their semantics
of uncertain data processing under the array model is the same as
the semantics under the relational model; the semantics of the latter
is already defined in previous work [24].

Structure-based: The operators in the second category operate
on dimension attributes and optionally on value attributes as well.
We examine several common operators:

(1) Subarray takes an array A and a condition θ on the dimen-
sion attributes, and returns a new array with the tuples that satisfy
the condition θ. Revisit our example array. Subarray(A, 1.5 ≤
x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8)) will first retrieve tuples from
the array block A[1 : 3, 2 : 4], and then filter those tuples based on
the precise condition, 1.5 ≤ x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8.
The output array always has the same dimensions as the input, but
usually fewer cells and tuples. Subarray can be translated into
selection in relational algebra, i.e., Subarray(A, θ) ≡ σθ(RA),
where RA is the relational representation of the array.

When the dimension attributes addressed in the condition θ are
uncertain, Subarray is semantically equivalent to selection on the
uncertain dimension attributes in the relational setting. Hence, we
have the following definition:

Definition 2.1 (Probabilistic Subarray) Given an array Ad, con-
dition θ on uncertain dimension attributes, and a user-specified
probability threshold λ ∈ (0, 1), Subarray(A, θ, λ) returns an
array Bd where the cell B[i1, . . . , id] contains each tuple t from
A[i1, . . . , id] that satisfies the condition θ with a probability at least
λ, i.e.,

∫
θ
ft(x)dx ≥ λ, where ft(x) is the tuple’s probability den-

sity function on the the uncertain dimension attributes.

Revisiting the above example, Subarray(A, 1.5 ≤ x loc ≤ 3.3
and 2.1 ≤ y loc ≤ 4.8). When x loc and y loc are uncertain, we
can no longer restrict the search to only the block A[1 : 3, 2 : 4]. It
is because tuples that belong to other cells, e.g., A[1, 5], may satisfy
the Subarray condition with a probability larger than λ. Based on
the formal semantics, the entire array needs to be searched.

(2) Structure-Join (SJoin) in the array model takes as input an ar-
ray Ad, a second array Bd of the same dimensionality, and a join
condition θ. SJoin(A,B, θ) returns an array C2d, where the cell
C[i1, · · · , id, id+1, · · · , i2d] contains the result of θ-join between
the tuples in A[i1, · · · , id] and the tuples in B[id+1, · · · , i2d]. The
equivalent expression in relational algebra is, RA 1θ RB, where
RA and RB are the relational representations of A and B.

The join condition, θ, has a few common forms: (1) If the dimen-
sion attributes are discrete-valued, θ usually specifies equality com-
parison on the dimension attributes, as in the AFL proposal [18].1

(2) If the dimension attributes are continuous-valued, equi-join is
seldom used. Instead, θ takes a form of proximity join. A common
form is linear proximity join, |A.di−B.di| < δ for each dimension
attribute di. The join condition essentially defines a band region

1In this case, the output array, C = SJoin(A,B, θ), can be simplified to
have the same dimensionality as A and B, where each cell C[i1, . . . , id]
contains the result of A[i1, . . . , id] 1θ B[i1, . . . , id]. This definition is
consistent with equi-join in relational algebra where only one copy of the
common join attributes is retained.

for each pair of join attributes. Another common form of prox-
imity join uses Euclidean distance,

∑
i(A.di − B.di)2 < δ2. As

noted earlier, we focus on continuous uncertain data in this paper
and hence proximity join in later technical sections.

Next we consider the case that the continuous dimension at-
tributes of arrays A and B are uncertain. While the tuples have
default positions in the array based on their mean values, they may
belong to multiple cells with non-zero probabilities. In the face of
position uncertainty, the join between A and B must return all pairs
of tuples that satisfy the join condition θ with a significant proba-
bility. To do so, we leverage the semantics of cross-product in the
above SJoin definition, which involves pairing each cell in A with
each cell in B and then pairing the tuples within those cells. More
specifically, we define probabilistic structure-join as follows:

Definition 2.2 (Probabilistic Structure-Join) Given arrays Ad and
Bd, a join condition θ, and a probability threshold λ, SJoin(A,B, θ, λ)
returns an array C2d where C[i1, · · · , id, id+1, · · · , i2d] contains
the result of probabilistic θ-join, A[i1, · · · , id] 1θ,λ B[id+1, · · · , i2d]
= {(t1, t2)| t1 ∈ A[i1, · · · , id], t2 ∈ B[id+1, · · · , i2d],

∫∫
θ
ft1(x)

·ft2(y)dxdy ≥ λ}, where ft1(x) and ft2(y) are the probability
density functions for t1 and t2, respectively.

(3) Regrid-Aggregation partitions an input array into non-overlapping
blocks, and for each block, applies an aggregate function to all
the tuples in the block. The output array has one cell for each
block which contains the aggregate value computed. Regrid can be
viewed as repeated application of the Subarray operation to extract
each block and then to compute the aggregate within each block.

When the dimension attributes are uncertain, one can use the
Probabilistic Subarray operator to extract the tuples that belong
to each block with non-zero probabilities (usually more than those
that physically exist in the block). Note that even if a tuple be-
longs to a block with a small probability, if its aggregate attribute
has a large value, it can still contribute a modest value, which is
the product of its attribute value and existence probability, to the
aggregate. Hence, the probability threshold for tuple existence in
Subarray should be set to 0 in theory, or a small value in practice.

(4) GroupBy-Aggregation takes three arguments including an input
array Ad, a list of grouping dimensions Gd1 , where d1 ≤ d, and an
aggregate function. Again, it can be viewed as repeated application
of Subarray to construct array blocks corresponding to the groups
and then computing the aggregate within each block.

As shown in the above discussion, Subarray and Structure-Join
are the two most important primitives in array algebra. Hence, we
focus on efficient implementation of them under data uncertainty
in subsequent sections.

We finally show two example queries written for the Sloan Dig-
ital Sky Survey (SDSS) [23], where the attributes, rowc and colc,
define a two dimensional array called Galaxy. These queries are
written by following the convention of the AFL language, but with
syntactic differences due to reasons such as the support of contin-
uous dimension attributes. Query Q1 computes the average bright-
ness in a subarray region. Query Q2 finds the regions in the sky
space with the observation density greater than a threshold τ , where
the observation density for a region is defined to be the sum of the
number of observations within δ distance in either direction of each
point in the region. To do so, the query first performs a self join of
the Galaxy array based on the array structure, then groups the join
output into 100 by 100 blocks ofG1.rowc andG1.colc, and finally
counts the number of observations per block for density filtering.

Q1:AVG(SUBARRAY(Galaxy,x1<rowc<x2 and y1<colc<y2),
brightness)

3

Q2:FILTER(GROUPBY(SJOIN(Galaxy G1, Galaxy G2,
|G1.rowc−G2.rowc| < δ and
|G1.colc−G2.colc| < δ),

bG1.rowc/100c and bG1.colc/100c, COUNT cnt),
cnt > τ)

3. NATIVE SUPPORT FOR SUBARRAY
In this section, we focus on the structural operation, Subarray.

As defined previously, it defines a region based on the dimension
attributes and returns tuples whose existence probability in the re-
gion exceeds a threshold. Since Subarray is equivalent to selection
in relational algebra, there are two options for implementation:

The first option is to translate Subarray to selection in the re-
lational setting. When the dimension attributes are uncertain, to
avoid scanning all tuples in the database, existing work has built
various indexes based on statistical quantities such as quantiles [4,
5] and moments [16] of tuple distributions. However, these indexes
may not be effective when the filtering power is low and can trigger
many random I/O’s since they are often secondary indexes.

The second option is to build native support of Subarray in array
databases where logical locality and physical locality are better-
aligned. For instance, Subarray that exploits logical locality of
data, e.g., a few adjacent array cells, may need to retrieve only a
few relevant physical storage units called chunks. This effect of
exploiting physical locality is similar to using a clustered primary
index in relational databases, but without having to build the index.

Hence, in this work we focus on native support of array opera-
tions on uncertain data. Building such native support, however, is
challenging due to the issue of position uncertainty: when the di-
mension attributes are uncertain, each tuple can belong to multiple
cells with non-zero probabilities. The key question we address is
how to reduce the complexity associated with such position uncer-
tainty and maximize the benefits of locality in array databases.

3.1 Storage and Evaluation Schemes
Given a tuple and a probability distribution on its dimension at-

tributes, the array cells that have non-zero probabilities to contain
the tuple form the “possible range” of the tuple, as defined in Sec-
tion 2.1. We next propose a few storage schemes that guarantee
that the tuple can be observed when any cell of its possible range is
covered in the query region.

Store-All: One solution is to store a copy of the tuple in each cell
of the tuple’s possible range. Fig. 2(a) depicts the storage of two
tuples, t1 and t2, where t1 is replicated in its possible range A[0:5,
0:3] (including the red and yellow cells), and t2 is replicated in
A[2:6, 1:4] (the green and yellow cells), with the overlap region
marked in yellow. A query region, A[2:2, 3:3], is marked by a solid
blue box in Fig. 2(d). A major advantage of this scheme is that
we can execute the query region directly on the array, without any
missing results. The disadvantages include possibly excessive stor-
age overheads and high I/O costs in querying because each logical
cell may need many physical chunks to store the replicated tuples.

A similar storage scheme is store-all with pointers: store a tuple
in its default position, i.e., the cell where the mean values of its
dimension attributes reside, and add a pointer to this tuple in all
other cells in the tuple’s possible range. Thus we avoid repeated
storage of all attributes of a tuple. However, the numerous pointers
can still incur high storage overheads, as well as frequent random
I/O’s at query time as a result of chasing pointers from a given
query region to fetch other relevant tuples stored outside the region.

Store-Mean: To avoid excessive storage overheads discussed
above, we next consider storing a tuple only once based on the
mean values of its dimension attributes. However, directly running
Subarray on such storage will lead to missed results: tuples whose
mean values are outside the query region but whose possible ranges

overlap with the region will be missed. To avoid the problem, the
query region must be expanded. One way to do so is to augment
each cell with upper and lower bounds for each dimension, indi-
cating the distance to travel along each dimension in order to find
all tuples that could belong to that cell—we call these bounds the
upper and lower fences for expanding the query region from this
cell. This way, the storage overhead is limited to two integers per
dimension per cell.

Fig. 2(b) shows the storage layout for tuples t1 and t2. Consider
the cell A[2, 3]. The fences for the x dimension, (−1, 3), means
that at query time, from this cell we need to walk one step to the left
and three steps to the right, while the fences for the y dimension,
(−1, 1), indicates walking one step up and one step down in the
array. After walking on both dimensions, we will reach cell A[1, 2]
to retrieve tuple t1 and cell A[5, 4] to retrieve t2.

To generate fences, whenever a new tuple is inserted into a cell
C in the array based on its mean value, we identify every cell in the
tuple’s possible range, compute its distance from the cell C, then
expand its fences if they do not cover the computed distance. At
query time, for each cell contained in the query region, we expand
it using the upper and lower fences, and take the union of all these
expansions to produce a complete expanded query region. Fig. 2(e)
depicts the user-specified query region in a solid blue box and the
expanded query region using a dashed blue box.

The advantage of this strategy is significant reduction of auxil-
iary information stored in each cell, i.e., two fences for each dimen-
sion, as opposed to store-all and store-all with pointers. However,
a potential issue is that the expanded query region can grow very
large, containing both relevant and irrelevant tuples, and incur both
high I/O cost for fetching all the tuples and high CPU cost for vali-
dating them using the precise Subarray condition.

Store-Multiple: Finally, we propose a scheme that employs lim-
ited replication of tuples and guarantees that from any cell in a tu-
ple’s possible range, the query needs to be expanded by at most
k cells (steps) along each dimension to find a copy of the tuple.
We call k the step size, and use it to control both query expansion,
by 2k on each dimension, and the degree of replication in storage,
roughly inversely proportional to k. Interestingly, Store-multiple
subsumes both store-all and store-mean: it becomes store-all when
k = 0, and approximates store-mean (without fences) when k is
big enough to cover the largest possible range among all tuples.

More importantly, store-multiple overcomes the shortcomings of
the previous two schemes: First, it bounds the query expansion by
k cells along each dimension. Such controlled expansion is particu-
larly helpful when some tuples have large variances and hence large
possible ranges. In other schemes, tuples of large variances will
cause them to be replicated in numerous cells (store-all) or cause
the query region to be expanded based on the largest tuple variance
in a wide neighborhood (store-mean). Second, store-multiple offers
the flexibility to configure the parameter k for different workloads
to achieve best performance, as we shall show shortly.

Fig. 2(c) shows such storage with k=1, where tuple t1 is stored in
four cells and t2 in another four cells. We can verify that for each
cell in t1’s possible region (the red rectangle), we need to walk
only one step in both dimensions to find a copy of t1. The same
guarantee holds for t2. Fig. 2(f) shows a query region matching the
cell A[2, 3], marked by the solid blue box, and the expanded region
A[1:3,2:4] using k = 1, marked by the dashed blue box.

The evaluation of Subarray under store-multiple includes two
steps: (1) I/O step: The original query region is expanded by k cells
along both directions on each dimension; all tuples in the expanded
query region are read from disk. (2) CPU step: The exact existence
probability in the query region is computed for each retrieved tuple
based on its distribution and compared with the probability thresh-

4

t1 t1 t1 t1 t1

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2 t2 t2 t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t1
t2t1 t1 t1

t2
t1
t2

t1
t2

t1

t1
t2

t1
t2

(a) Store-All: store tuple t1 in its possible range
[0 :5, 0:3], t2 in [2 :6, 1:4].

x:0,1
y:0,2

x:0,0
y:0,2

x:-1,0
y:0,2

x:-3,0
y:0,2

x:-4,0
y:0,2

x:0,1
y:0,1

x:0,0
y:0,1

x:-1,3
y:0,3

x:-3,1
y:0,3

x:-4,0
y:0,3

x:-1,0
y:0,3

x:-1,0
y:0,2

x:0,1
y:-1,0

x:0,0
y:-1,0

x:-1,3
y:-1,1

x:-3,1
y:-1,1

x:-4,0
y:-1,1

x:-1,0
y:0,1

x:0,3
y:0,0

x:0,2
y:0,0

x:0,1
y:0,0

t2:
x:0,0
y:0,0

x:-1,0
y:0,0

0 1 2 3 4 5 6

0

1

2

3

4

y
x

x:-2,2
y:0,2

x:0,1
y:0,0

t1:
x:0,0
y:0,0

x:-1,3
y:0,2

x:-3,1
y:0,2

x:-4,0
y:0,2

x:-2,0
y:0,2
x:-2,2
y:0,3

x:-2,2
y:-1,1

(b) Store-One: store a tuple in a single cell using
its mean and store fences in other cells.

t1 t1

t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t2t1 t1 t2

(c) Store-Multiple: store a tuple in multiple
cells and guarantee distance k from one copy.

t1 t1 t1 t1 t1

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2 t2 t2 t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t1
t2t1 t1 t1

t2
t1
t2

t1
t2

t1

t1
t2

t1
t2

(d) Store-All: execute a query region Q (bold
blue box) on the array.

x:0,1
y:0,2

x:0,0
y:0,2

x:-1,0
y:0,2

x:-3,0
y:0,2

x:-4,0
y:0,2

x:0,1
y:0,1

x:0,0
y:0,1

x:-1,3
y:0,3

x:-3,1
y:0,3

x:-4,0
y:0,3

x:-1,0
y:0,3

x:-1,0
y:0,2

x:0,1
y:-1,0

x:0,0
y:-1,0

x:-1,3
y:-1,1

x:-3,1
y:-1,1

x:-4,0
y:-1,1

x:-1,0
y:0,1

x:0,3
y:0,0

x:0,2
y:0,0

x:0,1
y:0,0

t2:
x:0,0
y:0,0

x:-1,0
y:0,0

0 1 2 3 4 5 6

0

1

2

3

4

y
x

x:-2,2
y:0,2

x:0,1
y:0,0

t1:
x:0,0
y:0,0

x:-1,3
y:0,2

x:-3,1
y:0,2

x:-4,0
y:0,2

x:-2,0
y:0,2
x:-2,2
y:0,3

x:-2,2
y:-1,1

(e) Store-One: expand Q (bold blue box) using
fences to a larger region (dashed box).

t1 t1

t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t2t1 t1 t2

(f) Store-Multiple: expand Q (bold blue box)
by k = 1 to a larger region (dashed blue box).

Figure 2: Alternative storage and evaluation strategies for tuples with uncertain dimension attributes.

old. Since computing the exact existence probability for continuous
random variables requires expensive integration, we optimize it by
first running fast filters [16] with negligible costs to prune tuples of
low existence probabilities, and building an in-memory hash table
to avoid doing integration for different copies of the same tuple.

Two questions remain for store-multiple: First, the way to store
tuples while guaranteeing the step size k in query expansion is not
unique, leading to different degrees of replication of a tuple. How
do we find the best layout of tuples under the step size k configu-
ration? Second, given a dataset and typical query workloads, how
do we choose the best configuration of k for optimal performance?
We address these two issues in §3.2 and §3.3, respectively.

3.2 Tuple Layout under Store-Multiple
Consider the tuple layout in a d-dimensional array Ad stored us-

ing store-multiple with a step size configuration 〈k1, k2, · · · , kd〉.
This means that from any cell in the tuple’s possible range, walking
ki cells in both directions on the i-th dimension, for 1 ≤ i ≤ d,
guarantees to find a copy of the tuple. Finding the best way to store
tuple copies amounts to a coverage problem, as we define below.

Definition 3.1 (Covering Cell) Given a d-dimensional array Ad
under store-multiple with a step size configuration 〈k1, k2, · · · , kd〉,
the covering range of the walk from a cell A[x1, x2, · · · , xd] is
A[x1 − k1 : x1 + k1, · · · , xd − kd : xd + kd]. We also say each
cell in A[x1 − k1 : x1 + k1, · · · , xd − kd : xd + kd] is “covered”
by the cell A[x1, x2, · · · , xd].

Definition 3.2 (Covering Set) A set of cells S is covered by a set
of cells C if and only if each cell in S is covered by at least one
cell in C. C is called the covering set of S.

Definition 3.3 (Problem of Tuple Copy Layout) Given a tuple t,
find the minimum covering set C of its possible range S = A[l1 :
u1, l2 : u2, · · · , ld : ud] so that placing one copy of the tuple in
each cell of C guarantees the correctness of query expansion using
the step size 〈k1, k2, · · · , kd〉.

We address the problem by first showing the lower bound of the
size of a covering set, as shown in the following proposition.

Proposition 3.1 Given an array Ad under store-multiple with a
step size configuration 〈k1, k2, · · · , kd〉, if a tuple’s possible range
is S = A[l1 : u1, l2 : u2, · · · , ld : ud], the number of cells needed
to cover S is at least

∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1).

PROOF. We can pick a subset of cells from the region S =
A[l1 : u1, l2 : u2, · · · , ld : ud] as follows: S′={A[x1, x2, · · · , xd]|
∀i∈{1, 2, . . . , d}, xi = li+ pi(2ki+1) and li ≤ xi ≤ ui, where
pi ∈ {0} ∪ N}. Obviously, the size of the set of picked cells |S′|
is
∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1). Based on Definition 3.2, if

we can prove that at least |S′| cells are already needed just to cover
S′ which is a subset of S, it is also true that at least |S′| cells are
needed to cover S.

Let us assume a cell A[x1, x2, · · · , xd] ∈S′ is covered by (the
walk from) a cell A[y1, y2, · · · , yd]. This means yi−ki ≤ xi ≤
yi+ki on any dimension i. For any cell A[x′1, x′2, · · · , x′d] ∈ S′−
{A[x1, x2, · · · , xd]}, there exists a dimension j such that xj 6=
x′j . Without loss of generality, assume x′j = xj + pj(2kj + 1)
where pj ∈ N. Then x′j ≥ yj − kj + pj(2kj + 1) > yj + kj ,
which means A[x′1, x′2, · · · , x′d] does not fall in the covering range
of A[y1, y2, · · · , yd]. Therefore, no two cells in S′ can be covered
by the same cell. In other words, at least |S′| cells are needed in
order to cover S′. Then to cover S, a superset of S′, at least |S′| =∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1) cells are needed as well.

Given the lower bound on the size, we next consider how to dis-
tribute the covering set, i.e., the cells with tuple copies, to achieve
this lower bound. To maximize the union of the covering ranges
of those tuple copies, we can store them in evenly-spaced cells
A[x1, x2, · · · , xd], where xi = li + ki + pi(2ki + 1), for pi =
0, 1, . . . , b(ui − li)/(2ki + 1)c and i = 1, . . . , d. Basically, on
the i-th dimension the first copy is stored at li + ki and the other
copies are stored 2ki cells away from each other. Fig. 3(a) shows
such distribution of tuple copies in a two-dimensional array when
k1 = k2 = 2. The tuple’s possible range consists of all the cells
within the solid boundary, requiring at least 9 copies to be placed.
When each of the black cells stores one tuple copy, we use exactly
9 copies. However, three copies are stored outside the tuple’s pos-
sible range, which increases the chance of reading irrelevant copies
when a query region falls outside the tuple’s possible range.

5

(a) (b)

l1 l1
l2 l2

u1 u1

u2 u2

Figure 3: Distribution of tuple copies in a 2-dimensional array using
Store-Multiple (step sizes k1 = k2 = 2)

symbol description
T number of tuples
b number of bytes per tuple
pri length of a tuple’s possible range on the i-th dimension
d dimensionality of an array
c chunk size (the I/O unit) in bytes
si length of each cell on the i-th dimension
ni number of cells on the i-th dimension
qi query region size on the i-th dimension
ki step size on the i-th dimension

Table 1: Notation in modeling and analysis.

It is thus desirable to store all copies of a tuple inside its possible
range. Our solution is that when a tuple needs only one copy on the
i-th dimension, we store it at the center of its possible range, i.e.,
b(li+ui)/2c; when it needs more than one copy, we store the first
copy at li+ki, the last copy at ui−ki, and the others (if any) are
evenly spaced in between, as shown in Fig. 3(b). Thus we still use
the minimum number of copies to cover the tuple’s possible range.

3.3 Cost Model of Subarray under Store-Multiple
We next propose a cost model for Subarray under the store-

multiple scheme and use the model to find the optimal step size
configuration. The symbols used in the model are summarized in
Table 1. Like in SciDB [3], a cell is a logical unit in an array while
a chunk is a physical storage unit as well as the I/O unit; tuples in a
logical cell can be stored in one or multiple chunks. For Subarray
evaluation under store-multiple, as explained in §3.1, the I/O cost
consists of the seek and transfer time of chunks in the expanded
query region, while the CPU cost is the product of the number of
tuples to be validated and the validation cost per tuple. For sim-
plicity, we assume that the centers of tuples’ possible ranges are
evenly spread over the whole array. We also begin by assuming
that all tuples’ possible ranges have the same size, pri, on the i-th
dimension. Our model can be extended to support possible ranges
of variable sizes, as we explain at the end of the section.

I/O Cost: To capture I/O cost, we focus on a key factor, the
number of chunks in the expanded query region.

Let us first compute the number of cells with which a tuple’s
possible range overlaps on the i-th dimension. Obviously this de-
pends on the alignment of the possible range and the cells along
this dimension, as shown in Fig. 4. We can chop the possible
range into dpri/sie segments, where the first dpri/sie − 1 seg-
ments have length si and the last segment has length r = pri −
(dpri/sie − 1) si. Depending on the starting position of the possi-
ble range in the first cell, it can overlap with different numbers of
cells: when the starting position is in [0, si − r], it overlaps with
dpri/sie cells; when the starting position is in (si − r, si), it over-
laps with dpri/sie+1 cells. Then the expected number of cells the
possible range overlaps with is

si si

si si si sisi si si

r si si r
pri pri

{cell

possible
range

Figure 4: Illustration of the number of cells that a possible
range overlaps with

si − r
si

⌈
pri
si

⌉
+
r

si

(⌈
pri
si

⌉
+ 1

)
=
pri
si

+ 1 (1)

Calculated in a similar way, the number of cells that overlap with
the query region Q on the i-th dimension is qi/si + 1, and the
number for the expanded query region Q̃ is qi/si + 1 + 2ki.

We next model the number of chunks in the expanded query re-
gion Q̃. It is the product of the number of cells in Q̃ and the average
number of chunks per cell. Combining Equation (1) with Proposi-
tion 3.1, we write ui− li+1 = pri/si+1, and derive the number
of copies per tuple as:

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+ 1

)
. (2)

The average number of chunks per cell is the total number of tuple
copies in the array divided first by the number of cells in the array
and then by the number of tuples a chunk can hold, i.e., bc/bc:

T

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+ 1

)/ d∏
i=1

ni
/
bc/bc . (3)

Multiplying this with the number of cells in Q̃,
∏d
i=1(qi/si + 1+

2ki), we get the number of chunks in Q̃:

T

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+1

)/ d∏
i=1

ni
/
bc/bc ·

d∏
i=1

(
qi
si

+1+2ki

)
(4)

CPU Cost: To capture CPU cost, we model the number of tuples
to be validated. Given an expanded query region Q̃, a tuple is re-
trieved for validation as long as it has one copy stored in Q̃. Fig. 5
shows an example tuple whose possible range is the red box. The
tuple has a copy in Q̃ but its center of the possible range, marked
by a black dot, lies outside Q̃. To handle such tuples, let us define
the validation region, V , to be the set of cells where the centers of
the possible ranges of to-be-validated tuples reside, and model the
size of V first. Now consider the i-th dimension of the array: (1)
When ki is large enough that every tuple only needs one copy to
cover its possible range, V is simply the expanded query region Q̃,
of size qi/si + 1 + 2ki. (2) When ki is smaller so that all tuples
have more than one copy, tuples that have at least one copy stored
in Q̃ need to be validated. It can be derived that in this case V on
the i-th dimension is of size qi/si+1+pri/si. Summarizing the
above two cases and multiplying the size of V with the number of
tuples per cell, we have the number of tuples to be validated as:

T
/ d∏
i=1

ni ·
d∏
i=1

(
qi
si

+1+ zi

)
, (5)

where zi=2ki when pri/si<2ki+1 and zi=pri/si otherwise.
Finally we combine the I/O and CPU costs by plugging in unit

cost measurements, including the seek and transfer time per chunk
and per tuple validation time.

6

A tuple's
possible range

Validation
region V

Expanded
query region Q

~

Figure 5: Illustration of the validation region.

A Generalized Model. We next relax the assumption that all
tuples have the same possible range size. When we have differ-
ent possible range sizes, we can group tuples based on the possi-
ble range size. The runtime of a query will be a weighted sum of
runtime over each group of tuples, where the number of tuples per
group serves as the weight. In practice, we can build statistics of the
possible range size when a batch of tuples comes in. For instance,
SDSS [23] updates the scanned image of the sky on a nightly basis
and can build the statistics as a nightly observation is being pro-
duced. If domain knowledge reveals the distribution of the possible
range size does not change drastically from day to day, we can also
re-use statistics collected in the past.

Implementation. Given the cost model and basic statistics of
tuples’ possible range sizes and query sizes, we can extend the data
loading routine of an array database, such as that of SciDB, as fol-
lows: given a wide range of step size configurations, we estimate
query costs, including both CPU and I/O costs, from different step
size configurations, and choose the configuration that offers the best
estimated performance. We evaluate the effectiveness of our model
for doing so in §5. Once the step size is configured, as we scan each
tuple from the original data file, its possible ranges can be obtained
and its copies can be distributed as shown by Fig. 3(b).

Our implementation of store-multiple can be directly used to im-
plement store-all by setting ki = 0 (i = 1, . . . , d). It can also be
revised to implement store-mean with only modest changes: we
can store one copy at the tuple’s mean position and other copies as
before. In this way, we introduce at most one more copy per tuple.
The mean copies of all tuples are stored in a separate file. This
revised implementation can also support evaluation algorithms that
use only the mean copy of each tuple, ignoring other copies.

4. SUPPORT FOR STRUCTURE JOIN
In this section, we focus on another common array operator,

Structure-Join under position uncertainty. The default evaluation
strategy, as stated in Definition 2.2, creates all pairs of tuples from
the two input arrays and evaluates an integral for each pair of tu-
ples, which is prohibitively expensive. To improve performance,
we propose to integrate existing indexes for relational databases [7,
6, 16] with the store-multiple scheme for array databases and de-
rive an index-based technique (in §4.1). We further propose a new
subarray-based evaluation strategy, as well as model-based opti-
mization to achieve the best performance of this strategy (in §4.2).

In our discussion below, we focus on linear proximity join, that
is, SJoin(Ad,Bd, θ, λ) where θ =

∧d
i=1|A.di−B.di|<δ, which is

the most common in scientific applications. Non-linear proximity
join based on Euclidean distance, e.g.,

∑
i(A.di−B.di)

2 < δ2, can
be first relaxed to linear proximity join, and then followed by ad-
ditional filtering using exact integration based on θ. Moreover, we
define the selectivity of a probabilistic SJoin to be |A|·|B||C| , where
|A|, |B|, |C| are tuple counts of inputs A and B, and the output C.

4.1 Index-based Join
Recent work has proposed new indexes on continuous uncertain

data in relational databases to improve query performance [7, 6,
16]. A natural way to use indexes in Structure-Join is to perform

{tA} {tB} {CB}

A B

index

Pairing tuples Validation & DupElim

1.

2.

3.

4. 5.

Figure 6: Illustration of index-based join.

index nested loops join (INLJ): the outer relation is scanned once;
for each tuple in the outer relation, the index on the inner relation
is probed to find the candidates.

While index nested loops join (INLJ) is a standard join method,
integrating it with the store-multiple scheme proposed previously
for handling uncertain data raises a new question: Since tuples may
have multiple copies stored in the array database, how can we mini-
mize the chance of producing duplicate results from multiple copies
of the same tuple, hence the associated I/O and CPU costs?

Our main idea is as follows: Consider SJoin(Ad,Bd, θ, λ) where
both A (the outer) and B (the inner) are stored using store-multiple.
Assume that there is a pre-built index on the continuous uncertain
join attribute(s) in B, and the leaf nodes in the index store the possi-
ble range of each tuple. As shown in Fig. 6, the array A is scanned
once, by reading one block (with one or multiple cells) at a time.
Each tuple, tA, in the current block of A triggers an index lookup
to find its candidates from B, {tB}, as depicted by the left mapping
structure in Fig. 6. Each candidate tuple tB may be stored in mul-
tiple cells, {CB}, as depicted by the right mapping structure; these
CB cells can be computed from tB’s possible range stored in the
index. After processing all tuples in the current block of A, two
mapping structures are complete. We want to read a subset of the
B cells to minimize I/O while guaranteeing coverage: every candi-
date B tuple resides in at least one of those cells. Then the A tuples
and their candidates B tuples are paired and validated if the index
returns a superset of matches.

Given the two mapping structures, deciding which B cells to read
to minimize I/O while guaranteeing coverage amounts to a set cov-
ering problem (SCP). Denote the union of candidates for all prob-
ing tuples in the current block as U . Each cell CB from B stores
a subset of U . Using the number of chunks as the weight of CB,
denoted by ω(CB), our problem is a variant of the classic SCP:

minimize
∑
CB∈B

ω (CB) · ICB

subject to
∑

CB:tB∈CB

ICB ≥ 1 for all tB ∈ U

ICB ∈ {0, 1} for all CB ∈ B

This is an NP-hard problem but can be solved efficiently by many
techniques, e.g., the integer linear program and greedy algorithm.

This algorithm, which we call index-based join (IBJ), is affected
by several factors in performance. We analyze them briefly below
and evaluate them empirically in §5.

(1) Selectivity: The performance of IBJ highly depends on the
filtering power of the index for a given workload. For example,
when the selectivity is close to 1, almost all tuple pairs from the
two input arrays exist in the output, so the index has little filtering
power. This will cause the mapping structures to grow so large that
the memory for the A block and mappings is consumed fast and
may not even be enough to hold the mappings for a single tuple

7

tA. On the other hand, when the chosen index has great filtering
power for a selective Structure-Join, the mapping structure is quite
small and solving SCP is also quick. Then the overheads of probing
indexes, building mappings, and solving SCP are outweighed by
the savings of CPU and I/O costs.

(2) Memory allocation: The IBJ algorithm uses several data struc-
tures. The memory is shared among the read block of A, the two
mapping structures, the index, and the cache of B cells (or chunks).
Since the sizes of both mappings increase with the size of the A
block, these three data structures share a memory quota and then
the block size can be automatically determined: the algorithm keeps
adding a new A cell until this memory quota is used up. The index
and the cache of B have their own memory quotas. These three
parts compete for memory: if more memory is given to the A block
and the mappings, fewer blocks are needed and SCP is more effec-
tive in reducing the I/O of reading B; the more memory is given
to the index, the lower I/O cost in index lookups; and the more is
given to cache B cells, the lower I/O cost in reading B cells.

(3) Storage schemes: Although IBJ generally works for input
arrays with any step size configuration, its performance is better
shown when the outer array uses a large step size so that each tuple
has fewer copies and thus the chance of duplicate index lookups
for the same tuple is reduced. It turns out IBJ also prefers a large
step size for the inner to minimize I/O cost. We provide a detailed
explanation in evaluation in §5.

4.2 Subarray-based Join
The index-based join requires pre-built indexes, which may not

always be available, and can consume excessive memory due to the
use of the tuple-level mapping. We next present a new evaluation
strategy of Structure-Join, called subarray-based join (SBJ).

Similar to block nested loops joins, Structure-Join can be nat-
urally transformed into iterative Subarray operations on the inner
array, for each block of the outer array. Assume that the smaller
array, A, is the outer of the join. For each cell CA, we do the fol-
lowing: (1) Load it into memory, form a subarray condition θCA
on the inner array B by considering both the original join predicate
and the storage scheme of A, and run the Subarray query on B. (2)
Pair tuples in CA with those tuples retrieved by Subarray on B. (3)
The final phase is validation that computes the exact probability for
each tuple pair (tA, tB) to satisfy the join condition and compares
it with the probability threshold λ. We show how to determine the
subarray condition θCA in §4.2.1 and present a complete algorithm
and its cost model in §4.2.2.

4.2.1 Subarray Condition for Each Outer Cell
The subarray condition θCA for each outer cell CA must pro-

duce all join results while being as tight as possible to ensure good
performance. Below we propose several necessary conditions for
linear proximity join that guarantee no missing result in the join
output.

Given a tuple tA, let (ltA.di , utA.di) denote the lower and upper
bounds of its possible range on the i-th dimension. Similarly, we
have (ltB.di , utB.di) for tuple tB. Then we have:

Proposition 4.1 For any tuple pair (tA, tB) returned by SJoin(Ad,
Bd,
∧d
i=1|A.di−B.di|<δ, λ), the intervals (ltA.di−δ, utA.di+δ)

and (ltB.di , utB.di) overlap on any dimension i (i = 1, . . . , d).

PROOF. We prove by contradiction. Consider a tuple pair (tA, tB)
returned by SJoin. Assume that there exists a dimension di where
(ltA.di−δ, utA.di+δ) and (ltB.di , utB.di) do not overlap, i.e., ltA.di−
δ > utB.di or utA.di+δ < ltB.di . Without loss of generality, let us
assume ltA.di−δ > utB.di . Below we focus on computing proba-
bility p =

∫∫
θ
ftA(x)ftB(y)dxdy where the integration domain θ

yi =xi+�

yi =xi ��

xi

yi

ltA.di
+�

ltA.di
��

ltA.di

p̃2

p̃1,1

p̃1,2

Figure 7: Illurstraion of p̃ = p̃1,1 + p̃1,2 + p̃2.

is {(x,y)|
∧d
i=1 |xi − yi|<δ}.

We start with finding an upper bound of p. Relaxing the join
condition by only considering dimension di, we have

p<

∫∫
|xi−yi|<δ

ftA(x)ftB(y)dxdy =

∫∫
|xi−yi|<δ

ftA.di(xi)ftB.di(yi)dxidyi.

It means the probability for (tA, tB) to satisfy the join predicate is
upper bounded by the probability for their values on dimension di
to satisfy the join predicate on dimension di, denoted as p̃. The
integration domain is colored in Fig. 7 and partitioned into three
parts. Denote the probability mass of each partition as p̃1,1, p̃1,2
and p̃2 respectively. Below we derive the upper bound for each of
them by applying the assumption.

p̃1,1 =

∫ ltA.di
−δ

−∞
ftB.di(yi)

(∫ yi+δ

yi−δ
ftA.di(xi)dxi

)
dyi

<

∫ ltA.di
−δ

−∞
ftB.di(yi)

(∫ ltA.di

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ ltA.di
−δ

−∞
ftB.di(yi)dyi <

ε

2

p̃1,2 =

∫ ltA.di
+δ

ltA.di
−δ

ftB.di(yi)

(∫ ltA.di

yi−δ
ftA.di(xi)dxi

)
dyi

<

∫ +∞

utB.di

ftB.di(yi)

(∫ ltA.di

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ +∞

utB.di

ftB.di(yi)dyi =
ε

2
· ε
2
=
ε2

4

p̃2 =

∫ +∞

ltA.di

ftA.di(xi)

(∫ xi+δ

xi−δ
ftB.di(yi)

)
dxi

<

∫ +∞

ltA.di

ftA.di(xi)

(∫ +∞

utB.di

ftB.di(yi)

)
dxi

=
ε

2

∫ +∞

ltA.di

ftA.di(xi)dxi <
ε

2

Finally we have p < p̃ = p̃1,1 + p̃1,2 + p̃2 < ε + ε2/4 � λ,
which means (tA, tB) can never be in the join result. Then we reach
a contradiction and thus the assumption is wrong.

The proposition states a way to find a superset of the join answers:
for each tuple tA from A, expand its possible range by δ on each
dimension, denoted by ItA , then pair tA with all tuples tB from B
whose possible ranges overlap with ItA .

When A is stored using store-mean, we use the above result to
form a subarray condition on B, for each cell CA ∈ A. The next
proposition shows how to do so, i.e., by relaxing the condition us-
ing the minimum lower bound and maximum upper bound of pos-
sible ranges of all tuples in CA.

8

Proposition 4.2 (Subarray for Store-mean) Consider SJoin(Ad,
Bd,
∧d
i=1|A.di−B.di|<δ, λ) when A is under store-mean. For a

cell CA, a subarray condition θCA that returns all join results is:

d∧
i=1

min
tA∈CA

ltA.di−δ<B.di< max
tA∈CA

utA.di+δ.

When A is stored using store-multiple, we do not need to relax
the join condition as aggressively, e.g., to accommodate large pos-
sible ranges of some tuples. Instead, we can bound the relaxation
using the step size of A and δ. Given the step size 〈k1, k2, · · · , kd〉
of array A, we define some notation:

• Let the value range of cellCA on dimension di be (lCA.di , uCA.di).

• For any cell CA = A[x1, . . . , xd], two cells bound the ex-
pansion from CA by the step size of A, denoted as C−A =
A[x1−k1, . . . , xd−kd] andC+

A =A[x1+k1, . . . , xd+kd].

Proposition 4.3 (Subarray for Store-multiple) Consider SJoin(Ad,
Bd,
∧d
i=1|A.di−B.di|<δ, λ) when A is under store-multiple. For

cell CA, a subarray condition θCA that returns all join results is:

d∧
i=1

l
C−

A .di
− δ < B.di < u

C+
A .di

+ δ.

PROOF. Let StA denote the set of cells that store a copy of tA,
i.e., StA ={CA|tA∈CA}. Below we first prove that (ltA.di , utA.di)⊆⋃
CA∈StA

(
l
C−

A .di
, u
C+

A .di

)
: When tA only needs one copy to cover

its possible range on dimension di, assume the copy is stored at
CA, then (ltA.di , utA.di)⊆

(
l
C−

A .di
, u
C+

A .di

)
because otherwise it

needs at least two copies; When tA has more than one copies on
dimension di, according to §3.2, the first copy and the last copy
are stored ki cells away from the lower and upper bounds of tA’s
possible range respectively, depicted by Fig. 3(b). So ltA.di =
min

CA∈StA
l
C−

A .di
and utA.di = max

CA∈StA
u
C+

A .di
, which means

(ltA.di , utA.di)=
⋃

CA∈StA

(
l
C−

A .di
, u
C+

A .di

)
. Combining the two cases,

we have (ltA.di , utA.di)⊆
⋃

CA∈StA

(
l
C−

A .di
, u
C+

A .di

)
. Then for any tu-

ple tB, if its possible range (ltB.di , utB.di) overlaps with
(ltA.di−δ, utA.di+δ), which is a necessary condition for tB being
a true match of tA according to Proposition 4.1, it must also over-
lap with

⋃
CA∈StA

(
l
C−

A .di
−δ, u

C+
A .di

+δ
)

. This means that tB will be

returned by at least one of the subarray queries formed for all cells
in StA , say Subarray(B, θCA0 , λ). In this way, we guarantee that
no result is missing.

This proposition states that for each cell CA, the subarray condition
on the inner array B can be formed by expanding CA first by the
step size of A and then by δ.

4.2.2 Algorithm and Cost Model
The detailed algorithm of subarray-based join (SBJ) is illustrated

in Fig. 8. It processes one block of the outer at a time (marked as
Step 1 in Fig. 8, with a red block followed by a green block of A).
For each cell CA in the current block, the algorithm forms a Sub-
array query and runs it on the inner array B (Step 2). We call the
B cells returned by the Subarray query for each CA the candidate
cells of CA. Since the candidate cells of different outer cells may
overlap, as an optimization to save I/O, the algorithm maintains the

A B{CA} {CB}

Pariing tuples

Validation & DupElim

a red block, then
a green block

cells in the
green block candidate

cells

subarray on B

2.1.

3.

4.

5.

Figure 8: Illustration of subarray-based joins

union of the candidate cells of all outer cells in the current block,
in {CB} in Fig. 8. To avoid nonviable pairs of tuples, the algo-
rithm maintains a hash map that maps a cell CB to only those A
cells whose candidate cells include CB, i.e., the mapping structure
in Fig. 8 (Step 3). Then the algorithm reads relevant cells of B
and pairs tuples accordingly (Step 4). It is optional to apply quick
filters to the paired tuples to reduce later CPU cost. It finally does
validation using the join condition and removes duplicates (Step 5).

As shown in Fig. 8, the memory is shared by (1) the read block of
A, (2) the cell-level mapping structure, which is much more com-
pact than the tuple-level mapping in the index-based join, and (3)
the cache of B cells (or chunks). Since first two items grow to-
gether, they share a memory quota. Then the block size is deter-
mined by loading more cells from A until the memory quota is
used up. The rest of the memory is given to the cache of B. With
constrained memory, items (1) and (2) should be given as much
memory as possible. Intuitively, the more memory is given to (1)
and (2), the fewer batches and fewer duplicate reads of the same B
cell due to the overlapping subarray regions on B.

Next we build a cost model for SBJ under the store-multiple
scheme which can be used to find the optimal step size during data
loading given basic data statistics. We use the symbols in Table 1
with subscripts to distinguish inner and outer arrays.

I/O cost: We model the numbers of A and B chunks read in I/O
and later translate them to seek and transfer times. First consider
the outer array A, which is read exactly once. Its number of chunks,
denoted by ||A||, is the total number of tuple copies, denoted by |A|,
divided by the number of tuple copies per chunk. Based on Eq. (2)
in §3.3, we have:

|A| = TA

d∏
i=1

(⌊
prA,i/sA,i
2kA,i + 1

⌋
+ 1

)
, ||A|| = |A|/ bc/bAc .

Now consider the inner array B. Each cell in B may be read mul-
tiple times as it can exist in the results of Subarray queries formed
from different A blocks. Hence, the I/O cost for reading B is the
product of (1) the number of A blocks, αRA , (2) the number of B
cells to read per A block, denoted by βRA , and (3) the number of
chunks per B cell, ||CB||. Below we model each of them in order.

We first model αRA . Assume that a memory quota of K chunks
is given to the A block and its mapping. Then the number of cells
in each A block, nRA , isK/(||CA||+ ||MCA ||), where ||CA|| is the
number of chunks per A cell and ||MCA || is the number of chunks
for the mapping entries per A cell. It is easy to see that

||CA|| = ||A||
/ d∏
i=1

nA,i.

According to Proposition 4.3, the subarray condition formed for
cell CA expands CA by A’s step size and then by δ, so the length
of the Subarray query on dimension di is (1 + 2kA,i)sA,i + 2δ.
It amounts to ((1 + 2kA,i)sA,i + 2δ) /sB,i + 1 cells in the B array

9

according to Eq. (1). When running this query on B, the number of
candidate cells of CA is:

βCA =

d∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
(6)

Assuming that each mapping entry has bmap bytes, we have:

||MCA || = βCA ·
bmap
c

.

We then get the number of A blocks as the total number of cells
divided by the number of cells in each RA block:

αRA =

∏d
i=1 nA,i

nRA
=

(||CA||+ ||MCA ||)
∏d
i=1 nA,i

K

We next model the second factor, βRA . For the current read block
RA, we take the union of B cells returned by the Subarray query
formed for each A cell. This union is equivalent to the set of B
cells returned by a single Subarray query formed for the entire read
block RA. Hence, similar to Eq. (6), we can get βRA as follows:

βRA =
d∏
i=1

 (n
1
d

RA + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

 .

We can get the last factor ||CB|| in the same way as ||CA||.
CPU cost: The CPU cost is the product of the number of tuple

pairs to be validated, which we will model below, and the validation
cost per tuple pair. According to our algorithm, tuples in each cell
CA are paired with the tuples in CA’s candidate cells and all such
tuple pairs need to be validated. Therefore, the number of tuple
pairs is the product of (1) the number of tuple copies in A, (2) the
number of candidate cells per A cell, and (3) the number of tuple
copies per B cell. Using Eq. (6), we compute the product as:

|A| ·
d∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
· |B|∏d

i=1 nB,i

Finally, the combined IO and CPU model allows us to find the
optimal step sizes for both inner and outer arrays if proximity join
is the key workload. Basic statistics needed are the distribution of
tuples’ possible ranges and the common distance values in proxim-
ity join. Collecting such statistics is a common task of the query
optimizer and we can leverage a large body of work on relational
DBMSs in our setting.

5. EXPERIMENTS
In this section, we evaluate our techniques for Subarray and

Structure-Join intensively using both a wide range of synthetic work-
loads with controlled properties and a case study of the Sloan Dig-
ital Sky Survey (SDSS) [23].

5.1 Evaluation of Subarray
Experimental Setup. We first generate synthetic workloads using
parameters in Table 2. We consider 2D arrays where each dimen-
sion includes 100 cells of size 1. The dataset contains 500,000
tuples. In a tuple, each dimension attribute is described by a Gaus-
sian distribution, (µ, σ); without loss of generality, we consider the
tuple’s possible range on this dimension to be µ± 3σ. In the array,
the µ values determine where the centers of tuples’ possible ranges
are located. We generate these values using the distribution, Dµ,
which is set to a uniform distribution over the domain (0,100) or a
Gaussian distribution with more tuples clustered at the center. The
σ values determine how wide tuples’ possible ranges are: they are
generated from the distribution Dσ , which is a Zipfian distribution

Parameter Default Other
Value Values

Data Dµ, distribution of µ U(0, 100) N (50, 50/3)
Dσ , distribution of σ zipf (1) zipf (0) - zipf (3)

Query q, query range / domain size 10% 30%, 50%
λ, probability threshold 0.9 0.01

Table 2: Parameters in Subarray experiments.

on a set of values {1/12, 2/12, . . . , 400/12} with a configurable
skewness parameter α. This way, tuples’ possible ranges can vary
from a single cell, to multiple cells, to the entire array, and with
α=0 they are all equally likely whereas a larger α produces more
tuples with smaller possible ranges. We generate a dataset for each
combination of Dµ and Dσ configurations.

To generate queries, we vary the query size, q, between 10%,
30% and 50% of the domain for each dimension. The probability
threshold, λ, prunes tuples based on the existence probability in
the query region. In the common case, the user wants only the
tuples with high existence probabilities; we use λ=0.9 to represent
this workload. However, if the query includes an aggregate after
Subarray, a tuple that has a low existence probability, p, in the
query region but a large value, v, of the aggregate attribute may
contribute a modest value, p · v, to the aggregate. Hence, knowing
the domain of v, it is only safe to prune tuples with low existence
probabilities; we use λ=0.01 to represent this workload.

Expt 1: Cost Breakdown. Our store-multiple scheme has a con-
figurable parameter, step size k, which determines both the degree
of replication and query expansion. We start by showing how the
Subarray processing cost changes as k varies. We first consider
the default workload, (Dµ=U , Dσ=zipf(1); q=10%, λ=0.9), or
abbreviated as (U , zipf(1); 10%, 0.9). Fig. 9(a) shows two trends:

(1) The I/O cost first decreases and then increases with the step
size. I/O is determined by both the number of cells in the expanded
query region and the number of chunks per cell. When k is small,
which means more aggressive replication of tuples, the expanded
query region is small, but the number of chunks per cell is large and
has a stronger impact on I/O. As k grows larger, fewer tuples are
replicated, so each cell is smaller. But the expanded query region
becomes very wide and affects I/O cost more. So the optimal I/O
cost appears in the middle of the spectrum of k.

(2) The CPU cost does not change with the step size when the
probability threshold λ is high. The CPU cost depends on the num-
ber of tuples that passed the quick filter and need to be validated
using expensive integration. Fig. 9(c) shows the number of tuples
that pass the filter. When λ is sufficiently high,≥ 0.1 in this figure,
the filter can drop most irrelevant tuples, so the number of tuples
after filtering does not change with the step size, or the number
of tuples retrieved from storage. We also examined the filter’s ef-
fect using datasets beyond the default setting of the parameters in
Table 2. Our observation of the filtering power is consistent.

We next consider a new workload with λ = 0.01 and show the
CPU and I/O costs in Fig. 9(b). The I/O cost is the same as Fig. 9(a)
because it is not effected by λ. The CPU cost now grows with k
because (1) a larger step size means a larger expanded query region
and more tuples retrieved from storage, and (2) the filter is not able
to drop many tuples given such a small threshold, illustrated by the
blue line in Fig. 9(c). Combing both CPU and I/O costs, the optimal
step size also appears in the middle of its spectrum.

Expt 2: Optimal Step Size. To show the challenge of finding the
optimal step size, we next study how the optimal step size changes
with the workload parameters in Table 2.

We first examine the effect of the skewness of the distribution
of σ. Fig. 9(d) shows three lines for different datasets, zipf(0),
zipf(1) and zipf(2), when λ = 0.9. We can observe that the
optimal step size decreases with the skewness of the distribution of

10

��

������

�������

�������

�������

�������

�������

� � � � � �� �� ��

�
��

��
��

��

���������

��

���

(a) Cost breakdown with varied step sizes for
workload (U , zipf(1); 10%, 0.9)

��

������

�������

�������

�������

�������

�������

� � � � � �� �� ��

�
��

��
��

��

���������

��

���

(b) Cost breakdown with varied step sizes for
workload (U , zipf(1); 10%, 0.01)

�����

�����

�����

� � � � � �� �� ��

�
��
��
�
�
�
��
��
��
��
��
�
��
��
��
�
�

���������

�����������

��������������

�������������

�������������

�������������

(c) Tuple counts after filtering for different
threshold λ values (U , zipf(1); 10%, λ)

�����

�����

�����

�����

�����

� � � � � �� �� ��

�
��

��
��

��

���������

�������
�������
�������

(d) Costs for datasets with different skews of the
σ distribution (U , zipf(·); 10%, 0.9)

�����

�����

�����

�����

�����

� � � � � �� �� ��

�
��

��
��

��

���������

�������
�������
�������

(e) Costs for datasets with different skews of the
σ distribution (U , zipf(·); 10%, 0.01)

�����

�����

�����

�����

� � � � � �� �� ��

�
��

��
��

��

���������

�����
�����
�����

(f) Cost for (U , zipf(1); q, 0.9) with different
query sizes

������

������

������

������

��������������������������������������

�
��

�
��
�
��

���������
����������
���������

(g) Compare store-all, store-mean, and
store-multiple for dataset (U , zipf(1))

������

������

������

������

��������������������������������������

�
��

�
��
�
��

���������
����������
���������

(h) Compare store-all, store-mean, and
store-multiple for dataset (N , zipf(1))

������

������

������

������

��������������������������������������

�
��

�
��
�
��

���������
����������

���������

(i) Compare store-all, store-mean, and
store-multiple for dataset (U , zipf(2))

Figure 9: Subarray on two-dimensional synthetic datasets.

σ. Recall that the CPU cost is the same for all step size configura-
tions when λ is sufficiently high, and the I/O cost is minimized at a
particular step size, before which the number of chunks per cell af-
fects the I/O more than the expanded query size but after which it is
the converse. Given increased skewness α, more tuples have small
possible ranges, so the limited tuple replication keeps the number
of chunks per cell small, hence its impact on I/O. We observe the
same trend where we change the probability threshold, λ, to 0.01,
as shown by Fig. 9(e).

We next demonstrate the effect of probability threshold λ. Com-
paring lines of the same color in Fig. 9(d) and Fig. 9(e), it can be
seen that the optimal step size shifts left when λ is very small. The
reason is that I/O cost does not change for different λ values, but
the CPU cost grows with the step size when λ is very small because
the filters are not as effective, as shown by Fig. 9(c).

We finally study the effect of the query region size. Fig. 9(f)
shows that the optimal step size increases with the query region
size. Recall that the I/O cost is affected by both the number of
chunks per cell, which only depends on the step size k, and the
expanded query size, which depends on both k and the query size
q. The bigger q, the less sensitive the expanded query size is to the
change of k. Therefore when q is big, a bigger step size leads to
less number of chunks per cell without being penalized much by
the bigger expanded query region it brings, hence less I/O. CPU is
the same for all values of k when λ = 0.9. Therefore, the optimal

step size is bigger than that for a small query. We made the same
observation when λ = 0.01, with the optimal step size under each
query size shifting left, as explained earlier.

Expt 3: Model Accuracy. We now use the cost model in §3.3
to determine the step size to be used when loading data into an
array. We assume that the user can provide basic statistics includ-
ing the σ distribution in the data and common Subarray sizes.
We denote the optimal step size k∗, and the step size returned by
our model k̃. We measure the performance lose of our model,(
Cost(k̃)− Cost(k∗)

)
/Cost(k∗). When tuples’ mean values,

µ, are normally distributed around the center of the array, the cen-
ter of the query region matters as the data density varies. For such
datasets, we pick 9 query centers, with one at (50,50) and others
evenly scattered over the array, and report on the average of 9 runs.

The results for different datasets for query size q = 10% and
q = 50% are shown in Table 3. In most cases, our model returns
the optimal step size. Even when it does not, the performance lose
is within 3.5% when the tuples’ µ values are uniformly distributed.
When the µ values are normally distributed, instead, the model as-
sumes an even distribution of tuple’s mean, and hence can be off
sometimes, but the overall performance loss is within 11%. But we
can still use the model as a heuristic because we observe the follow-
ing when looking at the result for each query center: (1) The model
is likely to give an overestimated step size for the sparse region,

11

Dµ Dσ q λ
optimal model perf.
step size step size lose

U(0, 100)

zipf (0)
10% 0.9 [16,16] [16,16] 0%

0.01 [8,8] [8,8] 0%

50% 0.9 [64,64] [64,64] 0%
0.01 [64,64] [64,64] 0%

zipf (1)
10% 0.9 [8,8] [4,4] 3.5%

0.01 [2,2] [2,2] 0%

50% 0.9 [64,64] [64,64] 0%
0.01 [8,8] [8,8] 0%

zipf (2)
10% 0.9 [2,2] [1,1] 1.51%

0.01 [1,1] [0,0] 3.41%

50% 0.9 [2,2] [1,1] 3.37%
0.01 [2,2] [1,1] 1.06%

N (50, 50/3)

zipf (0)
10% 0.9 [16,16] [16,16] 0%

0.01 [8,8] [8,8] 0%

50% 0.9 [64,64] [64,64] 0%
0.01 [64,64] [64,64] 0%

zipf (1)
10% 0.9 [8,8] [4,4] 9.89%

0.01 [8,8] [4,4] 0.96%

50% 0.9 [64,64] [64,64] 0%
0.01 [32,32] [16,16] 0.79%

zipf (2)
10% 0.9 [1,1] [1,1] 0%

0.01 [1,1] [1,1] 0%

50% 0.9 [4,4] [1,1] 10.88%
0.01 [4,4] [1,1] 9.03%

Table 3: Subarray model accuracy.

because decreasing the step size in the sparse region only further
fills the current chunk rather than requesting more chunks but can
result in a smaller expanded query region. (2) The model is likely
to return an underestimated step size for the dense region. This is
because, although increasing the step size enlarges the expanded
query region, it drastically decreases the number of chunks per cell
due to the dense inherence.

Expt 4: Comparison among Schemes. We now use the step size
returned by the model to configure store-multiple and compare it to
store-all and store-mean with fences for Subarray evaluation. The
results are shown in a log scale in Fig. 9(g)-9(i), each for a unique
data workload. Each plot shows 4 queries, one for each combina-
tion of a small or big query region and a high or low threshold.

In all cases, store-multiple works the best. In comparison, store-
all often incurs tremendous storage overheads and I/O costs in query-
ing, as shown in Fig. 9(g) and 9(h). The only exception is when
most tuples’ possible ranges are small enough to fit in a single cell,
as shown for the dataset in Fig. 9(i): store-all then incurs only
a small storage overhead for the few tuples that have large vari-
ances. Moreover, store-multiple outperforms store-mean consider-
ably when the query region q is relatively small, e.g., q=10%, which
is the common case, due to a more constrained expanded query re-
gion. When q grows larger, e.g., q=30%, the difference between
store-multiple and store-mean is reduced because the optimal step
size also tends to be larger, meaning that infrequent replication of
tuples works just fine if q is large. As such, most tuples have only
one copy under store-multiple, hence similar to store-mean.

5.2 Evaluation of Structure-Join
Experimental Setup. We generate synthetic workloads for Structure-
Join as before with a few changes: For efficiency, we first consider
1D arrays of 1000 cells and datasets of 100,000 tuples. We will
show results on two-dimensional arrays and larger datasets in the
case study. We consider SJoin (A1,A2, |A1.x− A2.x| < δ, λ),
where A1 and A2 are loaded from the same dataset, and we fix δ
to 1% of the domain for proximity join. The memory size is about
176 chunks, i.e., 30% of the data size. We use a state-of-the-art
index on continuous uncertain data [16] whenever possible, e.g., in
the Index-based Join and as an in-memory filter in Subarray-based
Join (detailed later). This index returns only true matches on 1D

arrays, so validation is not needed.

Expt 5: Index-Based Join (IBJ). We first study the Index-based
Join, which is sensitive to: (1) the selectivity, which we control
using the probability threshold λ, (2) the storage scheme, and (3)
the memory allocation scheme.

We first use λ=0.9 or 0.01 to represent high or low selectiv-
ity. IBJ failed on all datasets when λ=0.01 regardless of memory
allocation and storage schemes, because a single tuple can have
so many matches that its mapping entries do not fit in memory.
Hence, we consider only λ=0.9 below.

We next consider the effect of the storage scheme. As stated in
§3.3, when array A is under store-multiple, it can still be processed
as store-mean. Our question is whether IBJ works better by consid-
ering multiple tuple copies or only the copy at mean (ignoring other
copies). We observe that for the outer array, it is always better to
use only the copy at mean because it avoids duplicate index lookups
for the same outer tuple. For the inner array, Fig. 10(a) shows the
performance of store-multiple with different k values and that of
store-mean on zipf(1) dataset, where each line denotes a different
memory allocation scheme (discussed shortly). As is seen, IBJ has
the best performance when the inner array uses store-mean under
all memory allocation schemes. The reason is that after the index
lookups return all candidate tuples, fetching all of them from the
inner array requires more I/O when nonviable tuples have a copy
stored in the to-read cells (chunks), which is less likely to happen
with a lower degree of replication. The observation also holds for
zipf(0) and zipf(2). Hence, for better performance, IBJ should
consider only the tuple copy at the mean in the underlying storage.

Finally, we examine memory allocation among: i) the outer block
and associated mappings; ii) the cache of index nodes; and iii) the
cache of inner cells (or chunks). As in relational DBMS’s, the third
factor is least important, so we fix it to 1 chunk to focus on others.
As Fig. 6 shows, when IBJ runs on store-mean or store-multiple
with large step sizes (≥ 32), the I/O is dominated by the index I/O,
not the inner array I/O. Hence, the more memory is given to the
index, the better performance we obtain.

Expt 6: Subarray-Based Join (SBJ). The performance of SBJ is
affected by the I/O cost for running repeated Subarray queries
on the inner array, and the CPU cost for validating paired tuples.
To reduce CPU cost, as we pair tuples from an outer cell and its
candidate cell, we implement a filter [16] to prune nonviable pairs
quickly. SBJ enjoys a memory allocation scheme of giving most
memory to the outer block and its mapping, which is used below.

We first demonstrate that SBJ’s performance is sensitive to the
storage scheme. Fig. 10(b) shows various combinations of the outer
step size, kout, and inner step size, kin, with λ= 0.9. The x-axis
shows different values of kin. Each line represents a fixed value of
kout, with the corresponding optimal inner step size circled. There
are two main trends: (1) For a fixed kout, the optimal inner step
size k∗in is in the middle of its spectrum. As explained in Expt 1,
the inner I/O first decreases and then increases with its step size. (2)
Once kin is fixed, the optimal k∗out also occurs in the middle, be-
cause it achieves the best tradeoff between the pairing and filtering
costs for the same outer tuple, which decreases with kout, and the
number of candidate cells to consider, which increases with kout.
The conclusion holds when λ = 0.01.

Next we show that the cost model in §4.2.2 can predicate the
performance of SBJ so that given basic statistics, we can use it to
choose the optimal step size configuration during data loading (if
SJoin is known to the key workload). We again use the performance
loss to evaluate the model accuracy. The results are shown in Ta-
ble 4, where 〈kout〉; 〈kin〉 denotes the outer and inner step sizes.
The model returns the optimal step sizes in all cases tested.

12

�����

�����

�����

�����

�����

�����

�����

�������

�������

� � � � �� �� �� ��������� ����

�
��

��
��

��

���������������

����������
����������
����������
����������

(a) IBJ cost w.r.t. step size of the inner array for
(zipf(1); 1%, 0.9)

�����

�����

�����

�����

� � � � �� �� �� ��� ��� ���

�
��

��
��

��

���������������

�����������������
�����������������

������������������
�������������������

����

(b) SBJ cost w.r.t. step size of the inner array for
(zipf(1); 1%, 0.9)

������

������

������

������

������

������

�������

������� ������� ������� �������

�
��

�
��
�
��

����
���
���

(c) Compare BNLJ, IBJ and SBJ for data and
query workload (Dσ ; 1%, 0.9)

������

������

������

������

������

������

������� ������� ������� �������

�
��

�
��
�
��

����
���

(d) Compare BNLJ, IBJ and SBJ for data and
query workload (Dσ ; 1%, 0.01)

������

������

������

������

��������������������������������������

�
��

�
��
�
��

���������
����������

��������������
��������������

(e) SDSS Case study: store-all v.s. store-mean
v.s. store-multiple for Subarray

������

�������

�������� ���������

�
��

�
��
�
��

����
��������
��������

(f) SDSS Case study: BNLJ v.s. SBJ for
Structure-Join

Figure 10: Structure-Join results and the Case Study.

Dµ Dσ λ
optimal model perf.
step size step size loss

U(0, 1000)

zipf (0) 0.9 〈512〉;〈512〉 〈512〉;〈512〉 0%
0.01 〈512〉;〈512〉 〈512〉;〈512〉 0%

zipf (1) 0.9 〈64〉;〈128〉 〈64〉;〈128〉 0%
0.01 〈512〉;〈512〉 〈512〉;〈512〉 0%

zipf (2) 0.9 〈4〉;〈4〉 〈4〉;〈4〉 0%
0.01 〈4〉;〈4〉 〈4〉;〈4〉 0%

Table 4: SBJ Model Accuracy when δ = 1%

Expt 7: Comparison of Join Algorithms. We now use the step
size returned by the model to configure SBJ, and compare it to
IBJ and block nested loops joins (BNLJ) where both inner and
outer arrays are stored using store-mean. The result is shown in
Fig. 10(c) and Fig. 10(d) with one group of bars per dataset. As is
mentioned in Expt 4, IBJ failed when λ = 0.01 due to the huge
tuple-level mapping used. When λ = 0.9, IBJ still works poorly
due to the tremendous index I/Os. For zipf(0) and zipf(1), BNLJ
works better than SBJ because when many tuples have large possi-
ble ranges, the optimal step size configuration for SBJ is large (as
shown in Table 4) which makes the expanded query region close to
the entire inner array. Since SBJ consumes memory for maintain-
ing the cell-level mapping, it requires more outer blocks than BNLJ
and hence more repeated inner I/Os. But for zipf(2) and zipf(3)
with fewer tuples of large variances, which represent more com-
mon workloads as show in our case study, SBJ outperforms BNLJ,
e.g., 20% better when λ=0.9 and 95% better when λ=0.01. This is
because SBJ does not incur much storage overhead and can effec-
tively limit the number of inner cells to be loaded.

5.3 A Case Study using SDSS
We finally evaluate our techniques using the SDSS [23] dataset,

which uses two dimension attributes rowc and colc and includes
1,893,685 tuples. Most tuples have small possible ranges; the Zip-
fian distribution fitted over the possible range sizes have skewness
2.4 for both rowc and colc. The subarray model in §3.3 suggests
〈1, 1〉 as the step size configuration regardless of the query size,
while the SBJ model in §4.2.2 suggests 〈2, 2〉 when δ = 1% of

the domain size is taken as a common workload for proximity join.
When the two models do not return the same step size, the user
should choose the right model by considering the importance (e.g.,
frequency and cost) of each type of query.

Regarding storage overheads, for the step size configuration 〈1, 1〉,
79.28% of tuples have only one copy and 92.36% of tuples have
at most three copies, and the numbers for 〈2, 2〉 are 90.84% and
98.82%. As such, store-multiple incurs only a modest storage over-
head when most tuples have concentrated distributions.

The Subarray performance is shown in Fig. 10(e). Although the
two models return different step sizes, when the query is 10% of
the domain size for each dimension, they both improve store-mean
with fences by over 95% and store-all by over 13%. When the
query is 30%, the numbers are 73% and 19%, respectively.

For Structure-Join, we compare SBJ only to the baseline BNLJ,
since IBJ is shown to work poorly in §5.2. For multi-dimensional
join, the filter [16] returns a superset of true matches. Therefore,
different from the experiments in §5.2, the validation which in-
volves an expensive integral per tuple pair also contributes to the
CPU cost. The result is shown in Fig. 10(f). When input arrays are
configured by the SBJ model, SBJ achieves 17.3% improvement
over BNLJ when λ = 0.9 and 62.2% improvement when λ = 0.01.
When input arrays are configured by the subarray model, the per-
formance gains are 10.1% and 58.5%, respectively.

6. RELATED WORK
Most relevant techniques have been discussed in earlier sections.

Below, we survey several broader areas.
Probabilistic processing under the array model. Recent work [12]
observes that correlations in array data are mostly restricted to lo-
cal areas and proposes a unified model for modeling both corre-
lated data and physical storage. Monte Carlo processing has also
been studied for join and sampling for uncertain array data [11]. As
stated earlier, this line of work focuses on only value uncertainty in
array data but not position uncertainty, i.e., it does consider the fact
that uncertain attributes can be used as dimension attributes.

13

Indexing uncertain data. Recent work has addressed indexing
uncertain data. Some existing indexes in relational probabilistic
databases [7, 6, 10, 16] can be used in our index-based join or
serve as filters to reduce validation cost in subarray evaluation and
subarray-based join. Other indexes [17, 2, 1] are designed for
nearest-neighbor queries, hence not directly applicable to our work.

7. CONCLUSIONS
In this paper, we addressed uncertain data management in ar-

ray databases, which may involve both value uncertainty and po-
sition uncertainty. To support array operations under position un-
certainty, we proposed a number of storage and evaluation schemes
for Subarray, in particular, the store-multiple scheme, and building
on that, the index-based join and subarray-based join for Structure-
Join. Evaluation results show that for Subarray, store-multiple out-
performs other alternatives by using a cost model to configure the
storage and bounding the overhead of querying. For Structure-Join,
the subarray-based join outperforms the index-based join by con-
figuring the storage for the workload and avoiding many overheads
in processing. Our case study using SDSS shows that for realistic
datasets, the storage overhead of the store-multiple scheme is very
limited and our best techniques for Subarray and Structure-Join
outperform the baselines often by a wide margin.

In future work, we plan to extend our implementation to a broader
set of array operations and integrate our techniques, which are fun-
damentally based on tuple-level replication, in big data systems that
inherently maintain replicas for reasons like fault tolerance.

8. REFERENCES
[1] P. K. Agarwal, et al. Nearest-neighbor searching under

uncertainty II. In PODS, 2013.
[2] P. K. Agarwal, et al. Nearest-neighbor searching under

uncertainty. In PODS, 2012.
[3] P. G. Brown. Overview of SciDB: large scale array storage,

processing and analysis. In SIGMOD, 2010.
[4] R. Cheng, et al. Evaluating probabilistic queries over

imprecise data. In SIGMOD, 2003.
[5] R. Cheng, et al. U-DBMS: a database system for managing

constantly-evolving data. In VLDB, 2005.
[6] R. Cheng, et al. Efficient join processing over uncertain data.

In CIKM, 2006.
[7] R. Cheng, et al. Efficient indexing methods for probabilistic

threshold queries over uncertain data. In VLDB, 2004.
[8] P. Cudré-Mauroux, et al. A demonstration of scidb: A

science-oriented dbms. PVLDB, 2009.
[9] Y. Diao, et al. Capturing data uncertainty in high-volume

stream processing. In CIDR, 2009.
[10] T. Ge. Join queries on uncertain data: Semantics and efficient

processing. In ICDE, 2011.
[11] T. Ge, et al. Monte carlo query processing of uncertain

multidimensional array data. In ICDE, 2011.
[12] T. Ge and S. B. Zdonik. A*-tree: A structure for storage and

modeling of uncertain multidimensional arrays. PVLDB,
2010.

[13] H. Kimura, et al. UPI: A primary index for uncertain
databases. PVLDB, 2010.

[14] J. F. Kurose, et al. An end-user-responsive sensor network
architecture for hazardous weather detection, prediction and
response. In AINTEC, 2006.

[15] Large synoptic survey telescope: the widest, fastest, deepest
eye of the new digital age. http://www.lsst.org/.

[16] L. Peng, et al. Optimizing probabilistic query processing on
continuous uncertain data. PVLDB, 2011.

[17] B. E. Ruttenberg and A. K. Singh. Indexing the earth movers
distance using normal distributions. In VLDB, 2012.

[18] SciDB. SciDB array functional language 11.06. http://
trac.scidb.org/wiki/Docs/Release_11.06/.

[19] M. Stonebraker, et al. One size fits all? part 2:
Benchmarking studies. In CIDR, 2007.

[20] M. Stonebraker, et al. Requirements for science data bases
and scidb. In CIDR, 2009.

[21] M. Stonebraker, et al. The architecture of scidb. In SSDBM,
2011.

[22] D. Suciu, et al. Embracing uncertainty in large-scale
computational astrophysics. In MUD, 2009.

[23] A. S. Szalay, et al. Designing and mining multi-terabyte
astronomy archives: The sloan digital sky survey. In
SIGMOD, 2000.

[24] T. T. L. Tran, et al. CLARO: modeling and processing
uncertain data streams. VLDB J., 21(5):651–676, 2012.

[25] T. T. L. Tran, et al. PODS: a new model and processing
algorithms for uncertain data streams. In SIGMOD, 2010.

14

