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Abstract—We analyze the tradeoff between the amount of
signaling overhead incurred in path selection in a MANET
with time-varying wireless channels and the application-level
throughput and end-to-end power expended on the selected
path. Here, increased overhead increases the accuracy of the
link-state estimates used in path selection but decreases the
amount of bandwidth available for application use. We develop
an information-theoretic, bounding approach to quantify the
signaling overhead. Specifically, we investigate (i) the time
granularity at which link state is sampled and communicated,
and (ii) the minimum number of bits needed to encode this link
state information, such that the expected power consumption
within a sampling interval is minimized subject to a fixed source-
destination goodput constraint. We formulate an optimization
problem that provides a numerically computable solution to these
questions, and quantitatively demonstrate that short sampling
intervals incur significant overhead while long intervals fail
to take advantage of the temporal correlation in link state.
Additionally, we find that using a small number bits per sample
do not provide sufficient information about the network while
using too many bits provide little additional information at the
expense of increased overhead. Our work can be used by network
operators as a tool to determine parameters like the optimal state
update frequency and the number of bits per sample.

I. INTRODUCTION

The overhead of gathering state/control information (e.g.,

link states, node locations, queue lengths) can be significant

in a mobile ad-hoc wireless network (MANET) when band-

width is limited and network structure and state may change

frequently. In such dynamic scenarios, it is still advantageous

to collect state information, provided that this information

leads to better decisions that more than compensate for the

additional overhead incurred. For example, the decrease in

available path bandwidth as a result of state gathering overhead

may be more than compensated for by the choice of better

paths for routing data packets. Efficient bandwidth use is not

the only metric of concern in ad hoc networks; since nodes

are typically battery powered, minimizing power consumption

is also important.

Understanding the tradeoff between the cost incurred in

state information collection in a network and the resulting

performance is a fundamental, yet largely unexplored problem.

In this paper, we analyze this tradeoff between the amount of

state information collected (at what precision?, how often?)

and overhead incurred, and the resulting performance in wire-

less networks while providing goodput guarantees. We develop

an information-theoretic, bounding approach to analyze the

tradeoff between the amount of signaling overhead incurred

in path selection in a MANET with time-varying wireless

channels and the application-level throughput and end-to-

end power expended on the selected path. Most prior work

characterizing the impact of control overhead on performance

in wireless networks has relied on simulation [1] or analysis of

specific topologies [2]. We take a more abstract, information-

theoretic approach to characterize this tradeoff. Our work

is closest to Wang et.al [3], which adopts an information-

theoretic approach to characterizing the overhead of link

state routing. We differ from [3] in that we consider the

path selection problem and analyze the tradeoff between the

signaling overhead (state update frequency and the number

of bits per sample) and power consumption in time-varying

channels while satisfying goodput constraints.

We consider a network of n nodes with multiple source-

destination pairs. We assume each source has m disjoint paths

to the destination with k links on each path and that time is

divided into intervals. At the beginning of every interval, each

source collects ‘noisy’ estimates about the links in the network.

By ‘noise’ we refer to the quantization error arising from finite

precision representation of link states. The link state estimates

in our model characterize the (time-varying) effect of shadow-

ing on the received power. Shadowing is the variation in signal

strength at the seconds timescale caused by large objects (e.g.

buildings, trees) between the transmitter and receiver and is

modeled in the standard fashion as being independent of the

distance between the transmitter and receiver.

We use the information-theoretic rate-distortion approach

to quantify the noise in the link measurements - as we use

more bits to encode time-varying link state, the fidelity of the

estimates increase, but the control overhead also increases.

Moreover, we assume each source also desires to achieve

a fixed amount of goodput, which is defined as the total

throughput (including control and data) minus the control

overhead. The goal of the source is to select a path i among

the m paths such that the expected power consumed in the

interval is minimized. The problem can be then stated in the

following manner.

At what time granularity should links be sampled and at

what rate (bits) should link values be encoded such that the

expected power in any interval is minimized subject to a fixed

source-to-destination goodput constraint? We formulate an op-

timization problem which provides a numerically computable
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solution to these questions. The optimization problem takes

as input the desired goodput, and leverages the distribution

and autocorrelation of the shadowing process to determine the

optimum value of the sampling interval and the number of

bits per sample such that minimum power is consumed. Our

optimization problem is solved off-line and provides network

operators a tool for determining optimal operating points (state

update frequency, bits per sample).

As expected, our evaluation quantitatively demonstrates that

short sampling intervals incur significant overhead while long

intervals fail to take advantage of the temporal correlation in

link state. We also observe that using a small number bits per

sample do not provide sufficient information about the network

while using too many bits provides little additional informa-

tion at the expense of increased overhead. Additionally, we

simulate a network with varying link states and compare the

performance of the numerical and simulation results.

The rest of paper is organized as follows. In Section II,

we discuss related work and then provide a brief overview

of rate distortion in Section III. We describe our network

model and the optimization problem in Sections IV and V

respectively. We then provide a solution for the optimization

problem in Sections VI and VII. We present the numerical

and simulation results in Sections VIII and IX respectively

and finally conclude the paper in Section X.

II. RELATED WORK

Most prior work has adopted simulation-based techniques

to study the overhead of routing protocols in mobile wireless

networks. In [1], the authors study via simulation the impact of

mobility (i.e. maximum speed of nodes) on the overhead and

reliability of AODV and OLSR. Similarly, simulation has been

used to study the performance of these protocols in VANETs

[4]. The authors compare overhead, packet delivery ratio and

delay of OLSR and AODV with respect to data traffic rate,

velocity and density of nodes and conclude that globally OLSR

outperforms AODV in VANETs. An earlier study [5] done

along similar lines for MANETs concludes that none of these

protocols outperforms the other; the two protocols complement

each other and provide benefits in different domains. Viennot

et. al [6] provide an analysis of control traffic for reactive

and proactive protocols in MANETs. They derive a simple

model by considering the average degree per node, the average

number of routes created/sec and the number of simultaneous

active routes to model the control overhead. To model mobility

they consider link breakage and creation while the average

length of each route is considered to model the shape of

the network. They then compare this analytical approach with

simulation results for AODV, DSR and OLSR.

Theoretical studies characterizing the overhead of routing

protocols in MANETs has been done by Abouzeid et. al

[7], [8], [9], [3]. Zhou and Abouzeid [7] mathematically

analyze the overhead of the reactive routing protocols and

estimate the overhead associated with route discovery and

route failure. Their analysis is developed in the context of

an unreliable network modeled by: 1) an unreliable Manhattan

(i.e., degree 4) grid and 2) a random Poisson point distribution

of nodes each having equal coverage radius. They validate

their numerical results via simulations of regular and random

topologies. Information-theoretic techniques have been used

to obtain lower bounds on memory requirements and routing

overhead for hierarchical proactive routing in mobile ad hoc

networks in [8]. The authors study the overhead of cluster-

based routing protocols in MANETs in [9] and demonstrate

the importance of traffic patterns in determining the protocol

scalability. In [10] the authors capture the tradeoff in the

scaling between the transport capacity and the size of the

routing table while the tradeoff between network properties

such as connectivity, unpredictability and resource contention

and state (control or data or both) information collection has

been studied by Manfredi et. al [11].

Our work is closest to [3] where the authors use rate-

distortion techniques (an information-theoretic approach) for

analyzing the protocol overhead of link state MANET routing.

They derive lower bounds on the minimum bit-rate at which

a node must receive link state information in order to route

data packets with a guaranteed delivery ratio. We differ

from the above mentioned works because we consider the

path selection problem and analyze the tradeoff between the

signaling overhead (state update frequency and the number

of bits per sample) and power consumption in time-varying

channels while providing goodput guarantees.

Power consumption in wireless networks is also a well

explored field [12], [13], [14]. In [12] the authors consider

the problem of joint routing, scheduling and power control

in wireless networks and provide an approximate algorithm

with performance guarantees to address it. Liu et.al [13] study

the optimal power allocation scheme which maximizes the

throughput with delay and average power consumption con-

straints. Network lifetime maximization for an arbitrary data-

gathering tree of wireless nodes has be explored in [14] and the

authors propose an optimal binary search algorithm for power

allocation to achieve the objective. The primary difference

between existing literature on power optimization and our

work is that we model state gathering overhead/costs and are

interested in determining the optimal sampling frequency and

number of bits for encoding samples so as to minimize the

power dissipation while maintaining a fixed goodput.

III. BACKGROUND

We begin with a brief overview of information-theoretic

rate-distortion theory. A thorough description of this approach

is available in [15]. Our goal here is to introduce the reader to

this technique and understand its application to our problem.

Rate distortion theory describes the minimum rate (bits)

required to achieve a particular distortion, where distortion

is defined as the expected distance between a random variable

and its reconstruction from its representation in bits (i.e,

quantization). The theory also tells us that given a sequence

of n i.id. random variables it is possible to achieve a lower

rate at a given distortion if we represent the sequence of the

n variables jointly instead of considering them individually.

Let X be the (source/encoded) alphabet and X̂ be the

(receiver/decoded) alphabet. Similarly Xn and X̂n denote

the encoded and decoded sequences and f and g are the

encoding and decoding functions respectively. The distortion
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d(x, x̂) is a measure of the cost of representing the symbol x
by the symbol x̂. The distortion between two sequences xn

and x̂n is denoted by d(xn, x̂n) is defined as d(xn, x̂n) =

1
n

n
∑

i=1

d(xi, x̂i). For a given encoding and decoding scheme,

D = E[d(Xn, g(f(X̂n))] where the expectation is calculated

over X .

The rate distortion function R(D) for an i.i.d. source X with

distribution p(x) and bounded distortion function d(x, x̂) is

equal to the associated information rate distortion function

R(I)(D) and is defined by equation (1).

R(D) = R(I)(D) = min
p(x|x̂):E[d(X,X̂)≤D]

I(X; X̂) (1)

where I(X; X̂) is the mutual information between X and X̂
and the minimization is taken over all possible distributions

p(x|x̂). R(D) thus represents the minimum number of bits

required to encode each symbol X , given that the entire

sequence Xn is encoded. The rate distortion function thus

tells us that there exists some f and g such that the expected

distortion is bounded by D if rate R(D) is employed.

IV. NETWORK MODEL

In this section we describe our network model and assump-

tions. We consider a network of n nodes with multiple source-

destination pairs where each source has m disjoint paths to

the destination with k links on each path. We assume time is

divided into intervals of duration Ts and at the beginning of

every interval, each source collects ‘noisy’ estimates about the

links in the network.

In our model these link state estimates characterize the

(time-varying) effect of shadowing on the received power.

Shadowing is assumed to be a lognormally distributed random

process (in dB it is normally distributed) [16]. Consider any

sampling interval and let t be a time of interest in that interval,

0 ≤ t < Ts. Let us consider the ith path and the jth link along

this path at some time t.

Let Lij(t) be the lognormal shadowing process and

X ′
ij(t) = 10 log10 Lij(t) be its value in dB. X ′

ij(t) is assumed

to be a stationary Gaussian random process with mean µ = 0
and autocorrelation function RX′(τ) = σ′2e−λτ [17]. The

autocorrelation coefficient function for any stationary random

process X ′(t) may be defined as ρ′(τ) = RX′ (τ)−µ2

RX′ (0)−µ2 . Thus for

the shadowing process, the autocorrelation coefficient function

is given by (2).

ρ′(τ) = e−λτ (2)

For ease of analysis we express lnLij(t) = ln 10
10 X ′

ij(t) =
Xij(t) replacing the logarithm to base 10 with the natural

logarithm. Hence, Xij(t) is also Gaussian random process

with mean 0 and autocorrelation function RX(τ) = σ2e−λτ

where σ2 = ( ln 10
10 )2σ′2 . The autocorrelation coefficient

function ρ(τ) = ρ′(τ) The correlation of Xij(t) indicates how

the link state varies during the sampling interval, given its

value at the beginning of the sampling interval. Knowledge of

the correlation is essential for computing the expected power

spent in an interval.

At the beginning of the sampling interval the source receives

X̂ij(0), which are ‘noisy’ estimates of Xij(0). As Xij(0) are

drawn from a continuous distribution, encoding them exactly

will require an infinite number of bits. The ‘noise’ therefore

corresponds to the quantization error and thus X̂ij(0) are finite

precision representation of Xij(0). The number of bits used

to encode the values of Xij(0) determines the closeness of

X̂ij(0) to Xij(0); thus, the inaccuracy in X̂ij(0) decrease

as more bits are used for encoding. If ǫ is the noise or

quantization error then,

X̂ij(0) = Xij(0) + ǫ (3)

We model ǫ as Gaussian noise with mean 0 and variance σ2
e

[18], [19]. We considering that all the link state values are

encoded together and sent to the source. We thus use rate-

distortion techniques to upper bound σ2
e . In particular, define

the distortion as the squared-error distortion,

d(x, x̂) = (x− x̂)2 (4)

Then σ2
e = E[(X̂ij(0) − Xij(0))

2] ≤ D. The rate distortion

function R(D) for any N(0, σ2) source with squared-error

distortion is given in [15]:

R(D) =

{

1
2 log2

σ2

D 0 ≤ D ≤ σ2

0 D > σ2
(5)

Equation (5) thus represents the minimum number of bits

required to encode each shadowing sample. It is also clear

that X̂ij(0) is a Gaussian random variable with mean 0 and

variance σ2
D given by

σ2
D = σ2

e + σ2 (6)

We assume that the path loss and thus the distance between

any two pairs of nodes in the network is the same. Later in

section VII we discuss how to relax this assumption.

V. MINIMUM POWER PROBLEM

In this section we describe the Minimum Power Problem.

Each source desires a goodput G. Let Cb and Ct be the control

overhead and the overall throughput (combined control and

data) respectively. Therefore we have Ct = G + Cb. At the

beginning of each sampling interval, the source collects noisy

link state estimates. The objective of the source is to minimize

the expected power spent in any interval to achieve goodput

G. Based on the noisy link state estimates collected, the source

calculates the expected power consumed along each of the M
paths to the destination in that sampling interval. It then selects

the path i for which the expected power consumed is least.

The goal of the Minimum Power Problem is to determine

Ts and D such that over all possible instantiations of link

estimates the expected power consumed (for transmitting both

control and data) in any sampling interval to achieve a goodput

requirement G is minimized.

Let Qi be the expected power dissipated along the ith

path in a sampling interval, given the sampling interval Ts,



4

the distortion D and the link state estimates X̂ij(0) at the

beginning of the interval. As the source selects the path

which dissipates the minimum expected power in the sampling

interval we can formally state the Minimum Power Problem

in the following manner.

Objective: min
Ts,D

E[min
i
Qi]

subject to the constraint:

Ct − Cb = G

VI. POWER CONSUMPTION AND CONTROL OVERHEAD

In this section, we begin by modeling the transmit power

expended along each path needed to achieve a fixed throughput

during the sampling interval. We then model the control

overhead as a function of the total number of links in the

network and the rate distortion function. These models for

power, control overhead and shadowing are then used to obtain

an approximate solution to the Minimum Power Problem in

Section VII.

A. Power Consumption

The transmitted power Pi(t) along the ith path at time t to

achieve a total throughput Ct (data and control) is obtained

by summing the per-link power of each hop. Let PW
ij (t) be

the transmit power on the jth link along the ith path at time t
when W and B are the transmission rate at any node and the

available channel bandwidth in Hz respectively. Let d denote

the distance between any two nodes in the network. Further

let us consider a reference distance d0 and let Pt(d0) and

Pr(d0) be the transmit and received power between two nodes

separated by d0. Shannon’s formula [15] in (7) relates the

transmission rate, the shadowing, the AWGN and the power.

W = B log2(1 +
PW
ij (t)Lij(t)

FN0
) (7)

where N0 is the noise, F = Pt(d0)
Pr(d0)

( d
d0
)α and α is the path

loss exponent. Hence we can transform the above equation in

the following manner:

PW
ij (t) =

2W/B − 1

Lij(t)
FN0 (8)

There is a subtle point to be noted here. Although the

transmission rate is W , the source can only achieve a lower

throughput Ct, as the wireless medium is a shared resource

- if multiple nodes transmit together, interference and packet

loss can occur. We assume that there is a scheduling algorithm

that determines the time periods during the sampling interval

when each source gets the opportunity to transmit. Each source

transmits for only a fixed fraction of time during a sampling

interval, e.g.,, it is allocated a fixed number of transmission

slots in an interval. Let T1 be the amount of time a source

transmits in an interval of duration Ts.

We abstract away the scheduling details and define the

scheduling factor as S = T1

Ts
. S depends on the scheduling

algorithm and the number of nodes and is a parameter in our

model. Further, we consider a MANET with fast moving nodes

such that Ct is much smaller than W . We also note that any

� �
�

� �

�
�

�
�

��

��

Fig. 1. Power Transmitted in a sampling interval

arbitrary value of Ct is not achievable, e.g., the achievable Ct

is bounded by results such as the Gupta-Kumar result [20].

Each source transmits for a duration T1 in a sampling

interval. Abstracting away the scheduling details, we assume

that the source transmits at rate W uniformly for small

durations (δT ) throughout the sampling interval and the time

between two consecutive transmissions is Ts

T1
δT . This is shown

in Figure 1. The bars in the figure depict time periods when

transmissions take place. This abstract modeling approach is

necessary as one cannot assume that the source transmits con-

tinuously at rate W for a duration T1 in the sampling interval.

This would lead to an incorrect estimate of the expected power

expended during the sampling interval, because the effects of

the correlation of the shadowing process would be incorrectly

accounted for if an interval T1 is considered instead of Ts.

Our objective is to derive an expression for Pij(t), the

transmit power on the jth link required to achieve a constant

throughput (Ct) for the entire sampling interval Ts similar to

(8). We model Pij(t) by:

Pij(t) =
a

Lij(t)
FN0 (9)

The value of a should be such that the total energy consumed

and the total number of bits transmitted in the sampling

interval are the same when transmitting at W for time T1

and at Ct for time Ts. Ensuring that the total number of bits

transmitted in both cases are the same, leads to (10).

W = Ct
Ts

T1
=

Ct

S
(10)

We must also ensure that the total energy consumed is equal.

Consider any two consecutive transmission time periods, i.e.,

points A and B in Figure 1. We assume that as δT is very

small, the shadowing value remains constant during the time

interval Ts

T1
δT . Therefore we have,

a = (2W/B − 1)
T1

Ts

= (2Ct/SB − 1)S (11)

Substituting (11) in (9) we obtain the expression for Pij(t).
The total power Pi(t) expended along the ith path is the
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additive sum of the per-link power of each hop and thus:

Pi(t) =

k
∑

j=1

Pij(t)

=

k
∑

j=1

2Ct/SB − 1

Lij(t)
SFN0 (12)

B. Control Overhead

Following [3], we model the minimum overhead for gath-

ering link state information as,

Cb =
n(n− 1)

2

R(D)

Ts
(13)

The rationale behind this abstract model is that the total

number of links must be less than
n(n−1)

2 (the total number

of links is O(n2)), and that a source must know the state of

all network links to compute its best path to the destination.

Hence, following [3]
n(n−1)

2
R(D)
Ts

represents the minimum

control overhead.

VII. SOLVING THE OPTIMIZATION PROBLEM

In this section we approximately solve the Minimum Power

Problem. All Lemmas used in this section are stated in the

Appendix. We begin by expressing Pi(t) (12) as:

Pi(t) =

k
∑

j=1

CYij(t) (14)

where C = (2Ct/SB − 1)SFN0 and Yij(t) =
1

Lij(t)
. There-

fore, Yij(t) is also a lognormal random process and we have

lnYij(t) = −Xij(t).
Recall that Qi is the expected power consumed in a sam-

pling interval, given the sampling duration Ts, the distortion

D and the link state estimates X̂ij(0). Qi can be formally

expressed as,

Qi =
1

Ts

Ts
∫

0

E[Pi(t)|X̂i1(0)X̂i2(0).....X̂ik(0);Ts, D]dt (15)

Note that Ts and D are model parameters and are not random

variables: we thus omit them while expressing conditional

expectations. The expression for Qi can be rewritten as,

Qi =
1

Ts

Ts
∫

0

E
[

E[Pi(t)|X̂i1(0), .....X̂ik(0),

Xi1(0), ..Xik(0)]|X̂i1(0), ...X̂ik(0)
]

dt

=
1

Ts

Ts
∫

0

E
[

E[Pi(t)|Xi1(0), .....Xik(0)]

|X̂i1(0), .....X̂ik(0)
]

dt (16)

The above simplification can be done because given Xij(0),
Pi(t) is independent of X̂ij(0), i.e, the underlying process

itself does not depend on the observation X̂ij(0). We first de-

termine Hi = E[Pi(t)|Xi1(0), .....Xik(0)] which can be done

in the following way (17). At any given time t, Xij(t)|Xij(0)
is a Gaussian random variable with mean µx(t) = ρ(t)Xij(0)
and variance σ2

x(t) = σ2
(

1− ρ2(t)
)

(Lemma 1). Hence at

any given time t, Yij(t)|Xij(t) is a lognormal random variable

with mean e−µx(t)+
σ2
x(t)

2 (Lemma 2).

Hi = C

k
∑

j=1

E[Yij(t)|Xi1(0), .....Xik(0)]dt

= C

k
∑

j=1

E[Yij(t)|Xij(0)]dt

= C

k
∑

j=1

e−µx(t)+
σ2
x(t)

2 dt

= C

k
∑

j=1

A(t)e−ρ(t)Xij(0)dt (17)

where A(t) = e
σ2

2 (1−ρ2(t)). Substituting (17) in (16) we have,

Qi =
C

Ts

k
∑

j=1

Ts
∫

0

E[A(t)e−ρ(t)Xij(0)|X̂ij(0)]dt

=
C

Ts

k
∑

j=1

Ts
∫

0

A(t)e−ρ(t)X̂ij(0)E[eρ(t)ǫ]dt

=
C

Ts

k
∑

j=1

Ts
∫

0

A(t)e−ρ(t)X̂ij(0)e
ρ2(t)σ2

e
2 dt

=
C

Ts

Ts
∫

0

A(t)e
ρ2(t)σ2

e
2

k
∑

j=1

e−ρ(t)X̂ij(0)dt (18)

Equation (18) uses (3) and the fact that ǫ is independent of

X̂ij(0). Moreover, at any given time t, ρ(t)ǫ is a Gaussian

random variable with mean 0 and variance ρ2(t)σ2
e . Therefore,

any given time t, eρ(t)ǫ is a lognormal random variable with

mean e
ρ2(t)σ2

e
2 (Lemma 2).

We would like to further simplify the expression for Qi and

do so using Lemma 3 which approximates the sum of log-

normal random variables by a lognormal random variable. In

(18), at any given time t, Y ′
ij(t) = e−ρ(t)X̂ij(0) is a lognormal

random variable with mean µy′(t) = e
ρ2(t)σ2

D
2 and variance

σ2
y′(t) = (eρ

2(t)σ2
D−1)eρ

2(t)σ2
D . Therefore, Y ′

i (t) =

k
∑

j=1

Y ′
ij(t)

is approximated by a lognormal random variable with mean

µ1(t) = kµy′ and variance σ2
1(t) = kσ2

y′ . Let Zi(t) be the

Gaussian variable corresponding to Y ′
i (t). From Lemma 3

we can express its variance σ2
z(t) = ln

[

eρ
2(t)σ2

D−1
k + 1

]

and

mean µz(t) = ln k +
ρ2(t)σ2

D

2 − σ2
z(t)
2 . Further, let A1(t) =

A(t)e
ρ2(t)σ2

e
2 = e

ρ2(t)σ2
e+σ2(1−ρ2(t))

2 . We then express (18) as,

Qi =
C

Ts

Ts
∫

0

A1(t)
k

∑

j=1

Y ′
ij(t)dt



6

≈ C

Ts

Ts
∫

0

A1(t)Y
′
i (t)dt

=
C

Ts

Ts
∫

0

A1(t)e
Zi(t)dt (19)

We define H ′ = min
i
Qi. H

′ can be expressed as,

H ′ = min
i

C

Ts

Ts
∫

0

A1(t)e
Zi(t)dt

>
C

Ts

Ts
∫

0

A1(t)e
−max{−Zi(t)}dt (20)

The inequality is due to the fact that minimum of a summation

is greater than the summation of the minimum. For solving the

Minimum Power Problem we then need to determine E[H ′]
which can be written as,

E[H ′] > E[
C

Ts

Ts
∫

0

A1(t)e
−max{−Zi(t)}dt]

>
C

Ts

Ts
∫

0

A1(t)E[e
−max{−Zi(t)}]dt (21)

The next step is to determine the distribution of U =
max{−Zi(t)}. It is clear that {−Zi(t)} are i.i.d Gaussian

random variables with mean −µz(t) and variance σ2
z(t). The

maximum of i.i.d Gaussian random variables follows a Gum-

bel distribution asymptotically, as M the number of paths goes

to ∞ with scaling factor aM = σz(t)√
2 lnM

and location factor

bM = σz(t)(
√
2 lnM − ln lnM+ln(4π)

2
√
2 lnM

) − µz(t) respectively

(Lemmas 4 and 5). Let us consider the random variable V
such that lnV = U . V follows a log-Gumbel distribution with

the same parameters as U (Lemma 6). From Lemmas 5 and 6

we can say that as Zi(t) are Gaussian, the mean of the log-

Gumbel distribution exists and it follows a gamma function

multiplied by an exponential.

But, we are interested in U ′ = −U which follows a negative

Gumbel distribution. Define lnV ′ = U ′. We adopt a similar

approach as Lemma 6 to determine the expectation of V ′. It

can be easily shown that E[V ′] = e−bMΓ(1 + aM ).

E[H ′] ≈ C

Ts

Ts
∫

0

A1(t)E[e
U ′

]dt

=
C

Ts

Ts
∫

0

A1(t)E[V
′]dt

=
C

Ts

Ts
∫

0

A1(t)e
−bMΓ(1 + aM )dt (22)

E[H ′] computed from (22) will be approximation to

E[min
i
Qi]. The optimization problem thus reduces to

min
Ts,D

C
Ts

Ts
∫

0

A1(t)e
−bMΓ(1 + aM )dt, which can easily be com-

puted numerically.

Equation (22) holds for the equal path loss scenario. But if

this assumption is relaxed, the above analysis holds with minor

modification until (21) - we only need to model the Gaussian

variable Zi(t) to take into account the different values of C
for the different links resulting from the unequal path loss

assumption. If the Minimum Power Problem is to be solved in

an unequal path loss scenario, one can obtain the distribution

of max{−Zi(t)} numerically (which is easy as Zi(t) are

Gaussian) and then determine E[H ′]. However, note that such

a procedure will be computationally expensive.

VIII. EVALUATION

In this section we present numerical results obtained by

solving the optimization problem using (22). We first study

the tradeoff between the sampling interval and the number

of bits per sample for a specific set of parameters and then

proceed to investigate the impact of the various parameters

on this tradeoff. We consider a network of 100 nodes with

G = 75Kbps, B = 10MHz, S = 0.05 and λ = 1
5 .

The variance of shadowing is 25 dB. Further, we assume

m = 5 and k = 5, i.e., the source has 5 disjoint paths

with 5 links each. The results are obtained by increasing

the number of bits per sample at a granularity of 0.5. We

also use this same configuration when we study the effect of

the different parameters on the sampling interval and bits per

sample (except for the parameter under investigation).

Figure 2 shows the variation of the transmit power with

the number of bits per sample for different values of sam-

pling interval. We observe that with a small number of bits

per sample (very little information about the network), the

expected power consumed is high irrespective of the length of

the sampling interval. In particular, when the number of bits

per sample is 0 (equivalent to choosing a path at random), the

power consumed is very high. Conversely, when the number

of bits per sample is high, the additional information is of

marginal use in determining the minimum power path, but the

overhead expended in transmitting these control bits is high.

We are interested in obtaining the global minima of the

power consumed considering the entire range of the sampling

interval and bits per sample. We observe that for the parameter

values considered, the optimal value of the sampling interval

is 1 second and the number of bits per sample is 1.5. Although

the results in Figure are 2 is obtained for S = 0.05, similar

figures were obtained for other values of S. In the throughput

range of interest (when Ct is small), the factor (2Ct/SB − 1)
in (12) linearizes, making the power almost independent of S
and vary linearly with Ct.

We next study the impact of the various parameters (number

of nodes, shadowing correlation ( 1λ ), goodput, number of

links in a path, number of paths) on the tradeoff between the

number of bits per sample and the sampling interval. As these

results are obtained by increasing the sampling interval and the
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Fig. 2. Numerical: Bits per sample vs. Sampling interval tradeoff
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Fig. 3. Simulation: Bits per sample vs. Sampling interval tradeoff

number of bits per sample at a granularity of 0.5, the graphs

are discontinuous.

Figures 4(a) and 4(b) show the variation of the number of

bits per sample and the sampling interval with the number of

nodes. We observe that as the number of nodes increases, the

number of bits per sample decrease and the sampling interval

increases. This is intuitive since as the number of nodes in

the network increases, the control overhead also increases

(roughly as O(n2)). Therefore, when the number of nodes is

low the optimum decision is to have a small sampling interval

(i.e., to sample the network frequently) and encode the samples

using a greater number of bits. On the other hand when the

number of nodes is large, increased overhead results in the

optimum sampling interval being high and number of bits per

sample being low. Note that when the number of nodes is very

high, the optimal strategy is to select a path at random - this

corresponds to the case when the number of bits per sample

is equal to zero in Figure 4(a).

We study the variation of the number of bits per sample and

the sampling interval with the correlation of the shadowing

process ( 1λ ) in Figures 4(c) and 4(d) respectively. Figures 4(c)

and 4(d) show that both the number of bits per sample and

the sampling interval increase with the shadowing correlation.

This is because as shadowing correlation increases, the op-

timal configuration takes advantage of this by sampling at a

lower frequency (longer sampling interval). Simultaneously,

the number of bits per sample also increases as the decrease

in overhead due to a longer sampling interval provides the

network an opportunity to gather high fidelity samples.

Figures 5(a) shows that with increasing goodput, the number

of bits per sample increases. This is because as the goodput is

much larger than the overhead, additional bits can be used to

encode link state values. At the same time, Figure 5(b) shows

that as the goodput increases the sampling interval decreases,

which can also be attributed to the fact that the overhead is

smaller in comparison to the goodput.

In Figures 5(c) and 5(d), we observe that the number

of bits per sample and the sampling interval increases with

the number of links in a path. As the number of links in

a path increases, the probability that at least one of these

links is in a bad state (i.e, requiring high power to meet the

goodput requirement) increases. Because of the exponential

dependence of power on the quality of links, the power

consumed along the entire path will be dominated by the bad

links. Further as the error in estimating the expected power

over a path in an interval increases with the number of links in

it, it is advantageous to use more bits for encoding the samples,

so that the correct decision is taken i.e., that path with the

minimum power is chosen. The increased overhead resulting

from the larger number of bits used can then be compensated

for by choosing a larger sampling interval.

We also studied the variation of transmit power with the

number of paths and found that the number of bits per sample

decreases and then becomes zero. As the number of paths

increases, the chance of selecting a good path goes up and

thus the number of bits per sample decreases. When there are

many available paths, selecting a path at random suffices and

there is no need to collect state information.

IX. SIMULATION

In this section we report on our use of simulations using

(18) to drive the simulation, to validate our numerical results.

Specifically, we study the impact of the inequality in (20) and

the two main assumptions of the model - (i) approximating
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Fig. 5. Variation of Bits/Sample and Sampling Interval with Goodput and Links/Path

the sum of lognormal random variables by a lognormal and

(ii) approximating the maximum of a i.i.d Gaussian random

variables by a Gumbel distribution - on the accuracy of our

numerical results.

We consider the same set of parameters used in the numer-

ical evaluation. For a particular value of sampling interval and

number of bits per sample, we generate shadowing measure-

ments for each of the k links on the M paths to emulate the

link state values collected at the beginning of the sampling

interval. We then determine the expected power consumed

along each of the M paths. We select the path for which the

expected power consumed for the entire interval is minimum.

For each pair of values of sampling interval and number of

bits per sample, we repeat this process 500 times to obtain the

mean power consumed.

Simulation results depicting the tradeoff between the num-

ber of bits per sample and sampling interval with the transmit

power are shown in Figure 3 and should be comparable to the

numerical results in Figure 2. As in the case of our numerical

evaluation, the simulation results also show that the expected

power decays rapidly with an increasing number of bits per

sample and then begins increasing again.

We note that the power consumption is higher in case of

simulation, particularly so for a small number of bits per

sample (approaching 0). This is because our numerical analysis

is an approximation that becomes better as the number of

bits per sample increases. A careful examination of Figures

2 and 3 reveals that when the number of bits per sample is

0, the expected power consumed increases for the numerical

evaluation and decreases for simulation with an increasing

sampling interval. The intuitive explanation as to why the

expected power decreases with an increase in the sampling

interval in case of a real system (i.e, in our simulation) can

be explained as follows.

Let us consider for the sake of simplicity that paths are

of two types - good and bad; paths are classified as good

when the power consumed at the beginning of the sampling

interval is low and bad when it is high. The expected power

consumed in any sampling interval is thus the additive sum

of the conditional expected power consumed given a path of

a specific quality (good or bad), multiplied by the probability

that the selected path is of the specified quality. The above fact

holds true irrespective of the duration of the sampling interval.

Let us next consider the probability of selecting a good or

bad path. As shadowing is Gaussian distributed, the probability

of any path being good or bad will be same and is independent

of the sampling interval. As the number of bits per sample is

zero (equivalent to selecting a path at random), the chance

of selecting good and bad paths is the same. The next point

to note is, because of the exponential dependence of power

on the path quality, the expected power expended during a

sampling interval is much higher when the selected path is

bad in comparison to when it is good.

So far we have only considered the effect of the quality

of the path on the expected power consumption. We will

now reason about the impact of the sampling interval on the

expected power consumption. When the selected path is bad,

the expected power expended during the sampling interval

will be higher for a shorter sampling interval than for a

longer sampling interval since shadowing correlation decays

exponentially. Similarly, when a good path is selected, the

expected power expended during the sampling interval will be

lower for a shorter sampling interval.

But, the positive difference in the expected power expended
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between small and large sampling interval when the selected

path is bad, is not compensated by the negative difference

in expected power expended between them when the selected

path is good. Thus, when the number of bits per sample is zero,

the expected power consumed when the sampling interval is

small is higher than when the sampling interval is long.

Note that, although there is a mismatch between the nu-

merical and simulation results when the number of bits per

sample is small, our goal is not to study any specific scenario,

but rather to determine the optimal sampling interval and

the number of bits per sample. From our simulation, we

find that the minimum expected power is consumed for bits

per sample=2.5 and sampling interval=2 seconds, which is

comparable to the numerical results (bits per sample=1.5;

sampling interval=1 second). Hence we conclude that the

approximations in Section VII help in modeling the system

accurately.

We have also studied the tradeoff between the number of

bits per sample and sampling interval for a network with

unequal path loss via simulation and observed that a tradeoff

similar to the equal path loss case.

X. CONCLUSION

In this paper, we formulated an optimization problem to

determine the frequency at which a source should gather

link state estimates and the number of bits used to encode

these estimates such that the expected power consumed over a

sampling interval is minimized subject to goodput constraints.

We observe that long sampling intervals fail to take advantage

of the temporal correlation of link state estimates while short

sampling intervals incur significant overhead. Similarly, small

number of bits per sample provide very little information about

the network state while large number of bits provide marginal

additional information. Our work can be used by network

designers as a a tool for determining optimal operating points

(state update frequency, bits per sample).

XI. APPENDIX

Lemma 1: Let X1 and X2 be two Gaussian random vari-

ables with means µ1 and µ2 and variances σ2
1 and σ2

2 respec-

tively. Let ρ be the correlation between them. Then, X2|X1 is

also a Gaussian random variable with mean µ2+ρσ2

σ1
(x1−µ1)

and variance σ2
2(1− ρ2

)

[21].

Lemma 2: Let X be a Gaussian random variable with mean

µ and variance σ2. Let lnY = X . Then Y is a lognormal

random variable with mean µy = eµ+
σ2

2 and variance σ2
y =

(eσ
2 − 1)e2µ+σ2

[22].

Lemma 3: The sum of N lognormal random variables can

be approximated by a lognormal random variable whose first

and second moments are equal to the sum of the first and

second moments of the N lognormal random variables [23].

Lemma 4: Let X1, X2....XN be N i.i.d random variables.

Then MN = max{X1, X2....XN} converges to a Gumbel,

Frechet or Weibull distribution depending on the right tail of

Xi [24].

Lemma 5: Let X1, X2....XN be N i.i.d Gaussian ran-

dom variables with mean µ and variance σ2. Then MN =

max{X1, X2....XN} converges to a Gumbel distribution with

cumulative probability density F (x; bN , aN ) = e−e
−

(x−bN )
aN ,

where aN = σ√
2 lnN

and bN = σ(
√
2 lnN− ln lnN+ln(4π)

2
√
2 lnN

)+µ

[24]. We observe that bN = σ
√
2 lnN as lnN → ∞.

Lemma 6: Let Y have a Gumbel distribution with scale

parameter a and location parameter b. Let lnX = Y . X
follows a logGumbel with cumulative distribution function

F (x; b, a) = e−e−
(ln x−b)

a . The rth moment (mr) of X is given

by mr = (eb)rΓ(1− r.a) [25].
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