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Abstract
Mobile devices dominate the Internet today, however

the Internet continues to operate in a manner similar to
its early days with poor infrastructure support for mobil-
ity. Our position is that in order to address this problem,
a key challenge that must be addressed is the design of
a massively scalable global name resolution infrastruc-
ture that rapidly resolves identities to network locations
under high mobility. Our primary contribution is the de-
sign, implementation, and evaluation of Auspice, a next-
generation global name resolution service that addresses
this challenge. The key insight underlying Auspice is a
placement engine that replicates name records to provide
low lookup latency, low update cost, and high availablity.
We have implemented a prototype of Auspice and eval-
uated it on Planetlab, a local cluster, as well as through
large-scale trace-driven experiments. Our experiments
show that Auspice provides 1.0 sec to 24.7 sec lower up-
date latencies than commercial managed DNS services
and up to 9× lower lookup latencies than a proposed
DHT-based replication alternative to DNS.

1 Introduction
“Mobile” has long arrived, but the Internet remains un-
moved. Today, there are almost 6 billion cellphones, over
a billion of which are smartphones [37]. The number of
smartphones alone now exceeds the number of tethered
hosts on the Internet, and recent studies [6] suggests that
the total data traffic generated by mobiles now exceeds
that of tethered clients. However, the current Internet
continues to operate as it did when dominated by teth-
ered hosts, simply ignoring frequent endpoint mobility.

Today, one can not easily initiate communication with
a smartphone (even when it has a public IP address) as
there is no global infrastructure support for locating it.
Applications like Netflix, Dropbox, or smartphone notifi-
cation systems have to develop application-level support
to enable a seamless experience for their users even as

they change addresses several times a day, or let connec-
tions break (e.g., Skype). The lack of intrinsic support for
mobility means that we are paying an unknowable price
in terms of stymied application innovation and growth by
forcing developers to redundantly develop common-case
functionality, and forcing communication initiation to be
mostly unidirectional.

Many before us have criticized the Internet architec-
ture’s poor support not only for mobility and multihom-
ing [41, 15, 31, 52]. A common criticism is the Internet’s
so-called conflation of identity and location, i.e., the use
of an IP address both to represent the identity of an in-
terface as well as its network location, which is prob-
lematic for mobility (same identity, changing locations)
and multihoming (single identity, multiple locations). It
is commonly accepted wisdom that a cleaner separation
of identity and location is instrumental to fixing these
problems. However, the Internet does separate identities
(domain-names) from network locations (IP addresses)
through DNS. Most high-level programming languages
also provide syntactic sugar to “connect” to names re-
maining oblivious to IP addresses; and techniques from
a long line of work on connection migration can be em-
ployed to seamlessly handle mid-connection mobility.

But a key missing element from this package today
is a distributed resolution infrastructure that can scale
to orders of magnitude higher update rates than envi-
sioned when DNS was created. To appreciate our envi-
sioned scale, consider 10 billion mobile identifiers mov-
ing across a 100 different networks per day (or an aggre-
gate rate of roughly 1M/sec). DNS’s heavy reliance on
TTL-based caching, a key strength recognized by its cre-
ators, researchers, and operators alike, also poses a sig-
nificant handicap by increasing update propagation de-
lays. It is not uncommon for DNS update propagation to
take a day or more, resulting in long outage times when
online services have to be moved unexpectedly, prompt-
ing cries for help on operator forums [14].

Our position is that seamless support for mobility re-
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quires a global name service that rapidly translates iden-
tities to locations irrespective of how exactly identities
and locations are individually represented. Our primary
contribution is the design, implementation, and evalua-
tion of Auspice, a distributed system that addresses this
challenge. The key strength of Auspice is an place-
ment engine for replicating name records to achieve low
lookup latency, low update cost, and high availability.
Auspice achieves low-latency by inferring pockets of
high demand for a name so as to create replicas of re-
solvers for that name close to them. Auspice achieves
low latency, low update cost, and high availability using
a placement optimization algorithm that (1) controls the
number of replicas based on the observed read and write
rates, and (2) determines where to place replicas based
both on the inferred pockets of demand and the aggre-
gate load at node locations near those pockets.

We have implemented a prototype of Auspice as a geo-
distributed key-value store to serve as a flexible name
resolution infrastructure for the Internet as well as fu-
ture Internet architecture proposals. We have deployed
and evaluated it on several different platforms including
Planetlab, a local cluster, and Amazon EC2. Our evalua-
tion shows the following:
• Auspice provides up to 9× lower lookup latency

than proposed DHT-based alternatives for DNS
with comparable update cost, while offering signif-
icantly better latency vs. cost . tradeoffs.
• Auspice achieves lookup latencies comparable to

leading managed DNS providers with only one-
third as many replica locations, and provides a me-
dian update latency that is 1.0 s to 24.7 s lower.

2 Global name resolution: Why care?
Given the huge body of prior work specifically on mo-
bility as well as broader efforts on Internet architecture,
it is natural to ask: (1) is a global name resolution ser-
vice the best way to handle high mobility in today’s In-
ternet? (2) is a global name resolution service critical
or even relevant to handling mobility if we had the lux-
ury of re-architecting Internet naming and routing from a
clean slate? In this section, we first present subjective ar-
guments justifying an affirmative position on both ques-
tions, and then present objective results showing DNS’s
shortcomings as a resolution service under high mobility.

2.1 Internet mobility background
Despite a staggering diversity of proposals re-
architecting Internet naming and routing, we find
that they explicitly or implicitly embed one of three
broad approaches to handling mobility–indirection-
based routing, global name-to-address resolution, or
name-based routing–based on how they go from the
name of an endpoint to the endpoint itself. Table 1

classifies a number of proposed architectural alternatives
based on how they handle mobility.

Indirection-based routing schemes are simple as an
endpoint remains oblivious to the mobility of other end-
points. No name-to-address1 lookup is needed at con-
nection initiation time as a human-readable name maps
to a home address (an IP address in Mobile IP [55] or
a flat identifier’s consistent-hash location in i3 [60]) that
rarely changes by design. Mid-connection mobility, even
when both endpoints move concurrently, is seamless to
endpoints. However, the data plane pays the price for
this simplicity—every data packet must be routed via an
indirection agent at the home address, potentially caus-
ing significant routing stretch, e.g., two participants at a
conference may in each direction need to detour pack-
ets halfway across the world despite being in the same
room. Furthermore, indirection-based schemes require
widespread deployment of indirection agents across dif-
ferent domains, posing a barrier to immediate adoption.

Global name-to-address resolution schemes rely on
a distributed service to resolve names to addresses as the
first step in connection establishment. The current Inter-
net’s DNS as well as a number of designs addressing the
Internet’s so-called identity-location conflation problem
also need such a resolution infrastructure, e.g., to trans-
late a self-certifying host identifier in HIP [41], AIP[19],
XIA[38], or MobilityFirst[12]) or an identifier in LISP
[15] or HAIR [31] to either an IP address [41], a self-
certifying network identifier [19, 38, 12], or a hierarchi-
cal locator [31] that encodes routing information. Global
name-to-address resolution schemes also subsume DHT-
based Internet architectures such as LNA [21] or others
[62, 32] as well as resolution systems like CoDoNS [56]
that present a DHT-based drop-in replacement for DNS.

Global name-to-address resolution schemes need ex-
plicit support at endpoints to handle mid-connection mo-
bility. There is a general consensus [59, 20, 35] that end-
to-end connection migration, i.e., bilaterally without re-
lying on an external service, can efficiently migrate con-
nections when endpoints move one at a time; however,
an external resolution service is needed to support con-
current mobility. Although the latter is seen as a rare case
in most connection migration work, it can be a common
event for disconnection-tolerant, mobile application sce-
narios (e.g., when a user closes her laptop at home and
opens it at a coffee shop to continue watching a movie,
by which time the cloud-hosted virtual server may have
been migrated for load balancing).

Name-based routing schemes in the ideal have
a tantalizing intellectual lure—to seamlessly handle
mobility by routing directly over names obviating
a name-to-address resolution infrastructure—but are

1We use the terms name and identifier interchangeably; likewise for
the terms address and location.
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Indirection-based routing Global name-to-address resolution Name-based routing
Initial overhead None Name-to-address resolution (DNS,

Nimrod[25], LISP[15], HIP[41],
LNA[21], CoDoNS[56], XIA[38],
MobilityFirst[12])

None

Data packet rout-
ing

Address-based routing
through fixed “home ad-
dress” (Mobile IP[55],
GSM[11], i3[60])

Address-based routing, with support for
late- or re-binding of names to addresses
(e.g., Serval [51], MobilityFirst[12],
XIA[38])

Name-based routing di-
rectly over flat (ROFL
[24]) or structured names
(TRIAD[26], CCN[39])

Mid-connection-
mobility handling

Seamless in one RTT Bilateral ([59],[20]) or via name service
(under concurrent mobility) in a few RTTs

Outage times ≈ routing
convergence delays

Routing table size
vs. data path
stretch

O(#prefixes) with triangle
routing stretch

O(#prefixes) or O(#domains) ([38], [12])
for shortest-path routing

Ω(#identifiers) for small
stretch over shortest-path
routing [44]

Table 1: Classification of many alternative naming and routing architectures (not necessarily designed with mobility
in mind) based on how they (might) handle mobility.

marred by several fundamental and practical challenges.
First, name-based routing approaches can support seam-
less mobility only if route update propagation delays
across the Internet are on the order of milliseconds,
a daunting challenge given that interdomain routing
can take several minutes to converge today. Second,
theoretical results on compact routing [44] suggest
discouraging fundamental trade-offs between the size
of forwarding tables at routers and path stretch even
without any mobility or multihoming, e.g., routing over
N flat identifiers entails a prohibitive Ω(N) forwarding
table size per router in order to ensure a small constant
stretch factor (≈3) compared to shortest-path routing.
Simulation-based studies of flat-label routing strategies
(e.g., ROFL [24]) reaffirm pessimistic conclusions
about its scalability. Although it may appear that the
scalability limitations of name-based routing can be
alleviated by adding a hierarchical structure to names
[26, 43, 39] (e.g., CCN/NDN [39] names such as
/umass/john_smith_phone/voip_call3/frame7),
frequent mobility still poses a challenge as routers
would have to maintain special forwarding entries for
“displaced names” when the name moves from its
hierarchically organized namespace for longest-prefix
matching to work correctly, i.e., high mobility effec-
tively makes routing directly over structured names as
hard as routing over flat names unless indirection or a
name resolution infrastructure is used.

In summary, our position is that a global name-to-
address resolution service is critical to handling high mo-
bility in any network architecture as it offers the best
combination of trade-offs: (1) a constant update over-
head per mobility event to the name service, (2) a mod-
est connection establishment overhead and rapid mid-
connection mobility, (3) no data path inflation beyond
underlying policy routing, and (4) small forwarding ta-
ble sizes in conjunction with aggregatable addresses (IP
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Figure 1: Managed DNS provides lower address lookup
latencies than centralized authoritative name servers.

prefixes like today or self-certifying network addresses
[12, 38]). Perhaps the most compelling argument for
the global name-to-address resolution approach is our
decades of familiarity with DNS and the current Inter-
net; handling mobility would be a drop-in replacement to
DNS provided we can address the challenge of building
a distributed system that can scale to billions of devices
making tens of updates a day and yet return responses
within a few milliseconds. Addressing this challenge
forms the focus of the rest of the paper.

2.2 Why not just adapt DNS?
While architectural positions like above are endlessly de-
batable, a more pressing question is: what if any are the
limitations of DNS as a global name resolution service
under high mobility and how can it be retrofitted to ad-
dress those limitations?

The scalability challenge of high mobility would be
felt most strongly at the authoritative name servers for
two reasons. First, they would need orders of magni-
tude higher updates rates from mobile device names a
couple orders of magnitude more in number compared
to domain names today (≈10B vs 146M [37]). Second,
authoritative name servers would be unable to take ad-
vantage of TTL-based caching for mobile device names
as much as for today’s domain names. TTLs of A-
type records in DNS are more than 5 minutes for more
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for 40% of records and more than 1 hour for 10% of
records[36], which implies a commensurate service out-
age time as updates take that much time to fully prop-
agate. In practice, actual update rates to DNS records
are orders of magnitude lower than that indicated by
TTLs that are set conservatively so as to reduce outage
times due to unanticipated updates; yet, ironically, out-
age times can often last a day or more either because of
poorly planned updates or because some resolvers do not
respect the TTL limits much to the woe of server admin-
istrators [14]. In contrast, mobile devices would require
smaller TTLs to ensure reachability and can be expected
to make tens of updates per day or more on average (and
more frequently in short bursts such as in vehicular WiFi
environments [22]). Smaller TTLs imply higher load.

To handle high mobility, we expect most end-users
to outsource their authoritative name service to man-
aged DNS providers. Managed DNS providers today are
commonly geo-replicated and allow their customers to
leverage better performance, availability, economies of
scale, and ease of management compared to maintaining
a centralized authoritative name server by themselves.
However, managed DNS providers today use simplis-
tic strategies such as replicate-all or static-k that respec-
tively replicate a name record at all available locations
or a fixed set of packaged locations (e.g. Dyn DNS of-
fers replicate-at-all package for $180/yr and replicate-at-
4 for $30/yr). We argue that these simplistic strategies
provide poor cost-vs-performance tradeoffs even for to-
day’s (mostly) non-mobile names, a problem that will be
further exacerbated by high mobility.

To exemplify our argument for non-mobile names,
consider Figure 1 that shows lookup latencies to central-
ized authoritative name servers of three domain names
(CentralDNS), and their projected lookup latencies for
two managed DNS services: (1) Dyn DNS, a lead-
ing provider with 17 known locations [17] and (2) Su-
perDNS, a hypothetical managed DNS with 200 (Planet-
Lab) locations but replicates a name at only 17 out of the
200 locations where the domain name is highly popular.
We calculate latencies based on measurements from 100
other PlanetLab locations. We measure lookup latency
for Dyn at a location by querying Dyn servers for the ad-
dress of twitter.com, one of its customers. The latency of
SuperDNS at a location is the measured round-trip delay
to the nearest replica of the name record. We take the
weighted average of lookup latencies across all locations
weighted by the popularity of a domain in the geographic
area (calculated using the Alexa dataset [1]) for which
that location is geographically closest.

Unsurprisingly, managed DNS services do improve
performance over a centralized service, e.g., Dyn re-
duces lookup latency for cam.ac.uk by 2.7×. However,
its simplistic replication policy leaves significant room

for improvement compared to SuperDNS that leverages
its massively geo-distributed deployment and intelligent
replica placement, to give up to 2.5× better performance
than Dyn for the same number of replicas. If SuperDNS
were to replicate each name at all 200 locations, its up-
date costs would increase by nearly 12×. To limit update
costs, if SuperDNS were to follow a static-k policy and
choose 17 locations randomly, it would be unable to ef-
fectively use its massively geo-distributed deployment to
minimize latencies. Highly mobile device names would
further exacerbate the cost-benefit tradeoffs of such sim-
plistic replicated strategies as they would not account for
the orders of magnitude higher update costs.

3 Auspice design & implementation

3.1 Design goals
In this section, we present the design and implementation
of Auspice, a massively scalable distributed global name
resolution service designed for high mobility. The design
of Auspice is motivated by the following specific goals:

(1) Low lookup latency: The design must ensure low
latencies for name lookups. Any endpoint or network en-
tity performing a lookup should get the look-and-feel of
being served by a centralized service located tens of mil-
liseconds away. Our implicit goal here is to not only sup-
port DNS-like use-cases today but also to accommodate
other architectural proposals that involve late-binding of
names to addresses, e.g., routers close to the destination
re-binding an identifier to a different address in mobile or
multi-homed settings [51, 12]; enabling mid-connection
mobility with minimal outage times [59, 20], etc.

(2) Low update cost: The design must ensure a low
update cost. A naive way to minimize lookup latencies
is to replicate every name record at every available lo-
cation, however high mobility implies high update rates
and the cost of pushing each update to every replica can
be prohibitive. Worse, load hotspots can actually degrade
lookup latencies instead of improving them.

(3) High availability: The design must be resilient to
failures of nodes including disasters impacting an entire
datacenter or stub network. By consequence, the design
must also prevent crippling load hotspots.

(4) Consistency: The system must achieve the above
objectives while ensuring flexible consistency semantics
for name records as specified by their owners. A naive
way to achieve the first two goals is to use aggressive
caching with large TTLs, clearly an unusable scheme in
mobile scenarios as inconsistency implies unreachability.

(5) Extensibility: The design must be extensible to
supporting a rich set of attributes associated with a name
and policies for dealing with mobility, multihoming
(e.g.,“prefer WiFi to cellular”), etc. The design should be
agnostic to how names, addresses, and resolution poli-
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cies are represented by Internet architectures of the fu-
ture, while being easily deployable in today’s Internet.

(6) Security: The design must be robust to mali-
cious user behavior such as hijacking or corrupting name
records. The design must support flexible access control
policies to control both read and write access.

To address the above goals, Auspice adopts a mas-
sively geo-distributed key-value store design. The geo-
distribution is essential to the latency and availability
goals while the key-value design enables extensibility.
Below, we first describe Auspice’s distributed system
design so as to achieve the first four goals, and then
describe how it achieves the extensibility and security
goals. For the former, it suffices to think of a name as a
domain name, a name record as the associated zone file,
and a name server as analogous to a DNS name server.
For ease of exposition, we assume one name server per
geo-location.

3.2 Auspice’s distributed design
At the core of Auspice is a placement engine that
achieves the latency, cost, and availability goals by
adapting the number and locations of replicas of each
name record in accordance with (1) the lookup and up-
date request rates of the name, (2) the geo-distribution
of requests for that name, and (3) the aggregate request
load on the system across all names. The key to ensur-
ing high availability and flexible consistency is a two-tier
consensus engine for each name; the first “control” tier
infrequently recomputes and migrates the current set of
replicas of each name record, and the second “data” tier
upon each write or read coordinates with other replicas
to ensure the necessary consistency semantics.

Figure 2 illustrates the architecture for Auspice. Each
name is associated with a fixed number, M (=3 default),
of replica-controllers and a variable number of active
replicas of the corresponding name record. The num-
ber and locations of the replica-controllers is fixed and
is computed using M well-known consistent hash func-
tions each of which maps the name to a name server loca-
tion. The replica-controllers are responsible only for de-
termining the number and locations of the active replicas,
and the actives replicas are responsible for keeping name
records updated and responding to client’s requests. The
replica-controllers implement a replicated state machine
using Paxos [46] so as to maintain a consistent view of
the current set of active replicas despite failures.

Computing the active replica locations for each name
proceeds in epochs as follows. At bootstrap time, the
active replicas are chosen to be physically at the same
locations as the corresponding replica-controllers. In
each epoch, the replica-controllers obtain from each ac-
tive replica a summarized load report that contains the
request rates for that name from different regions as seen

Figure 2: Geo-distributed name servers in Auspice.
Replica-controllers (logically separate from active repli-
cas) decide placement of active replicas and active repli-
cas handle requests from end-users. N1 is a globally pop-
ular name and is replicated globally; name N2 is popular
in select regions and is replicated in those regions.

by that replica. Regions could either be IP prefixes or
geographic regions, e.g., cities, that partition users into
non-overlapping groups so as to capture locality. Each
active replica’s load report consists of a spatial vector
of request rates as seen by that replica. The replica-
controllers aggregate these load reports to obtain a con-
cise spatial distribution of all requests for the name.

3.2.1 Placement algorithm
In each epoch, the replica-controllers use a placement al-
gorithm that takes as input the aggregated load reports
and capacity constraints at name servers to determine the
number and locations of active replicas for each name so
as to minimize client-perceived latency. We have formal-
ized this global optimization problem as a mixed-integer
program and shown it to be computationally hard. As our
focus is on simple and efficient algorithms, we defer the
details of the optimization approach to Appendix A, and
use it only as a benchmark in small-scale experiments
against Auspice’s heuristic algorithm.

Auspice’s placement algorithm is a simple heuristic
and can be run locally by each replica-controller. The
placement algorithm computes the number of replicas
using the lookup-to-update ratio of a name in order to
limit the update cost to within a small factor of the lookup
cost. The number of replicas is always kept more than
the minimum number needed to meet the availability ob-
jective under failures. The location of these replicas are
decided to minimize lookup latency by placing a frac-
tion of replicas close to pockets of high demand for that
name while placing the rest randomly so as to balance
the potentially conflicting goals of reducing latency and
balancing load among name servers.

Specifically, the placement algorithm computes the
number of replicas for a name as (M + βRi/Wi), where
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Ri and Wi are the lookup and update rates of name i, M
is the minimum number of replicas needed to meet the
availability goal (§3.1), and β is a replication control pa-
rameter. The placement algorithm dynamically adjusts
β to control the number of replicas so as to trade off la-
tency benefits against update costs given capacity con-
straints as follows. In each epoch, the replica-controllers
recompute β so that the aggregate load in the system cor-
responds to a predetermined threshold utilization level µ

( = 0.7 default). For simplicity of exposition, suppose
read and write operations impose the same load, and the
total capacity across all name servers (in reads/sec) is C.
Then, β is set so that

µC = ∑
i

Ri +∑
i
(M+β

Ri

Wi
)Wi (1)

where the right hand side represents the total load
summed across all names. The first term in the sum-
mation above is the total read load and the second is
the total write load. Having computed β this equation,
Auspice computes the locations of replicas for name i as
follows. Out of the M + βRi/Wi total replicas, a frac-
tion, f (=0.5 default), of replicas are chosen according to
locality, i.e., the replica-controllers use the spatial vec-
tor of load reports to select K = f × (M+βRi/Wi) name
server locations that are respectively the closest to the top
K regions sorted by demand for name i. The remaining
M+βRi/Wi−K are chosen randomly without repetition.

The top-K “closest” replicas above are chosen as
the closest with respect to round-trip latency plus load-
induced latency measured locally at each name server.
An earlier design simply chose the top-K according to
round-trip locality alone; however, we found that adding
load-induced latencies in this step in addition to choosing
the remaining replicas randomly ensures better load bal-
ance and results in lower overall user-perceived latency.

3.2.2 Routing client requests
Next, we describe how individual requests from end-
hosts are routed to a suitable name server. The list of all
name servers is known to each name server and can be
obtained by contacting any name server. End-hosts can
either directly send requests to a name server or chan-
nel them through a local name server like today. When
a local name server encounters a request for a name for
the first time, it uses the known set of all name servers
and hash functions to determine the replica-controllers
for that name and sends the request to the closest replica-
controller. The replica-controller then returns the set of
active replicas for the name and the client resends the re-
quest to the closest active replica. In practice, we expect
replica-controllers to be contacted infrequently as the set
of active replicas can be cached and reused.

To decide the closest active replica and the closest
replica-controller, local name servers maintain latency

estimates to name servers that reflect both network la-
tency and load-induced latency. As network latency esti-
mates change slowly, local name servers maintain round-
trip latency estimates to all name servers using infrequent
ping measurements. To track the server load-induced la-
tency, the latency estimate to a name server is passively
measured as a moving average over lookups sent to that
name server. The local name server also maintains a
timeout value based on the moving average and variance
of the estimates (similar in spirit to TCP). If a lookup
request sent to a name server times out, the local name
server infers that either the route to the server is con-
gested or the server is overloaded, and it increases its la-
tency estimate to that name server by a fixed factor (=1.1
default). Overall, this method ensures that if multiple
lookups sent to a name server time out, the estimated la-
tency becomes very high, and the local name server stops
sending requests to that name server.

3.2.3 Consistency: Why and how
The above proximity-based strategy can route both
lookup (or read) and update (or write) requests for a
name to any active replica. In order to ensure low lookup
latency, it is important for them to be served locally from
an active replica. This means that the onus of replica co-
ordination in order to maintain any nontrivial consistency
semantics falls on the update procedure. But why should
we care about consistency when DNS and network pro-
tocols in general prize liveness over consistency[40]?

As a global name-to-address resolution service, Aus-
pice must at a minimum ensure the following property:
if there are no more updates to a name record, all ac-
tive replicas must eventually return the same value of
the name record and, in a single-writer scenario, this
value must be the last update made by the (only) client.
Note that not satisfying this property means that a mo-
bile client may be rendered persistently unreachable even
though it is no longer changing its network address(es).
It would appear that this weak eventual consistency prop-
erty can be easily satisfied if the client associates a se-
quence number with each update; an active replica can
simply locally record the write, return to the client, and
lazily propagate the update to other active replicas.

Unfortunately, the simplistic approach above has some
problems. As the set of active replicas for a name can
change over time, a write-to-one approach can lose the
most recent write if the active replica that received the
write crashes and before it recovers, the replica con-
trollers change the set of active replicas. Even if the set
of active replicas remains unchanged, the window of in-
consistency (or unreachability) is higher with a write-to-
one approach if the active replica that received the write
fails. Most importantly, we anticipate that expressive
name records (see §3.2.5) may be updated by multiple
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authorized clients via different active replicas, and it is
important to ensure that update operations (like append-
ing to or deleting from a list) to a name are applied in
the same order by all active replicas. These requirements
motivate a state-machine approach to handle updates.

Total write ordering. For each name, Auspice en-
sures a total ordering of all updates across all active repli-
cas. To this end, active replicas for a name participate in a
Paxos instance maintained separately for each name (dis-
tinct from Paxos used by replica-controllers to compute
active replicas). This of course implies that updates can
make progress (Availability) only when a majority of ac-
tive replicas can communicate with each other (Partition-
tolerance) while maintaining safety (Consistency) [4].

Flexible consistency. Totally ordering writes to each
name makes it easy for Auspice to support three different
consistency models—eventual, sequential, and lineariz-
able. A name owner can choose the desired consistency
for their name. The consistency models pertain only to
operations to a single name (e.g. reads or writes to differ-
ent attributes of that name), and there are no consistency
guarantees on operations spanning different names. All
updates to a name record are executed after being com-
mitted by Paxos among active replicas. The execution
of lookups determines the consistency semantics for a
name. Auspice supports the following three semantics:

(1) Eventual: Paxos guarantees that all replicas will
eventually store identical copies of the name record.
A lookup request can be simply processed locally at a
replica as in §3.2.2.

(2) Sequential: Two properties must be satisfied to
provide sequential consistency: (a) read-your-writes: a
lookup for a name by a client sees the result of the most
recent committed update by that client for the name. (b)
monotonic reads: a lookup by a client always reads a
more recent or the same state of the name record com-
pared to the previous lookup by that client (irrespective
of the replica the client sends the lookup to).

Sequential consistency is implemented by leveraging
client support. A lookup request is processed locally
at a replica, similar to the eventual consistency model.
However, responses to both lookups and updates sent to
a client include the sequence number of the most recent
committed update by the Paxos instance at that replica.
A client accepts responses to the next lookup only if the
the sequence number returned with the response is equal
or greater than the sequence number received along with
the response of the previous request (lookup or update).
Otherwise, the response is discarded and lookup is sent
to a different active replica.

(3) Linearizable: A lookup must read the result of
all committed writes until that time to satisfy the lin-
earizability model. To this end, lookups (in addition to
updates) are executed after being committed by Paxos

among active replicas. Linearizability is the strongest
consistency model, but results in higher lookup latencies
compared to other two consistency models as it entails a
total ordering of both reads and writes.

3.2.4 Handling active replica group changes

As the group of active replicas can change over time,
consistency guarantees depend on safely handling a
change in the group of active replicas. The safety prop-
erty can be stated as follows: the group of active replicas
in epoch i+ 1, before executing any requests, must ob-
tain identical copies of the name record and that copy
must include all committed updates to the name record
made by the group of active replicas in epoch i.

The key protocol for group change is Stoppable Paxos
[47]. Stoppable Paxos supports a special STOP request
that can be committed only once and is always the last
request committed by the Paxos instance. The commit of
the STOP request ensures that no further changes to the
record will be made by the current group of active repli-
cas. The next group of active replicas, before execut-
ing any requests, copy the name record from any of the
current active replicas that have committed the STOP re-
quest. This guarantees that each member in next group of
active replicas starts with an identical copy of the name
record. Thus, STOP acts as a link between the two other-
wise independent Paxos instances per name: maintained
by replica-controllers and active replicas respectively.

3.2.5 Extensibility

For extensibility, Auspice is implemented as a general-
purpose, geo-distributed key value store. An Auspice
name acts as the primary key and is an arbitrary bounded-
length string while a name record is the value represented
as an associative array of “super columns”. This super-
column family representation allows us to store a flexi-
ble set of attributes that do not have to be defined a pri-
ori. For example, Auspice can store context attributes
like geolocation in MobilityFirst [12] or represent evolv-
able addresses in XIA [38]. Indeed, a name record can
be anything that can be represented as a JSON object.

In line with the vision of the MobilityFirst future Inter-
net architecture [12, 61], our position is that a logically
centralized global name service should capitalize on its
role as the first step in network communication and go
beyond simple name-to-address resolution; Venkatara-
mani et al [61] describe how a global name service can
significantly enhance network-layer functionality. As
part of this broader effort, we have internally used Aus-
pice to develop novel network-layer functions such as si-
multaneous mid-connection mobility and context-aware
communication and used the latter to develop an emer-
gency geocast application (see YouTube demo [12]).
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3.2.6 Access control and privacy
We have developed extensive and intrinsic support for
self-certifying GUIDs (or globally unique identifiers) as
one type of name in Auspice. Each human-readable
name in Auspice is first translated to a GUID that is sim-
ply a hash of the public key associated with the name.
Every top-level column in Auspice has access control
lists that could either be a whitelist (or blacklist) of
GUIDs allowed (disallowed) to perform a read or write
operation (in some cases, we have found an append-only
ACL distinct from the write ACL to be useful). By de-
fault, all columns and network addresses in particular can
be read by all but written to only using the private key
corresponding to the GUID. Some keyword attributes like
netAddress and geoLocation have special support (un-
like developer-defined attributes), for example, in order
to efficiently maintain indexes for attribute-based reverse
lookups or for non-default privacy policies like allowing
only whitelisted reads for geoLocation.

3.2.7 Deployment path
With modest additional effort, Auspice can be deployed
today as a massively scalable managed DNS provider.
In order to use Auspice, a domain name owner simply
has to set their authoritative name servers to any num-
ber of Auspice name servers. Name owners can use the
DNSSEC DNSKEY record to derive the GUID and con-
tinue to rely on delegation-server based chain of trust
model. In architectures like MobilityFirst, XIA, or HIP,
we expect Auspice to be deployed in a federated man-
ner where multiple providers may run separate Auspice
instances and mobile endpoints can obtain global name
service from a provider of their choice. These archi-
tectures implicitly assume a name certification service
(NCS) that first translates a human-readable name to a
self-certifying GUID; this NCS can also supply the name
of the provider that provides global name service for
that GUID. Currently, we have rolled in a simple NCS
into Auspice itself, which through a developer portal
(http://gnrs.name) binds a user-specified or system-
selected GUID to a human-readable name that is sim-
ply an email address, i.e., our proof-of-concept NCS is a
poor man’s CA relying on email-based verification.

3.2.8 Implementation details
The core of Auspice is implemented in Java with 28K
lines of code. We have been running an alpha deploy-
ment for research use for several months across eight
EC2 regions with support for an HTTP interface [10].
We have implemented support in Auspice for two plug-
gable NoSQL data stores, MongoDB (default) and Cas-
sandra, as persistent local stores at name servers. We do
not rely on any distributed deployment features therein as
the coordination middleware is our novel contribution.

We implemented the two-tier Paxos engine from
scratch. Each Auspice name server manages a very large
number of Paxos instances, one for every active replica
and replica controller at the node. Our Paxos implemen-
tation requires a small constant amount of state2 for each
instance that is currently stored in-memory as a Java ob-
ject. However, it is feasible to store this state in the data
store with some reduction in per-node throughput; this
would reduce memory pressure and allow a single server
to store a much larger number of name records.

4 Evaluation

Our main goal is to quantify the benefits and costs of
the choices in Auspice’s distributed design—our main
contribution—with respect to the subset of design goals
(§3.1) that are quantifiable, namely client-perceived la-
tency benefit and provider-perceived update cost under
high mobility. We use the implemented prototype to
evaluate (1) Auspice’s replication strategies against sim-
ple ones used by DNS providers today as well as DHT-
based alternatives proposed in research, and (2) a deploy-
ment of Auspice against several commercial managed
DNS providers in live operation. We use simulations to
evaluate (3) the sensitivity of Auspice’s benefits with re-
spect to mobile workload parameters, and (4) the scala-
bility of Auspice to regimes beyond those permitted by
our testbeds. We do not attempt to evaluate Auspice’s
functional design goals—resilience to failures, consis-
tency, extensibility, security—except to the extent that
all experiments subsume the overhead of these features.

4.1 Experiment setup
Testbeds: We use two testbeds, PlanetLab and a local
cluster. The PlanetLab setting consists of 80 nodes for
name servers and 80 for local name servers (assumed co-
located with end-hosts). The cluster consists of 16 ma-
chines (Xeon 5140, 4-core, 8 GB RAM) with 8 each used
for name servers and local name servers. Each of these
machines runs 10 name server or local name server in-
stances so that each instance can be mapped to a distinct
PlanetLab node; the emulated round-trip delay between
two nodes is equal to measured round-trip delay between
the corresponding PlanetLab nodes. Most of our system
experiments were performed on both testbeds, but we re-
port the corresponding cluster results as they are more
consistently reproducible.

Workload: A vexing evaluation challenge is that we
do not have a workload of clients querying a name ser-
vice in order to communicate with mobile devices mov-
ing across different network addresses. There is no

2This in-memory state is distinct from Paxos logs used for recovery
after crashes that must be maintained on disk for correctness.
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Workload parameter Value
(Mobile) device names 10,000

(Mostly static) service names 1000
% of device name lookups 33.33%
% of device name updates 33.33%
% of service name lookups 33.33%
% of service name updates 0.01%

Geo-locality 0.75

Table 2: Default experiment parameters (except §4.5).

global name resolution infrastructure for mobile device
names today and most mobile devices do not have pub-
licly visible addresses, so no one queries for them.

So we are forced to make up a synthetic workload of
requests to mobile device names and carefully analyze
the sensitivity to workload parameters. The following
are default experimental parameters (except for §4.5 on
sensitivity analysis). The ratio of the total number of
lookups across all devices to the total number of updates
is 1:1, i.e., devices are queried for on average as often
as they change addresses. The lookup rate of any device
name is uniformly distributed between 0.5 to 1.5 times
the average lookup rate; the update rate is similarly dis-
tributed and drawn independently, so there is no correla-
tion between the lookup and update rate of a name.

How requests are geographically distributed is clearly
important for evaluating a replica placement scheme. We
define the geo-locality of a name as the fraction of re-
quests from top-10% of regions where the name is most
popular. This parameter ranges from 0.1 (least locality)
to 1 (high locality). For a device name with geo-locality
of g, a fraction g of the requests are assumed to orig-
inate from N=10% of the local name servers, the first
of which is picked randomly and rest N-1 are the local
name servers geographically closest to it. How do we
pick a reasonable g? With admittedly little basis, we pick
g = 0.75 for device names, i.e., the top-10% of regions
in the world will account for 75% of requests to device
names, an assumption not altogether unreasonable given
that communication and content access today exhibits a
high country-level locality [45, 64].

In addition to device names, service names constitute
a small fraction (9%) of names in the workload and are
intended to capture web services like today with low mo-
bility. Their lookup rate (or popularity) distribution and
geo-distribution are used directly from the Alexa dataset3

[1]. Using this dataset, we calculated the geo-locality ex-
hibited by the top 100,000 websites to be 0.8. Updates
for service names are a tiny fraction (0.01%) of lookups,
as web services can be expected to be queried much more
often than they are moved around. The lookup rate of
service names is a third of the total number of requests

3Note that we do not rely on Alexa at all for mobile device names.

(same as the lookup or update rates of device names).
Table 2 summarizes the default workload parameters.

4.1.1 Schemes compared

Auspice uses the default parameter values as described
in §3. We compare against the following other schemes.
Static-3 replicates each name at three random locations,
so it has a low update cost and an even distribution of
names among name servers. Replicate-All replicates all
names at all locations, in the hope of optimizing latency
but ignoring update cost. All of these three schemes di-
rect a lookup to the closest available replica.

CoDoNS [56] replicates name records using the Pas-
try DHT. The number of replicas is chosen based on the
popularity ranking of a name and the location of repli-
cas is decided by consistent hashing. In our implemen-
tation, each request is directly sent to the replica that
would have received this request if Pastry routing were
followed, i.e., the latency we report would be smaller
than the actual latency in CoDoNS. We set the Zipf ex-
ponent to be 0.63 calculated based on our workload. The
average hop count is set so that CoDoNS creates the same
number of replicas as Auspice for a fair comparison.

4.2 Comparison of replication schemes
4.2.1 Lookup latency

This experiment compares the lookup latency of schemes
across varying load levels. A machine receives 200
lookups/sec and 100 updates/sec at a load = 1. For every
scheme, load is increased until 2% of requests (lookups
and updates) fail, where a failed request means no re-
sponse is received within 10 sec. The experiment runs
for 10 mins for each scheme and load level. To mea-
sure steady-state behavior, both Auspice and CoDoNS
pre-compute the placement at the start of the experiment
based on historical knowledge of the workload.

Figure 3(a) shows the distribution of median lookup
latency across names at the smallest load level (load =
0.3). Figure 3(b) shows load-vs-lookup latency curve for
schemes; lookup latency metric is the mean of the distri-
bution of median lookup latencies of names. Figure 3(c)
shows the corresponding mean of the distribution of up-
date cost across names at varying loads; the update cost
for a name is equal to the number of replicas times the
update rate of that name.

Replicate-All gives low lookup latencies at the small-
est load level, but generates a very high update cost and
can sustain a request load of at most 0.3. This is further
supported by Figure 3(c) that shows that the update cost
for Replicate-All at load = 0.4 is more than the update
cost of Auspice at load = 8. In theory, Auspice can have
a capacity advantage of up to N/M over Replicate-All,
where N is the total number of name servers and M is
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Figure 3: [System] Auspice gives up to 5.7× to 9× lower latencies over Static-3 and CoDoNS respectively (Figure
3(b), load = 1). Replicate-All can sustain a request load of at most 0.3; Auspice can sustain a request load of up to 8.

the minimum of replicas Auspice must make for ensur-
ing fault tolerance (reps. 80 and 3 here).

Static-3 can sustain a high request load (Fig. 3(b)) due
to its low update costs. Its lookup latencies are high as it
only creates a small number of replicas randomly.

Auspice gives up to 5.7× to 9× lower latencies over
Static-3 and CoDoNS respectively (Figure 3(b), load =
1). This is because is places a fraction of the replicas
close to pockets of high demand, unlike the other two
schemes. At low to moderate loads, servers have excess
capacity than the minimum needed for fault tolerance, so
Auspice creates as many replicas as possible without ex-
ceeding the threshold utilization level (refer to Equation
1), thereby achieving very small latencies for loads ≤ 4.

At loads ≥ 4, servers exceed the threshold utilization
level even if Auspice creates the minimum number of
replicas needed for fault tolerance. This explains why
Auspice and Static-3 have equal update costs for loads
≥ 4 (Figure 3(c)). Reducing the number of replicas at
higher loads allows Auspice to limit the update cost and
sustain a maximum request load that is equal to Static-3.

CoDoNS has higher lookup latencies as it places repli-
cas using consistent hashing without considering the
geo-distribution of demand. Further, it answers lookups
from a replica selected enroute the DHT route. Typi-
cally, the latency to the selected replica is higher than the
latency to the closest replica for a name, which results in
high latencies. CoDoNS replicates 22.3% most popular
names at all locations. Lookups for these names go to
the closest replica and achieve low latencies; lookups for
remaining 77.7% of names incur high latencies.

CoDoNS incurs higher update costs than Auspice even
though both schemes create nearly equal total number of
replicas at every load level. This is because CoDoNS
decides the number of replicas of a name only based on
its popularity, i.e., lookup rates, while Auspice decides
the number of replicas based on lookup-to-update ratio
of names. Due to its higher update costs, CoDoNS can
sustain a lesser request load than Auspice.

4.2.2 Update latency

We measure the update latency as the time difference be-
tween when a client sends an update and when it receives
confirmation from a replica. Figure 4 shows the distribu-
tion of median update latencies from the the experiment
in Section 4.2.1 for load = 0.3. The median and 90th per-
centile update latency for Auspice is 284 ms and is com-
parable to that of other schemes. A request, after arriving
an active replica, takes four one-way network delays to
be committed by Paxos, which explains why update la-
tency of all schemes is a few hundred ms.

Paxos’ consistency guarantees come at the cost of in-
creased update latencies. We quantify how much up-
date latencies could be reduced with the following up-
date protocol, called lazy-update, which gives eventual
consistency: send confirmation to client after updating
locally, and then propagate the update to other replicas.
A client would get a confirmation sooner in case of lazy-
update, but the update might take longer to be actually
received by all replicas. In another experiment, we mea-
sured the time lazy-update takes to propagate the update
to all replicas. We measure the median of the distribu-
tion of time to update all replicas to be 154 ms for lazy-
update. The corresponding median values for Paxos is
292ms. Thus, Paxos increases the latency to propagate
updates to all replicas by 1.8× over eventual-consistency.

4.3 Auspice vs. managed DNS providers
Having analyzed a synthetic workload dominated by
mobile device names, we next ask how Auspice com-
pares to commercial managed DNS providers in serv-
ing their customers’ domain names. These state-of-the-
art providers such as UltraDNS, DynDNS, and DNS-
MadeEasy [16, 8, 7] offer a geo-replicated authoritative
DNS service and are widely used by enterprises today.

Lookup latency: We compare Auspice to a leading
managed DNS provider for a workload of lookup re-
quests for domain names serviced by the provider. We
identify 316 domain names among top-10K Alexa web-
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Figure 5: Median update latency of Aus-
pice for updating replicas at 5 locations is
1.0 sec to 24.7 sec lower than three man-
aged DNS providers.
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Figure 6: [Simulator] Workload
sensitivity. Auspice gives 2× to 5×
lower latencies across all locality
levels.

sites [1] serviced by this provider. The geo-distribution
of lookups for each name is determined from the Alexa
dataset [1]. For each name, we measure performance
for 1000 lookups across 100 PlanetLab nodes. We
ensure that lookups are served from the name servers
maintained by the provider by requesting the address
for a new random sub-domain name each time, e.g,,
xyz.google.com instead of google.com. This name is un-
likely to be cached and requires an authoritative name
server lookup. Auspice name servers are deployed on
80 PlanetLab locations while the managed DNS has 16
known locations of server deployments [17]. For an even
comparison between Auspice and the provider, we limit
the maximum number of replicas/name for Auspice to 5,
which is less than one-third the number of locations of
the provider [17].

Auspice Managed DNS
Number of replicas 5 16
Median Lookup Latency 45 40
Mean Lookup Latency 74 72

Table 3: Auspice has latencies comparable to a managed
DNS provider with less than one-third replica locations.

Table 3 shows median lookup latencies across names
for Auspice and for the managed DNS provider. Auspice
performs within 11% of the managed DNS provider for
all latency metrics. While Auspice creates less than one-
third replicas as the managed DNS provider, it places
them considering the geo-distribution of demand. Due to
its placement strategy, Auspice achieves similar latency
with smaller cost of updates. This experiment shows that
Auspice provides latencies comparable to the state-of-
the-art DNS solutions with much smaller update costs
due to a judicious choice of replica locations.

Update latency: To measure update latencies, we pur-
chase DNS service from three providers for separate do-

main names. All providers replicate a name at 5 locations
across US and Europe for the services we purchased. We
issue address updates for the domain name serviced by
that provider, and then start lookups to the authoritative
name servers for our domain name. These authorita-
tive name servers can be queried only via an anycast IP
address, i.e., servers at different locations advertise the
same externally visible IP address. Therefore, to maxi-
mize the number of provider locations queried, we send
queries from 50 random PlanetLab nodes. From each
location, we periodically send queries until all authorita-
tive name server replicas return the updated address. The
update latency at a node is the time difference between
when the node starts sending lookup to when it receives
the updated address. The latency of an update is the the
maximum update latency measured at any of the nodes.
We measure latency of 100 updates for each provider.

To measure update latencies for Auspice, we replicate
1000 names at a fixed number of PlanetLab nodes across
US and Europe. The number of nodes is chosen to be
5, 10, and 20 across three experiments. A client sends an
update to the nearest node and waits for update confirma-
tion messages from all replicas. The latency of an update
is the time difference between when the client sent an up-
date and when it received the update confirmation mes-
sage from all replicas. We show the distribution of mea-
sured update latencies for Auspice and for three managed
DNS providers in Figure 5.

Auspice provide lower update latencies than all three
providers for an equal or greater number of replica loca-
tions for names. It is not clear to us why “Managed DNS
3” update latencies are an order of magnitude higher than
global propagation delays4. This finding is consistent
with a recent study [17], which has shown update laten-
cies of up to tens of seconds for multiple providers.

4They tend to not be forthcoming with proprietary internal details.
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4.4 Simulator validation
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Figure 7: Latency on PlanetLab compared to simulator.
5, 25, 50, 75 and 95 %-ile latencies are shown.

To ensure the accuracy of the simulator, we first val-
idate it based on an experiment on PlanetLab. In sim-
ulation, server latency is calculated using a queueing-
theoretic model [42] and network latency between two
nodes is the measured RTT between corresponding Plan-
etLab nodes. We introduce a similar packet loss rate in
the simulator as seen on PlanetLab. Figure 7 shows a
box plot of the distribution of median lookup latencies
of names in the PlanetLab experiment and in the simu-
lator. We find that median latencies for all schemes in
the simulator are within 8% of that on PlanetLab. The
95% latencies are higher on PlanetLab experiments than
in simulator due to unpredictable wide-area latencies and
server processing delays.

4.5 [Simulation] Sensitivity analysis
We analyze the sensitivity of Auspice’s benefits and costs
to the workload parameters used in §4.2. In order to be
able to expire a wider range of parameters and scales,
we use a custom simulator that simulates round-trip la-
tency, loss, and server load-vs-response time behavior as
measured on PlanetLab. Experiments here use 10K name
servers, 2K local name servers, 10K service names, and
100K device names.

Geo-locality: Figure 6 compares the latency for work-
loads with varying levels of geo-locality. Both Static-3
and CoDoNS are choose replica locations randomly, and
therefore their latency remains the same irrespective of
workload locality. But Auspice can achieve better laten-
cies as the geo-locality in the workload increases. Even
in a workload with no locality (g = 0.1), Auspice outper-
forms Static-3 by 2× because it creates more than three
replicas for each name, and outperforms CoDoNS by 4×
because it redirects requests to the closest replica of a
name unlike CoDoNS.

Ratio of device names to service names: This ex-
periment evaluates schemes for workloads with different
ratios of device names to service names, called DS-ratio
for short. We fix the number of service names to be 10K
and vary the number of device names between 1000 to

 10

 100

 1000

 0.001  0.01  0.1  1  10  100

Lo
ok

up
 la

te
nc

y 
(m

s)

RW-ratio

Auspice
CoDoNS
Static-3

Figure 8: Lookup-to-update ratio for device names. For
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has 2.95× lower latency than Static-3. Replicate-All is
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Figure 9: [Simulator] Auspice gives greater latency gains
over Static-3 as the number of device names increases in
the workload.

1,000,000. Figure 9 presents our results. Replicate-All
saturates server capacity for a workload with DS-ratio =
1 due to high update costs. Auspice supports workloads
with DS-ratio up to 100 as it minimizes the update cost
for device names. Due to its locality-aware design, Aus-
pice has 2.6×, 4.5× and 6.9× lower latency than Static-3
when DS-ratios are 1, 10 and 100 respectively.

Lookup-to-update ratio: We vary the ratio of
lookups to updates, termed as RW-ratio, by increasing
the number of lookups in the workload, but keeping the
number of updates fixed. Figure 8 shows that Auspice
provides lower latencies for both write-dominated work-
load (RW-ratio < 1) as well as read-dominated work-
loads (RW-ratios > 1). As RW-ratios increase beyond
1, Auspice handles the increase in number of lookups in
the workload by decreasing the replication parameter β

(refer to Equation 1). Lower β values reduce number of
replicas and hence the update costs for Auspice, which
helps Auspice accommodate workloads with RW-ratio >
1. Reduced number of replicas increases lookup latency
of Auspice, but still Auspice has 2.95× lower latency
than Static-3 for RW-ratio = 10.
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4.6 [Simulation] Comparison to Optimal

We have compared Auspice to Optimal based on an op-
timization formulation of the placement problem (Ap-
pendix A). Optimal takes as input the set of names, their
request geo-distribution, the capacity of name servers,
network latency between local name servers and name
servers, and a load-vs-response-time curve at each name
server, and computes replica placement so as to mini-
mize the sum of network and server latency. For a simi-
lar workload as in Section 4.2.1, we find that the latency
for Auspice is between 1.1×-2.1× of the Optimal across
all load levels. Optimal performs better as it can glob-
ally optimize server resource allocation across all names,
but Auspice uses a decentralized placement algorithm to
independently decide replica placement for each name.
In ongoing work, we are evaluating Optimal using the
testbed; this is nontrivial partly because Optimal must
know the exact load-vs-response time behavior, which is
not always stationary or easy to measure, so we conjec-
ture that the clean simulator environment overestimates
the benefits of Optimal.

4.7 TTL-value selection

Auspice internally uses active replication, but does al-
low TTL-based caching at local name servers and clients.
What TTL should names use? TTL-based caching means
that connect(name,port) calls from end-hosts can oc-
casionally time out because the destination name has
moved. In this case, end-hosts must send a refresh query
to Auspice and attempt to reconnect. The overall time-
to-connect to a name depends on the name’s update rate,
lookup rate, and the TTL. We have developed a sim-
ple analytical model to calculate the optimal TTL based
on these three values (Appendix B), to serve as a rec-
ommendation to name owners. Using simulations of a
TTL-based cache, we show that the optimal TTL val-
ues predicted by our model are effective in minimizing
connection-setup delay to names with a wide range of
update to lookup ratios.

The time to setup a connection to a name including
the time to lookup the name record from the cache de-
pends on the current state of the cache. The connec-
tion time is shortest in case of a cache hit because name
record lookup from the cache adds near zero overhead
to the connection establishment time. The connection
time is slightly longer if TTL has expired because the
cache looks up the name record from an active replica
in Auspice. The connection time is longest if TTL has
not expired but the cached address is no longer correct.
The user first attempts to connect to the incorrect address
of the name and after a timeout, forces the cache to get
the correct name record from Auspice and finally estab-
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Figure 10: [Simulator] The circled dots show the optimal
TTL values based on our model.

lishes the connection. The factor by which connection
setup time increases due to a name lookup is taken to be
l1 = 1, l2 = 1.5, and l3 = 4 respectively for the above
three cases. For simplicity, we assume that cache evic-
tions due to addition of other name records to the cache
have a negligible probability.

Figure 10 shows the mean latency inflation factor (y-
axis) for several values of ratios of TTL to update in-
terval (x-axis) and update to lookup ratios (each line).
For each value of update to lookup ratio, we also show
the optimal TTL based on our model, called Model-Opt-
TTL, and the corresponding latency inflation factor. First,
the minimum value of the latency inflation factor reduces
from 1.5 (= l2) to 1.0 (= l1) as the update to lookup ra-
tio reduces. When updates are much more frequent than
lookups, nearly all lookups require the cache to contact
an active replica; hence, the minimum latency inflation
is close to 1.5. Conversely, when lookups are much
more frequent than updates, suitably choosing a TTL
value results in a high fraction of TTL-cache hits and
hence minimum latency inflation is close to 1.0. Second,
Model-Opt-TTL gives a latency inflation factor which
is close the minimum latency inflation factor for each
curve. Hence, our model helps select TTLs that are ef-
fective is effective in reducing the latency inflation factor.

4.8 Limitations and future work

Mid-connection mobility: In this paper, we have fo-
cused on reducing the time-to-connect through the global
name service. However, a complete solution needs to
also support mid-connection mobility, especially simul-
taneous mobility of both endpoints (as the mobility of
just one endpoint can be handled bilaterally without re-
lying on the global name service). We have developed a
user-level socket library, msocket, that enables applica-
tion developers to seamlessly develop network applica-
tions using Auspice at connection initiation time, using
bilateral connection migration for individual mobility,
and falling back on Auspice to handle simultaneous mo-
bility. Under simultaneous mobility, we have shown that
endpoints can re-establish a connection within ≈2RTTs
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of the latter endpoint coming back online. However, a
detailed description of msocket is nontrivial and is de-
scribed in a separate report [3].

Scope of evaluation: Our comparison of Auspice
to managed DNS providers pits a pre-release prototype
against opaque production services in live operation, an
admittedly narrow comparison. Furthermore, we stand
on loose footing with prototype-driven experiments in-
volving 104 names and simulation experiments involving
106 names against DNS that serves 108 names and com-
mands the luxury of decades of deployment experience,
so our contribution is but academic at this point.

Estimating network distances: Auspice’s placement
engine relies on efficiently estimating network distances
based on the network addresses of clients or local name
servers. Our current implementation involves infre-
quently measuring ping latencies between name servers
and local name servers; as part of ongoing work, we are
evaluating other alternatives including using IP-to-geo
distances or iPlane [49] in conjunction with EDNS [9]
options to efficiently estimate network distances to both
local name servers and originating end-hosts.

5 Related Work

Our work on Auspice draws on lessons learned from an
enormous body of prior work on distributed systems for
name resolution as well as more general services. Com-
pared to this work, the novel contribution in Auspice is
an engine to automate geo-distributed replica placement
to achieve low-latency, low-cost, and high availability.

DNS: Until the early 80s, the Internet relied on a sys-
tem called HOSTS.TXT for name resolution, which was
simply a centrally maintained text file distributed to all
hosts. The current Internet’s distributed DNS [50] arose
in response to the rapidly increasing size of the file and
the cost of distributing it. Mockapetris and Dunlap point
to TTL caching to reduce load and response times as a
key strength, noting that “the XEROX system (Grapevine
[58]) was then ... the most sophisticated name service in
existence, but it was not clear that its heavy use of repli-
cation, light use of caching ... were appropriate”. We
have since come a full circle, turning to full replication
in Auspice in order to address the challenges of mobility,
a concern that wasn’t particularly pressing in the 80s.

Since then, many have studied issues related to perfor-
mance, scalability, load balancing, or denial-of-service
vulnerabilities in DNS’s resolution infrastructure [54, 56,
23, 29]. Several DHT-based alternatives have been put
forward [56, 28, 57, 53] and we compare against a repre-
sentative proposal, Codons [56]. In general, DHT-based
designs are ideal for balancing load across servers, but
are less well-suited to scenarios with a large number of
service replicas that have to coordinate upon updates, and

are at odds with scenarios requiring placement of repli-
cas close to pocket of demand. In comparison, Auspice
uses planned placement approach.

Server selection: A number of prior systems have ad-
dressed the server selection problem where data or ser-
vices are replicated across a wide-area network. OASIS
[34] maps users based on IP addresses to the best server
based on latency and server load. DONAR [63] enables
an expressive API for content providers to specify per-
formance or cost optimization objectives under load bal-
ance constraints. These systems as well as CDNs and
cloud hosting providers [2] share our goals of proximate
server selection and load balance given a fixed placement
of server replicas. Auspice differs in that it additionally
considers replica placement itself as a degree of freedom
in achieving latency or load balancing objectives.

Placement: Volley [18] optimizes the placement of
dynamic data objects based on the geographic distribu-
tion of accesses to the object and is similar in spirit to
Auspice in that respect. However, Volley implicitly as-
sumes a single replica for each object and therefore does
not have to worry about high update rates or coordination
overhead for replica consistency. Auspice is also similar
in spirit to edge services offered by commercial CDNs.
However, the geo-distributed locations of edge services
as well as cloud-hosted services today are chosen man-
ually and infrequently updated. In comparison, Auspice
automates geo-distributed placement of replicas, but the
“service”, a key-value store, is much simpler compared
to black-box cloud-hosted services.

Data stores: Auspice is also related to many dis-
tributed key-value stores [13, 30, 48, 5], but most of
these are optimized for distribution within, not across
data centers. Some like Cassandra [5] support a geo-
distributed deployment (but are rarely used in this mode)
using a fixed number of replica sites. Spanner [27] is a
geo-distributed data store that synchronously replicates
data across datacenters and provides database like ab-
stractions e.g., distributed transactions, semi-relational
data model. Auspice does not provide any guarantees
on operations spanning multiple records. In comparison
to these systems, Auspice automatically determines the
number and placement of replicas so as to reduce lookup
latency and update cost.
6 Conclusions
In this paper, we presented the design, implementation,
and evaluation of Auspice, a massively scalable, geo-
distributed, global name service for an Internet where
high mobility is the norm. The name service can re-
solve flexible identifiers (human-readable names, self-
certifying identifiers, or arbitrary strings) to network lo-
cations or other attributes that can also be defined in
a flexible manner. At the core of Auspice is a place-
ment engine for replicating name records to achieve
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low lookup latency, low update cost, and high avail-
ability. Our evaluation shows that Auspice’s place-
ment algorithms significantly outperform both commer-
cial managed DNS services employing simplistic repli-
cation strategies as well as previously proposed DHT-
based replication alternatives. A pre-release version of
Auspice on EC2 can be accessed through the developer
portal at http://gnrs.name.
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A Optimization Formulation

All variables used in this formulation are described in Table 4.
Let D be the set of locations of name servers, and Cd the total
capacity of the name server at location d ∈D. Users requesting
the name records are partitioned into distinct, geographically
distributed network regions or user-groups U . The user-groups
are assumed to be fine-grained enough so that the latency from
any member of a user-group u ∈U to a name server d is close
to the average latency Lud from users in u to d.

The system decides the placement of resolvers and also de-
cides to which resolver to redirect each user. A user’s request
is assumed to be serviceable from any of the resolvers. If a
resolver of name record s ∈ S is placed at location d ∈ D, the
corresponding (binary) decision variable xsd takes the value 1,
otherwise xsd equals zero. The volume of requests from user-
group u∈U to the replica (if any) at location d ∈D of a service
s ∈ S is denoted by yuds, a decision variable that takes values
between 0 and rus.

Minimizing the average latency can be formulated as a
mixed integer program. The following objective minimizes the
aggregate latency across all users’ requests. Md is the total
server latency at name server d ∈ D. The first term and the
second term denote the aggregate network and server latency
respectively.

minimize: ∑
s∈S

∑
d∈D

∑
u∈U

Lud xds yuds + ∑
d∈D

Md (2)

The optimization must satisfy the constraints of the problem
specified from Equation (5) to Equation (14).

All users’ requests must be satisfied.

∑
d∈D

yuds = Rus ∀u ∈U,s ∈ S (3)

The capacity at each name server must be greater than the total
request rate of users’ and the update rate of name records placed
at that location. The intermediate variable td is the total request
rate at name server d ∈ D.

∑
s∈S

∑
u∈U

yuds + ∑
s∈S

Ws xds = td ≤Cd ∀d ∈ D (4)

Server utilization at d ∈ D is td/Cd . Server latency per request
is defined as a function of server utilization. The function f is
a piecewise convex linear function defined as f (0) = 0 and its
derivatives.

f ′(td/Cd) =


r1 if 0≤ td/Cd ≤ u1,

r2 if u1 < td/Cd ≤ u2,

...

r j if u j−1 < td/Cd ≤ 1

(5)

Essentially, the above equations transform a load vs. response
time curve to a piecewise-linear, convex function, a technique
that has also been in used in other domains [33] to make the op-
timization linear. Let Md be the total server latency at location
d ∈ D. Md is defined by the following set of equations.

v0 = 0,u0 = 0,u j = 1 (6)

Md ≥ vi−1 + ri (td −ui−1 Cd) ∀i ∈ {1,2, ..., j} (7)

vi = vi−1 + ri (ui−ui−1) Cd ∀i ∈ {1,2, ..., j} (8)

To ensure availability, each name record should be replicated at
B locations or more.

∑
d∈D

xds ≥ B ∀s ∈ S (9)

A request can be served from a name server only if a resolved
is placed at that name server.

yuds ≤ xdsRus ∀u ∈U,d ∈ D,s ∈ S (10)

The next two equations constrain the values of each variable.

xds ∈ {0,1} ∀d ∈ D,s ∈ S (11)

0≤ yuds ≤ Rus ∀u ∈U,d ∈ D,s ∈ S (12)

B TTL Cache Model

In this section we propose a simple Markov model to determine
the TTL value of a DNS record so that the expected delay of a
read request is minimized. We make several simplifying as-
sumptions which enable us to determine a closed form expres-
sion for the TTL. The purpose of this model based approach
is to provide ballpark values which can be utilized by network
operators to set TTL values for the DNS records.

We consider a local name server with only a single DNS
record. Hence all read requests at this local name server are
for this particular DNS record. Every read request arriving into
the system can result in a cache hit or a cache miss. But unlike
regular caching systems, misses here can be of two types - one
due to TTL expiration of a record and the other due to stale
state information. Note that stale state information at a local
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Parameters
U Set of geographic regions spanning all users
D Set of name servers
S Set of all name records
Cd Capacity of name server d ∈ D
Lud Average latency between users in region u∈U and

name server location d ∈ D
Rus Lookup query rate of name record s∈ S from users

in region u ∈U
Ws Update query rate of name record s ∈ S
B Minimum number of resolvers of each name
α Replication parameter for all name records
Variables
xds Binary variable indicating whether name record

s ∈ S is replicated at d ∈ D.
yuds At location d ∈ D, lookup rate of users u ∈U for

name record s ∈ S

Table 4: Optimal parameters and variables

name server results from the corresponding entry at the global
name server being modified.

If the read request arrives before TTL expiration and the
state of the record at the local and global name servers are the
same, then the read request results in a Hit. If the read request
arrives after TTL expiration, we refer to it as a Type I Miss.
However, if the read request arrives before TTL expiration and
the state of the record at the local and global name servers are
different, then the read request results in a Type II Miss. The
delays experienced in these three situations are different. Let
δH , δM1 and δM2 be the delays incurred due to a Hit, Type I
Miss and Type II Miss respectively.

We denote the state of the system by a result of the last ar-
rival i.e., Hit, Type I Miss or Type II Miss. Let H, M1 and M2
denote the state of the system i.e, the last arrival was a Hit, Type
I Miss or Type II Miss respectively. We assume that the time
between two successive updates (U) to the DNS record at the
global name server is exponentially distributed with rate λU .
Similarly we assume that the TTL (denoted by T ) is also expo-
nentially distributed with rate λT . The memoryless property of
the exponential distribution enables us to model the system by
a Markov chain.

Let X denote the time between two successive read requests.
Let fX (x) denote the distribution of X . Because U and T are
modeled as an exponential distribution, once we observe the
system, i.e., a read request arrives, the time for the next update
and the time left for the TTL to expire are still exponential with
the same parameters as before. Irrespective of the current state
of the system, the probability that the next read request will
result in the system transitioning to state M1 ( PM1 ) is given
by P[X > T ]. Similarly, probability of transitioning to state H
(PH ) and M2 (PM2 ) are P[X < T & X <U ] and P[X < T & X >
U ] respectively. Note that the transition probabilities can be
calculated (at least numerically) for different distributions of
X . As our goal here is to provide ballpark values for the TTL
we assume X is also exponentially distributed with rate λR. PH ,
PM1 and PM2 are also the steady state probabilities of being in
state H, M1 and M2 respectively. It can be easily shown that

with the above assumptions,

P[H] =
λR

λT +λR +λU
(13)

P[M1] =
λT

λT +λR
(14)

P[M2] =
λRλU

(λT +λR)(λT +λR +λU )
(15)

Let D denote the delay experience by a read request. Then
we can show that,

E[D] = δH
λR

λT +λR +λU
+δM1

λT

λT +λR
+δM2

λRλU

(λT +λR)(λT +λR +λU )
(16)

To determine the value of λT which minimizes the E[D] we
differentiate (16) w.r.t. λT and equate it to 0. In this paper we

assume that
δM1
δH

= 1.5 and
δM1
δH

= 4. For the above values, the
possible value of λT which minimizes (16) is given by (17) (the
second differential is greater than 0 in most cases of interest).

λT =−λR +10.47λU (17)

λT in reality has to be greater than 0. If value of λT given
by (17) is less than zero, then the minimum expected delay
occurs for λT = 0 or λT = ∞. Note that if the read request
interval distribution for every DNS record at every local name
server is known, it is possible to set different TTL values for
records based on both popularity and locality thereby providing
additional flexibility to the network operator. In the current
system TTL values are set only based on the popularity and not
on the locality.

One of the major differences between the real system and
the above model is the exponentially distributed TTL assump-
tion. In the real system each name has TTL set of a fixed value.
But we will observe from our evaluation that the exponential
assumption does not hurt us badly and the value of λT deter-
mined by our model is successful in providing useful ballpark
values.

Lemma 1 P[M1] = P[X > T ] = λT
λT+λR

P[X > T ] =
∫

∞

0
P[X > T |T = t]λT e−λT tdt

=
∫

∞

0
P[X > t]λT e−λT tdt

=
∫

∞

0
e−λRt

λT e−λT tdt

= λT

∫
∞

0
e−(λR+λT )tdt

=
λT

λR +λT
(18)
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Lemma 2 P[H] = P[X < T & X <U ] = λR
λT+λR+λU

P[X < T & X <U ] =
∫

∞

0
P[X > T & X <U |X = x]λRe−λRxdx

=
∫

∞

0
P[T > x & U > x]λRe−λRxdx

=
∫

∞

0
e−λT xe−λU x

λRe−λRxdx

= λR

∫
∞

0
e−(λR+λT+λU )xdx

=
λR

λR +λT +λU
(19)

Lemma 3 P[M2] = P[X < T & X >U ] = λRλU
(λT+λR)(λT+λR+λU )

P[M2] = 1−P[H]−P[M1]

= 1− λT

λT +λR
− λR

λR +λT +λU

=
(λT +λR)(λR +λT +λU )−λT (λR +λT +λU )−λR(λT +λR)

(λT +λR)(λR +λT +λU )

=
λRλU

(λT +λR)(λR +λT +λU )
(20)

Lemma 4 λT =−λR +10.47λU

E[D]

dλT
= λR

( δM2 −δH

(λR +λT +λU )2 −
δM2 −δM1

(λR +λT )2

)
(21)

By equating (21)=0 we have,

(δM1−δH)(λT +λR)
2−2(δM2−δM1)λU (λT +λR)−λ

2
U (δM2−δM1)

2 = 0
(22)

Therefore we have,

λT =−λR +λU
(δM2 −δM1)±

√
(δM2 −δM1)(δM2 −δH)

(δM1 −δH)
(23)

Substituting the values of δH , δM1 , δM2 we have, the only pos-
sible candidate for λT as

λT =−λR +10.47λU (24)

The second differential is given by

d2E[D]

dλT
= 2λR

( δM2 −δM1

(λR +λT )3 −
δM2 −δH

(λR +λT +λU )3

)
(25)

For λT given by (23) to be a minima, we have to show that

(δM2 −δM1)(λR +λT +λU )3− (δM2 −δH)(λR +λT )
3 > 0

(26)
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