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ABSTRACT 

THE IMPACT OF INTEGRATED COACHING AND COLLABORATION 

WITHIN AN INQUIRY LEARNING ENVIRONMENT 

 
MAY 2013 

 
TOBY DRAGON, B.A., ITHACA COLLEGE 

 
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Beverly Woolf 

 
 

Over the last fifty years, technological advances have brought computer systems 

into the classroom and motivated a re-consideration of teaching practices and educational 

methods. Innovative computer systems today go far beyond providing standard 

instructional material. These Intelligent Tutoring Systems (ITS) employ Artificial 

Intelligence (AI) techniques to adapt to students and provide pedagogical support, taking 

some burden off of teachers and supporting more learner-centered classrooms. The same 

technological advances also enable more complex, interactive pedagogy. ITSs can be 

designed to support progressive learning techniques such as inquiry learning and 

collaboration, focusing on higher-level learning skills necessary for the 21st century. To 

offer realistic and complex problems where these higher-level skills can be practiced, 

these systems often present students with ill-defined problem spaces, where problems 

have neither one correct solution nor one correct solution path.  

This thesis explores the design and evaluation of a collaborative, inquiry learning 

ITS for ill-defined domains. We consider the common ground in the fields of Artificial 
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Intelligence in Education (AIED) and Computer-Supported Collaborative Learning 

(CSCL) to investigate the ways in which an inquiry-based tutoring system can employ 

both automated coaching techniques and collaborative techniques to support students as 

they learn in ill-defined problem spaces. We describe our design considerations and the 

resulting system, a collaborative ITS called Rashi. The Rashi system offers feedback on 

student work by using an Expert Knowledge Base (EKB) to recognize students’ solutions 

and collaborative contributions.  

We have used the Rashi system to evaluate the effects of coaching and 

collaboration on students’ behavior, and have investigated the potential to combine these 

tactics. We find that collaboration significantly improves students’ contributions. 

Students with access to collaborative tools create larger and more complex solutions. The 

effects of coaching were not as clear. There was no significant effect of allowing access 

to coaching capabilities, but some evidence suggests that there is a positive correlation 

between the amount of coaching received and certain metrics that represent positive 

inquiry behavior. We highlight the potential for combining coaching and collaboration by 

demonstrating that opportunities can be identified automatically where 1) collaborative 

work can create more opportunity to provide automated coaching and 2) automated 

coaching can identify key moments when collaboration should be encouraged.  

Finally, we present evidence of the importance of a clear and well-presented 

classroom pedagogy when introducing an ITS that relies on pedagogy with which 

students are unfamiliar. We found that giving students a more thorough introduction to 

the pedagogical approach resulted in significant improvement in students’ solutions.    
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CHAPTER 1 
 

INTRODUCTION 

Rapid improvements in technology during the latter part of the 20th century, 

particularly the advent of personal computer systems, have motivated a re-consideration 

of teaching practices and educational methods. The first computer systems for education 

were developed more than fifty years ago (Woolf, 2009). Since then, the idea of using 

computers in education, or computer-based instruction (CBI), has gone from an 

experimental concept to a reality. A meta-analysis by Kulik and Kulik (1991) showed 

that these systems are useful and can significantly raise scores and decrease training time. 

Most systems used today are static. Even when they provide open-ended 

experiences, they tend to not be adaptive, nor game-based, nor interactive, and therefore 

not engaging for students (Woolf, 2009). In a well-designed experimental study, Bloom 

(1984) demonstrated that one-on-one tutoring (in which a human tutor’s responses are 

individualized for each student) is far more effective than group instruction. However, 

promoting one-on-one tutoring as educational best practice is problematic, since it is not 

practical to provide a human teacher for each student. 

Woolf (2009) reviewed investigations that focused on developing new methods to 

employ CBI to offer some of the advantages of individualized tutoring by designing 

computer systems that understand and adapt to the user. In this way, the computer system 

can provide some of the adaptive support that individual human tutors provide. Situated 

within this context, the field of artificial intelligence in education (AIED) seeks to 

provide CBI in which artificial intelligence techniques are used to understand and support 

students as an individual human tutor might in a one-on-one tutoring scenario. CBI 



 2 

systems that can understand and adapt to the user are termed intelligent tutoring systems 

(ITSs). The community of AIED researchers has been steadily growing in size and scope 

for over forty years. 

 

1.1 Motivation 

A broad range of ITSs exist today, covering many domains, topics, and teaching 

strategies. Some systems teach well-defined subject matter in traditional ways. Many 

adaptive systems have been deployed on a fairly large scale and have demonstrated solid 

evidence of improved learning (Koedinger et al., 2000; Singh et al., 2011). Yet research 

in the field of AIED also includes a broader concept of teaching and involves multiple 

teaching strategies that go beyond traditional methods, e.g., collaborative learning and 

inquiry learning. Tutoring systems that employ these alternative teaching methods 

potentially provide more genuine, real-life experience and unique forms of user 

interaction (Baghaei et al., 2007; Kim et al., 2009; Pinkwart et al., 2007; Suthers, 1999). 

These systems stimulate students by offering hands-on learning experiences that can 

convey new information and concepts that would be difficult to express with standard 

systems.  

For our research, we consider two major advances in both teaching environments 

and teaching methodology: instruction in ill-defined problem spaces and collaboration. 

Each of these components can enhance the learning process (Gokhale, 1995; Lynch et al., 

2009) and each brings unique challenges as well. We consider how each effort is handled 

individually in the current research field, and how we can combine these approaches in 

an attempt to offer a complete system that is greater than the sum of its parts. 
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1.1.1 Ill-Defined Problem Spaces 

First, we consider a class of learning environments that explore ill-defined 

problem spaces. McGraw-Hill Dictionary of Scientific and Technical Terms (2002) 

defines problem space as,  

“A mental representation of a problem that contains knowledge of the initial state 

and the goal state of the problem as well as possible intermediate states that must 

be searched in order to link up the beginning and the end of the task.”  

An ill-defined problem space is a problem space that does not necessarily have 

clear start states, goal states, and/or intermediate states, or where the transitions among 

these states are unclear. An entire domain may be considered ill-defined, in that 

declarative knowledge about the subject matter is debatable, e.g., legal argumentation, 

software design, medical diagnosis, art history (Lynch et al., 2009; Mitrovic & 

Weerasinghe, 2009). Alternatively, tasks within a given domain may be considered ill-

defined (Mitrovic & Weerasinghe, 2009), meaning that the procedures involved have 

disputable aspects, even when the domain is well-defined.  

CBI systems that teach within ill-defined problem spaces move beyond simplistic 

interfaces that allow for multiple choice answer selection or fill-in-the-blank activities. 

Such systems provide environments where students can explore and apply critical 

reasoning skills to gather information and reach conclusions. In such environments, there 

is not one correct path to a solution, or even a specified set of correct solutions. Systems 

that teach within ill-defined problem spaces typically offer more freedom of exploration 

and expression than do CBI systems in well-defined problem spaces (Lynch, 2009). 
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However, these types of learning environments also have liabilities. Particularly, the 

freedom given to students when working in ill-defined problem spaces creates increased 

chances of students getting lost or floundering (Kirschner, Sweller & Clarke, 2006; Land, 

2000), and therefore generally requires more interaction with instructors to be successful 

(Suebnukarn & Haddaway, 2006). 

 

1.1.2 Inquiry Learning 

To help tackle the challenges offered by instruction in ill-defined problem spaces, 

we employ a specific pedagogical approach known as the inquiry learning method. While 

there are many ways inquiry learning is defined, the over-arching concept is to provide 

students with a structure and process that guide them through constructing knowledge 

while they actively engage in solving realistic problems (Collins & Stevens, 1991; De 

Jong et al., 2010; Krajcik et al., 1998; Mulholland et al., 2012; Shute & Glaser, 1990; 

Suebnukarn & Haddawy, 2004). Students engaging successfully in the inquiry process 

follow certain basic steps: they form hypotheses about the problem at hand, engage in 

data collection, and relate observable facts collected to support or refute their hypotheses 

(Ketelhut, 2007; Krajcik et al., 1998). Computer systems to promote or teach inquiry 

learning are prevalent (De Jong et al., 2010; Ketelhut, 2007, Mulholland et al., 2012; 

Sabourin et al., 2012; Shute & Glaser, 1990; Suebnukarn & Haddawy, 2004). However, 

applying inquiry approaches within normal classroom settings offers its own challenges 

(Clarke et al., 2003) particularly with respect to time and resource limitations. We discuss 

how ITSs can help alleviate many of these issues and make inquiry learning a viable 

option for a CBI in ill-defined problem spaces.  
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1.1.3 Collaboration 

Moving beyond traditional ITS approaches that support students to work 

individually with specific well-defined problems, we consider more open systems that 

improve learning opportunities by supporting collaboration. Previous research 

demonstrates that collaboration provides many benefits (Dillenbourg, 1995; Gokhale, 

1995; Soller, 2001), but it has been shown that to be effective, collaboration must be 

applied within specific learning scenarios and conditions (Dillenbourg, 1995, Soller, 

2001).  

Ill-defined problem spaces using inquiry learning provide an ideal case for 

collaborative efforts. CBI and ITS systems in ill-defined problem spaces have shown 

promising results as environments for collaborative work (Baghaei et al., 2007; 

Constantino-Gonzales et al., 2002). Collaborative components built into CBI generally 

manifest in two ways. The first is to focus purely on dialog support, where students chat 

and discuss with one another through the computer (Chaudhuri et al., 2009; McAlister et 

al., 2004; Morgan et al., 2012). The second form of such systems focuses on shared 

workspaces, giving students mutual access to learning objects and environments that can 

be manipulated and discussed (Baghaei et al., 2007; Constantino-Gonzales & Suthers, 

2003; Stahl, 2009). A subset of these shared tools focuses specifically on supporting 

argumentation through shared diagrams (Muller & Mizra, 2007; Pinkwart et al., 2007; 

Suthers, 1999).  

Our research combines three distinct threads of research (ill-defined problem 

spaces, inquiry learning, and collaboration) and results in a collaborative inquiry learning 
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environment for ill-defined problem spaces. The primary issue addressed here is the 

divide between data collection/simulation tools and organization/communication tools. 

The division between content work and collaborative contributions can result in 

collaborative difficulties and decreased student learning (De Jong et al., 2010; 

Muhlpfordt & Wessner, 2009). The separation between investigative activities and 

collaborative activities make it difficult for students to focus their collaboration around 

specific content at hand. While Muhlpfordt & Wessner, (2009) and De Jong et al., (2010) 

have offered tentative solutions, this problem of content/communication is still very 

much an open research area.  

One solution to this problem is content-focused collaboration, a manner of 

focusing collaboration specifically on and around the domain content at hand. 

Anjewierden et al., (2011) have shown that such content focus in discussion is correlated 

with learning gains. Systems can support content-focused collaboration by integrating 

features that promote the inclusion of domain knowledge in students’ collaborative 

efforts through interface design. In addition, artificial intelligence (AI) techniques can 

use domain knowledge to recognize when collaboration could be most fruitful, and can 

then promote targeted collaboration. 

 

1.1.4 System Intelligence 

In order for an ITS to reason about student learning, the intelligent portion of the 

ITS system must understand student work and intervene or adapt material appropriately 

to successfully support or enhance students’ learning processes (Corbett, et al., 1997). 

This intelligent support is particularly important in ill-defined problem spaces, due to the 
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increased likelihood that a student might require prompting or other intervention if they 

become lost or stuck to the point that they lose their motivation to pursue the problem 

(Kirschner et al., 2006; Land, 2000). But to promote inquiry when students work on ill-

defined problems, it is important not to intervene too early before students have had a 

chance to deeply engage in the problem.  The great challenge is to identify when students 

require intervention and what kind of support will promote inquiry rather than shut it 

down (Mavrikis et al., 2012). Systems that consider only the structure of the students’ 

learning artifacts provide shallow analysis of student learning (Pinkwart et al., 2007; 

Scheuer et al., 2009). This type of analysis provides only a limited understanding of 

student work because it accounts for only structure and not the actual content of student 

contributions.   

An approach to understanding student work on a deeper content level is to use an 

expert system (Baghaei et al., 2007; Pinkwart et al, 2007). Such systems may employ a 

knowledge base to encapsulate domain knowledge and provide analysis of student work 

based on a comparison with this knowledge base (Constantino-Gonzales et al., 2002; 

Crowley & Medvedeva, 2006; Kabanza et al., 2006; Kazi et al., 2009). Researchers must 

make connections between students’ input and the expert knowledge base, which in turn 

places constraints on the method of student input. The spectrum of student input ranges 

from free input, (e.g., unrestricted user input where students enter any text) to restricted 

input (e.g., limiting user input to specific words, numbers, etc.). Similar input 

considerations must be made when adding collaborative features to a system. The 

designers must decide how that collaboration will be carried out and how the content of 

students’ collaboration can be understood by the analysis component of the system. Free 
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input supports more student expression but limits the amount of information the system 

can understand. Restricted input simplifies the process of content recognition and also 

scaffolds the learning process (McAlister et al., 2004), yet it is more restrictive for the 

students and can narrow their contributions (Constantino-Gonzales et al., 2003). 

Once an analysis system can recognize and assess student input using an expert 

system, the designers must choose the type of support to provide. This support can focus 

on structure (Pinkwart et al., 2007; Scheuer et al., 2009) or content of student solutions 

(Constantino-Gonzales et al., 2002; Crowley & Medvedeva, 2006; Kabanza et al., 2006; 

Kazi et al., 2009) or even the students’ learning or collaboration processes (Baghaei et al., 

2007). Finally, the designer must also consider when this support should be provided and 

how it should be visualized (Mavrikis et al., 2012). All these considerations play 

important roles in the final product and will have an effect on how the system is used and 

how students will learn from it. 

Methods of assessing and supporting students in collaborative inquiry systems for 

ill-defined problem spaces form the foundation for the research carried out for this thesis. 

The main question is how collaboration can be combined with and/or utilized by a 

coaching system to improve student learning. The central goals of this research are to 

discover the impact of collaboration and coaching techniques on student behavior in a 

tutoring system for ill-defined problem spaces, and to analyze how collaboration and 

intelligent tutoring systems may be combined to improve student learning. 
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1.2 The Problem and The Approach 

The specific Intelligent Tutoring System on which the current research is based is 

Rashi, an intelligent, collaborative, domain-independent, inquiry learning environment 

for instruction in ill-defined problem spaces (Dragon et al., 2006; Dragon, Woolf & 

Murray, 2009). The specific ill-defined problem space on which this research focuses is 

the use of differential diagnosis in diagnostic medicine. The Rashi system implements 

both inquiry learning and collaborative approaches, and it recognizes student input 

through intelligent analysis and provides feedback. 

Rashi is domain independent, meaning it is not tied to any given subject matter.  

However, the system is designed to include domain knowledge that supports specific ill-

defined problems. It is built to enable authors to construct knowledge of many different 

domains in the same framework. Different domains are created through the joint effort of 

subject matter experts (SME) and knowledge engineers by using an authoring tool that 

supports standard computer users, and doesn’t require programming skills. The authoring 

tool allows these standard users to define environments for students to explore and to 

define the expert knowledge base used to recognize student work and provide support 

(Murray et al., 2004). Once these environments and this knowledge base have been 

defined for a given domain, students using that domain are presented with the 

environment and provided organizational tools that support and promote the inquiry 

process (see Figure 1.1). Students explore, collect data, form hypotheses, and try to use 

the data to support or refute their hypotheses.  
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Figure 2.1. The Rashi system consists of tools for data collection that can be defined for 
use in different domains  (left), and tools for critical thinking, that are consistent across 
domains (right). 
 

 Rashi provides a learning environment for many problem spaces and has been 

used so far in disciplines of biology, forestry, geology, and art history (Dragon & Woolf, 

2007). This project focuses on biology, specifically the Rashi implementation of 

differential medical diagnosis. In this domain, students are presented with the challenge 

of diagnosing a virtual patient who presents symptoms or complaints that suggest 

possible ill health. Students form multiple diagnoses (hypotheses about the patient’s 

illness), collect data (interview the patient, examine the patient, request results of medical 

tests), and use this data to support or refute each proposed diagnosis.  

This task demonstrates the concept of an ill-defined problem space, as the process 

of diagnosing an illness is not algorithmic, even for experts, and experts can disagree on 

correct diagnoses in many cases (Gauthier et al., 2007). There is a vast solution space to 
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explore (all potential diagnoses) and many paths can be constructed to any given solution 

(various kinds of data to collect in an unspecified order). 

The Rashi system was built initially for individual users and had no intelligent 

coaching component. The system has been extended to offer coaching abilities (Dragon 

et al., 2006) as well as collaborative features that support students’ interactions with one 

another (Dragon et al., 2009). 

 The coaching system was designed and implemented to analyze student solutions 

and offer individualized feedback at three levels:  

• Structural Support – feedback based purely on the structure of student 

solutions (without understanding the text input or domain knowledge). 

• Content Support –feedback based on the content of student solutions 

(through text-based analysis of hypotheses and data in comparison with 

the expert knowledge base). 

• Process Support – feedback to guide students on potential step-by-step 

paths through inquiry process. 

 

Many computational tasks are associated with the creation of these three modes of 

feedback. Developers create an expert knowledge base structure and rules to analyze and 

assess student solutions compared to the knowledge base. They also define when and 

how the system will provide feedback based on this assessment. 

Rashi has been extended to include several collaborative features along with the 

coaching capabilities. For basic collaborative capabilities, the system includes both 

means for students to engage in dialog and means for groups of students to examine each 
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others’ information and analytical approaches through shared workspaces. New features 

of Rashi have been integrated to foster content-focused collaboration. A critique/rebuttal 

system brings students’ comments into context, while subject tagging in the chat window 

allows students to reference content that is not directly present in the conversation.  

The synergy of coaching and collaboration is a final focus of this research to 

better understand how coaching can be used to further collaborative efforts and how 

collaboration can improve coaching capabilities. Of particular interest is how this 

combination can be used to promote content-focused collaboration. In this manner, 

coaching capabilities can be used to improve the impact of collaborative work on student 

learning in a specific content area, and collaboration tools can be used to promote more 

frequent or more meaningful use of coaching mechanisms. 

 

1.3 Research Goals and Hypotheses 

The coaching and collaborative features described above were added to the Rashi 

system with the intention to specifically test the primary research question:  

 

Does targeted use of both collaborative features and feedback from coaching software 

improve students’ solutions?   

 

Studies were conducted in actual classrooms over several years to evaluate the 

impact of coaching and collaboration on students’ solutions. Use patterns and other 

metrics of student effort were compared across similar populations of students using the 

system with and without these added features. The performance and behavior of student 
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populations were compared to one another, and the effects of these added features were 

examined. For example, students who had access to coaching feedback were compared 

with students who had no access to feedback. Student populations who received coaching 

were further tested to look for possible impacts of an increased amount of coaching on 

students’ performances within the learning environment. Four specific hypotheses were 

investigated: 

 

H1: The addition of collaborative features improves student inquiry behavior, increasing 

the size and complexity of student arguments.  

 

Results support this hypothesis, demonstrating that the addition of collaborative 

features led to creation of more hypotheses, collection of more data, and the 

establishment of more relations between data and hypotheses. 

 

H2: The addition of coaching components improves student behavior by helping students 

focus on essential information and increasing the creation of semantically meaningful 

and content-rich student solutions. 

 

No statistical support was found for this hypothesis in an across-group analysis of 

students who had the coach available versus students without the coach available.  Some 

statistically significant correlation was seen between the amount of coaching and 

improvements in particular aspects of student solutions related to coaching, 

demonstrating some positive effect of coaching. Overall, the data thus far don’t refute the 
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value of coaching, and analysis of this aspect of the study will present theories as to why 

coaching did not have a more pronounced effect. 

 

H3: Clarification of the pedagogical approach with both facilitators and students 

improves student behavior, increasing the creation of semantically meaningful and 

content-rich student solutions. 

 

 Results support this hypothesis. A major problem identified in the pilot studies 

was students’ lack of understanding of inquiry and the inquiry process. To address this 

issue, a clearer introduction of the classroom pedagogy of Rashi was presented to the 

classroom facilitators. Facilitators included both teachers and teaching assistants, who 

acted in similar roles in the classroom scenarios: giving general instructions, organizing 

students, and offering support when requested. After facilitators were provided with this 

additional information about the pedagogical approach in the classroom, they explained 

the concepts to their students. This pedagogical guidance drastically altered student 

behavior, demonstrating that a more well-defined classroom pedagogy enhanced the 

technical approach. Proposals about how this result may be applied to other system 

improvements and create more pronounced learning effects are discussed.  

 

H4: An expert knowledge-based recognition system can identify opportunities to promote 

targeted content-focused collaboration. 
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 This concept and feature set was not fully developed within the timeframe of this 

research, but preliminary evidence suggests this hypothesis is worth further exploration. 

Some of the evidence supports the hypothesis that collaboration provides a means by 

which additional domain content can be recognized and that students can receive 

additional coaching information as a direct result of their collaboration. Additionally, 

assessment of student solutions demonstrates that the system can recognize opportunities 

to promote content-focused collaboration. 

Most of the evidence presented suggests the promise of both coaching and 

collaboration to improve students’ solutions and students’ learning within the Rashi 

system. More generally, there is great promise in combining coaching and collaboration 

in ill-defined problem spaces. Three main targets are suggested for future work: develop 

explicit classroom pedagogy; increase human involvement in coaching; and focus on 

higher-order skill assessment and development.  

Explicit pedagogical models are necessary to guide students to proper use of 

advanced technology, especially inquiry systems, and effective inquiry work in general. 

Involving more human effort in the introduction of coaching capabilities allows for a 

more incremental and thoroughly tested development process and also provides means 

for better facilitator involvement in the finished system.  

Future assessment and system enhancements should focus on higher-order skills. 

These types of skills gain importance as society places more emphasis on 21st Century 

problem solving, scientific reasoning, and collaboration (Kellner 2002; Rotherham & 

Willingham, 2010). Collaborative inquiry learning in general, and the Rashi system in 
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particular, offer a promising test-bed for understanding and teaching these higher-order 

skills. 

 

1.4 Overview of the Dissertation 

The remainder of this document is presented as follows: Chapter 2 presents the 

educational concepts of the system, describing the basis for the thesis research in both 

inquiry learning and collaborative learning. This chapter also presents the specific 

implementation choices for the Rashi system with respect to these two learning 

approaches. 

Chapter 3 presents the artificial intelligence techniques and approaches used by 

the Rashi system to analyze student work and offer several types of feedback. This 

includes a description of the expert knowledge base, the system that matches student 

work to this expert knowledge base, and the methods applied to offer feedback about 

both content and process. 

Chapter 4 presents the evaluation of improvements to the Rashi system, including 

coaching collaboration, and improvements to the classroom pedagogy. This includes a 

description of different studies that were run with students in classrooms using the 

software, the state of the software at the time it was used, and finally a description of the 

results in regards to the hypotheses of this dissertation.  

Chapter 5 presents the main conclusions of this research including the 

implications of the results, lessons learned that might benefit other investigators, and 

suggestions for future efforts that are promising based on results of these studies.  
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CHAPTER 2 

 

PEDAGOGICAL THEORY – INQUIRY LEARNING AND COLLABORATION 

IN ILL-DEFINED PROBLEM SPACES 

 
2.1 Introduction 

Three major pedagogical frameworks have been combined in this dissertation 

research. First is the concept of and motivation for using computer tutoring systems in ill-

defined problem spaces, section 2.2. The chosen subject matter, differential medical 

diagnosis is used as a specific instantiation of an ill-defined problem space, which offers 

inherent challenges to standard teaching practices. The next two sections discuss 

pedagogical approaches that offer support and structure when working within such 

problem spaces. Inquiry learning provides a workflow and a methodology to help 

students operate within ill-defined problem spaces, as presented in section 2.3. 

Collaboration, if invoked properly, has the potential to harness a student’s individual 

abilities to support and promote shared ideas, creating an overall product and 

understanding that is more productive than individual work, as presented in section 2.4. 

 

2.2 Ill-Defined Problem Spaces 

Intelligent tutoring systems (ITSs) have been demonstrated to promote learning in 

well-defined domains such as K-12 math (Koedinger et al., 2000; Singh et al., 2011). 

However, it is still an open question as to how systems with artificial intelligence can 

support learning in ill-defined problem spaces, for which there is no single correct 

solution, nor single correct solution path. Such problem spaces differ in both content and 
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learning approach. They require a more robust and dynamic pedagogical approach where 

learners seek multiple solution paths, and opportunistically explore the subject matter at 

hand (Dragon et al., 2006; Mitrovic & Weerasinghe, 2009). These problem spaces 

generally do not rely on memorization of domain-specific facts or processes (Lynch et 

al., 2009). Tutoring in such problem spaces is not a matter of simply applying current 

definitions that are appropriate in well-defined domains. These concepts require different 

approaches, both in terms of knowledge representation and teaching strategy. 

The growing body of research around ill-defined problem spaces is reviewed, 

addressing in particular known challenges to teaching this type of subject matter and 

current computer-based approaches to instruction within ill-defined problem spaces. 

Finally, the specific focus on differential medical diagnosis is examined to analyze how it 

exemplifies the concept of an ill-defined problem space and how it offers an opportunity 

to create an ITS around these types of problems. 

 

2.2.1 Theory - Ill-Defined Problem Spaces 

Enumerating the specific qualities that make a problem space “ill-defined” is a 

curious challenge, since lack of a precise definition is in fact a characteristic of these 

problem spaces. One of the main artificial intelligence tasks in ITS research is creating a 

knowledge representation, or domain model (Woolf, 2008). A traditional approach of 

knowledge representation within artificial intelligence is to “define” that task or 

knowledge in the domain (Minsky, 1995). As applied to ITSs, this modeling task 

manifests as a descriptive or prescriptive model of potential student actions and their 

resulting consequences as in the entire class of knowledge tracing tutors (Corbett & 
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Anderson, 1994). When constructed in such a way, these knowledge representations are 

inherently well defined. Viewing knowledge representation in this way assumes that an 

ill-defined problem space is a portion of the overall space that has not been “mapped out” 

appropriately into some computer-recognizable language. However, there is growing 

consensus that some domains and problems are inherently ill-defined (Lynch et al., 2009; 

Mitrovic & Weerasinghe, 2009). Tutoring in such problem spaces requires more than 

merely applying techniques appropriate to well-defined domains. 

 Accepting the idea of inherently ill-defined problem spaces still leaves many 

potential conflicts and differing terminologies.  Lynch et al., (2009) set out functional 

characteristics of problem spaces that are widely deemed to be “ill-defined” to include 

areas that, 

• lack widely accepted domain theories identifying relevant concepts and functional 

relations. 

• cannot be readily partitioned into independent sub-problems. 

• have prior cases that are partially inconsistent. 

• involve the need to reason analogically with cases and examples. 

• have a large or complex solution space that prohibits one from enumerating all 

possible characterizations or solutions. 

• lack formal or well-accepted methods to verify solutions. 

• lack clear criteria by which solutions are judged. 

• are not considered to be “solved” when one solution is presented but may be 

readdressed by multiple, often distinct, solutions. 
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• involve disagreements among domain experts regarding the adequacy of the 

solutions. 

• require solvers to justify their solutions through argument. 

 

These characteristics clarify both the need for providing instruction in such problem 

spaces and the difficulties of representing such problem spaces using traditional methods. 

The problem spaces defined by this list are not fringe areas of study; they are the very 

heart of certain subjects such as law, ethics, architecture, art history, and medical sciences 

(Dragon & Woolf, 2007; Gauthier et al., 2007; Lynch et al., 2009; Pinkwart et al., 2007; 

Mitrovic & Weerasinghe, 2009). For ITSs to offer solutions across the entire spectrum of 

educational challenges, ITSs for ill-defined problem spaces must be addressed. However, 

we also see that providing instruction and support for problems that have solutions space 

that prohibits enumerating all possible solutions or problems that are not considered 

solved when one solution is presented requires some type of pedagogical approach and 

knowledge representation beyond traditional means such as knowledge tracing or model 

tracing tutors. These approaches attempt to map out all student actions and recognize the 

entire solution space in reference to their models (Anderson et al., 1990; Corbett & 

Anderson, 1994), which is an inadequate approach to ill-defined problem spaces. 

Many innovative teaching strategies lie entirely within, or are improved by, 

operating in ill-defined problem spaces. Examples include any technique promoting free-

thinking exercises or creativity (Wegerif, 2010). When creating ITSs that use these 

strategies, the system should impose less structure to support more freedom for students. 

These systems need to enable and understand a larger set of acceptable solutions and 
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solution paths. This flexibility provides freedom for the student to create unique and 

equally correct solutions from their own understanding rather than recording memorized 

expert solutions (Kazi et al., 2009; Lynch et al., 2009). Systems have been built that 

understand and support student work in such situations, and provide instruction over vast 

solution spaces. One particularly successful approach is termed constraint-based tutoring 

(Mitrovicet al., 2007), where solutions are judged by a set of constraints to create classes 

of solutions rather than enumerating individual solutions.  

To further define the concept of ill-defined problem spaces, one must consider 

whether the task is ill-defined, the domain is ill-defined, or both. Mitrovic and 

Weersainghe (2009) describe the operational difference between task and domain as the 

differentiation of declarative knowledge and procedural knowledge. Ill-defined domains 

are entire domains in which the declarative knowledge can be debated—even the 

theoretical general knowledge about the given domain. Ill-defined tasks are tasks in 

which the procedural knowledge is unclear: the start state, transformations, and end states 

are unclear or innumerable, and therefore pre-set solutions or algorithms cannot be 

offered to satisfy all possibilities. With this definition, we can see that ill-defined 

domains are clearly tied to ill-defined tasks, yet ill-defined tasks are not necessarily 

related only to ill-defined domains, and in fact might be associated with well-defined 

domains. Figure 2.1 shows these different spaces, and places examples of subject matter 

in their respective locations in this task/domain mapping space. We view this given figure 

as a mapping of problem space, and we use the term ill-defined problem space to 

reference any location below the center in this space, meaning it involves some level of 

ill-defined task regardless of whether or not the domain is ill-defined. 
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A wide variety of related work has been undertaken in the space of ill-defined 

tasks, as seen by the examples in Figure 2.1. Some notable examples include legal 

argumentation (Pinkwart et al., 2007), intercultural competence (Kim et al., 2009), and 

database design (Baghaei et al., 2007).   

One example of such a tutoring system focuses on intercultural competence 

necessary for negotiation. The Bi-Lateral Negiotiation (BiLAT) system attempts to teach 

negotiation skills combined with cultural awareness and competence, demonstrating 

 Figure 2.3. The space of ill-defined problems and ill-defined tasks, as presented in 
Mitrovic & Weerasingh 2009. Moving from well-defined to ill-defined, the top-right 
quadrant represents well-defined domains with well-defined tasks (WDWT). The bottom-
right quadrant represents well-defined domains with ill-defined tasks (WDIT). Finally, 
the bottom-left quadrant represents ill-defined domains and ill-defined tasks (IDIT). 
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modest learning gains for novices and more experienced users (Kim et al., 2009). 

Students engage in conflict negotiation in a culturally specific scenario, offering a clear 

example of both an ill-defined domain and task. Specifically, students are immersed in a 

virtual environment and take on a role of a negotiator as they attempt to reach agreement 

with virtual agents. Through these interactions, the students learn the importance of 

cultural differences and learn to interact in the simulated culture in a more productive 

fashion.  

Legal argumentation also falls into this category of ill-defined domains and tasks. 

Legal Argument Graph Observer (LARGO) offers students practice in creating argument 

diagrams of legal arguments to parse how the law has been, or should be. applied to 

specific cases at hand (Pinkwart et al., 2007). This domain is inherently ill-defined, as 

there is not overall agreement about correct and incorrect application of the law (there is 

continual debate and re-interpretation). Also, the task is ill-defined partially because 

students do not just apply law, but rather their task is to reason about the laws themselves 

(Pinkwart et al., 2007). This leaves a broad solutions space where assessment of results 

requires deep analysis and interpretation. 

Moving towards the space of well-defined domains, we consider the COLLECT-

UML system designed to tackle software design issues, specifically UML diagramming 

(Baghaei et al., 2007). While the underlying concept of Entity-Relationship models is 

well-defined, the task in this given system is ill-defined both in the loose specifications 

given as a start state, and the loose definition of appropriate goals states (Mitrovic et al., 

2009). The COLLECT-UML system offers students practice in these tasks by providing a 
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collaborative workspace where students can create different UML diagrams and attempt 

to solve the different challenges (Baghaei et al., 2007).  

Each of these systems comes with a unique set of challenges and tools necessary 

for practice, but there are also common issues that are characteristic of work in ill-defined 

problem spaces. Tutoring systems for ill-defined problem spaces must allow the user 

freedom to explore the problem space, and accommodate personalized and unpredictable 

solutions and solution paths (Lynch et al., 2009). Each given system offers its own 

solutions to these problems, but all systems must confront them to be successful. 

 

2.2.2 Implementation - Ill-Defined Problem Space of Medical Diagnosis in Biology 

The specific ill-defined problem space that is the focus of this research is 

differential diagnosis in human biology. This domain fits almost all the characteristics 

given by Lynch et al., (2009) enumerated above that categorize an ill-defined problem 

space. For example, during diagnosis, domain experts often reason analogically with 

cases and examples, disagree regarding the adequacy of the solutions, and lack formal or 

well-accepted methods to verify solutions. This is largely due to the vast and 

ambiguously defined solution space, the lack of available methods by which to judge 

solutions, and the existence of multiple, distinct solutions.  

In reference to Figure 2.1, differential medical diagnosis is an ill-defined task 

situated within the border between an ill-defined/well-defined domain. The domain of 

differential medical diagnosis has a certain level of structure; much settled declarative 

knowledge exists on the subject (Beers et al., 2006; Dorland's illustrated Medical, 2011). 

These sources enumerate existing diseases, and known information about their likelihood, 
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their symptoms, and their inter-relations. However, the domain is not well-defined in that 

the given declarative knowledge about disease is ever changing; new diseases are 

discovered and new symptoms added to the collective knowledge. Even as the domain is 

somewhat defined, the task given to a person who is diagnosing a patient is clearly ill-

defined. Practitioners are presented with patients exhibiting an initial set of symptoms. 

These practitioners must take steps to decide the patient’s most likely illness by 

collecting information from the patient. There are many approaches to this problem 

(Baerheim, 2001), with a wide variety of equally good solutions, and large disagreement 

between experts as to “best” solutions (Gautheir et al., 2007).  

For our study, we will consider a number of these diagnosis tasks, or cases, used 

as teaching tools to instruct students in biology. Students are presented with these cases 

through the Rashi system, an ITS designed by our team to support learning in ill-defined 

domains. The Rashi system presents environments for students to explore the diagnosis 

case at hand (Section 2.3.2) and also allows students to collaborate while working on 

these cases (Section 2.4.2). Students interview, examine, and conduct lab tests for their 

patient, create hypotheses (potential diagnoses), and try to support and refute their 

hypothesis to offer a set of final diagnoses as to what might be the potential problems 

with the patient’s health. Rashi’s specific tool set (Section 2.3.2) allows students to 

operate in this ill-defined problem space by exploring using data collection tools (Section 

2.3.2.1) and creating a wide range of solutions and solution paths with the cognitive tools 

(Section 2.3.2.2). 

Rashi is not the only system that supports students as they practice the ill-defined 

tasks associated with differential medical diagnosis. Several other notable examples exist, 
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including: BioWorld (Lajoie et al., 2001), TeachMed (Kabanza et al., 2006), and the 

Collaborative Intelligent Tutoring (COMET) system for Medical Problem Based 

Learning (Suebnukarn & Haddawy, 2006). Bioworld and TeachMed both present tools 

similar to the Rashi system, offer case-based problems, and also offer examinination and 

interviews with simulated patients. The COMET system is at a higher-level in terms of 

audience and content knowledge, as it is designed for medical school classrooms where 

students need to quickly diagnose specific medical conditions (such as head trauma). 

It is important to note that our main research contribution is not focused on 

providing a teaching system in this specific domain, but rather to consider this domain as 

a vehicle within which to test teaching methods and theories. These other systems are 

often built explicitly for the medical domain and cannot be extended outside of their 

specific domains. This is true of the majority of collaborative systems that offer domain 

support (Magnisalis et al., 2011). In contrast, Rashi is domain-independent system and 

has been authored to function within many domains, including art history, geology, and 

forestry (Dragon & Woolf, 2007). In this way, our work has less impact on a single 

domain (e.g. medical diagnosis) but rather a more broad impact on teaching style that 

may be applied generally across many domains. We only present the work in the medical 

domain to provide a consistent example and to give the most detail about the domain in 

which our final studies were conducted. 

 

2.3 Inquiry Learning 

Ill-defined problem spaces require teaching methods that rely on more than  

memorization and that promote higher-order thinking skills (Lynch et al., 2009). Inquiry 
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learning methods support the student as an active participant who does more than merely 

receive information and answer prompted questions. Rather, the student assumes active 

roles of collecting information, forming hypotheses, and investigating phenomena in 

his/her own way. This method of instruction is well documented and has been practiced 

in numerous disciplines and with different age groups (e.g., Clark et al., 2003; Collins & 

Stevens; 1991, De Jong et al., 2010; Geier et al., 2008; Krajcik et al., 1998, Mulholland et 

al., 2012; Shute & Glaser, 1990, White & Frederickson, 1998). The lack of more broadly 

used inquiry-based learning activities in schools is partially due to the inherent 

difficulties of bringing such activities into a standard classroom setup (Clarke et al., 

2003; Geier et al., 2008). This section addresses the concept of inquiry learning and the 

challenges that may minimize its use in standard classrooms and proposes how ITSs can 

offer solutions to those challenges. Rashi is presented as an approach to address the 

challenges of implementing inquiry learning and to provide a space for students to 

engage in authentic inquiry learning in the classroom. 

 

2.3.1 Theory - The Inquiry Learning Process 

As with ill-defined domains, there are a wide variety of definitions and differing 

viewpoints about what truly defines inquiry learning. However, common issues about 

using inquiry learning exist and these issues often create difficulties in the normal 

classroom setting. This section presents common inquiry themes, common impediments 

to bringing this type of education to the classroom, and the ways technology might help 

address those impediments. 



 28 

While many researchers study inquiry learning in classrooms, there is no agreed 

upon definition. The high-level concept of inquiry learning involves an activity placed in 

an open environment, with certain tasks to be attempted in this environment. The 

environment is usually a space to explore some questions about real-world phenomena or 

a statement of a real problem faced by workers in a field of study (Collins & Stevens, 

1991; De Jong et al., 2010; Krajcik et al., 1998; Mulholland et al., 2012; Shute & Glaser, 

1990; Suebnukarn & Haddawy, 2004) Students placed in these environments are often 

expected to accomplish a number of tasks, including,  

1) Create hypotheses or theoretical models to explain phenomena. 

2)  Gather evidence in some structured way to better understand the phenomena. 

Relate the evidence to the hypotheses or models to create/demonstrate a 

theoretical understanding of the situation being investigated.   

 

Different investigations have addressed a wide variety of subject matter for 

inquiry, including biology, economics, physics, and societal issues (Geier et al., 2008; 

Krajcik et al, 1998; Muholland et al., 2012; Paoucci et al., 1996; Sabourin et al., 2012; 

Shute & Glaser, 1990; Toth, et al., 2001; White & Frederickson, 1998). In this research, 

inquiry is characterized as a cycle (Figure 2.2) in which students move among four 

phases opportunistically (not necessarily in a specific order):  

• Hypothesis formation 

• Planning / Questioning 

• Data collection 

• Analysis 
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Figure 2.2. The Inquiry Cycle.  
 

Inquiry learning is often grouped with other types of instruction and referenced 

with different names. The term problem-based learning (PBL) is used in some instances 

(Suebnukarn & Haddawy, 2004), and indeed many efforts in PBL could be considered 

also to be taking the inquiry learning approach. Some researchers have attributed the 

same goals and themes to PBL as they have to inquiry learning, and actually use the 

terms interchangeably. A strong connection also exists between inquiry learning and 

discovery learning, yet here a clear distinction can be drawn. While both inquiry and 

discovery learning are "learning by doing" methods, inquiry is more clearly defined as a 

focused, systematic search for knowledge (Shute & Glaser, 1990). Pure discovery 

learning is involves a student constructing his or her own knowledge with little to no 

guidance (Van Joolingen, 1998). Inquiry systems tend to have a primary goal of 

promoting systematic and organized methods of drawing conclusions from data available. 

In fact, searching more blindly or without a specific plan of action in an inquiry learning 

environment is viewed as undesirable behavior (Shute & Glaser, 1990, Suebnukarn & 
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Haddawy, 2004). Many educators strike some balance in their inquiry process, allowing 

room for discovery but also providing guidance and expecting some organization and 

thoughtful approach to exploration (Van Joolingen, 1998; Sabourin et al., 2012). 

Inquiry learning is not broadly used in classrooms (Clarke et al., 2003; Geier et al., 

2008). It is considered an alternative style of teaching and diverges from the standard 

classroom activities of lecture and examination. It is perceived as taking too much 

classroom time and too much teacher preparation, and it is more difficult to assess 

student progress than standard approaches. However, many researchers argue that the 

benefits to students’ development of independent and analytical thinking as well as 

increased motivation outweigh traditional lecture-base teaching (Collins & Stevens, 

1991; Shute & Glaser, 1990; White & Frederickson, 1998). In a sound empirical study, 

Geier et al. (2008) demonstrated the long-term positive learning effects of the inquiry 

method, showing improved standardized test scores among other measures. This section 

examines the potential benefits of inquiry learning over more conventional methods of 

instruction as well as potential issues with bringing inquiry into the classroom, and 

proposes ways that computer-based programs can help alleviate these issues and make 

inquiry more practical in a classroom setting. 

The inquiry method of instruction, when used in a classroom, takes more time, 

space, and resources than does than standard lecture and examination teaching methods 

(Clarke et al., 2003; Geier et al., 2008). The increased instruction time can be caused by 

time wasted as students get lost, stuck in one line of thinking, or flounder as they try to 

work through complex problems (Dragon et al., 2006; Sabourin et al., 2012; Van 

Joolingen, 1998). Thus, for many teachers and administrators it is difficult to justify the 



 31 

use of inquiry learning in mainstream teaching scenarios, and understandable that the 

techniques are not widely adopted (Geier et al., 2008). During inquiry learning key 

information within the domain is often not presented to students in pre-defined manner 

because students are self-directed as they explore and examine phenomena. The 

instructor must provide much more individual attention to students (Clarke et al., 2003), 

because each student or team forms his/her own hypotheses and collects his/her own data 

rather than the entire classroom receiving the same presentation of information. Such 

individualized feedback and attention from an instructor is one of the most limiting 

aspects of inquiry learning in classrooms. Often, teachers have classes with thirty or more 

students, and so it is impractical to use a teaching method that requires one-on-one or 

small group interaction with students. 

However, in situations where inquiry learning is possible, it has been shown to be 

more successful than typical classroom instruction in the following ways.  The first and 

most obvious benefit of inquiry learning is that it stimulates interest and engagement 

among students (White & Frederickson, 1998). When students are able to manipulate 

artifacts themselves and think freely about problems, they are more actively involved in 

the learning process. This increased activity not only creates interest, but has also been 

shown to facilitate knowledge and skill acquisition (Geier et al., 2008; Shute & Glaser, 

1990; White & Frederickson, 1998). 

Also important to consider when weighing the strengths of inquiry learning are the 

additional meta-level skills learned through such a method. Beyond domain knowledge, 

inquiry learning also can teach students how to learn and how to learn on one's own. It 

teaches a process by which one can independently attain and develop explanations for 
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observable phenomena. Certain computer systems are built with the primary goal of 

teaching these processes, and only secondary is the acquisition of the subject matter being 

discussed (Shute & Glaser 1990, White & Frederickson, 1998).  The theory behind such 

systems is that by learning the inquiry method, one can learn more easily how to acquire 

new knowledge (White & Frederickson, 1998).  

Given that inquiry teaching approaches have been shown to have benefits beyond 

passive learning approaches, it is important to consider means to alleviate the barriers to 

implementing this teaching method in the classroom. Technological advances in CBI and 

AIED offering promising directions. Current CBI systems can provide a means to 

experiment through simulations with real-world phenomena, from microeconomics 

(Shute & Glaser, 1990), to medical diagnosis (Suebnukarn & Haddaway, 2004, Lajoie et 

al., 2001, Kabanza et al., 2006) to cultural competence (Kim et al., 2009). The increased 

interactivity alone has been shown to increase learning (White, et al., 1999). CBI can 

provide a practical space in which students may experiment and observe with minimal 

time and cost (Geier et al., 2008). This alleviates issues of time/physical space/costly 

equipment that might be necessary in non-technology-based inquiry approaches to 

learning. 

Second, ITSs offer means to allow teachers to work one-on-one with students 

while knowing that their other students are engaged and working and getting intelligent 

support from the ITS.  The intelligent components within these systems can take on parts 

of the instructor’s roles in inquiry environments. Students may need examples, strategies 

to accomplish tasks, help understanding principles, and reminders to return to task when 

students wander off task (Krajcik et al., 1998). By monitoring student action and 
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providing feedback, intelligent agents in computer systems can provide all these types of 

support (as described in Chapter 3). 

The inquiry method is not typically used in isolation. Traditional methods of 

lecture are beneficial when interspersed with inquiry learning experiences, especially to 

present useful domain principles at crucial times in the learning process (Collins & 

Stevens, 1991). Thus, inquiry learning does not take the place of lecture or textbooks, it 

incorporates those tools into the process so that students take more active roles in certain 

parts of the learning process. Inquiry learning helps students think more explicitly about 

how they are learning. Such is the case with almost all inquiry learning ITSs. These 

systems are generally used during some small part of a normal class curriculum, and not 

as a replacement for an entire section of curriculum content. 

The Rashi project was one of the early ITSs to adopt the inquiry learning 

approach, and it has maintained a position at the forefront of research in this area. 

However, in recent years, several other systems have been developed. Mulholland et al. 

(2012) describe the development and tools used in nQuire, an ITS that offers a general 

framework for implementing the inquiry process including user tools to create 

hypotheses, collect data, and find relationships among data.. Another recent project is the 

Science Created by You (SCY) project, offering a suite of tools and encouraging students 

to engage in inquiry about real-life science challenges (De Jong et al., 2010). These tools 

are still under development and are taking paths and undergoing assessments similar to 

those taken in developing the Rashi system in terms of collecting and organizing data to 

enact an inquiry procedure. 
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2.3.2 Implementation - An Inquiry Learning Environment 

For the implementation of an inquiry-learning environment, we will describe in 

detail the Rashi system, a domain-independent computer-based learning system. This 

description will focus on the biology domain, specifically differential medical diagnosis 

(as discussed in section 2.2). Students are asked to play the role of a physician receiving a 

new patient. After being presented with some introductory material, they are invited to 

form hypotheses about potential illnesses and collect data to inform their hypotheses. 

Rashi provides a set of tools to support students in collecting data (Table 2.1), and 

another set that supports them in thinking critically, organizing their thoughts, forming 

hypotheses, and establishing relations with the collected data (Table 2.2). We examine 

each of the tools in these two categories and explain further their role in the inquiry 

process. 

 

2.3.2.1 Data Collection Tools 

The data collection tools provide different environments for students to collect 

information. In this way, students using the system have the ability to explore complex, 

realistic phenomena (such as the experiences of a doctor’s day-to-day work) in a practical 

way in the classroom, through simulation. These data collection tools provide access to 

complex and ill-structured knowledge along with some context that helps convey the 

realistic nature of the content. These tools are built generically, and can be applied in 

different ways to support different domains. Below we enumerate the different data 

collection tools (Table 2.1), give a brief description of each tool, and explain its function 

within the medical diagnosis domain. 
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Table 2.1: Data collection tools and their respective functionality in the medical 
diagnosis domain. 

 

2.3.2.1.1 Case Description 

When a student begins a new case, he/she is presented with the Case Description. 

This tool provides some overarching description of the particular challenge that the 

student faces in this instance. The student may highlight any details he/she find important 

and save the information directly to his/her Notebook (see section 2.3.2.2). In the medical 

domain, this description states initial demographic information about the patient, the 

symptoms the patient is presenting, and other introductory material pertinent to the case. 

Data Collection Tool                       Functionality 

Case Description Provides preliminary information about the case a 
student will attempt to solve. 

Interview Environment 
 

Provides a virtual patient to be interviewed about 
medical signs and symptoms.  

Image Explorer –  
Physical Exam Environment 

Provides the ability to examine a virtual patient’s 
anatomy to identify physical signs of ailment. 

Lookup Tool –  
Medical Lab Environment 

Provides results of simulated laboratory tests on the 
patient as requested by students. 

Concept Library Provides multi-media information about the domain 
at hand in e-book format. 
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Figure 2.3. The Case Description provides a brief explanation of the medical case the 
students will attempt to diagnose. 

 
2.3.2.1.2 Interview Environment 

The Interview Environment offers a configurable simulated interview with a (low-

tech) virtual human. Students are presented with pictures, audio, and/or video of the 

person they are interviewing. They are free to type in any questions they would like to 

ask. The system then matches the text entered to a database of questions the virtual 

human is prepared to answer (as pre-specified by a domain author). Students choose from 

this list of matching questions and are presented with answers. These questions/answers 

can be saved to the student’s Notebook with one click. This system is used in the medical 
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domain to allow the user to interview the patient, and other persons associated with the 

current case. 

 

Figure 2.4. The Interview Environment provides a space where the student questions 
the patient and other persons involved in the case. 

 
 
2.3.2.1.3 Physical Exam Environment – Image Explorer 

The Image Explorer displays images to students. These images include hotspots, 

which instantly take students to a related link (either some piece of information or 

another image). This tool can provide many types of simulations, from examinations of 

paintings for art history to walkthroughs of a forest (Dragon & Woolf, 2007). In the 

biology domain, this Image Explorer is used to create a physical examination, where 

students gather information about a patient’s physical state. As seen in Figure 2.5, the 

student is presented with the human form, and hotspots are located throughout this 

outline that offer information about that particular part of the body (e.g., lymph nodes, 
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ears, etc.). The tools across the bottom represent hotspots that allow access to other 

information (e.g., blood pressure, weight, etc.). 

 

Figure 2.5. The Exam Environment provides a space where the student can perform a 
physical exam, which is realized through the Image Explorer. 

 
2.3.2.1.4 Medical Lab Environment – The Lookup Tool 

The Lookup Tool provides a generic location where key-value pairings can be 

created by authors and retrieved by students. These values can be any multimedia: 

images, text, or video. The entries can be categorized and sorted for organization. In the 

medical domain, this tool manifests as the Medical Lab Environment (Figure 2.6). 

Students can run different types of lab tests to inform their diagnoses. The system 

prompts students to provide rationale for each lab test, promoting reflection and self-

explanation, which has demonstrated benefits (Aleven & Koedinger, 2002; Conati & 

Vanlehn, 2000). This explanation system is also meant to dissuade users from “gaming” 
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the system as defined by Baker et al., (2008), as students might run all of the lab tests 

without reason in hopes of stumbling upon interesting results. 

 

Figure 2.6. The Medical Lab Environment provides a space where student can check 
results of lab tests, which is realized through the Look-up Tool. 
 

2.3.2.1.5 Concept Library 

The Concept Library is a tool that provides an e-book-style resource for any 

general information provided by the domain author. This could be as as expansive as a 

full textbook or as limited as some summaries of outside sources or instructions. The 

content can also be multimedia, containing text, images, and video. Users can highlight 

text from this book and save it to their Notebook with a single click. In the biology 

domain, the Concept Library manifests as a repository for medical reference material, 

general material on the inquiry process, and grading procedures. 
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Figure 2.7. The Concept Library provides a set of documents in the form of an e-book 
where students can access information about medical diagnosis. 
 

2.3.2.2 Critical Thinking / Cognitive Tools 

The five data collection tools described in section 2.3.2.1 provide students with 

the ability to explore the task at hand. Now we consider the tools that help students think 

critically, organize their thoughts and the data they have collected, cite their sources, and 

present their findings. Cognitive tools are a vital part of any inquiry system because, by 

design, they prompt students to identify and explicate the structure of their solutions, a 

skill central to inquiry learning (Van Joolingen, 1998). These tools help students organize 

information from within the Rashi system, but also allow students to access and organize 

information from external sources (e.g., web resources, books, etc.). This is especially 
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important in ill-defined problem spaces, because no system can generally represent all the 

necessary or useful knowledge in an ill-defined problem space. This also helps students 

prepare to operate in real-world scenarios by consulting a variety of materials, as there is 

rarely one definitive source for answers to real-world problems.  

The Rashi system provides four main cognitive tools (Table 2.2) designed to 

explicitly support phases in the inquiry cycle: forming hypotheses (the Argument Editor), 

collecting data (the Source Editor and Data Table), and analyzing data to reach 

conclusions (the Argument Editor and Report Editor). We now consider each tool in 

detail. 

 
Table 2.2: Cognitive Tools and their respective functionality 

 

2.3.2.2.1 The Notebook 

The Notebook consists of two distinct tools: the Data Table (Figure 2.8, bottom) 

and the Argument Editor (Figure 2.8, top). Each provides the student with organizational 

tools and each supports the inquiry process. These tools are presented in one “notebook” 

interface because their use is inherently linked, data from the Data Table is constantly 

used as material to support and refute hypotheses in the Argument Editor. However, the 

Cognitive Tool Functionality 
Notebook - Data Table A repository for the evidence (data) that students 

gather from data collection tools (i.e., Table 1) 

Notebook – Argument Editor A space used to create hypotheses, and organize 
data that supports or and refutes a student’s 
hypotheses. 

Source Editor A repository for resources outside of the Rashi 
system used to track and cite sources of 
information used during diagnosis.  

Report Editor A space to create a report on the student’s work. 
The system can offer an automated draft created 
from the work the student has completed.  
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tools are distinct as each serves a unique purpose. We now look to each tool and to their 

combined functionality to understand how the student engages in the inquiry process 

through their use. 

 

2.3.2.2.2 The Notebook - Data Table 

The Data Table tool provides a central repository for all of the data that students 

collect while engaged their current case (Figure 2.8, bottom). This includes everything 

from facts students discover using the Image Explorer to sentences recorded from the 

Case Description. Students can also type freely into the Data Table to enter ideas or 

observations that are not recorded from within the system.  

This mixed functionality demonstrates the way in which the Rashi system 

addresses the challenge of allowing freedom in ill-defined problem spaces (as discussed 

in section 2.2.1). The system supports students by making data collection as streamlined 

as possible, while still allowing students free input. So they may enter any data that they 

choose. In this way, students have both the ease of automated collection and the full 

functionality of an open-ended system necessary for true inquiry behavior in ill-defined 

problem spaces, where all pertinent information may not be explicitly encoded within the 

system. 
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2.3.2.2.3 The Notebook - Argument Editor 

As presented above, the Data Table provides a location where data can be collected and 

viewed as a whole. However, we want students to go beyond simple data collection when 

engaging in inquiry, developing hypotheses, and making inferences from these data. They 

should also consider how the data are inter-related and what conclusions can be drawn 

from these observations. To support the inquiry processes of forming hypotheses, 

collecting support and refutation, and explicating these relationships, we provide students 

with the Argument Editor (Figure 2.8. top).  

This tool provides a tree-like structure where students can create hypotheses, and 

can drag and drop data from their Notebook to support and refute these theories. This tool 

Argument 
Editor 

Data Table 

Figure 2.8. The Notebook consists of the Argument Editor (top) and 
the Data Table (bottom). 
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helps students visualize the structure of their solution, to see which hypotheses seem most 

likely, and whether more data are needed to understand whether a hypothesis is true or 

false. In the biology domain, the top-level hypotheses are potential diagnoses, and data 

about the patient are used to support of refute these possible diagnoses. 

 

2.3.2.2.4 Source Editor  

The Source Editor allows students to edit their personal list of external sources, 

helping them organize and remember the location of external information (Figure 2.9). 

The author of the domain typically creates a pre-loaded list of sources, providing students 

easy access to some key external resources relevant to the domain. This Source Editor 

helps ensure that students can utilize the wealth of knowledge available in books and on 

the Internet, rather than being constrained to the limits of the Rashi system. 

 

Figure 2.9. The Source Editor displays a pre-loaded set of external biology resources. 
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2.3.2.2.5 Report Editor 

When students have reached some conclusions about the case at hand and would 

like to present their work in the form of a document, the Report Editor summarizes their 

work and presents it in a readable format (Figure 2.10). The tool uses HTML to present 

outline-style text versions of the Notebook contents and the contents of the Sources Tool. 

This output allows students to reflect on conclusions, re-phrase and re-think their work, 

and decide upon its meaning. They can then take their results and move outside of the 

Rashi system, presenting the information to facilitators or other students. 

 

Figure 2.10. The Report Editor displays the automated report generated from the 
Notebook. The report shown here was generated from the Notebook shown in Figure 2.8. 
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2.4 Collaborative Inquiry Learning 

A broad range of literature demonstrates the potential benefits of collaborative 

learning (e.g., Dillenbourg et al., 1995; Johnson & Johnson, 1986, Kumar et al., 2007; 

Soller, 2001), yet many also agree that not all collaborative work is productive or 

beneficial (Dillenbourg et al., 1995; Soller, 2001; Soller et al., 2005). Collaboration has 

been shown to be most effective on tasks where student develop complex skills (Soller et 

al., 2005) and engage in critical thinking (Gokhale, 1995), rather than facing less 

complex tasks such as rote memorization. As we have shown in sections 2.2 and 2.3, 

inquiry learning situated within an ill-defined problem space offers precisely this type of 

complex challenge that requires critical thinking. In order to harness the power of 

collaboration within our framework, we provide students with collaborative tools that 

allow for co-construction of knowledge and for students to support one another. Here we 

present the theory behind collaborative systems built to support students engaged in 

inquiry learning within ill-defined problem spaces. We also discuss how we move this 

theory forward in specific aspects. Finally, we describe how Rashi implements both 

standard features seen in many collaborative environments, and also features that 

improve the state of the art by encouraging content-focused collaboration. 

 

2.4.1 Theory – Collaboration Supporting Inquiry in Ill-defined Problem Spaces 

Within the general field of Computer Supported Collaborative Learning (CSCL), 

there are many examples of successful systems that analyze and support collaborative 

work in ill-defined problem spaces. We view this related work in two different 

categories, those that focus on general collaboration (and particularly dialog), and those 
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that present more complex group interaction, which tend to focus on argument 

diagramming.  

Considering systems that focus on general collaboration, there has been much 

dedicated research on the idea of micro-scripting, meaning the dialog in which student 

engage is structured somehow through categories or sentence openers (Dillenbourg & 

Hong, 2008). Some empirical research on systems using these approaches have 

demonstrated positive results e.g., (Ravenscroft, McAlister & Sagar 2004) but others 

have demonstrated that tools can have mixed results depending on the collaborative 

situation in which they are used (Soller et al., 2001). These micro-scripting techniques 

offer more structure to collaborative contributions, addressing two problems of 

collaboration in CBI at once. First, the structure guides students by having them consider 

ideas and attitudes that may change their perception (Ravenscoft, McAlister & Sagar 

2004). Second, the structure can provide the system with some high-level information 

about the content of conversation without the need to use natural language processing 

(Soller et al., 2001). However, this tactic does place constraints on student conversation 

and narrows the conversation to the specific types of comments that are elicited by the 

imposed structure (Constantino-Gonzales, Suthers & Escamilla, 2003).  

Other notable approaches take freeform student chat dialog as the main 

communication. Researchers have focused on recognizing and supporting discussion with 

conversational agents, covered further in Chapter 3. Some prime examples of this type of 

system are the Basilica system and the serious game Urban Science. The Basilica system 

supports learners by adding dialog components to existing simulation and tutoring 

software. Examples include the CycleTalk Tutor, teaching thermodynamics, and the 
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WrenchTalk Tutor, teaching concepts of force and stress (Kumar & Rose, 2011). The 

serious game Urban Science presents a simulation supporting students to engage in urban 

planning activities, and providing them with multi-party chat facilities that students can 

use communicate with team members and mentors (Morgan et al., 2012). The research of 

collaborative efforts within these systems does not extend beyond the chat facility to 

support group members to communicate, and yet researchers have produced interesting 

results. These ongoing research projects use Artificial Intelligence (AI) techniques to 

understand students’ chat contributions and offer feedback accordingly. These 

approaches will be covered in Chapter 3, however here we stress that the actual 

collaborative tools and interfaces are quite simple. 

Other systems offer more holistic support for collaboration through use of shared 

workspaces. Examples include COLLECT-UML (Baghaei, Mitrovic, & Irwin, 2007), a 

collaborative workspace for solving challenges in UML diagramming (an example of an 

ill-defined problem space, see section 2.2.1). This system provides not only chat 

functionality, but both private and joint workspaces, where students first work 

individually to create diagrams, then share their solutions in the public space with small 

groups, where they attempt to combine their ideas and offer a joint solution. 

In a different direction, many systems offer more structured collaborative 

contributions in the form of argument mapping. Literature review covering development 

of such systems over the last fifteen years demonstrates that such systems have potential 

to improve learning (Scheuer et al. 2010) Suthers offers a classic example in this area 

with the Belvedere system, which provides a joint workspace where students create 

“inquiry diagrams,” collections of hypotheses, data, and evidential relations (Suthers, 
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1999a). Research has demonstrated the benefits of these argument-diagramming tools, 

including improvements to the focus and depth of student discussion (Suthers, 2003). 

Another system in the realm of argumentation diagramming that has developed over the 

course of many years is LARGO, the legal argumentation tutoring system mentioned in 

section 2.2.1 (Pinkwart et al., 2007).  

The research on collaborative argumentation is ongoing. One major impediment 

with empirical assessment of the specific argumentation setup is that each system defines 

its own knowledge elements, representations, and forms of interaction. This creates a 

problem where the current research cannot be generalized, or easily inform us as to the 

best design principles, even though many designs have been tested in different scenarios 

(Scheuer et al. 2010). Recent work addresses this problem by providing general, 

customizable tools that allow domain experts from any given field to cater a 

diagramming tool to their specific needs. The systems then support students to create 

discussion or argument diagrams within the confines the domain expert has defined. Two 

notable systems in this category are Digalo (Muller & Mizra, 2007) and LASAD (Loll et 

al., 2012). Each system has its own focus, but generally they provide a space where 

students can collaboratively build argument diagrams consisting of links and nodes. An 

external author specifies the types of links and nodes. Digalo is a stand-alone application 

that focuses on providing a diagramming space that supports students to visualize and 

organize their arguments about given controversial topics (Muller & Mizra, 2007). 

LASAD offers a generalized, web-based system that can implement many other previous 

systems for collaborative or individual argumentation, including the previously 

mentioned systems, Belvedere, LARGO, and Digalo (Loll et al., 2012).  
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Both these projects both have been successful in meeting their own particular 

goals, and have demonstrated the importance of sharing not only textual statements, but 

also of sharing more complex representations to communicate ideas within small groups 

(Suthers, 2003). However, the work students complete in these systems is generally 

detached from any data collection or other thinking tools that might provide students 

support and offer a more holistic learning experience, such as that provided in Rashi. 

Having dual interaction spaces, e.g., one to collect data and one to reason about that data, 

offers a challenge for learners, and the less integrated the spaces, the more difficult it is 

for learners to collaborate (Mühlpford & Wessner, 2009).  

To this end, our work seeks to build from this knowledge and move beyond such 

isolated environments. Our approach attempts to solve several issues that arise from 

using separate, isolated tools. First, we consider that student collaboration should not be 

done solely through dialog, but rather students should also be able to clearly see and 

share work about the larger context in order to bring relevant inter-relations to the 

forefront of conversation (De Jong et al., 2010). The goal is to promote not only general 

discussion, but also to have dialog linked with specific content. This goal is complicated 

within the above-mentioned argumentation systems where all domain and task–level 

ideas and statements are taken from outside sources, not collected or controlled within the 

system. 

Our goal is to develop environments that not only encourage students to 

collaborate, but support them in referencing and focusing attention on the specific 

relevant content within their current work as they collaborate. We call this content-

focused collaboration and as we design our system, we seek to promote this specific, 
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focused type of collaboration as much as possible. We are in a unique position to do this, 

as the data collection tools are part of the Rashi system (see section 2.3.2.1), rather than 

data being collected from some external source. We now describe the implementation of 

collaboration within Rashi, and demonstrate how it meets the goals put forth by other 

projects, but also moves beyond these systems, to help students focus their collaborative 

efforts on content. 

 

2.4.2 Implementation - Collaborative Tools in an Inquiry Learning Environment 

Collaboration in the Rashi system is implemented in two locations: a Chat Tool, 

and additional collaborative features included in the Notebook. First we discuss this new 

Chat Tool, which is built explicitly to support content-focused collaboration among 

students working in groups. We then discuss how the Notebook has been altered to 

support a wide-range of collaboration, but also to specifically promote content-focused 

collaboration. With the additional functionality provided by these two enhancements, we 

can see that Rashi is well situated among collaborative systems, providing both dialog 

support and shared workspaces. 

 

2.4.2.1 The Chat Tool 

 The Rashi Chat Tool is built to function as a standard chat tool (e.g., AOL Instant 

Messenger). A different “chat room” is associated with each group (usually 3-6 students) 

and presents the statements made by different users chronologically (Figure 2.11). 

Additional features given in the top control panel allow the user to move to different chat 

rooms as well as to filter the chat messages by different criteria (e.g., username). This 
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functionality allows class-wide interaction and the ability to search messages for content. 

The text is color-coded, providing each student with a different color to differentiate 

between speakers. Finally, the bottom panel allows users to specify for whom the 

message in intended (the entire group or individual students), as well as a subject for the 

message. Students can provide a subject for each chat message, which allows the team to 

recognize and denote when they focus on a specific topic. Chat messages can be filtered 

by these topics and students can easily respond to the subject by clicking on it.  

 

 

Figure 2.11. The Chat Tool provides standard chat functionality but also provides extra 
features specifically aimed to support content-focused collaboration. Here one student 

chooses to focus on Hyperthyroidism. 
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2.4.2.2 The Collaborative Notebook 

The Rashi Notebook has been modified in a number of ways to enable students to 

view and share work within a group. There are three basic functional developments that 

promote collaboration beyond discussion, allowing students to share work within their 

groups. First, the “compare” option supports students to compare their own notebooks 

with other members of their group. This option presents users with a read-only version of 

another student’s notebook (Figure 2.12). Next, students can copy individual pieces of 

content from other students’ notebooks through drag-and-drop functionality. Lastly, the 

system can be configured to offer a “group notebook,” a shared notebook editable by all 

members of the group. Using the combination of these three functionalities (compare, 

copy and group space), the system supports a variety of collaborative activities ranging 

from students working in tightly knit groups, where each student takes on a role and 

contributes in a specific manner in a group notebook, to students working mostly 

independently but sharing ideas and thoughts when they reach an impasse. 
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Figure 2.12. Comparing Notebooks allows users to compare their work with others. 
Here, the student Jill has her own Notebook open (left), and is also viewing a classmate’s 
notebook (right). She is then moving data from this other notebook to her own with the 

drag-and-drop functionality. 
 

2.4.2.3 Content-focused Collaborative Features 

Beyond the standard features that situate Rashi within the current state of other 

collaborative research presented in section 2.4.1, we seek to create new features that take 

the lessons learnt and extend the system to offer students more intuitive and improved 

ways to focus their discussions on the relevant content. These system enhancements rely 

on a base concept of discussable objects. Discussable objects represent any piece of 

information within Rashi that might become the subject of conversation, e.g., hypotheses 

and data that students collect and create. We now describe the two features that promote 

higher-level content focus using these discussable objects.  
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First, the system enables students to automatically create chat messages referring 

to a certain discussable object. Rashi allows users a simple method of automatically 

setting the subject of a new conversation to the content of an existing Rashi notebook 

item. For example, a student might be confused about her current hypothesis 

“hyperthyroidism.” She can right-click that item in the notebook, and choose “discuss 

this” from the contextual menu. The system then creates a new chat message with the 

subject “hyperthyroidism” and also creates an internal link between the conversation and 

the notebook item, allowing a group member to click on the chat subject and be taken 

directly to the related work in a group member’s notebook. These features potentially 

enhance the ability for students to focus their conversation on the most relevant 

information with respect to their current content interest. 

The ability to chat about a certain notebook topic is useful, but there are also clear 

issues with a system taking work out of a student’s visual context and moving into a chat 

environment. Research has demonstrated that comments located in a separate space 

(where one must shift context to view comments or have conversation) can be less 

helpful to students than co-located comments (Mühlpford & Wessner, 2009). To address 

this issue, we created an interface where students can directly communicate about a 

certain notebook item, in a set of critique/rebuttal responses (Figure 2.13). 
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Figure 2.13. The Critique-Rebuttal feature provides a way for students to dialog 
about specific Notebook items. Here one student questions a hypothesis and the author 

of that hypothesis is explains her thinking. 
 
  

This Critique-Rebuttal feature supports students’ engagement in topic-oriented 

discussions. Built into the notebook, this feature enables students to select any item in a 

group member’s Argument Editor and to offer critiques about them. When a critique is 

given, the owner of the notebook item is notified, and he/she can respond with a rebuttal, 

a defense for his or her position (Figure 2.13, middle). This back and forth discussion is 

by definition focused around subject matter. The two parties can continue to update and 

resend their critiques and rebuttals, fostering a dialog specific to an issue. This feature 

more tightly couples conversations with notebook content. 
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All of the above functionality helps to address a current concern in systems with 

shared learning spaces, by focusing students on content. This has the potential to promote 

more engaged and organized discussion. With these various features centered on the 

concept of discussable objects, Rashi offers a collaborative space that can promote 

content-focused collaboration, centering discussion on pertinent domain knowledge, and 

bringing that content to the forefront of dialog. 

 

2.5 Summary 

This chapter presents three distinct pedagogical concepts (ill-defined problem 

spaces, inquiry learning, and collaboration), the ways in which current research in the 

field of computer-based instruction has been enlisted to support these concepts, and the 

ways in which our specific research project implements these concepts. We consider the 

large class of ill-defined problem spaces that are crucial for education, and we look to 

two different educational approaches that can help students learn in these ill-defined 

problem spaces, inquiry learning and collaboration. 

Ill-defined problem spaces present interesting teaching opportunities, offering 

many real-world, complex problems that promote deep knowledge acquisition and 

critical thinking, if approached correctly. We present the subject matter of medical 

differential diagnosis as a fruitful example of an ill-defined problem space that can be 

used to teach biology. However, with differential diagnosis, as with other subject matter 

in ill-defined problem spaces, a successful learning experience requires both structure and 

support, as students can become confused, lost, or stuck. 
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One specific pedagogical approach that can provide this structure and support is 

inquiry learning. In the inquiry learning process, students form hypotheses, collect data, 

and find the relations between their data and their hypotheses, supporting and refuting 

initial ideas and forming new ones. We discuss the tenets of inquiry learning, how it 

raises concerns of classroom implementation, and how ultimately these concerns can be 

addressed with computer systems that can allow for and support inquiry learning in a 

classroom. We present our system, Rashi, which implements the pedagogical approach of 

inquiry learning in a domain-independent way. To continue with our example, we present 

an instance of the Rashi system based on differential medical diagnosis, and we discuss 

in detail how students can engage in inquiry learning in biology by using the tools 

provided within the Rashi system. 

Finally, we consider the concept of collaboration within ill-defined problem 

spaces. Efforts to employ collaboration fit naturally into ill-defined problem spaces, as 

research has demonstrated that collaboration is most successful when dealing with 

complex situations requiring critical thinking skills. We see a large number of attempts to 

merge inquiry learning and collaboration in computer supported collaborative learning 

for the same reasons. We see the benefits of systems that contain both space for dialog 

and shared workspaces. We offer our own implementation of tools in Rashi that 

encourage students to collaborate through dialog and shared workspaces. Moving beyond 

those concepts, we present functionality included with our tools to promote content-

focused collaboration. These enhanced functionalities support students to directly link 

learning content in their conversations, and allow them to have conversations situated 
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within their learning content, tightening the link between their collaborative efforts and 

their domain-related work. 

Overall, this chapter presents a challenge to the CBI community: namely that of 

supporting instruction in ill-defined domains with computer systems. We present two 

pedagogical approaches that can provide structure and support within these domains, 

inquiry learning and collaboration. Finally, we present ways in which a system can focus 

students’ collaborative efforts on content and ease the processes of both the collaboration 

and group inquiry. With all of this taken into consideration, we argue that computer 

systems can tackle instruction in ill-defined problem spaces, and that promising 

approaches include inquiry learning and collaboration. Chapter 3 presents a further 

argument for this case, namely that a computer system can understand students’ inquiry 

work and their collaborative contributions in such a system, and therefore offer 

automated support to improve the learning process. 
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CHAPTER 3 

 

SYSTEM INTELLIGENCE – RECOGNIZING STUDENT CONTRIBUTIONS 

AND PROVIDING FEEDBACK 

 
3.1 Introduction 

One general challenge of Intelligent Tutoring Systems (ITSs) is to provide a 

computer system that can understand some aspects of the student’s knowledge and 

provide specific support tailored to this understanding (Corbett et al., 1997). When taking 

this view, there are two major steps to creating an ITS that should be considered: 

understanding student work, and offering feedback based on this understanding. This 

chapter will consider each of these matters as it pertains to our target teaching system, an 

inquiry-learning environment for ill-defined problem spaces. 

 

3.2 Understanding Student Work 

Classic ITS approaches to understanding student work in well-defined domains 

tend to focus on aspects such as subject matter mastery and problem difficulty (e.g., 

Koedinger et al., 2000; Singh et al., 2011). These aspects can be recognized from the 

small, well-defined interaction space provided, for example, by multiple-choice problems 

that enable a solution space to be completely mapped. Knowledge tracing tutors 

(Anderson et al., 1995; Koedinger & Anderson, 1993) use mappings of entire solution 

spaces to identify a student’s knowledge, and to identify the kind of feedback that might 

be given in any specific situation. 
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We face a greater challenge when considering collaborative and inquiry-learning 

environments for ill-defined problem spaces (see Chapter 2 for definition). Students 

explore open-ended spaces in unique sequences and often use tools or simulations that 

result in intractable or infinite solution spaces (Lynch et al., 2009; Mitrovic & 

Weerasinghe, 2009). In Chapter 2, we presented examples of these learning 

environments, through both our system Rashi and examples from other systems including 

Belevedere (Paolucciet al., 1995; Suthers 1999a), LARGO (Pinkwart et al., 2007), 

LASAD (Loll et al., 2012), and COLLECT-UML (Baghaei et al., 2007). These other 

systems all offer diagramming spaces with free text entry, an input mechanism with an 

infinite solution space. For example, in LARGO, students study transcripts of Supreme 

Court cases, and attempt to make graphical representations of the arguments involved.  

As can be seen in Figure 3.1, this creates a large and complex solution space. 

 

Figure 3.1: A student solution in the LARGO ITS, as presented in  
(Pinkwart et al., 2007) 
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Similarly, in Rashi students collect or enter data for a given case, enter free text 

hypotheses, and make any arbitrary set of relationships between data and hypotheses 

using the Argument Editor in their notebook (see Section 2.3.2.). In these types of 

systems, the vast solution space means that novel tactics are necessary for understanding 

student work. One accepted tactic to recognize important information across these open-

ended solutions spaces is termed constraint-based tutoring (CBT) (Mitrovic et al., 2007). 

The concept of CBT is that the author places constraints on the space of acceptable 

solutions, rather than trying to map out each individual, unique, acceptable solution. In 

this way, CBT systems do not completely recognize all intricacies of any given student 

solution, but rather the systems recognize and categorize when student solutions do not 

meet certain constraints. This high-level idea of defining constraints on solutions space 

rather than enumerating all solutions within a space is employed by most systems that 

operate in ill-defined problem spaces or collaborative environments. Such constraints 

usually take the form of rules about characteristics of the solution space, and are often 

applied using a rule-based programming language (e.g., Dragon et al., 2006; Guiteirrez-

Santos et al., 2010; Scheuer et al., 2010). 

Constraint-based modeling provides an overall approach, but a question remains for 

anyone seeking to implement the technique: on which aspects of the student solution will 

the constraints, or rules, be defined? Two major types of solutions are offered in this 

respect: those that purely analyze the structure of student work (e.g., the syntax of 

diagrams), and those that go further and attempt to recognize the content of student work 

(e.g., the subject-matter of free text entry). We discuss each of these approaches in turn, 

and consider the implementation of these different approaches within the Rashi system. 
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3.2.1 Recognizing Structure of Student Solutions 

The first and most scalable approach to defining rules over a solution space is to 

consider the structure, or syntax, of a student solution rather than the content. This 

approach is often the first attempted, as the key components of such a structure are well-

defined within each given system. For example, all of the diagramming tools mentioned 

earlier have (at their base) components of visual graphing tools, namely nodes and links. 

Often the types of nodes and links are pre-defined within the system and are inherently 

tied to certain domains or tasks (Pinkwart et al., 2007; Baghaei et al., 2007). Depending 

on the meaning and purpose of the tool, different rules can be defined as to how these 

nodes and links should be used. For example, when creating a legal argument in LARGO, 

the student can create a ‘hypothetical’ node to represent a hypothetical statement from 

their analysis of a legal case.  However, when creating a ‘hypothetical’ node, the student 

should also link this with actual facts of the current legal case to clarify the usefulness of 

this hypothetical in the current situation (Pinkwart et al., 2007). Therefore the system can 

apply a rule such as the following: 

• IF (‘hypothetical’ node) -> THEN (‘hypothetical’ node should be 

connected to ‘fact’ node) 

 

Students’ solutions can then be split into those that meet the constraint and those 

that violate the constraint. Using this method, constraints can be checked against student 

work without understanding the actual content of the students’ ‘hypothetical’ nodes or 

‘fact’ nodes. In Figure 3.1, the red box is highlighted to alert the student that this 
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‘hypothetical’ node is not connected with any ‘fact’ nodes, so it is a potential problem. 

Similarly, other systems use the pre-defined aspects of their tools to allow for recognition 

of potentially successful and potentially problematic solutions (Baghaei et al., 2007, 

Scheuer et al., 2010).  

While this tactic of recognizing only the structure of an argument holds promise for 

offering some limited understanding of student work, we recognize some inherent 

weakness of the approach due to the shallow level of understanding. First, the system 

relies on the idea that students are appropriately contributing content within the structure.  

To return to the example of LARGO, the system’s understanding is dependent on the 

student actually entering an appropriate hypothetical statement in the ‘hypothetical’ node, 

and appropriate facts in the ‘fact’ nodes. The system has no ability to recognize an error 

in this respect, such as a student entering a factual statement in a “hypothetical” node. 

This is one example of how structural recognition does not offer an over-arching solution 

to understanding student work, although it can be useful in simple situations. One can 

also note the inherent weakness of recognition based solely on structure in the general 

trend that the more mature systems move away from pure structural constraints. In 

general, as analysis techniques and systems mature, researchers tend towards offering 

some type of content support, either through automated recognition (Suthers, 1999c) or 

through collaborative efforts (Ashley & Goldin, 2011). 

 

3.2.1.1 Implementing Structural Recognition of Student Solutions 

Within the Rashi system, we discuss the strategy of considering student’s 

structural patterns within the Argument Editor section of their Notebook to analyze the 
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structure of a student solution. To understand the structural patterns considered, one must 

first understand the pre-defined base components of the student solution in Rashi: 

hypotheses created in the Notebook, data collected or entered in the Data Table, and the 

relationships created between hypotheses and data (see Section 2.3.2). Several tenets of 

productive inquiry behavior (Paolucci et al., 1996) can be converted into constraints on 

student work within the Notebook. Table 3.1 demonstrates how these behaviors can be 

directly represented as rules imposed on student solutions in Rashi. 

 

Table 3.1. Example productive inquiry behaviors as given in (Paolucci et al., 1996), 
and their matching constraints in the Rashi system. 
 Productive Inquiry behavior Constraint in Rashi system 
1 Follow multiple hypotheses (number of ‘hypotheses’ > 3) 
2 Attempt to identify both 

supporting and refuting evidence 
for each hypothesis. 

IF (‘hypothesis’) ->  
THEN  (‘support’ and ‘refutation’ present 
for ‘hypothesis’) 

3 
Lines of argument should not be 
circular 

IF (‘node1’) SUPPORTS  (‘node2’) -> 
 THEN (‘node2’) NOT SUPPORT 
(‘node1’) (where SUPPORT and NOT 
SUPPORT are defined recursively) 

 

Many such rules have been implemented and tested in the Rashi system, and some 

are still in use today. Through early pilot testing and classroom feedback, we found the 

most simplistic of these rules to be effective, e.g., identifying lack of hypotheses, or lack 

of data collection, etc. 

However, we also found during development that the purely structural type of 

recognition can be non-productive in complex scenarios. For example, considering Rule 

2 from Table 3.1 (“IF (‘hypothesis’) -> (‘support’ and ‘refutation’ present for 

‘hypothesis’)”), practical scenarios arise where the advice is not productive. For example, 
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there may be a case in which there is no distinct refuting evidence. This can be 

designated as a weakness in the authoring of the case, but given that we have an ever-

growing system where independent authors can offer case details, we consider this a 

general problem that must be taken into account. 

On a deeper level, we also found cases where these complex instances of structural 

support were irrelevant or misleading when considering the content of the solution.  For 

example, one piece of refuting evidence can make a hypothesis impossible, leaving no 

reason to pursue supporting evidence. These clashes, where theoretically useful structural 

pattern recognition was deemed counter-productive, were identified when working with 

Subject Matter Experts (SMEs) and reviewing actual feedback scenarios from structural 

recognition, demonstrating that there are practical problems with complex structural 

analysis, not just theoretical concerns. 

 

3.2.2 Recognizing Content of Student Solutions 

With these early results in mind, we pursued methods to understand student 

solutions on a deeper level that could be used in addition to the simpler, structural 

measures presented in Section 3.2.1. Some tactics used by other researchers include 

applying search techniques over large corpuses of existing data, possibly being other 

students’ work (Bernhard & Gurevych, 2008; Ravi et al., 2007). These researchers 

attempt to match new student information with related content generated by prior 

users.  Ravi et al. search prior student work to find adequate matches (Ravi et al., 2007), 

while Bernhard and Gurevych analyze the wikiAnswers data store in order to support 

students (Bernhard & Gurevych, 2008).  These efforts frame the problem in terms of 
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data-mining and natural language recognition challenges, sorting and filtering through 

large data sets for information that is relevant to specific student input. However, the 

quality of the retrieved information and the semantic meaning of this information (how it 

is “situated” among other knowledge components) are unknown.  Using this type of 

strategy, a student might be provided with a variety of possibly relevant information, but 

the system cannot rest assured support has been provided. The system also gains little to 

no understanding of students’ solutions during this process. 

A different, well-established method for enabling a computer system to understand 

a deeper level of student knowledge is by providing an expert model that encapsulates 

expert understanding of subject matter at hand (Beck et al., 1996). This expert model is 

then used as a means of understanding the student.  We consider here the class of expert 

models that works from a knowledge base, a semantic representation of individual 

knowledge components and their inter-relations. Student input is then matched to these 

individual knowledge components in some manner. The system can then use these links 

to the knowledge base to assess student work. The concept is well established, with 

research conducted in this realm for over thirty years (Brusilovsky, et al., 1996; Clancy & 

Letsinger 1982; Crowley & Medvedeva 2006; Kazi et al., 2009; Paolucci et al., 1996;). 

However, the subject is less popular in current research, and when employed, developers 

tend to use pre-defined knowledge bases or ontologies (Kazi et al., 2009).  This lack of 

current research is based in part on the belief that creation of an expert model is 

inherently time-consuming and potentially not worth the return on time-invested 

(Anderson et al. 1996; Kazi et al., 2009; Mitrovic, 1998). We argue that a team including 

an SME can produce small, focused knowledge bases directly useful to assessing the 
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student’s work on the task at hand without prohibitive cost, provided an appropriate 

authoring tool (Murray et al., 2004). We now describe how our knowledge base is 

defined, implemented, and used to recognize student solutions.  

 

3.2.2.1 Implementing Knowledge Bases 

Rashi is a pioneering system in providing several limited, succinct knowledge 

bases for identification of domain content within the larger, domain-independent 

framework. The Rashi system accomplishes this through the use of an authoring tool, 

where developers and SMEs work as a team to rapidly develop knowledge bases geared 

towards specific tasks and domains (Murray et al., 2004). Our knowledge bases consist of 

knowledge components we term propositions. There are three given types of 

propositions: 

• Hypotheses: high-level possibilities of reasonable explanations of the 

phenomena presented within the given domain. 

• Data/Observations: facts and low-level details that can be directly observed 

within the environments. 

• Inferences: mid-level conclusions that do not answer the question at hand, but 

offer insight beyond observable fact. 

These propositions are inter-connected with relationships, which we define as 

supporting or refuting. Inferences are related to hypotheses, and data are related to either 

inferences or hypotheses. Thus, the knowledge base is a directed, acyclic graph with 

‘hypotheses’ being the root nodes of the graph and ‘data’ being the leaf nodes (see Figure 

3.2). 
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When understood at this abstract level, we see then that the SME’s task is similar to a 

student’s task: creating a graph that offers a ‘solution’ in the given domain (a set of 

hypotheses, and a representation of the relationships with the data available in the 

system). This expert solution may be similar (but more complete) than that of an ideal 

student. The resulting graph we term the expert knowledge base (EKB). 

The fact that the Rashi environment includes data collection (see Section 2.3.2) is a 

major contributing factor to the scalability of our approach.  Since data nodes are already 

defined when authoring the domains and cases within the system, the most populous 

portion of the EKB (these data nodes) is already available in our database to be used as 

expert knowledge. The expert need only create higher-level inferences and hypotheses 

and relate them with these data nodes. 

 In Figure 3.2, the knowledge base is presented within the Argument Editor of the 

Notebook within Rashi. Although the SME does not build the knowledge base within this 

tool, they can use it to view the knowledge base as a student solution for a holistic view 

of the current knowledge base.  
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Figure 3.2. A portion of the Expert Knowledge Base for Biology, as seen within the 
author’s view of the Argument Editor of the Rashi Notebook. 

 

For our discussion we focus on the knowledge base for the biology domain, which is 

defined specifically to help recognize certain medical diagnostic tasks. In this domain, 

hypotheses are potential diagnoses (e.g., “Patient is pregnant,” “Patient has 

hyperthyroidism,” etc., as seen in Figure 3.2). The knowledge base has been built 

iteratively over years using input from classroom studies to feed back into the authoring 

process. This knowledge base is supplemented to suit new cases individually as they are 
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added to the system. In addition, student work is analyzed post hoc to identify important 

missing portions of the knowledge base to be added in later iterations. 

Rashi is one of the longest-standing systems to provide this type of knowledge-

based recognition in a medical diagnosis framework, along with Bioworld (Lajoie, 2001). 

Over time however, other systems have taken the same approach, for example COMET 

(Kazi et al., 2009). This system uses a large, pre-defined medical database as an expert 

model adapted for teaching purposes.  

The Rashi system differs from most other medical systems in that we use a succinct 

EKB specifically tailored for the domain and case at hand.  Another system that attempts 

some generality in their knowledge base content is the VCT system, which allows for 

different tasks to be encoded in a generic knowledge base geared towards their specific 

domain of visual classification (Crowley & Medvedeva, 2006). However, this system is 

still tied to the domain of visual classification. In contrast, Rashi is completely domain-

independent (not tied to any one pre-existing expert model), and can be used within a 

wide range of domains, including geology, art history, forestry and biology (Dragon et 

al., 2006). Our knowledge base design and authoring tool make the creation of these 

distinct knowledge bases and the matching of student work viable without complex 

Natural Language Understanding (NLU) techniques, as can be seen by our empirical 

results (see matching validation, Section 4.4.2). We have also demonstrated, as have 

others (Adamson & Rosé, 2012), that by limiting the size of the knowledge base, one can 

actually improve the confidence of the recognition (Floryan et al., 2012). This type of 

personalized manipulation to improve recognition results lends more weight to the 
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concept of defining one’s own, more concise databases rather than relying on external 

data sources.  

 

3.2.2.2 Using a Knowledge Base for Content Recognition 

Once a knowledge base has been established, the system must connect student input 

to individual knowledge elements within the knowledge base in order to gain some 

understanding of a student solution. A spectrum of student’s allowable student input 

exists in this regard. One end of the spectrum, which we term restricted input, provides 

students with access to the basic components of the knowledge base and only allows 

students to explore/manipulate the concepts represented within that knowledge base (e.g., 

through drop-down menus). The other end of the spectrum, which we term free input, 

allows students to freely enter their own information (e.g. free text entry) and does not 

provide students with any information about the knowledge base itself. In a free input 

system, there is no explicit link between the student input and the knowledge base, and so 

the system must actively connect student work to the knowledge base in some automated 

fashion. 

A major trade-off exists here, one that balances the goal of recognizing student 

input with the overall goals of the pedagogical approach. In a free input system, there is 

possibility a match will not be found. When a student is allowed to type any sequence of 

characters, his/her input may not be recognized due to typographical errors, different 

phrasing, etc. The student may be on a perfectly valid line of thought that is not properly 

associated with a knowledge base element, or not present in the current knowledge base 
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at all. In either case, the system cannot link the student work with the knowledge base 

because of the input mechanism. 

Alternatively, in the case of a restricted input system, the student would not be 

allowed to enter arbitrary input and instead would be forced to work solely with 

knowledge base elements. This could potentially prevent the student from following 

his/her own line of thinking, and instead force him/her to use only the specific phrasing 

encoded in the expert knowledge base. The analysis of a student’s argument will then be 

thorough, but may have ceased to be in line with the student's natural way of considering 

the problem. A final concern is that a restricted input system may also provide the student 

with too much information by displaying terms and solutions with which they are not 

familiar, but are presented by the input mechanism in a way that students can use them 

without real understanding of their meaning. For example, a drop-down list of possible 

hypotheses might provide lead a student to utilize a hypothesis that he/she does not 

understand. 

Authors of systems that recognize student input by linking to a knowledge base 

must decide on their placement along this spectrum, according to their pedagogical goals 

of freedom and self-sufficiency, balanced by their desire for accurate and complete 

system recognition. Although all researchers must decide a position on this spectrum, we 

find that this decision may be arbitrary or left to practicality, which is a weakness in the 

current field. In future endeavors, we suggest that this concept be tackled directly when 

decisions about free input versus restricted input are being made.  
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3.2.2.3 Implementing Knowledge Base Content Recognition 

In Rashi, we take a mixed approach to the restricted versus free input question, 

finding ourselves somewhere in the middle of the spectrum, with a slight bias towards 

free input. To consider our position more closely, we examine how students create each 

of the components of their solutions: data, hypotheses, and relationships.  

For data collection, we do not restrict input. Students are free to type any entry into 

their data table at any time. However, we have automated ways of collecting data 

propositions through the simulation tools (see Section 2.3.2.1). This data collection 

ability is used significantly more often than typing entries into the data table, both 

because it is intuitive and because our pedagogical approach in the classroom encourages 

students to take this tact (i.e., when introduced to the system, students are told that they 

should collect data from different simulation tools). For these reasons, in practice, almost 

all data are collected directly within our system from our tools. Therefore, our data 

collection method provides the most of benefits of restricted input, in that most data 

propositions (e.g., patient’s temperature, lab results, etc.) are already recognized and 

connected to the knowledge base. However, students are still free to work outside of this 

schema. 

Next we consider relationships, and here Rashi uses a completely restricted input 

method. When creating relationships, students choose from a pre-specified set of 

supporting and refuting relationship types. They are not allowed to enter their own types 

of relationships. This enables the tutor to automatically understand the type of 

relationship that students are creating, which is crucial for the knowledge base 

assessment methods. 
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Finally, we consider hypotheses, about which we take quite the opposite tact. The 

system for entering hypotheses is total free-text entry with no knowledge base visibility 

for students, meaning it is a free input method. Students have only blank lines in which to 

type their hypotheses, and the system must attempt to connect these free-text entries with 

the knowledge base elements. As the other portions of the system are mostly restricted 

input, the main recognition task within the Rashi system is to link high-level hypotheses 

created by students to the EKB. Our SMEs strongly believe that providing any list of 

hypotheses or other more restricted input methods would narrow students’ focus and have 

a negative impact on their inquiry behavior. This potential concern is exacerbated by the 

fact that our knowledge base is custom built and therefore specific to our cases, leading 

students quickly to “the right answer” and not supporting their exploration and inquiry 

skill formation. For these reasons we chose the free input method, but this could easily be 

modified in the future to include partial or restricted input according to teachers’ needs. 

The input methods covering data, hypotheses, and relationships were chosen to 

balance the needs of the recognition system with the pedagogical requirements from our 

SMEs and teaching methodology. The result of these balancing factors is that Rashi 

presents a fairly middle-of-the-road answer to the tradeoff between free input and 

restricted input. Data and relationships are predominantly being collected from pre-set 

recognized knowledge base items. This method provides the analysis system with both 

recognized data elements and recognized relation types that allow comparison with the 

EKB. Due to the more strict pedagogical requirements, the students have completely free 

input when creating hypotheses. This combination results in a system that recognizes a 



 76 

large portion of student work but still has a crucial free-text-entry matching task to 

perform before it can recognize hypotheses and offer an assessment of a student solution. 

This hypothesis-recognition task simplifies to the following problem.  The system 

has a set of hypotheses typed by users and attempts to find matching propositions from 

the knowledge base. As NLU techniques mature, off-the-shelf software will become 

more and more useful for situations such as this and provide us with easy tools to 

accomplish such a task. Some researchers, particularly in the area of computer supported 

collaborative learning, have been developing middle ground techniques to balance the 

needs and issues of complex NLU techniques with simpler systems to provide generic, 

practical, and usable NLU technology (Rosé et al., 2008). However, as our main research 

focus is not in language understanding, we substitute a simple tactic involving software 

that is currently freely available. Specifically, we index all propositions from the 

knowledge base, along with associated keywords and stop words, in the search engine 

library Lucene (lucene.apache.org). We then run each student statement as a query and 

use the results to match student propositions to propositions in the EKB. 

We have conducted iterative design on several interface possibilities to identify a 

way to confirm with the student that these hypothesis-knowledge base matches are 

correct. These attempts were not accepted well by students, and so this matching 

interface went largely unused. Attempts to force matching by students were deemed 

intrusive and provided too much information to students (by exposing knowledge base 

elements), and therefore also rejected. 

Our current working solution is to automatically match items, by using the top-

rated result from the search results. This clearly increases the risk of incorrect matches, 
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yet through investigation and testing, we generated encouraging results showing that the 

top match from the algorithm was an appropriate match in 82.8% of instances from our 

test data, and that the match was appropriate in 98.2% of situations where feedback might 

have been offered based on this match (see Section 4.4.2.1). We consider this accuracy to 

be totally within acceptable range, but also realize we had a limited data set for analysis 

and therefore must consider that this number may vary. We carefully consider the 

implications of using this noisy matching scheme (as addressed in Section 3.3.4) but we 

also see our results as reason to proceed with our current method of matching.  

To demonstrate the matching process, we provide an example hypothesis from the 

EKB, “Patient has Mono” (as seen in Figure 3.2 middle). “Patient has Mono” is the 

statement the SME chose to represent this knowledge base element, and also included the 

keyword “mononucleosis.” Students typed many different statements using matching 

terms (e.g., “mononucleosis,” “Fatigue is caused by mononucleosis,” “This person may 

be suffering from mono,” etc.). In each of these cases, the highest rated match to the 

knowledge base was the “Patient has mono” proposition, and therefore these student 

statements were matched to this EKB element. This matching can then be used to provide 

support to students, as discussed in Section 3.3. 

Certain aspects of the biology domain are particularly suited to this recognition 

system. Discussion around medical diagnosis often employs precise and consistent 

terminology, and novices tend to repeat this terminology in their hypotheses and 

discussions verbatim. Similar efforts to apply the recognition system in forestry proved 

less fruitful with the same matching scheme due to the greater variety of phrases and the 

ease in which novices can phrase the observed phenomena in their won words. Such 
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topics that employ a more generic or varied vocabulary might not be suited for such a 

matching technique, or at least may require better NLU techniques. 

 

3.2.3 Recognizing Content within Collaboration 

We have discussed our tactics for recognizing individual student solutions offered 

within Rashi for the purposes of evaluating student work, and we now consider 

collaboration features that provide additional information about the student state to 

potentially be used in recognizing a student’s content focus. Current research provides 

insight as to how this information might be used for recognition, but also demonstrates 

some room for improvement. 

The first task from a system design point of view is to revisit the input spectrum, 

and clarify where these given collaboration tools are located in respect to restricted input 

versus free input. In general, collaboration has a stricter requirement for freedom, as 

students are interacting with other humans rather than the system. As discussed in Section 

2.4.1, one popular tactic for placing some restriction, or scaffolding, on statements and 

increasing the recognition potential is through adding a micro-script as some set structure 

to dialog tools (e.g., sentence starters, dialog phases, etc.) (Dillenbourg & Hong, 2008; 

Ravenscroft et al., 2010; Sabourin et al., 2012; Scheuer et al., in press; Soller et al., 

2001). These structures can provide some information about the dialog without requiring 

NLU.  

However, it should be noted that this structural recognition is subject to error when 

students improperly use the structure, or the content offered by students contradicts the 

structural implications (as noted in Section 3.2.1). A simple example of this structural 
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contradiction is a sentence opener stating “I agree with you,” and the student continues 

by writing “about <point x> but I think you are wrong about <point y>.” A system based 

on understanding from sentence structures would interpret this statement as agreement 

when the student is actually introducing a disagreement in a gentle way. For these 

reasons, we seek to move beyond purely structural recognition, and again use our EKB to 

better understand collaborative contributions.  

 

3.2.3.1 Implementing Content Recognition in Student Collaboration 

In regard to collaboration, Rashi was designed to be a free input system. The chat 

tool (see Section 2.4.2.1) accepts plain text statements without requiring any other 

structured input for micro-scripts. However, there are two optional features of the Rashi 

collaboration system that provide some over-arching structure and also offer a method for 

the system to understand the content of student work. Both features utilize a concept we 

term discussable objects, which provides the ability to create direct links between pieces 

of content from the Rashi system (e.g., a student hypothesis, datum, etc.) and 

collaborative contributions of students. 

The first feature that utilizes the concept of discussable objects is the ability for 

students to start a chat conversation about a specific notebook item (see Section 2.4.2.3).  

A student can begin a conversation by choosing an item to discuss from a Notebook 

(either his/hers or someone else’s). That specific chat message is then associated directly 

with that Notebook item. Additionally, if the Notebook item is associated with a 

knowledge base element, the chat message can then be directly related to a knowledge 

base element. For example, a student enters the hypothesis “I think she has mono,” which 
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the system recognizes as “patient has mononucleosis” from the knowledge base. The 

student then chooses to “Discuss this.”  The student types the statement “Does this make 

sense?” into the chat, and another student responds. Now, the students’ statements in the 

chat can be linked to the Notebook item “I think she has mono” and to the knowledge 

base item “patient has mononucleosis.” 

The second feature employing the concept of discussable objects is even more 

direct. The critique-rebuttal system (see Section 2.4.2.3) inherently ties the statements 

being made (in critique or rebuttal text fields) to a Notebook item. In this way, similar to 

chat messages, any critiques or rebuttals can be linked to a knowledge base element when 

the Notebook item is matched. 

Of course, students will never be expected to use these features when creating 

every message. Therefore, there will always be many chat messages that are not linked 

with Notebook items or knowledge base elements. In these cases, we use the same 

technique to match these statements to knowledge base elements that we apply to the 

hypotheses. We send the discussed item to the matching algorithm for suitable matches to 

the knowledge base content. We have shown this tactic to be successful at reasonably 

high rates (average of 70% recognition), with higher rates of recognition on cases that 

had more developed knowledge bases (Dragon et al., 2010). We also have demonstrated 

that we can increase the confidence of these recognitions through pruning of the 

knowledge base (Floryan et al., 2012). This evidence supports the ideas that the system 

can create useful connections between knowledge base elements and students’ 

collaborative contributions to help better understand the content focus of the students. 

 



 81 

3.3 Providing Support 

Section 3.2 has introduced both the concept and implementation of how ITSs for 

ill-defined problem spaces can understand student work. Our ultimate goal of providing 

an ITS with the means to understand student work is to provide methods by which the 

system can use this understanding to promote beneficial behaviors and in turn improve 

students’ domain knowledge and learning skills. Students within these open-ended 

environments with varied learning goals require support (Kirscher et al., 2006). 

In our case, we focus specifically on behaviors that relate to inquiry skills. As 

discussed in Section 2.3.1, researchers across inquiry learning agree on the main tasks 

involved in the process: creating hypotheses, gathering data, and relating the data with 

the hypotheses. However, studies have also shown that students learning these skills 

require support. For example, students tend to consider only a small number of 

hypotheses, ignore counter-examples presented in data, etc. (Collins & Stevens 1991). To 

improve student behavior, the system can provide advice that directly addresses such 

problems, offering support to help students expand the breadth their solutions, or helping 

to correct errors by highlighting counter-examples. To provide this support, the Rashi 

system has a coach, a component that uses the matching system described above to assess 

student solutions, and offers feedback that can help students engage in in the inquiry 

process in a fruitful manner that is clearly linked with relevant domain content. 

We now present the various types of feedback the system may offer as related to 

the different analysis types described in Section 3.2: considering the structure of the 

argument (3.3.1), the content of the argument (3.3.2), or the inquiry process itself (3.3.3). 

After enumerating the types of possible feedback, we discuss how the system handles 
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feedback delivery with respect to the uncertain nature of the analysis (3.3.4). Finally we 

discuss issues of visualization, timing and interruption (3.3.5), addressing the question of 

how/when feedback should be offered. 

 

3.3.1 Providing Structural Support 

We have discussed in Section 3.2.1 that analysis in ill-defined problem spaces is 

often limited to a structural level, rather than a content level. Rules that define 

appropriate structures are created and student solutions evaluated to determine if they 

adhere to these rules. Once this analysis is completed, the system can give students 

feedback in direct response to the violated rule, presenting the student with a statement 

about how to remedy the problem and adhere to the underlying theoretical principle of 

the rule. Several major systems implement this type of feedback (Baghaei et al., 2007; 

Paolucciet al., 1996; Pinkwart et al., 2007; Scheuer et al., 2009). 

 

3.3.1.1 Implementing Structural Support 

Section 3.2.1 presents the structural analysis within the Rashi system that can 

recognize fairly simplistic situations in which the system might provide feedback to the 

student. These situations often denote that the structure of a student solution is clearly 

lacking in some way, for example if student solutions lack certain types of contributions 

(hypotheses, data, relationships, etc.). A coaching system could merely point out the 

insufficiency. However, even in these straightforward cases, a coach utilizing a 

knowledge base can provide improved feedback. After consideration and testing, we 

narrowed the list of structural feedback the Rashi coach offers to three types. Below we 
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list each type and identify how this type of feedback is enhanced by use of the knowledge 

base: 

• Lack of Data –The student is advised that he/she has collected an insufficient 

amount of data, and should consider collecting more. Knowledge base 

enhancement: Upon request, the student can be brought to a location where data 

salient to the task at hand will be highlighted to be collected.  

• Lack of Hypotheses – The student is advised that he/she is considering an 

insufficient number of hypotheses. Knowledge base enhancement: Upon request 

the student is provided with a list of possible hypotheses to be considered. The 

student is allowed to directly enter a given hypothesis into his/her argument editor 

if he/she chooses to do so. 

• Lack of Relationships – The student is advised that he/she has created an 

insufficient number of relationships. Knowledge base enhancement: Data that are 

related to the case at hand can be highlighted as important data to relate with 

hypotheses. 

 

We note the problematic ambiguity in the terminology “insufficient number” when 

defining these types of feedback. This ambiguity again highlights an issue with a purely 

structural approach to analysis. If based purely on structural information about a student 

solution, the system would have no case or domain level definition of how many 

hypotheses a student should be considering, how much data he/she should collect, or how 

many relationships he/she should be creating.  This requires extra support from the 

SMEs, which can take several forms. First and simplest, the SME makes informed 
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decisions on a case-by-case basis about these values. For example, the SME might 

consider that for a given case, considering three hypotheses is sufficient.  

When the expert knowledge base is available, this type of decision can be defined 

in a more scalable way. Rather than giving set numbers, SMEs can decide on the relative 

percentage of expert knowledge that should be expressed by the students. In this way, as 

the knowledge base is iteratively improved, these numbers maintain their meaning. Rashi 

allows this number to be defined in either form, through a percentage or through a set 

number. 

In pilot testing, we found that a dual approach was most successful, having a set 

number of three hypotheses required, and having a setting of 50% of EKB in terms of 

data collection and relationships. That is, a student should supply at least three 

hypotheses, and 50% of the data and relationships currently in the EKB. This 

configuration fit the SMEs expectations in two cases, and therefore we use this as a 

baseline, although it can be altered when authors consider it necessary. 

Also in reference to structural support, we should recognize implementation 

decisions within Rashi that make certain types of structural feedback unnecessary. The 

interface of the Argument Editor (see Section 2.3.2.2) disallows certain relationships to 

be created. For example, the system does not allow data to support other data elements, 

since data should be the lowest-level observable facts and require no support or 

refutation. The system also prevents a student from creating a circular argument, meaning 

that a student cannot make this logical error using the tool. These preventative measures 

within the structure of the system itself can be viewed as restricting input, or as providing 

scaffolding that helps students understand how arguments should be formed. 
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3.3.2 Providing Content Support 

Moving beyond structure, the Rashi coach offers more in-depth and specific 

feedback by examining the student solution as related to the knowledge base. The 

underlying principle is to encourage students to offer similar content and structure to that 

of the EKB. In other words, the way an expert describes the situation is the way we 

would like to students to learn to describe it (Collins, & Stevens 1991). Once we 

understand the content of the student argument in reference to the EKB (Section 3.2.2), 

several methods of intervention from inquiry literature can be used. 

There are many examples of how a coaching system that relates a student solution 

to an EKB can offer feedback to promote inquiry behavior. The coach can encourage the 

student to provide alternative hypotheses, and offer hypotheses that the student does not 

already have. The knowledge base can also provide a way for the coach to give counter-

examples for specific arguments, by finding a negative path in the EKB (a path that ends 

in a negative link) (Paolucci et al., 1996). The coach may also lead the student down this 

same path step-by-step to provide a method of following consequences to contradiction. 

The coach can prevent students from skipping critical steps by comparing a path in the 

student solution with a path in the EKB to identify missing nodes in the student solution, 

and can even present feedback when there are links in the student solution that are not 

present in the EKB (Suebnukarn & Haddawy, 2004). Through these types of actions, the 

coach starts to take on many of the crucial roles of a teacher pursuing the inquiry method: 

stimulating thought on alternative hypotheses, offering counter-examples, and correcting 

omissions and errors. 
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3.3.2.1 Implementing Content Support 

The first step to producing content support within Rashi is for the coach to 

recognize the student solution in reference to the EKB. This is accomplished as described 

in Section 3.2.2; the system attempts to match each student hypothesis to an EKB 

element. When successful, the system then considers each hypothesis the student has 

stated, as well as any hypotheses for which the student has collected supporting or 

refuting data. It compares the relationships and data associated with the student’s 

hypothesis to that of the EKB element. Then it formulates the following types of 

feedback: 

• Lack of Support or Refutation –The student is advised that he/she should have 

more supporting or refuting evidence for a specific hypothesis that he/she has 

created. Upon request, the coach highlights the specific hypothesis in need of 

support or refutation, and finally the coach brings the student to the location of 

this supporting or refuting data in a data collection tool. 

• Missing Hypothesis – The student is advised that he/she has all the necessary 

support for a hypothesis; however, the hypothesis was not added to the Argument 

Editor. Upon request, the coach provides the student with a list of possible 

hypotheses that includes the hypothesis for which he/she has support. 

• Missing Relationship – The student is advised that he/she has collected data that 

is in fact related to a hypothesis he/she has created, but that he/she has not related 

this data with this hypothesis. Upon request, the coach highlights the hypothesis 

and data that should be related. 
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• Wrong Relationship – The student is advised of a relationship that is set up 

incorrectly (i.e., has been set to the wrong type). Upon request, the coach provides 

the correct relationship type between propositions in question. 

 

By engaging in this feedback iteratively, the coaching system leads the students to 

create solutions similar to the expert solution, creating similar hypotheses, collecting and 

relating the data associated with those hypotheses. In this manner, Rashi could encourage 

students to recreate the expert solutions exactly. There are two issues that arise with this 

general approach. First, students should not be required to reproduce the entirety of the 

expert solution. Second, using such a coach, students could exploit the coach to reveal the 

answer to the problem without truly understanding the material or approach, an issue 

termed “gaming the system” (Baker et al. 2008). 

The issue of requiring a student to enter the entire knowledge base contents in order 

to appease the coach was a serious concern in our early designs. Our knowledge bases are 

large enough that we found no real cases where teachers expected or desired that students 

collect all of the data, or consider every hypothesis present in the knowledge base. 

Experts often include repetitive data in order to create a complete representation, yet they 

do not want the student to necessarily be forced through the repetition as well. To avoid 

this problem, Rashi takes a unique approach that pushes the student to encapsulate a 

critical mass of the expert argument without requiring the entire argument or specified 

subset. This pruning is accomplished by adding extra knowledge to each proposition, 

indicating the quantity of support or refutation required. The author specifies for each 
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node in the EKB how many of its children are necessary to make a reasonable argument 

about that statement. This can be considered similar to the approach we discussed on a 

macro-level to requiring a certain amount of data from the overall EKB (in Section 

3.3.1). In this case, rather than specifying how much data is necessary for the entire 

solution, we are specifying the amount of data required for a specific hypothesis. 

As to the second issue, gaming the system, we found this to be less of a concern, as 

we have not seen examples of this “gaming” in classroom experience.  This is partially 

due to design considerations of the feedback itself. Each piece of feedback provides only 

one very small piece of the solution, and the student would have to iterate through dozens 

of pieces of feedback in order to create something similar to the expert argument. System 

feedback requires effort on the part the student, and therefore, in pilot testing, students 

actually tended to engage in the processes themselves after several uses of the coach, 

rather than continuing to use the coach for next steps. This is actually evidence that the 

coach was teaching some process skills, discussed in Section 3.3.3. 

 

3.3.3 Providing Process Support 

The final type of support to consider is the support the coach offers in learning 

meta-level, or process, skills. Inquiry systems are designed not only to teach students 

domain content more deeply or in context, but also to teach the process of inquiry 

investigation itself and to teach students how to learn (see Section 2.3). The Rashi 

coaching system does promote these higher-order learning objectives by teaching the 

inquiry process, but it does not explicitly instruct about the process with individual 
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feedback messages. Rather, the coaching system supports these higher-level skills 

through the overall coaching experience, the flow and ordering of feedback offerings.  

The higher-order skill we seek to teach is the inquiry process: gathering data, 

forming hypotheses and connecting the data to support or refute hypotheses (see Section 

2.3). The coach encourages this behavior through the specific ordering of successive 

feedback messages. As the coach gives successive feedback messages, it leads students 

through the major phases of inquiry.  If students start from a blank notebook, the system 

first encourages data collection (Lack of Data Feedback), then encourages hypothesis 

generation (Lack of Hypothesis Feedback), and finally encourages students to connect the 

hypotheses and data they have created/collected (Lack of Relationship Feedback). Once 

they have items in their notebook, the system encourages refinement of these items 

(Wrong Relationship, Missing Relationship, Missing Hypothesis, and Missing Support or 

Refutation Feedback). The ordering of this feedback is based on both inquiry learning 

theory, which states a general flow of activity, as well as basic learning theory on 

feedback, e.g., correcting errors before omissions (Collins & Stevens 1991, Shute & 

Glaser 1990). If a student is stuck, lost, or confused, the system implicitly teaches the 

inquiry process through the successive steps it offers as advice to the student. Meanwhile, 

each given step also highlights domain knowledge, creating an overall system that 

teaches both content and process. 

 

3.3.4 Providing Support using Uncertain Assessment 

Dealing with uncertainty is a classic problem in the ITS field (Jameson, 1995). The 

standard conceptualization of the uncertainty in well-defined domains deals with 
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understanding students’ true state of knowledge solely through their actions within the 

ITS. For example, many researchers use Bayes nets to estimate student mastery using 

their answers to tutoring questions as input (Gamboa & Fred, 2002; Jameson, 1995). 

However, a higher level of uncertainty exists when operating in ill-defined problem 

spaces (as presented in Section 2.2) and free input systems (as presented in Section 

3.2.2.2).  With these systems, we cannot be sure whether student input is correctly 

identified, let alone be certain about how this input represents their knowledge. Even with 

the most carefully defined knowledge bases, and the most cutting-edge NLU techniques, 

the system might be unable to identify student work, or to identify the student work 

correctly.  

Therefore, as this problem is not likely to be solved in the foreseeable future, this 

uncertainty must be a factor in the support process, and one must offer feedback with 

careful consideration. This uncertainty forces us to limit and cater the type of feedback 

the system offers. We consider two aspects to be essential when offering feedback in a 

system that incorporates an uncertain understanding of student input:  

• Do not comment directly on “incorrect” work. 

• Offer feedback that might be useful even if analysis is mistaken. 

 

The first aspect stresses that system should rarely, if ever, tell a student they are 

wrong. The second aspect reinforces the idea the system should “do no harm,” if and 

when it incorrectly recognizes student work. To address both of these aspects, a useful 

feedback approach is to bring the points that are thought to be wrong into question, and 

call the student to re-analyze these points. This approach addresses the first concern by 
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not explicitly correcting students, allowing for a situation where the system has 

misidentified some portion of the student work. Addressing the second concern, there is 

no explicit harm in reviewing work in general. In fact the self-explanation that might 

occur from this review has been shown to be beneficial in many situations (Aleven & 

Koedinger 2002; Conati & Vanlehn 2000). Overall, from a pedagogical standpoint, this 

type of feedback supports a more critical thinking approach, allowing students to explore 

their errors on their own rather than being told to take specified steps. In this way, the 

system can offer feedback that is essential when correctly recognized, and potentially 

useful, or at worst redundant, when recognition is incorrect. 

To frame feedback in this manner, we consider the coaching system through the 

lens of identifying teaching opportunities and supporting students when these teaching 

opportunities occur, rather than a system that ‘corrects mistakes.’ In this way, the coach 

does not tell students what to do, but rather encourages students to continue in certain 

directions that experts consider fruitful. We see how these theories are implemented in 

the following section (Section 3.3.5). 

 

3.3.5 Feedback Display: Interruption and Visualization 

The questions of how much help to offer, and when to offer help, are examples of 

classic ITS concerns. Termed “the Assistance Dilemma” by (Koedinger & Aleven, 2007), 

we can view this problem on a pedagogical level. We consider a spectrum with little or 

delayed assistance on one end and plentiful or immediate assistance on the other end. 

Immediate and plentiful instruction has the benefit of preventing stuck states or 

floundering, and reducing cognitive load (Kirschner et al., 2006), but can potentially lead 
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to shallow knowledge gain or “gaming” behavior (Baker et al., 2008). Systems that 

provide less or delayed assistance offer the other side of the tradeoff, possibly leaving 

students to flounder but potentially then allowing them to work through their confusion 

and issues themselves without excess support thus promoting deeper learning. 

Narrowing the focus to ill-defined problem spaces and inquiry learning approaches, 

educators tend towards limited and delayed feedback. The pedagogical idea is to help 

students learn how to think through problems and learn alternative approaches on their 

own, when guidance is not available. At the far end of this spectrum is pure 

constructionism (Harel & Papert 1991), where the working theory is that no guidance 

should be given, and the only true learning comes from constructing knowledge on one’s 

own. 

We must consider not only ‘how much feedback’ to give, but also ‘when to offer 

feedback.’ Many systems provide feedback messages in list format (Gutierrez-Santos et 

al., 2010; Scheuer et al., 2009). This means that feedback messages can build up over 

time, and a system must decide on the timing and level of interruption of the feedback 

relative to the importance of the message. These same systems tend to take a simplistic 

answer to this question using the concept of on-demand coaching (Gutierrez-Santos et al., 

2010; Scheuer et al., 2009). The idea is that coaching is only offered when students 

request help. This decision is made not only to simplify the problem, but also because 

help-seeking (knowing when and how to seek help) is a meta-level learning skill 

(Newman 1994) that students should acquire. 
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3.3.5.1 Implementing Feedback Display 

The Rashi system’s feedback system was originally designed with the tenets of 

non-interruption and on-demand help-seeking in mind. However, several issues were 

recognized with this original design, and the interface of this feedback has undergone 

several iterations to make the software easier and more likely to be used. We present the 

first implementation, the On-Demand Coach, and how it motivated effort to create the 

second implementation, the Suggested Links Sidebar.  

Students activate the On-Demand Coach by choosing “coach” from the “help” 

menu on their notebook. Once activated, students are shown a coach (a separate window) 

that presents series of feedback statements (Figures 3.3 and 3.4, bottom). This Coach 

presents different types of structural and content-based feedback and in the order 

specified in Section 3.3.3. The user can iterate through the list to view different pieces of 

feedback. Each piece of feedback has several steps.  First, is the general identification 

phase, where the coach points out a high-level potential issue and requests that the 

student either solves the issue his/herself, or asks for more assistance. If more help is 

requested, this feedback moves to the specification phase, where the system offers details 

about the current piece of feedback, including highlighting the entries in the notebook 

that are related to the problem at hand. Finally, if the student requests more assistance, 

the system enters the solution phase, stating explicitly the next step the student should 

take to solve the problem. This last phase could be considered the “Bottom-out hint,” a 

term meaning a hint that gives the student at least a partial solution to the problem. 
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Figure 3.3. The On-Demand Prompting Coach in the specification phase. The system 
highlights a particular hypothesis, “hyperthyroidism,” in the Notebook (top), and asks the 
student to find more support for this hypothesis in the coaching window (bottom). 
 

We found issues with deploying the On-Demand Prompting Coach, as students 

rarely used the prompts in practice. Testing resulted in few students actually conferring 

with the coach, even when encouraged by their instructors (see Section 4.5.2 for further 

detail). Along with pedagogical changes (as suggested in Section 5.3.1) to encourage 

student use of the coach, we also considered technical aspects that could make the coach 

both more readily available and less complicated to use. 
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Figure 3.4: The On-Demand Prompting Coach in the solution phase. The coach 
system opens the Medical Lab environment (top-right), and highlights the supporting 
information while the coaching window (bottom) tells the student to look at this 
supporting information. 
 

With these results in mind, the interface for the coach was redefined, attempting to 

maintain the non-invasive nature, but improve the chances of the coach being seen and 

used more regularly. From this process, we created the Suggested Links Coach. This 

interface enhances the Notebook interface by adding a separate pane that is present 

continually throughout the learning process. The coaching system auto-populates this 

pane with feedback as items are highlighted in the notebook, using the same analysis 

methods and feedback types as the On-Demand Prompting Coach. This implementation 

still does not interrupt students’ work, allowing students to decide if/when to use the help. 

Yet students are constantly aware of the suggestions, making feedback more obvious and 

easily available. This system was pilot tested with small groups of students and students 
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made greater use of the feedback. Some SMEs did express concern with the increased 

possibility of gaming the system with the increased availability of the EKB elements, but 

thus far we still have not seen such problems.   

 

 

Figure 3.5. The Suggested Links Coach integrated with the Notebook.  The user has 
highlighted “hyperthyroidism” in their Argument Editor (top-left), and the Suggested 
Links Coach (right) displays knowledge base elements that are associated with this 
hypothesis. Green highlighted links are supporting data elements, and the user can click 
these links to be shown the data in a data collection tool. 
 
 
3.4 Providing Content-Focused Collaborative Support 

Thus far we have only considered intelligent feedback on an individual level. In 

Section 3.2.3, we discussed that the addition of collaborative features provides new 

opportunities for content recognition and assessment. These same additions offer new 

opportunities for feedback and intervention. Many researchers attempt to take advantage 

of collaborative opportunities, with most research applying standard CSCL approaches to 
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more open-ended environments. Magnisalis et al., (2011) provide a comprehensive 

overview of this work. These approaches focus on discovering how group interactions 

can be analyzed and improved, and often do not usually consider the content of students’ 

work. 

Several of the previously discussed systems for ill-defined domains have been 

extended to include collaboration, and subsequently researchers have also extended their 

analysis and feedback techniques to consider the students’ collaborative efforts. Baghaei 

et al. have extended their system Collect-UML to support collaborative efforts (Baghaei 

et al., 2007). In a similar effort, Constantino-Gonzales et al. present the COLER system, 

which provides collaborative space for argumentation (Constantino-Gonzales et al., 

2003). In both of these systems, collaborative support is offered to improve students’ 

collaborative behavior. In other words, these systems do not use domain level knowledge 

about the students’ arguments when considering collaborative feedback. Rather, these 

systems consider the facts about the collaboration itself (balanced contributions, even 

distribution of work, etc.) (Baghaei et al., 2007; Constantino-Gonzales et al., 2003). 

These systems monitor and instruct students on how to collaborate more effectively, but 

do not consider the understanding of the individual’s recognized content from an expert 

model to foster or promote collaboration. A limitation of these approaches is that the 

coaching offered is not domain specific. These systems analyze and support the actual act 

of collaborating, and teach collaboration skills rather than focusing on learning skills 

associated with the task, such as inquiry skills or deep understanding of content 

knowledge. We suggest a more tight integration between collaboration and coaching. 

Magnisalis et al. phrase this concept as “collaborating to learn,” as opposed to the 
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coaching systems just discussed, where students were “learning to collaborate” 

(Magnisalis et al., 2011). 

Specifically, two possible ways to integrate coaching and collaboration to promote 

“collaboration to learn” are to 1) use collaborative contributions as coaching 

opportunities by finding opportunities to introduce content support when student are 

collaborating, and 2) use coaching as opportunity for collaboration by finding 

opportunity to encourage targeted dialog based on the content of the students’ solutions. 

Section 4.5.4 presents results demonstrating potential for both of these possibilities 

within our system. We now discuss the each concept separately. 

 

3.4.1 Using Collaborative Contributions as Coaching Opportunities 

As described in Section 3.2.3, several methods exist in Rashi to find connections 

between an EKB and student’s collaborative contributions. Whether students offer their 

own connections by setting the subject of chat conversations or the system automatically 

matches the content of chat messages to knowledge base elements, the system can 

potentially recognize the content of chat messages. We suggest that this recognition 

presents an opportunity to offer additional coaching in reference to the chat messages 

rather than in reference to Notebook items. 

This additional coaching is presented in Rashi by using the Suggested Links 

Coach as described in Section 3.3.5. The coach considers the hypothesis or datum being 

discussed in the Chat tool as well as the content of the student’s Notebook to offer 

content feedback similar to that presented in Section 3.3.2. If a hypothesis is being 

discussed, the coach can offer Lack of Support or Refutation feedback, which offers links 
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to supporting or refuting information about the hypothesis being discussed. If a datum is 

being discussed, the coach can offer Missing Hypothesis feedback, which offers links to 

hypotheses that are supported by the data being discussed but that the student has not yet 

entered into their Notebook. These suggested links are displayed to the right of the chat 

window (see Figure 3.6). In this way, we utilize the student chat as a new area to offer 

coaching suggestions, which can both prompt further conversation as well as help to 

focus that conversation around pertinent content. 

 

 

Figure 3.6. The Suggested Links Coach integrated with the Chat tool. One student 
(Madison) has mentioned “pregnant” in the chat (left), about which the system has much 

refuting evidence. The Suggested Links Coach (right) displays the knowledge base 
element about pregnancy, and links to the associated refuting data in red. The student can 

click these links to be shown the data in a data collection tool. 
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3.4.2 Using Coaching as an Opportunity for Collaboration 

Using coaching to promote beneficial collaboration is a complex issue, but one that 

presents open potential in the field (Magnisalis et al., 2011). Researchers need to consider 

in a holistic sense both the function of the coach and the type of collaboration in which 

students should engage. On a high-level, we would like coaching to help students focus 

on appropriate content, and engage in inquiry activities.  

When considering how to use coaching to support students, we can consider the 

range of software that pairs students for peer reviewing. In CSCL research, many such 

systems have been developed to identify appropriate pairs of students by different criteria 

(Christodoupoulos & Papanikolaou, 2007; Crespo et al., 2005; Garcia & Pardo, 2010; 

Pérez-Sanagustín, 2009). The basic idea across these different projects is to find 

automated ways of identifying pairs of students that will work successfully together. 

However, in these scenarios, domain content is not considered, only traits of students 

(Christodoupoulos & Papanikolaou, 2007; Crespo et al., 2005), and sometimes only 

practical stipulations of classroom groupings (Pérez-Sanagustín, 2009). We have a 

significant advantage in this light, because we can find just-in-time pairings based on the 

current focus of students. 

In this light, we propose that coach’s assessment capabilities can be used as a 

mechanism to prompt the same type of content-focused collaboration that our tools 

inherently promote, as discussed in in Section 2.4.2.3.   

The coach matches content from a student solution to an EKB to offer evaluation or 

assessment of each student’s work. This can be used to identify strengths and weaknesses 
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of each student’s solution. By comparing these assessments, the coaching system can 

identify pairs of students that might have reason for, or need to, interact with one another. 

These students can then be encouraged to collaborate for short, focused interactions about 

the specific topic, potentially fostering crucial dialog. We see this situation as promoting 

content-focused collaboration. Students are encouraged to focus their interaction around 

specific discussable objects that are pertinent to their current efforts. One simple example 

of such a situation where content-focused collaboration can be fostered is when the coach 

identifies a student that needs help, and, rather than offer them canned statements, the 

coach fosters a conversation between this student and a peer about the topic identified as 

needing support.  

Other work in well-defined domains has shown the promise of fostering 

collaboration and peer-tutoring with intelligent identification of topic for discussion.  

Walker et al. demonstrate that this type of tutoring interaction is beneficial for both tutor 

and tutee (Walker, et al., 2008). Other current projects in ill-defined domains have 

attempted similar tactics of identifying key times for collaboration (Dragon et al., 2012), 

and using automated feedback to assist peer tutors (Ashley & Goldin 2011). 

The idea of content-focused collaboration goes beyond this single example. We 

propose that developers can enhance the intelligence of their ITS and CSCL systems with 

collaborative tools that allow peers to have more fruitful collaborations, pairing students 

that are likely to be able to support one another and providing intelligent analysis of the 

student work that can help students give precise and helpful feedback to one another. A 

wide variety of situations exist in which content focused collaboration could be beneficial 

(Crespo et al., 2005; Garcia & Pardo, 2010; Pérez-Sanagustín, 2009). We consider the 
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following situations as prime targets for a coaching system to encourage content-focused 

collaboration: 

• Same Topic: When peers are working on the same subject matter, they can be 

brought together to discuss progress, difficulties, or solutions related to the topic. 

• Contrasting Opinions: When peers have opposing solutions / conclusions to the 

same or similar problems, they can be brought together to discuss differences and 

evaluate opposing arguments. 

• Similar Errors: When peers have similar errors or inefficiencies in their solution, 

they can both be presented with corrective feedback, and can be encouraged to 

discuss the feedback and potential solutions. 

• Tutoring: When one student has a recognized correct solution and another student 

does not or has demonstrated signs of struggle, the two students can be brought 

together. The student with a correct solution can be presented with an assessment 

of the other student’s potential error. The first student can then act as a peer-tutor 

and offer advice or support, guided by the system’s automated assessment. 

 

3.4.2.1 Implementing Content-Focused Collaborative Support 

We developed two prototype functionalities to promote content-focused 

collaborative support in the Rashi system. Both utilize the coach’s knowledge base 

assessment to recognize aspects of student solutions, and then suggest collaborations 

when coaching is requested. The two situations identified within Rashi are instances of 

the Same Topic and the Tutoring as listed above. 



 103 

To implement Same Topic content-focused collaboration, the coach examines the 

current hypotheses on which a student is working, and then compares this assessment 

with other students to identify situations where other students have created similar 

hypotheses, or have collected data related to this hypothesis. Rashi then encourages chat 

between the students highlighting the related hypothesis and data. 

To implement Tutoring content-focused collaboration, the coach again examines a 

student’s hypotheses, but this time looking for hypotheses that the student has collected 

and connected sufficient data to be considered “sufficient” by the knowledge base 

evaluation. When this is true, the current student is a candidate for offering peer tutoring. 

In this case, the coach looks for other students who have the same hypothesis, but are 

missing data or relationships.  The coach then asks the proficient student to use the 

“critique” functionality (Section 2.4.2) to offer advice to their peers to complete work on 

the hypothesis in question. 

 

3.5 Summary 

This chapter presents the rationale for, and the methods with which, an ITS can 

understand and support students during collaborative inquiry learning in ill-defined 

problem spaces. We focus specifically on how student work can be automatically 

recognized and understood in such systems using artificial intelligence techniques. We 

then present how this understanding gained through artificial intelligence techniques can 

be used to provide support to students on the structure and content of their solutions, as 

well as the process by which they create solutions. Finally, we discuss how this 

recognition and support can be extended beyond the individual learner to include 
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collaborative work. We consider both how collaboration can provide additional 

opportunities to present content-related intelligent support, as well as how intelligent 

support can utilize collaboration as a means of intervention, identifying key points where 

collaboration is seemingly necessary. Throughout the chapter we present the specific 

example of our research on the ITS Rashi. We discuss how this system recognizes 

student input using an EKB, and provides an automated coach that offers these various 

types of feedback. 

The first step for an ITS to provide intelligent feedback is for the system to 

understand student input in order to cater the learning experience to the specific student. 

We recognize that this understanding is more difficult in ill-defined problem spaces, 

where there are not necessarily correct solutions or solution paths, and also difficult in 

inquiry learning and collaborative environments where the input devices available to 

students create vast solution spaces. Some recognition of student work can be 

accomplished purely through recognizing the structure of student solutions, and we 

present examples from the Rashi system of how this can be accomplished.  However, 

there are weaknesses to this approach that make it impractical as a full-fledged solution to 

understanding student input.  

Moving beyond simple structural recognition, a system must somehow recognize 

the content of student contributions. To recognize the content of a student solution, we 

must first decide how students will input content, on a spectrum of free input to restricted 

input. When input is restricted it may be more easily recognized, but these restrictions 

can hinder the creativity and the active role of learners in the inquiry process. We present 

a hybrid method of understanding the student work within the Rashi system. Most data 
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used by students is already represented within the knowledge base, and so data collection 

is generally easily recognized in reference to the knowledge base. Hypotheses are entered 

as free text and need to be recognized in some fashion. We create an expert knowledge 

base to represent the domain knowledge for a given topic; including expert hypotheses 

linked to the data present in the system. Finally, we use simple keyword matching 

techniques to link student entries to expert knowledge base elements in order to offer 

evaluation or assessment of the student work. We use similar tactics to recognize the 

content of chat messages. Employing this overall strategy, as we do in the Rashi system, 

one can gain an overall understanding of both student solutions and the content of 

students’ collaborative efforts. 

 Once an ITS understands the student, the system should provide support catered 

directly to the situation at hand. The different methods of understanding work lend 

themselves to different types of feedback. Content recognition can provide more in-depth 

and specific feedback, which is preferable in many cases. 

Many concerns arise when actually providing the feedback, such as how to handle 

uncertainty in the understanding of the student, when to interrupt to present feedback, and 

how to visualize the feedback. In inquiry learning systems in general, as in our case with 

Rashi, researchers tend towards conservative answers to these questions. They provide 

feedback that is not harmful if the system misunderstood student input, and time and 

present feedback in ways that limit the interruption of student work flow. We present 

examples of how the Rashi system implements feedback, and how it has been refined 

with these tenets in mind. 



 106 

Finally, we present methods of combining automated support and collaboration. 

Although this is a complicated issue, it has the potential to improve both coaching and 

collaboration, promoting what we term as content-focused collaboration. We see how 

collaborative efforts can be used as additional opportunities for domain-related support. 

Most importantly, we discuss how collaborative elements can be harnessed as additional 

means of intervention for support. This is accomplished by recognizing certain situations 

where focused collaboration between two students could be highly productive based on 

the content of their solutions. We present different contexts in which this focused 

collaboration could be productive, and discuss how the Rashi system has been adapted to 

recognize and encourage such situations. 

Overall, this chapter presents a holistic picture of utilizing artificial intelligence 

techniques, particularly expert knowledge bases, to provide automated support in the 

collaborative, inquiry learning environments for ill-defined problem spaces described in 

Chapter 2. Chapter 4 presents the evaluation of these tactics as related to the Rashi 

system, and its use in real classrooms. 



 107 

CHAPTER 4 
 

EVALUATION OF COACHING AND COLLABORATIVE FEATURES IN AN 

INQUIRY LEARNING ENVIRONMENT 

 

4.1 Introduction 

The overall purpose of this research is to offer an understanding of how both 

collaboration and coaching can improve student behavior within an inquiry learning 

system: Does targeted use of both collaborative features and feedback from coaching 

software improve students’ solutions? Four hypotheses are tested by using data from 

studies conducted in actual classrooms. 

These studies were carried out over a duration of four years (2007-2010). The 

development team used iterative design and implementation to introduce major updates 

to improve the usefulness and the usability of the system. Therefore, the data were 

collected over several years in which the system functionality and student populations 

varied. Because of this shifting system functionality and student population, combined 

with differences in data recording and analysis techniques, one unified dataset doesn’t 

exist on which to test these hypotheses. Instead, different data sets were used to test four 

distinct hypotheses. The different scenarios and settings where each dataset was collected 

are described in the analysis of each hypothesis.  

Section 4.2 describes the four hypotheses tested and a brief summary of results. 

Section 4.3 describes the classroom studies including target populations and 

demographics, classroom settings, and the various system features available for each 

study. Section 4.4 describes the methods for analyzing whether the data supports or 
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refutes the hypotheses, describing in detail how we utilize data to support the given 

hypotheses. Section 4.5 examines the evaluation of each of the hypotheses, discusses the 

experimental results and implications of these results. 

 
4.2 Hypotheses 

This research focuses on two factors: collaboration and coaching. The research 

addresses individual hypotheses about each factor independently and combined. 

However, a third factor that is important enough to be considered in its own right, is the 

pedagogical approach within the classroom. This factor is considered explicitly 

controlled for in one of the studies. This made it possible to test the effects of defining 

and communicating the classroom pedagogy more clearly. This thesis addresses four 

hypotheses.  This section reviews each hypothesis including the rationale for developing 

each, the experimental design used to test them, and a summary of the results. 

 

4.2.1 Collaboration 

H1: The addition of collaborative features improves student inquiry behavior, increasing 

the size and complexity of student arguments.  

 

Collaboration was introduced into the Rashi system partly to address a major 

weakness recognized in student work by the teachers and researchers in early studies: 

namely failed to explicate their work. Students using Rashi were interacting with the 

system but not all were systematically collecting data, entering hypotheses, or building 

arguments in the volume that was expected and desired. Teachers reported that they 

discussed their hypotheses and reasons for rejecting them informally with other students, 
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but once rejected they didn’t see any point in entering that information into the system.  

Thus they didn’t have all the data they needed to demonstrate the learning process they 

had used to others.   

We defined an initial benchmark of improved inquiry behavior as an increase in the 

amount of data students collected and entered into Rashi, the number of hypotheses 

articulated and entered, and the number of relationships created between data and 

hypotheses. We found that students who were provided with collaborative features 

entered significantly more information into the system when they knew it was going to be 

shared and discussed with other students; they also gathered more data and created more 

arguments (see Section 4.5.1). The effect was significant, and this provides a solid 

understanding of the quantitative effects of the collaborative features of the software.  

 

4.2.2 Coaching 

H2: The addition of coaching components improves student behavior by helping students 

focus on essential information and increasing the creation of semantically meaningful 

and content-rich student solutions. 

 

The coaching system within Rashi provides structural, content, and process support 

for students (see Section 3.3). To measure the effects of coaching, we look beyond the 

concept of a purely quantitative evaluation to consider qualitative measures as well. 

Automated qualitative evaluation in ill-defined problem spaces is difficult to measure, 

due to both the ill-defined nature of the problem space (Section 2.2) and the issues of 

understanding student work (see Section 3.2). We attempt to overcome these challenges 
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by utilizing an automated system that understands student work through use of an expert 

knowledge base (EKB) (see Section 3.2.2), and in this way can offer some qualitative 

measure of student work (see Section 4.4.2). 

We did not find direct statistical support for H2 across control and intervention 

group (see Section 4.3.2), leading to the conclusion that the existence of the coaching 

system as available during the experimentation did not improve student argument by the 

given measures. However, we did find results that show a correlation between the amount 

of coaching a student received and the quality of certain aspects of student solutions. This 

offers some evidence that as coaching is used more often, we might expect improved 

student solutions. The limited effects of the coaching component could be due to a 

number of factors, but is most likely attributable to the small number of interventions per 

student coupled with the short amount of time students operated within the system after 

coaching intervention was requested. 

 

4.2.3 Effects of Improvement to Classroom Pedagogy 

H3: Clarification of the pedagogical approach with both facilitators and students 

improves student behavior, increasing the creation of semantically meaningful and 

content-rich student solutions. 

 

This hypothesis stems from changes to the classroom pedagogy, rather than system 

functionality changes. We observed continual problems with students’ ability to develop 

large, content-rich arguments, particularly in the classes where students did not normally 

practice the inquiry method. To address this issue, we developed materials and provided 
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additional information to facilitators both on the inquiry method and how it was realized 

within Rashi. We theorized that improvement in the pedagogical approach to the 

classroom would have an effect on the size and content of student solutions. This 

hypothesis was investigated in one year that brought multiple major developments: one 

technical (the addition of the coach), and one related to classroom pedagogy (the addition 

of introductory materials and training presentations). This hypothesis and the datasets 

used differentiate the effects, clarifying the change brought about by the technical and 

pedagogical developments, respectively. 

We found statistically significant support for this hypothesis (see Section 4.5.3). 

We conclude that these improvements did encourage students to complete more work 

within the system (quantitative), and also to create solutions that were more accurate and 

relevant to the case as judged by our automated analysis (qualitative). We see several 

explanations for this improvement and offer insight as to how this improvement can be 

more explicitly taken into the research cycle in the future to make their contribution more 

explicit. 

 

4.2.4 Combining Coaching and Collaboration 

H4: An expert knowledge-based recognition system can identify opportunities to promote 

targeted content-focused collaboration. 

 

Work on combining the coaching and collaborative abilities of the system is still in 

progress and so we can offer no formal evaluation of the effects of a complete system that 

offers integrated content-focused collaboration techniques, although prototypes of such a 
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system have been developed and piloted (see Sections 2.4.2.3 and 3.4). Rather, we 

measure the potential opportunity to engage students in this content focused collaboration 

in several ways. 

First, we consider whether collaboration can provide additional, relevant, 

knowledge-based feedback. We find clear evidence that the system can automatically 

identify the content of student discussion with reasonable accuracy, thereby allowing the 

system to offer additional and potentially useful feedback using the knowledge base (see 

Section 4.5.4.1). Second, we seek to understand how the coaching system can use 

collaboration as an opportunity to provide new types of feedback, specifically feedback 

promoting content-focused collaboration. In this way, the coach could enable students to 

benefit uniquely from targeted interaction at key points in the learning process (see 

Section 3.4). To evaluate this hypothesis, we identify how the analysis system can 

automatically recognize such opportunities in past data. We found ample opportunities in 

which a coach could have identified instances where promoting content-focused 

collaboration would be useful. We thereby conclude a system can identify key moments 

to encourage students to support each other’s learning (see Section 4.5.4.2). 

 

4.3 Classroom Studies 

Over 3,000 students have used Rashi in the classroom between 2007 and 2012. 

These uses have all been in the biology domain and involved either introductory biology 

students in undergraduate college courses, middle school students using the software 

during the normal school year, or middle school students participating in a summer camp 
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learning experience. The analysis performed to test the current hypotheses includes over 

1,500 students who used the system between 2007 and 2010 at three different institutions.  

The first setting of these studies is a small liberal arts college in Western 

Massachusetts. This college encourages new and innovative methods of instruction, 

promoting inquiry-based learning and constructive civic and social engagement. The 

openness to alternative teaching methods and innovation in teaching style provided a 

positive atmosphere for our early research, and methodologies from their existing 

classrooms provided guidance about how inquiry methods can be incorporated into 

current working classrooms. The second setting of these studies is a large, research-

focused university in Western Massachusetts. This setting provided a much larger user 

base than any other setting. The number of the students involved in these studies allows 

us to test our system and theories on a larger scale, and demonstrate how our system can 

be used in more standard classroom settings. The last setting is a primary/middle school 

in Western Massachusetts, providing insight as to how the software might be applicable 

to a different age group in yet a different classroom setting. The software was well 

received and used repeatedly in each of these settings, providing evidence of general 

applicability of the software and the teaching methods. 

Over the years of studies within these different populations, groups of students 

from these different settings have used various versions of the Rashi system. Typically 

each group used the latest deployment of the software available at the time of 

experimentation. The change in software between studies ranges from slight user 

interface modifications and bug fixes to drastic system overhauls. This variation 

introduces serious issues when considering cross-group analysis from an experimental 
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design perspective. Due to the continual system changes occurring as we were 

simultaneously evaluating the effects of the system, the research presented here can be 

viewed as “design-based research” involving “quasi-experimental” evaluation (Brown, 

1992; Wang & Hannafin, 2005). Pure “experimental design” does not include 

confounding variables as described here, and has well-matched control and experimental 

groups. As presented by Brown (1992), pure experimental design is virtually impossible 

in real classroom settings, and interesting (although potentially less powerful) results can 

also be gathered from experiments that have possible confounding variables, allowing for 

some integration of practice and research in the classroom. While we attempt for the most 

pure experimental design feasible in our conditions, we recognize that confounding 

factors involved (e.g., changing student population, software updates, etc.). To minimize 

the effects of these confounding factors, we analyze different data sets when considering 

different hypotheses, attempting to identify the data most pertinent to the specific 

research question at hand. We also choose the specific datasets with the most consistent 

student populations and the least amount of confounding factors presented by software 

updates. We will examine 11 data sets representing students from a broad range of 

experiments run between 2007 and 2010, as presented in Table 4.1. 

We now offer a description of each classroom study, detailing both the population 

of students and the state of the software at the time of use. Finally, we describe how the 

dataset is used to investigate specific hypotheses. 
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Table 4.1. Detail of the classroom studies. 

 

4.3.1 College Introduction to Biology – Fall 2007, 2008 

The Introduction to Biology course in the small college where our studies were run 

is comprised mostly of freshman, but also includes some sophomore undergraduates. The 

faculty instructing this course also acted as subject matter experts (SMEs) to help develop 

the knowledge base for the medical cases. These faculty members are familiar with the 

Rashi system and have actively engaged in the testing process and worked closely with 

the development team to formulate extensions to the software as well as to initially 

develop the pedagogical approach. This class is taught with an inquiry-learning based 

approach, and therefore students engage in inquiry-based, “Rashi-like” activities even 

when not using a computer system.   

Ref
.# Date Class Rashi Case User 

Accounts Coaching Collaboration 

1 Fall 
2007 Small 

College 
Intro. to 
Biology 

Anemia 1, 
Hyperthyroidism 14 none none 

2 Fall 
2008 

Anemia 1, 
Hyperthyroidism 22 none view/copy 

2.1 Fall 
2009 

Anemia 1, 
Hyperthyroidism 14 none View/copy/chat 

3 July 
2007 

Middle 
school 

Summer 
Camp 

 

Anemia 1 37 none none 

4 July 
2008 Anemia 2 33 none View/copy 

5 July 
2009 Bee Allergy 49 none View/copy/chat 

6 July 
2010 Anemia 2 50 Suggested links View/copy/chat 

7 March 
2009 

Large 
University 

Biology 
101 

 

Hyperthyroidism 

41 none View/copy/chat 

8 Feb. 
2010 76 none View/copy/chat 

9 Feb. 
2010 194 On-demand 

prompts View/copy/chat 

10 Aug. 
2010 21 Suggested Links  View/copy/chat 

11 April 
2010 

Middle 
School Hyperthyroidism 22 Increased On-

demand prompts View/copy/chat 
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Both 2007 and 2008 studies were carried out using the same cases, Anemia 1 and 

Hyperthyroidism. The system did not have any coaching capabilities. Students used the 

software as a lab activity for two weeks, with one to two-hour weekly lab meeting times 

where they completed a large amount of the total Rashi work. However, the system was 

available online for home use, so students could use it as necessary during this two week 

period to complete their assignments.  

2007 study – This study involved 14 students, each working on a separate 

computer. The system had no coaching capabilities and no collaborative tools.  However, 

the faculty in the class did promote a certain amount of face-to-face collaboration when 

students were struggling or stagnant (e.g., students were encouraged to discuss their ideas 

about the case with one another). 

2008 study – This study involved 22 students, each working on a separate 

computer, but divided into groups of three to four. The only major system enhancements 

were the development of the collaborative capabilities, namely the ability for students in 

a small group to view one another’s notebooks and to copy specific entries from group 

members’ notebooks (as described in Section 2.4.1). Students still had no chat 

capabilities and engaged in limited face-to-face collaboration at their own discretion. The 

system again had no coaching capability.   

We analyzed the data across these studies to offer an understanding of how the 

collaborative capabilities of the system affect student work. Specifically, we tested to see 

if the addition of these collaborative features increased the size and complexity of student 

solutions, as discussed in Section 4.5.1. 
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4.3.2 Middle-School Summer Camp – Summer 2007 - 2010 

Rashi was also used as one aspect of a middle-school summer camp held at the 

same college. This summer camp introduces seventh to ninth grade students to inquiry 

learning and problem-based approaches to learning science. The students in two studies 

spent a total of five to six hours working with Rashi over a span of five days within a 

classroom, where students worked in pairs on computers. The 2007 study involved 33 

students using the system without the collaborative features or coaching. The 2008 study 

involved 37 students with limited collaborative capabilities (as described above), namely 

the ability for students to view one another’s notebooks and to copy specific entries from 

group members’ notebooks (see Section 2.4.1). The system had no coaching capabilities. 

The 2009 study involved 49 students using the system with full collaborative capabilities, 

including viewing and sharing notebook contents and chat functionalities, also without 

coaching capability. Finally, the 2010 study involved 50 students and included the 

Suggested Links coaching capabilities, as described in Section 3.3.5. 

We use the 2007 and 2008 data to test the effect of the collaborative capabilities on 

student solutions in the same fashion as the 2007-2008 data from the biology course, as 

discussed in Section 4.5.1. Some confounding variables are involved with the comparison 

of these two middle-school studies. The student population has more room for fluctuation 

from year to year since the summer camp invites students from wider a range of 

communities and schools than does an introductory college biology class. Also, different 

but relatively comparable Rashi cases were used in the two sessions (Anemia 1 vs. 

Anemia 2). The 2009 and 2010 data were not used here for any of the given analyses, due 

to the confounding variables and the differences in logging of data for the Suggested 
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Links Coaching, which offered limited insight into how coaching might have affected 

student work. 

 

4.3.3 University – Biology 101, 2009-2010 

Biology 101 at the university is an introductory course comprised mostly of 

freshman students in their second semester of classes, but also includes some sophomores 

and juniors. Rashi is used as a two to three hour lab exercise and was used during one lab 

session where students were required to complete their work outside of class time 

(logging in either from their own machines or from university lab computers). To 

complete their assignments, students exported their information from Rashi using the 

Report Editor (see Section 2.3.2.2) and completed a written report to be graded by the 

teaching assistants (TAs). Due to the limited number of computer terminals, students 

worked in groups of two or three on a single computer registered as a single user. The 

course was broken down into sections, each section having between 14 and 20 students 

and eight computers available. We conducted three studies within this setting, offering 

four distinct groups for analysis: 

March 2009 - Slightly more than 700 students used the Rashi system in this study. 

Accounting for the groups of two to three, there were 358 total registered users. 

However, many different cases were used in this experiment, and therefore to be 

consistent with 2010 data, we use only the data from those 41 users who worked on the 

Hyperthyroidism case. 

In this study, TAs were given a brief introduction on how to log into the system, 

and a general overview of how to use Rashi (e.g. “ask questions in the interview,” “put 
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hypotheses in the notebook,” etc.). However, there was little introduction to the 

classroom pedagogy of Rashi, (the inquiry process), and there was no live demonstration 

of how the system could be used or what students should gain from using the system. 

February 2010 – This study included slightly over 800 students, in groups of three 

or four, creating a total of 270 registered users. This set of students was divided into a 

control group of 76 students who used the system without coaching capabilities, and an 

experimental group of 194 users who used the system with coaching abilities. The set of 

students was divided into sections, each consisting of 14 to 20 students (as describe 

above). To randomize the experimental group versus the control group, we randomly 

assigned coaching capabilities to certain sections of the course. It was necessary to assign 

entire sections and not individuals to the control and experimental groups because special 

instructions were necessary to alert students of the presence of the coach and encourage 

students to use the capabilities.  

The February 2010 study included a much more focused presentation on classroom 

pedagogy from the Rashi team. A Rashi team member met with all the TAs several times 

before the study to introduce general pedagogical idea of inquiry learning, describe how 

the system implemented that learning theory with its functionality, and finally discussed 

how students should ideally be using the system.  

August 2010 – This study was run as a university summer course, and so only 

included 20 students. Each student worked at one computer, a total of 20 registered users. 

The full capabilities of the coaching system were enabled. 

The data from these studies are used to test three hypotheses. First, the 2010 control 

versus experimental groups are analyzed to understand the effect of coaching. We 
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analyze the data to see if students’ solutions are improved with the availability of 

coaching, see Section 4.5.2. Second, the 2009 group is compared with the 2010 control 

group to understand the effect of the improved classroom pedagogy, specifically to 

understand the effects of the explication of pedagogy on the quality of student solutions, 

see Section 4.5.3. Finally, the 2009 data are also analyzed to understand the potential for 

combining collaboration and coaching.  Specifically, we analyze both student’s solutions 

and their collaborative contributions to identify opportunities where coaching and 

collaboration could be mutually encouraged and enhanced (see Section 4.5.4). 

 

4.3.4 Middle School – Spring 2010 

This study involved 22 students from a seventh grade class. Rashi was used as part 

of a teacher initiative to integrate instruction on “how to learn” into middle school 

science curriculum. Rashi was used in the classroom for five periods, each being one and 

a half hours in length. Each student worked on one computer. Students were randomly 

assigned to groups of four to five. Rather than completing a report, a de-briefing exercise 

was carried out with the entire class for one period to complete the study. In this de-

briefing, students summarized what they learned and shared their feelings and opinions 

about the system and how it supported their learning. As this was a small population and 

was not a comparable setting to other studies, this study was used only to pilot new 

functionality and better understand how Rashi might perform in different educational 

settings. The data are not used in the formal evaluations. 
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4.4 Data Analysis Techniques 

Automated analysis of student performance in ill-defined problem spaces is 

generally a difficult problem. As described Section 3.2, freedom of exploration and 

particularly free input text systems limit the use of more traditional modeling approaches 

(Mitrovic & Suraweera, 2001). Therefore, design of the software must include innovative 

approaches for assessment that harness the power of the limited information available to 

offer indications about student behavior from the given “solutions” to the task at hand.  

We define student solutions within the Rashi system to be the contents of their 

Notebook (see Section 2.3.2). The notebook contents are a fair representation of student 

effort within Rashi as they represent all of the data collected, the hypotheses created, and 

the relationships established by the student. We evaluate these solutions in different ways 

to test different hypotheses. The choice of evaluation metric reflects both the specific 

focus of the research questions as well as the means of data collection and analysis that 

were available during the specific studies. The analysis system evaluates student 

solutions in terms of both quantitative measures (linked largely to structural 

understanding, see Section 3.2.1), and qualitative measures (linked largely with content 

recognition, see Section 3.2.2). We now briefly describe methods used for the evaluations 

offered in Section 4.5. 

 

4.4.1 Quantitative Assessment 

To understand students’ work, we can first examine purely quantitative data. While 

such an assessment does not recognize the content of student work (see Section 3.2.1), it 
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has been widely demonstrated that quantitative analyses are useful indicators in 

assessment, particularly in the community of Computer Supported Collaborative 

Learning (CSCL) (Kay et al., 2006; Soller et al., 2005). In the Rashi system, we consider 

many such quantitative indicators to provide insight into student behavior and help assess 

whether students interact with the system successfully. Below is the set of quantitative 

indicators used in our evaluations. 

 

Table 4.2: Quantitative indicators to evaluate student solutions in Rashi 
 Name Description 
Per student Data Entries Pieces of data present in student’s notebook. 

Hypotheses Hypotheses present in student’s notebook 
Relationships Relationships present in student’s notebook. 
Arguments Hypotheses and relationships present in student’s 

notebook. 
Per 
hypothesis 

Related Support  Supporting data entries offered by a student for the 
given hypothesis  

Related 
Refutation  

Supporting data entries offered by a student for the 
given hypothesis 

 

These quantitative measures were used specifically to test hypothesis H1 

(collaboration improves solutions) (Section 4.5.1), as this hypothesis is based on the 

quantity of work created by the student and not the content of the specific contributions 

(see Table 4.2). These quantitative measures were also used as a part of the metrics when 

considering H2 (coaching improves solutions) and H3 (clarification of the classroom 

pedagogy improves solutions)(see Section 4.5.2 & 4.5.3). 

 

4.4.2 Qualitative Assessment 

To offer qualitative assessment, we take advantage of the EKB recognition 

approaches described in Section 3.2.2. In this section, we described how student solutions 
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could be understood by the system through relations to the EKB. Section 3.3 describes 

how this recognition can be used to offer feedback. We can also use this as a type of 

assessment, as it provides a measure of how closely a student’s solution relates to the 

given expert solution. This comparison gives us some objective assessment of student 

solutions, given that the matching algorithm is reasonably successful (see Section 

4.4.2.1). Specifically, we consider several key indicators that can be computed through 

the knowledge base evaluation that offer insight into the content of student work(see 

Table 4.3).  

 
Table 4.3: Qualitative indicators to evaluate student solutions in Rashi 
 Name Description 
Per hypothesis Support Data  The percentage of data entries that a 

student has gathered in the notebook 
that have been designated by an expert 
to be supportive of the given 
hypothesis. 

Related Support Data 1 The percentage of supporting data 
entries that a student has correctly 
related in the notebook that have been 
designated by an expert to be 
supportive to the given hypothesis. 

Refutation Data  The amount of data entries that a 
student has gathered in the notebook 
that have been designated by an expert 
to be refutation of the given hypothesis. 

Related Refutation Data2 A subset of Refutation Data, the 
amount of refuting data entries that a 
student has correctly related in the 
notebook that have been designated by 
an expert to be refutation of the given 
hypothesis. 

Per student 
solution 

Student Hypothesis Data The number of hypotheses in the 
student’s notebook that are recognized 

                                                
1 The Related Support Data will always be equal or smaller than Supported Data, because data must be first 
gathered before it can be related the correct hypothesis. 
2 The Related Refutation Data will always be equal or smaller than Refutation Data, because data must be 
first gathered before it can be related it to the correct hypothesis. 
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with matching hypotheses in the expert 
knowledge base. 

Student Support Data The addition of all Support Data for all 
hypotheses present in the student 
notebook. 

Student Related Support 
Data 

The addition of all Related Support 
Data for all hypotheses present in the 
student notebook. 

Student Refutation Data  The addition of all Refutation Data for 
all hypotheses present in the student 
notebook. 

Student Related Refutation 
Data 

The addition of all Related Refutation 
Data for all hypotheses present in the 
student notebook. 

 

As can be seen in the definitions, the indicators per hypothesis are aggregated to 

create the indicators per student solution. This aggregation offers five indicators for each 

student solution, assessing the hypotheses, data, and the relations among them. We 

consider these measures to indicate a student’s focus on essential information, and also 

identify whether student solutions are content-rich and semantically meaningful. By 

measuring the overlap between expert solution and student solution in this way, we 

understand a) some measure of the student’s focus on information deemed important by 

the expert (noted in Support Data and Refutation Scores and Hypothesis Score, Table 

4.3), and b) some measure of the correctness of the structure and content of the 

relationships students establish (noted in Support Data and Related Refutation Scores, 

Table 4.3).  

We also have quantitative indicators discussed in the previous section, e.g., data 

entry, hypotheses. Together, these quantitative and qualitative indicators offer a 

somewhat holistic assessment of a student solution. To convert this into a single, 

comparable assessment metric, we normalize the values of these indicators, and sum over 
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them to create an overall score called the Solution Score. We use the Solution Score to 

test hypotheses H2 and H3, as we judge the effects of both coaching (H2, see Section 

4.5.2) and improvements to the classroom pedagogy (H3, see Section 4.5.3) by this 

overall score metric. 

 

4.4.2.1 Validation of Matching Algorithm 

As described in 3.2.2, one critical challenge to recognizing student work is the 

algorithm used to match student hypotheses with EKB elements. We therefore must 

manually validate this process in order to ensure the usefulness of our approach, both as a 

basis for coaching (as described in Chapter 3) and as a basis for assessment (as described 

in Section 4.4.2). We used all 872 of the hypotheses across all datasets to validate the 

matching algorithm, as these are the same hypotheses used to evaluate qualitative 

assessment for hypotheses H2 and H3. A human judge considered each hypothesis along 

with its respective match to better understand the successes and failures of the matching 

algorithm. Each hypothesis was marked not only as correct or incorrect, but also 

according to the following categories: 

• Types of correct matches for the algorithm: 

o Successful match – The matching algorithm correctly identified the best 

match to the knowledge base. 

o No match, success was impossible – The matching algorithm found no 

match, and indeed there was no appropriate match in the knowledge base. 

• Types of incorrect matches for the algorithm: 

o No match, success was possible – the matching algorithm failed to 

identify the correct match when the hypothesis was present in the 

database. 
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o Wrong match, success was impossible – the matching algorithm 

identified the wrong hypothesis. However, there was no matching 

hypothesis in the knowledge base. 

o Wrong match, success was possible - the matching algorithm identified 

the wrong hypothesis, even though the correct hypothesis was present in 

the knowledge base. 

 

Overall, the algorithm showed an 82.8 % success rate, as can be seen in the 

breakdown of the correct and incorrect matches shown in Table 4.4. There are several 

useful results to note here. First, when considering the use of this matching system in 

assessment, we can see the algorithm has a reasonably high rate of success in matching 

items with the existing knowledge base (82.8%). In order to make the assessment for our 

analyses presented in Section 4.5, only these successfully matched hypotheses are 

considered for analysis, meaning that we will only be considering 82.8% of our data for 

analysis, the 82.8% that was correctly identified by the system. The other 17.2% were 

discarded from consideration in the qualitative analysis, although still used in quantitative 

analysis, as the qualitative assessment over these incorrectly identified nodes would not 

be relevant.  

 

Table 4.4: Results of the evaluation of the matching algorithm for hypotheses. 
Match 

Evaluation 
Hypothesis 

Count 
Hypothesis 
percentage Specific Match Evaluation 

Hypothesis 
Count 

Correct 
Matches 722 82.8 % 

Successful match 458 

No match, success impossible 264 

Incorrect 
Matches 150 17.2% 

No match, success possible 134 

Wrong match, success impossible 14 

Wrong match, success possible 2 
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The second aspect of this validation process is to consider whether the coaching can 

be considered useful when it relies upon the given algorithm. The coach offers 

assessment only when it has found a match, and so to consider when the coach may give 

erroneous feedback, we need to consider the percentage of cases where the system has an 

incorrect match. In this case, that number is 16 (wrong match, success impossible + 

wrong match, success possible), which represents only 1.8% of the matches. We find this 

to be well in the range of acceptable error, and consider coaching upon this matching 

scheme to be useful in that regard.  

 

4.5 Data Analysis Results 

In the following section, we use the data analysis techniques and metrics described 

in Section 4.4 to offer empirical evidence to support or refute the hypotheses described in 

Section 4.2. After stating the hypothesis, we describe the specific scenario in which the 

hypothesis was tested and the results of the data analysis. 

 

4.5.1 Effects of Adding Collaboration 

H1: The addition of collaborative features improves student inquiry behavior, increasing 

the size and complexity of student arguments. 

We seek evidence to test H1 by comparing data from studies given with and 

without collaboration features in 2007 and 2008. In 2007, students at the college in both 

Introduction to Biology (Table 4.1 row, 1) and in the summer camp (Table 4.1, row 3) 

used Rashi without collaboration features. In 2008, the same classes (with a different 
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population of students) used the Rashi system with specific collaboration features 

enabled (Table 4.1, rows 2 and 4). Specifically, in the 2008 studies, students were able to 

view and copy from others’ notebooks (see Section 2.4.1). Coaching was not enabled for 

any these studies.  

To operationalize H1, we use only quantitative measures (see Section 4.4.1), as we 

were collecting and assessing this data before qualitative measures using the EKB were 

possible. Specifically, to assess student solutions we consider the key variable of data 

entries, as this is a solid, low-level indicator of the amount of work that students conduct 

within the system. To consider complexity, we look at the overall argument size (the total 

number of hypotheses and relationships present in a student’s notebook) to understand 

how much students engaged in the more complex, higher-level tasks of creating 

hypotheses and identifying relationships. We look for differences between the non-

collaborative and collaborative groups by comparing the mean of these indicators across 

the groups, comparing dataset 1 with 2 and 3 with 4 respectively (see Table 4.5). Overall, 

we see a clear increase in the size of student solutions, and in the case of datasets 1-2, we 

see also an increase in the complexity (the argument size). We now consider the results 

within the individual comparative studies. 

Table 4.5: Effects of adding collaborative features on data collection and argument 
creation. Significant effects are observed in each case except for the mean or arguments 
in the middle-school data. 

 College-level Studies  (1&2) Middle School Studies (3&4) 
 Mean of 

Arguments 
Mean of 

Data Entries 
Mean of 

Arguments 
Mean of 

Data Entries 
With Collaboration  
(2 & 4) 60 75 8 44 

No Collaboration  
(1 & 3) 29 30 8 27 

P-value3 
(Significance) 

0.04 0.004 0.9895 0.039 

                                                
3 Calculated using the Wilcoxon signed-rank test. 
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4.5.1.1 College Student Evaluations  

Although the sample size was relatively small for this study (14 students in dataset 

1, 22 students in dataset 2), the results were statistically significant, and fairly dramatic 

(see Table 4.5, Figure 4.1). Students in the collaborative subset of the college level study 

had an average of 60 propositions in their arguments, with a median of 45 propositions, 

compared to 29 propositions, with a median of 19 for the non-collaborative subset of the 

college-level group. This is a statistically significant difference (p-value = 0.04), 

demonstrating that the collaborative group had more complex arguments than did the 

non-collaborative group (identifying more hypotheses and finding more relationships 

between data and hypotheses). These results were mirrored in the data collection aspect 

of the system; an average of 75 pieces of data for the collaborative subset of the college-

level group, with a median of 53 as compared to an average of 30 pieces of data, with a 

median of 27 for the non-collaborative subset of the college-level group. Again, this is 

statistically significant (p-value = 0.004), demonstrating that students generally engaged 

in more data collection within the collaborative system. From this data, we see supporting 

evidence for H1, that the collaborative efforts increased both size and complexity of 

arguments according to the given metrics (Figure 4.1). 
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Figure 4.1: Box plots of the argument size (left) and the data collection size (right) 
for the college-level study. The difference between both groups is significant as judged 

by the Wilcoxon signed-rank test. 
 

4.5.1.2 Middle School Evaluations  

In reference to datasets 3 and 4, we see that subset of middle school students who 

had collaborative tools collected significantly more data (an average of 44 pieces of data 

with a median of 33) than the non-collaborative than subset of middle school students (an 

average of 27 pieces of data with a median of 22). This is a statistically significant 

difference (p-value = 0.039). However, the groups in the middle-school study had 

equivalent sized arguments, both had an average of eight argument propositions and a 

median of five. So, in this regard, we see limited but significant support for our 

hypothesis, namely that the size of student solutions was increased, but not the 

complexity (Figure 4.2). 
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Figure 4.2: Box plots of the argument size (left) and the data collection size (right) 
for the middle-school level study. Argument size did not vary between groups (left), but 
data collection showed a significant increase (right), as judged by the Wilcoxon signed-

rank test. 
 

4.5.1.3 Discussion 

In both middle school and college-level experiments, we see evidence supporting 

our hypothesis and conclude that the addition of collaborative features does tend to 

increase the size and complexity of student solutions (Dragon et al., 2009).  

As to the lack of differences in complexity with regard to the middle school 

evaluations, we believe this might relate to the student population. Middle school 

students are possibly less skilled than college students in scientific inquiry. This would be 

particularly relevant when considering complex tasks such as creating a cohesive 

argument from data. The middle school students tended to form more simplistic 

arguments and a type of floor effect for their age might explain the lack of improvement 

with collaborative tools. Additionally, instructors in the middle school classes reported 

anecdotally that, as students were introduced to the collaborative tools, they thought it 
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sounded like “cheating” and were afraid that people “would steal all their hard work.” 

This type of fear could limit the positive effects of collaborative tools for those that 

consider them to be “unfair.” However, teachers also reported that this fear generally 

dissipated after a brief period, and the students began to share more openly and explore 

possibilities brought up by other students. 

It is also important to note that we have considered potential confounding factors in 

the set-up of the study and the metrics. First, we consider the populations and the state of 

the system between these two datasets, and find them to be the most valid datasets 

available for comparison of collaboration features. The student populations and teaching 

methods are similar, both being taught by the same teacher and the only major system 

update being the collaborative features that are the subject of study. As for teaching 

materials and content (the cases being studied), the college students worked on identical 

cases, while the 2008 middle school students worked on a case that was quite similar to 

the 2007 case (employing mostly the same data from the knowledge base and covering 

the same disease). 

Second, we consider that the new collaborative tools allowed copying from one 

notebook to another. This should cause concern that the larger arguments and data 

collection could be merely an artifact of students copying work from one another. 

However, the data showed that the total increases in work was far greater than the 

number of copied entries, demonstrating that students in the collaborative setting did 

more independent data collection, hypothesis formation, and relationship creation than 

the subset without collaborative features. 
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4.5.2 Effects of Adding Coaching Tools 

H2: The addition of coaching components improves student behavior by helping students 

focus on essential information and increasing the creation of semantically meaningful 

and content-rich student solutions. 

 

We seek support for this hypothesis using the data from the university classes. We 

consider two different approaches to finding evidence of coaching effect. First, we 

consider an experimental design comparing datasets 8 and 9 from Table 4.1. Dataset 8 

represents a control group that used the system with no coaching abilities, and dataset 9 

represents an experimental group of students using a version of the system that provided 

on-demand coaching abilities. Students were randomly assigned to these control and 

experimental groups per section, as described in Section 4.3.3. Second, we consider the 

effect of coaching within dataset 9 (the experimental group that has access to coaching), 

analyzing the relationship between increased amounts of coaching and student solutions. 

To operationalize H2, we need to apply some qualitative measures. Therefore, we 

use the qualitative approach of comparing solution scores as presented in Section 4.4.2 

across groups to understand the potential effects of coaching on student solutions. When 

we did not find support for our hypothesis in these cross-group comparisons, we looked 

deeper to understand the more specific effects of coaching when coaching did occur. For 

this we consider only the group of students who could potentially receive coaching, and 

look for correlations between specific metrics and the amount of coaching received. Here 

we see some limited amount of support for our claims that coaching has an effect on 

student solutions. 



 134 

4.5.2.1 Across Group Analysis  

For this analysis, we consider datasets 8 and 9 from Table 4.1. Dataset 8 represents 

a control group of 76 students that used the system with no coach available, and dataset 9 

represents an experimental group of 194 students that used the system with on-demand 

coaching prompts as described in Section 3.3.5. These students were divided into control 

and experimental groups by randomly assigning entire sections of the larger class, as 

described in 4.3.3. No effect was observed between the control and experimental groups 

in this analysis of overall Solution Score as can be seen in Figure 4.3. 

 

Figure 4.3:No positive effect of the coaching on solution score when comparing 
control and experimental subsets. Control represents students who had no access to 

coaching (dataset 8 from Table 4.1). Experimental represents students that had access to 
coaching (dataset 9 from Table 4.1). 

 

4.5.2.2 Within Group Analysis  

Considering the results from the across group analysis, we see no evidence that the 

coach had an effect on student solutions. Considering the data further, we also observe 
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that while the coach was present for all students included in DS9, only a small subset of 

students actually used the coaching capabilities compared with those that had the 

capabilities available (47 out of 194, or 24%). As most students in the experimental group 

did not use the coach, the comparison between the group with access and without access 

to this coach (control vs. experimental) is less meaningful. With this in mind, we limit 

our investigation to only the data from the experimental group that received coaching, 

dataset 9 from Table 4.1, and attempt to understand the effect of actual coaching 

instances. Specifically, we look for correlations between the number of times coaching 

was received by each student, and different qualitative measures of that student’s 

solution. 

Similar to the between-group analysis, we do not see evidence that coaching had an 

overall effect on solution score. Specifically, when looking at a linear regression of 

solution score and the amount of coaching received by students, we see no significant 

relationship (R-squared  = 0.010, p-value 0.193). From this we see that the amount of 

coaching does not relate well with the students’ solution scores. 

However, analyzing on a finer-grained level, we do recognize some correlation 

between certain key indicators and the amount of coaching provided. Specifically, we 

analyzed both the Student Support Data and the Student Support Related Data (as 

presented in Table 4.3). These variables were chosen because they represent the most 

likely advice of the coach (the first type of advice the coach will offer in most situations), 

and as such are the most likely actions about which students received feedback.  

Within dataset 9, we find that both Student Support Score and Student Support 

Related Score are correlated with the amount of coaching received (see Figure 4.4). 
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While the R-squared value is low for these regressions, they are statistically significant 

(Student Support Score R-squared = 0.045, p-value = 0.005, Student Support Related 

Score R-squared = 0.036, p-value = 0.012). This indicates that while the relationship is 

not predictive (using the coach does not guarantee any given student will have success), 

there is a statistical relationship (those who have used the coach tend to have higher 

scores in these assessment criteria). 

 

Figure 4.4: Linear Regressions with best-fit line showing a significant relationship 
between Student Support Related Score and coaching (left), and Student Support 

Score and coaching (right) for dataset 9 from Table 4.1, the experimental group of 
students who had access to coaching. 

 

4.5.2.3 Discussion 

Overall, we have seen no results to indicate that access to the coach as presented 

within the study will improve student overall solutions or motivate behavior change 

(Section 4.5.2.1). We theorize that this lack of effect may not be directly attributable to 

the underlying recognition mechanism that attempts to understand the student and 

identify opportunity for coaching, but rather the lack of effect might be due to a lack of 
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use. The theory is supported by the low numbers of students who actually used the coach 

when available (24%), and the fact that more close study reveals that coaching does have 

some correlation with positive aspects of student solutions. Specifically, we see that 

increased coach usage is correlated both with students gathering appropriate data to 

support relevant hypotheses (Student Support Score), and with students relating that data 

with the appropriate hypotheses (Student Support Related Score).  

We theorize that the coach was not used appropriately for several reasons. First, we 

recognize in retrospect that success with such a tool relies heavily on having an 

appropriate pedagogical model of coaching. Specifically, students should be provided 

with proper classroom support, demonstration, and rationale for using the coaching 

functionality. We see evidence for this case in Section 4.5.3, where we see demonstrable 

effects of properly defining and supporting the general classroom pedagogy. This type of 

pedagogical framework and introduction should be extended beyond the basic 

functionality of the system to also offer students and facilitators guidance in using both 

the coaching and collaborative features of the system. By informing users about the 

purpose and best practices of the various functionalities provided by Rashi, we can expect 

much better uptake and more focused use of the functionality. We offer concrete 

solutions in this respect in Section 5.3.1, namely considering the use of the coach in 

relation to the classroom pedagogy; presenting students and facilitators with a concept of 

when and how to seek help while using the Rashi system.  

We also recognize a potential weakness of the user interface in our coaching system 

as used during the study. This prompted us to redesign the interface to take into account 

the issues observed. Specifically, students tended to ignore the coach completely, and 
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anecdotally, some students using the coach reported that the coaching process was too 

long and complicated. Addressing these concerns, we developed a more continually 

present system of delivering coaching content that is still non-interruptive. We term the 

new interface “Suggested Links” coaching,(see Section 3.3.5). 

Based on our lack of results from our between-group comparisons, and our more 

positive indications seen from within group analysis, we find that the coaching system 

has not been proven effective but still has the potential to benefit students. We suggest 

that a more clearly defined use of coaching within the classroom pedagogy and a more 

easily-used interface would prompt students to use the coach at a more appropriate level, 

allowing for a more realistic test of its potential. 

 

4.5.3 Effects of Improvement to Classroom Pedagogy 

H3: Clarification of the pedagogical approach with both facilitators and students 

improves student behavior, increasing the creation of semantically meaningful and 

content-rich student solutions. 

 

This hypothesis tests the second significant change in classroom usage between 

2009 and 2010. In 2009, instructors were given the Rashi system with little to no 

instruction on its use. In 2010, the Rashi team significantly enhanced and defined the 

specific pedagogical approach in the classroom. This involved defining and explicating 

the pedagogical model underlying our work in Rashi. In 2010, the Rashi team 

collaborated with the Biology instructors to understand and present a more coherent, 

unified classroom pedagogy, or set of instructional principles. The Rashi team produced 
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supportive materials for the TAs and instructors of the class, and offered a one-hour 

training session presenting the abstract pedagogical goals of inquiry learning and the 

specific methods of approaching inquiry within the Rashi system. During this time, the 

TAs were also given materials and instructed on how to introduce the system to the 

students in the first 10 to 15 minutes of the students’ first sessions. Finally, the TAs were 

instructed on how to interact during the sessions, what to watch for as students worked, 

and generally what to expect students to do during their time using Rashi. 

With this major update to pedagogical approach in the classroom, we seek support 

for hypothesis H3 using datasets from 2009 and 2010. Specifically, we consider datasets 

7 and 8 from Table 4.1, representing two groups of students using Rashi with the same 

functionalities and attempting to solve the same case. Collaborative features were 

available to both groups and coaching was not enabled for either group. The only 

significant difference between these groups was the presentation of the pedagogy. We use 

the same operationalization for H3 as we do for H2, presented in Section 4.5.2. 

Specifically we use the solution score as calculated from comparison with the EKB to 

demonstrate across-group differences in student solutions.  

 

4.5.3.1 Across Group Analysis  

When considering this solution score, which accounts for both quantitative and 

qualitative indicators of student solutions, we see drastic differences between the datasets 

(see Figure 4.5). The difference between the groups was clearly significant (p-value < 

0.001). 
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Figure 4.5: Solution scores as compared between dataset 7, Table 4.1 and dataset 8, 
Table 4.1. Dataset 7 represents students from the 2009 group having little pedagogical 

explanation and dataset 8 represents the 2010 group with a clearly defined and promoted 
classroom pedagogy. The groups are significantly different according to the Wilcoxon 

signed-rank test. 
 

4.5.3.2 Discussion 

This demonstrable effect of clarifying and explicating pedagogy is an important 

effect that needs to be considered generally when developing ITSs. In these results, we 

see clear evidence that building new, potentially productive functionality in learning 

systems is not sufficient to enhance the learning experience. Researchers in the fields of 

CBI and AIED are aware of this fact. Yet the central focus on technological development 

can lead sidelining the pedagogical approach in the classroom. Researchers must not 

disregard the importance of explicit pedagogy, and the importance of the facilitators who 

present this pedagogy to the students. Our situation with the Rashi system is especially 
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susceptible to this problem because, in the university setting, we are introducing both 

facilitators and students to the often unfamiliar or unpracticed pedagogical concept of 

inquiry learning. In such a situation, facilitators and students need to leave old styles of 

learning behind and develop new practices. This process requires more explicit 

instruction.  

In the field of AIED, research can tend towards emphasis on how the computer 

alone can understand and support students (as we present in Chapter 3). However, we 

cannot consider this factor in isolation, unless we have well-established pedagogical 

models. This creates a situation where we must always consider both the tools available 

to students (Section 4.3.1 and 4.3.2) and the classroom pedagogy with which the tools are 

being used (Section 4.3.3). 

 

4.5.4 Combining Coaching and Collaboration 

H4: A coaching system can identify opportunities to promote targeted content-focused 

collaboration. 

 

We approach this section of evaluation differently than prior sections. As the work 

is more preliminary, we analyze student data in order to understand the potential 

opportunity for future interventions, rather than having the opportunity to study the 

effects of these interventions on actual students. Specifically, we look for supporting 

evidence that a coaching system can promote content-focused collaboration (as described 

in Sections 2.4 and 3.4) using a combination of the coaching system and the collaboration 



 142 

tools. We seek to identify these opportunities in two different ways (as described in 

Section 3.4):  

• Collaborative contributions as coaching opportunities: finding 

opportunities to introduce content support when student are collaborating. 

• Coaching as opportunity for collaboration: finding opportunity to 

encourage targeted dialog based on the content of the students’ solutions.  

 

4.5.4.1 Using Collaborative Contributions as Coaching Opportunities  

One means of collaboration within Rashi is through a chat tool (Section 2.4.2.1). In 

order to take advantage of the chat system to help us understand student work and 

provide pertinent information from the EKB to students engaged in chat, we need only 

recognize the content of their chat messages and apply our standard coaching techniques 

(as presented in 3.4.1). In order to illustrate the usefulness of this technique, we seek to 

demonstrate the ability to correctly recognize the content of chat messages. To 

accomplish this automatic content recognition, we use the same approaches as we used 

on hypothesis matching, only now applied to chat messages. This procedure provides a 

matched EKB entry for each chat message.  Similarly to the validation of hypothesis 

recognition (see Section 4.4.2.1), we need only to confirm that matches can be identified 

with reasonable accuracy to confirm that additional relevant content from the knowledge 

base can be offered during chat interactions. This relevant content includes data and 

hypotheses related to the concepts mentioned in the chat messages (see Section 3.4.1).  

So, our validation of the concept rests on the idea that we can correctly match 

student chat messages with elements from the EKB. As presented in Dragon et al. (2010), 
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we test the validity and usefulness of our automated matching techniques as applied to 

chat by analyzing the datasets from two studies that made most use of the chat tool, 

dataset 2.1 and dataset 5 from Table 4.1. During these two sessions, a total of 796 non-

blank individual chat messages were sent. Each student, however, could only view the 

chat happening within his or her group of three to five students. Groups were generally 

self-selected, with teachers making suggestions when individuals were without a group. 

An independent judge (a member of the software team not involved or familiar with 

the matching scheme or the knowledge base) created a set of comparison data over which 

the efficacy of an automatic matcher could be assessed. The judge rated all 796 chat 

messages by comparing the student’s statement with this matched content and marked 

whether the knowledge base entry was appropriate, Table 4.6.  

 

Table 4.6: Results of the automated chat-matching algorithm in correctly 
identifying the specific content of each student message. 

Data Set Automated Content 
Matches 

Judged Correct 
Content Matches 

% Content 
Match 

DS 5 63 44 70% 

DS 2.1 – 
 Hyperthyroidism 

69 52 75% 

DS 2.1 –  
Anemia 1 

45 25 56% 

Total 177 121 70% 

 

4.5.4.2 Discussion 

When considering these percentages, we must also account for two additional 

factors. First, we are matching free input text from students with a large set (hundreds) of 

knowledge base elements. Therefore, even fairly low percentages (e.g. 50%) are far better 

than random. Second, we consider our principles put forward in reference to providing 
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support with uncertain assessment (Section 3.3.4) that help us understand how to provide 

feedback that is not harmful even if the recognition is mistaken. Accounting for these 

factors, we see reasonable recognition rates to presume that coaching using recognition in 

chat could be useful. This is particularly true in regard to the Hyperthyroidism case, on 

which the Rashi team focused their efforts of EKB formation and refinement.  

The success of identification of dialog utterances using the knowledge base also 

indicates that building knowledge bases is a viable option for the intelligent tutoring 

community, when researchers seek to understand the domain content of student 

discussion. Related to this approach, we also see that building a small incremental 

knowledge base focused on the content pertinent to the cases at hand (Section 3.2.2.1) 

can offer useful results in this regard. This result is demonstrated clearly by the contrast 

between the different cases in Table 4.6. The SMEs and developers put considerable 

effort into enhancing the EKB for the cases used in dataset 5 and dataset 2.1-

Hyperthyroidism. The dialog recognition process on these portions of the study was more 

likely to be correct than the dialog recognition for dataset 2.1-Anemia 1. While this 

leaves us with less-than-ideal results for dataset 2.1-Anemia 1, it reinforces the idea that 

our knowledge base structure and creation process are working successfully. Added effort 

led to direct improvement of matching capabilities  

We do recognize that these significantly lower rates on the recognition of the 

Anemia 1 case are far from optimal. However, beyond manual improvement of the 

knowledge base, there are more automated approaches to improving recognition within 

the knowledge base as well. We have investigated automated ways of pruning the 

knowledge base such that we make fewer matches overall, but also increase the 
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confidence in the match procedure (Floryan et al., 2012). Using such techniques, these 

matching rates could be improved to even higher levels of confidence. Through these 

different methods of incremental improvement, we see even more promise to the concept 

of recognizing chat using a knowledge base, and using this recognition as an opportunity 

to offer related content support. 

 

4.5.4.3 Using Coaching as an Opportunity for Collaboration 

Here we consider support for H4 by looking for ways to promote targeted 

collaboration using the coaches’ abilities to recognize student work in relation to the 

knowledge base. We can use our coaching abilities to promote collaboration, rather than 

using collaborative contributions to offer more coaching, as presented in Section 4.5.4.1. 

We seek evidence for this opportunity by evaluating logged student solutions from the 

same datasets (2.1 and 5, Table 4.1). Across the student solutions from these studies, we 

sought to identify a specific opportunity where content-focused collaboration could be 

promoted, namely the tutoring concept (presented in Section 3.4.2). To instantiate this 

tutoring concept, the system identifies opportunities where one student has correctly 

created a hypothesis, gathered supporting data, and related the data to the hypothesis. 

Then the system considers the other students within the group, looking for another 

student who has collected the same data, but has not yet added the correct hypothesis or 

related the data to it. While this focuses on only one instance of one type of content-

focused collaboration, we believe it is a useful indicator of the opportunities available to 

promote content-focused collaboration. 
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In dataset 2.1, we found ample opportunities to promote this ‘tutoring’ type of 

content-focused collaboration. For each student, when reviewing their finished work in 

the system, we found an average of 13 instances (median 11) where an intelligent agent 

could have brought students together to discuss the differences according to the definition 

of the tutoring type of collaboration above. This means that for each student, there was an 

average of 13 pieces of data related correctly to a hypothesis in their own solution, which 

some other student had collected but had not related correctly. In dataset 5, we see the 

same potential for content-focused collaboration. Overall, we find an average of 20 

instances (median 17) where the system could recognize a collaboration opportunity for 

any given student within the class.  

 

4.5.4.4 Discussion 

By considering these datasets, we see ample opportunities to promote the tutoring 

concept of content-focused collaboration as presented in Section 3.4.2. One weakness of 

the analysis is that it was done post-hoc, and therefore the analysis considers only final 

student solutions rather than work-in-progress student solutions as would be available 

during real-time interactions. However, while the number of opportunities will clearly be 

lower at some early stages before many hypotheses are formed and data are collected, 

overall this analysis demonstrates that opportunities for content-focused collaboration (in 

this instance peer tutoring) are plentiful within the Rashi system. 
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4.6 Summary 

The research presented here investigates the general question; does targeted use of 

both collaborative features and feedback from coaching software improve students’ 

solutions? This chapter presents the methods and results of our evaluation of this general 

question. We present the specific hypotheses that break the general question into 

components to be individually addressed.  We then present the classroom studies where 

we have collected the data in order to test the hypotheses. We present the techniques used 

to analyze this data with respect to the different hypotheses, and finally present the results 

of this analysis upon each hypothesis. 

Classroom studies were conducted over a number of years involving thousands of 

students. These studies were carried out in different classroom settings involving both 

college and middle-school students. Different studies were conducted with different 

versions of the software at various stages of development. As such, we select among 

these datasets carefully to find the most appropriate data with which to test each 

hypothesis, minding both variance in software features, classroom setting, and system 

functionality. 

To analyze the data in order to test our hypotheses, we used several techniques to 

create numerical indicators assessing student solutions. These involve both structural, 

quantitative measures (such as the number of hypotheses created by a student) and 

content-based, qualitative measures (such as the number of hypotheses that are 

recognized as relevant to the case according to the EKB). Quantitative measures are used 

to test H1, whereas both quantitative and qualitative measures are combined to test H2 

and H3. We consider existence evidence to test H4, namely we search past data for the 
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evidence that the desired type of intervention could have been offered. This existence 

proof was used because no completed system was tested thoroughly in the classroom to 

provide insight on the effect the system has on actual users.  

In summary, we find sound support for hypothesis H1; the addition of collaborative 

features improves student inquiry behavior, increasing the size and complexity of student 

arguments. We demonstrate that students having access to collaborative features 

provided significantly larger and more complex solutions than that of a control group.  

We did not find sound support for H2; the addition of coaching components 

improves student behavior by helping focus students on essential information and 

increasing the creation of semantically meaningful and content-rich student solutions. 

There was no observable positive effect of the coaching capabilities across the groups. 

However, we consider that the coach was not used by the majority of participants in the 

experimental group, and upon inspection of more specific indicators within this 

experimental group, we do see correlations between coaching use and positive aspects of 

student solutions.  

We find sound support for H3; clarification of the pedagogical approach with both 

facilitators and students improves student behavior, increasing the creation of 

semantically meaningful and content-rich student solutions. We demonstrate that students 

presented with a more well-defined and explicated pedagogical approach produce 

significantly better solutions, as judged by the overall metric of solution score. 

Finally, we find sound support for H4; an expert knowledge-based recognition 

system can identify opportunities to promote targeted content-focused collaboration. We 

demonstrate that these opportunities can be recognized in two different directions, 
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utilizing collaborative contributions to offer content support, and using content 

recognition in student solutions to promote collaboration. Each of these scenarios offers 

opportunities to combine coaching and collaboration in interesting ways that could 

potentially harness the power of both approaches. 

Overall, we consider the investigation of these different hypotheses to offer solid 

support to answer our main research question positively.  We have demonstrated the 

positive effects of collaboration (H1) and seen some indication of the positive effects of 

coaching (H2). We also have demonstrated the potential of combining these approaches 

(H4), which has the potential to improve both results, targeting collaborative efforts 

around content upon which students should be focused according to assessment. 

Additionally, outside the main research question, we also illustrate the importance of 

developing and explicating specific pedagogical models when using the software in the 

classroom (H3). In Chapter 5, we consider the overall implications and conclusions that 

can be drawn from this data, and how future work can utilize these results to refine and 

further this overall research agenda. 
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CHAPTER 5 
 

CONCLUSIONS & FUTURE WORK 

 
5.1 Introduction – Hypotheses Revisited 

Here we present the over-arching conclusions of this dissertation research. First, we 

present a brief summary of the evaluation presented in Chapter 4, to clarify the specific 

hypotheses and their respective results. Three hypotheses were investigated as part of our 

main research question: Does targeted use of both collaborative features and feedback 

from coaching software improve students’ solutions? We found mostly supportive 

evidence of this claim, although we had some mixed or negative results with respect to 

coaching. 

We found solid support for hypothesis H1, which links the availability of 

collaborative features with the creation of larger and more complex student solutions. We 

did not find the same level of direct support for hypothesis H2, which attempts to link the 

availability of coaching with improvements in both size and content of student solutions. 

However, we did find some correlation between the amount of coaching received and 

certain specific metrics that are more directly linked with feedback advice. Finally, we 

demonstrated the potential for coaching and collaboration to be used in new and powerful 

ways through their combination. Hypothesis H4 demonstrated that collaborative 

contributions could provide an opportunity for content coaching, and that coaching 

techniques could identify opportunities to promote content-focused collaboration. With 

these results combined, we have shown compelling support that collaboration and 
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coaching can have positive effects on student solutions, particularly if we can harness the 

potential power of their combination. 

Aside from our main research question, an important result also emerged due to our 

experimental design; namely the positive result associated with H3, which linked the 

explication of classroom pedagogy with improvements in both size and content student 

solutions. From this we see clear support for the idea that building a functional tool is not 

sufficient to improve student behavior; students must be made aware of how and why to 

use the tool appropriately. 

Now we present the summative results and lessons from the previous chapters. We 

describe, in a holistic sense, the outcomes and implications of this research when 

considering coaching, collaboration, and the combination of these techniques to further 

the intelligent support of a tutoring system specifically geared towards inquiry learning 

and ill-defined problem spaces. Following naturally from this summation, we present the 

main foci of suggested future work, and initial steps towards these future goals.  

 

5.2 Lessons Learned 

Chapters 1-4 presented the theoretical background, implementation details, and 

evaluation of a collaborative inquiry-learning system for ill-defined problem spaces. 

While the discussions in Section 4.5 focused on the detailed implications of each specific 

hypothesis, we must also consider the more broad and holistic implications of this 

research. Specifically, we consider the implications of our work on Intelligent Tutoring 

Systems (ITSs) for ill-defined problem spaces with respect to classroom pedagogy 

(Section 5.2.1), coaching (Section 5.2.2), collaboration (Section 5.2.3), and the 
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combination of coaching and collaboration (Section 5.2.4). For each of these topics, we 

discuss the implications of our specific efforts, and lessons that the research community 

can learn from our experience. 

 

5.2.1 On Classroom Pedagogy 

Our research clearly demonstrates that explicating the pedagogical model for 

classroom use and ensuring that both the facilitators and the students understand this 

model is of the utmost importance to productive use of inquiry learning software in the 

classroom (H3, Section 4.5.3). While this idea is recognized by other research, 

particularly researchers more focused on classroom dynamics than technological aspects, 

the data presented here provide solid evidence of the importance of classroom pedagogy. 

These aspects should be explicitly recognized and accounted for all in future work.  

We consider this problem to be even more important when the classroom pedagogy 

promoted by the software differs drastically from standard classroom experience, as was 

the case in our main university studies in 2009 and 2010 (Table 4.1, rows 7-10). The 

Rashi inquiry learning exercise replaced a standard lab session, where students were 

accustomed to receiving a specific procedure (lab protocol) and were expected to 

complete that procedure according to the predefined steps. To have students engage 

productively in a more open-ended experience with an unfamiliar tool requires clear 

instruction as to the student’s task within Rashi, the functionality that Rashi provides, and 

the ways in which the student can use Rashi specifically to accomplish the task.  

In Section 4.5.3, we demonstrate that explicating and communicating this 

pedagogical model for the classroom to facilitators and students showed immense effects 
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on student work, eliciting student solutions that were larger, more complex, and more 

similar to the expert solution. This concept needs to be applied not only to the overall 

system (as in 4.5.3), but to any enhancements of the system, especially those that are 

pedagogically driven (i.e., enhancements that attempt to influence the way that students 

learn from the tool). This lesson applies to all of the other major efforts within this 

research (Sections 5.2.2-5.2.4), and we discuss methods of utilizing this result to improve 

future work in Section 5.3.1. 

 

5.2.2 On Collaboration  

Our research demonstrates that collaboration is both well suited to inquiry learning 

in ill-defined domains, and has potential to increase students’ productivity (collaborative 

features resulting in generally larger and more complex student solutions). As discussed 

in Section 2.4, collaboration has been shown to be useful to students engaging in complex 

tasks. This implies that inquiry learning in ill-defined problem spaces is uniquely suited 

to benefit from collaborative efforts. These collaboration opportunities can be supported 

through both dialogs and/or through shared workspaces. In Section 2.4.2, we present how 

the Rashi system implements these standard forms of collaboration. 

We offer direct evidence that these collaboration features have a positive effect on 

student solutions. With hypothesis H1 (Section 4.5.1), we present evidence that the 

addition of these collaborative features to the system had a demonstrable effect on the 

size and complexity of student solutions. We also showed clearly in Section 4.5.4 that the 

system can recognize domain content in student’s collaborative work and can provide 

extra coaching based upon this recognition.  



 154 

A common weakness of these standard collaborative approaches is the strong 

division between the collaborative contributions and the domain content around which 

the collaboration should be occurring (as discussed in Section 2.4.1). Moving beyond 

these standard approaches, we describe in detail how collaboration can be improved to 

focus more clearly on, and situate discussion alongside, relevant domain content. We 

describe key features and functionalities that can help students focus on the content at 

hand while collaborating. We introduce the concept of discussable objects to 

conceptualize exactly how a system can bring a tighter coupling between the learning 

artifacts (in our case the student solutions in Rashi) and their collaborative contributions 

(dialog). We present our implementation based on these more advanced functionalities of 

discussable objects (Section 2.4.2.3). We also describe how these discussable objects can 

actually offer improved recognition of student work (Section 3.2.3). We consider this 

ability of Rashi to promote content-focused collaboration to be a model for future work 

based on collaboration in ill-defined domains.  

This concept is gaining popularity, and is being used in other large-scale research 

projects. Metafora (Dragon et al., 2013) is a web-based Computer-Supported 

Collaborative Learning (CSCL) system that brings together multiple learning 

environments to support students engaging in inquiry behavior. A central technical piece 

of this project is the referable object (Dragon et al. 2011), an extension of the idea of 

discussable objects as implemented within Rashi. This system enhances the idea of 

discussable objects by supporting not only discussion, but also manipulation of these 

shared objects by other team members. The Science Created by You (SCY) project, 

presents a similar concept termed emerging learning objects (ELOs). ELOs are specific 
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objects within the learning environment that students create, share, and around which 

discussion and group work is organized (De Jong et al., 2010). Both of these systems 

address the difficulties with separation of content and collaboration in a similar fashion to 

the approach of discussable objects within Rashi. 

Overall, we present compelling evidence that collaboration is a useful approach 

within our system, that it has positive effects on student solutions, and that there are 

concrete ways in which it can be improved to further the state of the art. However, 

accounting for our results from Section 5.2.1, we consider that our classroom pedagogy 

about collaboration was not defined to an appropriate level of detail, and was not 

communicated in an effective way to facilitators or students. We provided students with 

collaborative features that were generically useful across many use cases (Section 2.4.2), 

and did not provide students with instruction or guidance as to when, why, or explicitly 

how to use the features. We saw a distinct lack of use of some of the new collaborative 

features (particularly the critique/rebuttal feature, Section 2.4.2.3) during later pilot 

studies. We theorize this lack of use might be due to a lack of pedagogical grounding 

(i.e., we did not define for the students when or why they should use these features). 

Much in the same way as the overall student performance can be improved with explicit 

classroom pedagogy (Section 5.2.1), we theorize that the collaboration could also be 

improved through explicit instruction. Students need to understand the general 

collaboration principles, and how they are expected to enact those principles within the 

Rashi system. 
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5.2.3 On Coaching  

Our research demonstrates no convincing evidence that our implementation of on-

demand coaching has an overall positive effect on students, yet we do see some 

correlation between coaching and specific behaviors important to inquiry learning. As 

prior evidence provides us with some confidence that the overall concept of coaching is 

both necessary and useful, we consider ways in which our system or study might not have 

been fit to demonstrate these positive effects, and how this weakness in our approach 

might be remedied. 

We present details on how an ITS operating in an ill-defined domain (in this case 

medical diagnosis) can both recognize student work (Section 3.2) and use that 

recognition to offer feedback to students (Section 3.3). For evaluation, in Section 4.5.1, 

we analyze the effects of our specific implementation of the on-demand prompts coach. 

The analysis shows no overall effect on student solutions in a cross-group study when 

comparing students who had a coach available with those who did not have a coach 

available. However, there is some limited evidence that increased use of the coach was 

correlated with an increase in certain behaviors that are vital to the inquiry process 

(namely collecting and relating data relevant to the case at hand). This demonstrates some 

potential positive influence of the feedback given. 

Even with these results, we argue that coaching in ill-defined domains is necessary 

and useful. As we discussed in 2.2, ill-defined problem spaces provide opportunities for 

deep learning and development of higher-level learning skills. Yet these problem spaces 

also require special methods of learning, such as inquiry learning presented in 2.3. Both 

of these pedagogical concerns, ill-defined problem spaces and inquiry learning, differ 
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from traditional classroom methods, and even traditional ITS methods, as they offer more 

open-ended approaches to learning. This student freedom creates a stronger need for 

some type of guidance and support for students (Kirschner et al., 2006). Finally, many 

external sources provide evidence that offering support and scaffolding to students in 

similar scenarios or other ill-defined problem spaces has been successful in promoting 

student learning (Baghaei et al., 2007; Pinkwart et al., 2007). From this theoretical 

background and sound scientific studies conducted across the field, we are confident the 

type of coaching we offer can be useful, if implemented correctly both in the system and 

in the classroom. 

Considering the above evidence suggesting that coaching in ill-defined domains is 

both necessary and useful, we must consider why our study did not demonstrate similar 

results. A predominant issue with studies involving new, complex learning environments 

is the relatively short duration of the studies. As these systems present new approaches to 

learning, there will only be real improvement with extended use.  Beyond this point, the 

main issue with our approach is likely related to our integration with the facilitators. The 

coaching system was not introduced to facilitators or students with explicit classroom 

pedagogy, and facilitators were not involved in the coaching process. To remedy this, 

problem, we must find ways that classroom pedagogy and technology can help 

facilitators to support both rapid prototyping and testing of coaching tactics during 

development, we also need to define a clear role for facilitators in the final system. We 

briefly describe these two issues below, and describe potential solutions in Sections 5.3.1 

and 5.3.2, respectively. 
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Considering again the results from Section 5.2.1, we hypothesize that the root cause 

of our lack of coaching use, and therefore evidence of its efficacy, lies in a lack of 

explicit classroom pedagogy surrounding the coaching functionality. Again referring to 

the results presented in 4.5.3, the importance of explicit classroom pedagogy is clear. 

From this we know that students and facilitators should be instructed about the purpose 

and functionality of the system, explaining when and why students should be using the 

system in certain ways. This lesson can be transferred to the coach, explaining clearly the 

role, usefulness, and function of the coach in the learning process. 

This coaching aspect of the classroom pedagogy is all the more necessary because 

our coach is designed to be non-interruptive (see Section 3.3.5), meaning that students 

needed to request help in order to receive any guidance. While requesting help may seem 

an intuitive task, literature review in related work does demonstrate that the awareness of 

when help is needed (or not needed) and emotional preparation to ask for help are not 

readily available skills that all students have, and actually can require specific meta-level 

instruction to acquire (Aleven et al., 2004, Newman 2000). We see this lack of 

coaching/help-seeking pedagogy as the main detractor from use of the coaching system, 

and therefore the major roadblock in detecting the efficacy of the larger recognition and 

coaching system. We describe the future work of implementing this classroom pedagogy 

in Section 5.3.1. 

The second issue we flag (that is somewhat related to the first) is the lack of a role 

for the facilitator in both the production of and the use of the coach. The coaching system 

was brought into the classroom in its fully functional, completely automated form. There 

was no initial study of how students might perceive feedback, or how the facilitators in 
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the classroom might play their role within the learning process. This setup requires an 

enormous upfront effort and provides only one avenue for success; whereas coaching can 

be introduced incrementally with prototypes that involve facilitators. These prototypes 

can use facilitators to mimic the costly efforts to produce intelligent feedback. In this 

way, lower-cost, higher return studies can be done rapidly to clarify strengths and 

weaknesses of an approach and allow far greater chances of producing results in final 

studies. Such studies also help refine and solidify a successful coaching pedagogy, which 

helps to remedy the first issue we described as well. We discuss some tactics that 

improve coaching success by introducing more explicit roles for facilitators in Section 

5.3.2. 

 

5.2.4 On Integrating Coaching and Collaboration 

As the most far-reaching goal of our research, we argue that the intelligent analysis 

features of a coaching system can be used in combination with collaborative features. By 

combining these two distinct aspects, intelligent systems can understand collaborative 

contributions better, and can enhance collaboration efforts by identifying opportunities to 

bring students together to collaborate for specific reasons (as presented in 3.4).  

First, we argue that by employing the methods of understanding students’ 

individual work, a system can also gain some understanding of the content of the 

students’ collaborative contributions. This understanding provides new opportunities for 

coaching. We present evidence of this process in Section 4.5.4.1 by demonstrating that 

our system can recognize student chat contributions with reasonable accuracy (70%). We 
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then demonstrate how this understanding could be used to offer additional suggested 

links within the chat tool, providing a means of co-locating content and collaboration. 

Next, we argue that by utilizing the analysis of students’ individual work, a system 

can identify key moments when it should prompt students to collaborate. These key 

moments can prompt students to enact different collaborative roles at different times, co-

constructing knowledge, debating concepts with peers holding different viewpoints, or 

being either a tutor or a tutee. All of these roles are potentially fruitful collaborative 

tactics, as described in Section 3.4.2. We present evidence that these situations can be 

identified in Section 4.5.4.2, where we demonstrate that one such key moment (peer 

tutoring), can be identified with relative frequency in the dataset studied. 

Overall, we see great promise in the combination of intelligent content support and 

collaboration to promote content-focused collaboration. However, as stated in regards to 

both coaching and collaboration, the explicit classroom pedagogy plays a crucial role in 

these situations. Such on-the-spot prompts for specific types of collaboration require a 

sound pedagogical model of classroom peer learning. Modern literature presents many 

such models of peer learning (Crespo et al., 2005; Garcia & Pardo, 20102; Topping, 

2005). Students will need both early instruction on the expected types of collaboration, 

and timely, appropriate information as to how to collaborate, what role they might 

consider, and how to partake in that role (Choi et al., 2005). 

We can see an example of such a specific pedagogy when considering the concept 

of peer tutoring presented in Section 3.4.2. In this situation, two students are brought 

together so that they may help each other. The system can provide the helper with 

information about what topic they should discuss, and specific information about why the 
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student might need help. Related research in well-defined domains on peer tutoring has 

demonstrated that this “helpers interface” can create productive learning outcomes for 

both the peer tutor and the tutee in such a situation (Walker et al., 2008). This idea of 

providing support by prompting peers to help one another is recognized as an open and 

interesting research direction in the field of intelligent collaborative systems (Magnisalis 

et al., 2011). Defining the specific classroom pedagogy of this prompted content-focused 

collaboration in specific scenarios is still an area for future research on the Rashi project 

(see Section 5.3.1). 

 

5.3 Summary and Future Directions 

The work presented in this dissertation represents early steps towards using 

coaching and collaboration tools within inquiry learning systems for ill-defined problem 

spaces. As both technology and teaching strategy are advanced and refined, we are likely 

to see more systems utilizing these alternative teaching methods and practicing in ill-

defined problem spaces. The need to provide automated support and guidance will also 

increase as such systems are used more often.  

We present work that demonstrates the potential usefulness of both coaching and 

collaboration as support systems for tutoring in ill-defined problem spaces. We also 

present the idea of combining these two different methods in strategic ways that could 

potentially improve the contributions of both the coaching and the collaboration to the 

learning process. 

Several steps are necessary to solidify the ideas put forth in this research and 

demonstrate the unified vision of coaching and collaboration in order to produce content-
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focused collaboration. Specifically, we consider three separate aspects that would offer 

further evidence of the applicability and efficacy of our contributions. First, explicit 

classroom pedagogy must be developed and explained in greater detail for the different 

functionalities of the system (Section 5.3.1). Then, along with this pedagogy, coaching 

and feedback should involve more human effort, and be introduced in a more 

incremental, iterative fashion (Section 5.3.2). Finally, the focus and evaluation of the 

system should include higher-order learning skills, to identify the more complex and far-

reaching learning gains that are theoretically attributed to these types of learning 

scenarios (Section 5.3.3). Through these three tactics, the research can move forward in 

providing new methods of teaching, successfully providing intelligent feedback that can 

support these new teaching methods, and further demonstrating the usefulness of these 

teaching methods. We now discuss each specific recommendation in detail. 

 

5.3.1 Develop Explicit Classroom Pedagogy 

Reviewing the conclusions from all aspects of the system, we recognize a recurring 

theme, the lack of explicit classroom pedagogy (Section 5.2.1). This is true across our 

coaching tools, collaborative tools, and our collaborative coaching tools. The 

technological focus of the project inherently meant that classroom pedagogy was less 

developed. However, we recognize that, in the end, the impact of these external 

pedagogical factors was greater than we assumed, and that students and facilitators need 

more external guidance to use the system in a productive manner. Students and 

facilitators require further instruction on the tasks and goals involved with the learning 

methods, and how to use the system features to complete those tasks and achieve those 
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goals (as presented in 5.2.1). This explicit instruction is particularly important when 

deploying a classroom pedagogy that is unfamiliar to students and facilitators (e.g., 

inquiry learning). We demonstrate in Section 4.5.3, that when an explicit classroom 

pedagogical was presented to teachers and students, it drastically improved use of the 

system. We hypothesize that the same improvements geared towards coaching, 

collaboration, and collaborative coaching features would yield similar positive results. 

First, for coaching, one must define specifically when and how the coach should 

ideally be used. Then one must convey this information to students both when 

introducing the system, and also at crucial reminder points during use of the system. 

Similarly, we must define exactly how students should collaborate. Should they be 

working continuously in pairs, co-constructing knowledge, or should they be working 

independently and only communicating with others when they are stuck or confused? Our 

technology supports a wide variety of the collaborative processes (as described in Section 

2.4.2). We suggest that researchers and teachers decide upon the type of collaboration 

they seek to promote in the classroom, and explicitly encourage the appropriate 

collaboration method. Finally, when considering content-focused collaboration, teachers 

again need to define and encourage a specific pedagogical approach. Students need to 

understand their specific roles and how and when they should enact these roles. When the 

system is prompting for content-focused collaboration, students should understand, both 

from their teachers and from the system, the different reasons they have been brought 

together to discuss a topic, and how they are expected to proceed.  

One clear source for inspiration and specific strategies for explicating such 

classroom pedagogy can be found in the CSCL research area of scripting. A script as 
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defined in CSCL is “a set of principles that designers may apply to help scaffold specific 

classes of interaction” (Dillenbourg & Hong 2008). In this sense, the term script is used 

in CSCL to mean precisely the type of pedagogical model we require: defining learning 

objectives, activity types, sequencing, role distribution, etc. (Koller, Fischer & Hesse 

2006). While concept of scripts in CSCL is only applied to collaborative efforts, we see 

also the need to define pedagogical models, or scripts, that define the individual 

interaction with the system and the coach. The CSCL research on scripting offers 

possible basis for grounding the future work on pedagogical models in theory and 

providing first steps towards implementing such models in a more formal way. Some set 

scripts are already defined and considered “best practice learning designs,” such as the 

Collaborative Learning Flow Patterns (Magnisalis et al., 2011). Such scripts might be 

altered to work with the overall Rashi design, rather than creating new scripts. 

 

5.3.2 Increase Human Involvement in Coaching 

Specific to coaching, we suggest that future efforts should involve human 

facilitators more directly in the process. In general, the most low-cost and high-yield 

solutions to improving coaching functionality involve using human effort. This can 

manifest in two ways. First, humans can be involved in the development of coaching 

capabilities by taking on the role of a potential AI system, which we present in the form 

of “Wizard of Oz” studies (Mavrikis & Guiteirrez-Santos 2010). Using humans in this 

process can decrease programming costs and increase the return on experiments by 

allowing for a more incremental development approach where individual features (e.g., 

specific types of feedback as discussed in Section 3.3, specific methods of intervention as 
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discussed in 3.3.5, etc.) can be studied and understood in more detail and with more 

control.  

The second consideration is the facilitators’ role in the finished system and 

finalized classroom pedagogy. There is potential for facilitators to make use of analysis 

information provided by the system to offer support to the student (Mavrikis, Dragon & 

McLaren 2012), even to the point where the system can recommend feedback for the 

facilitator to provide (Keshtkar et al., 2012). We now describe how each of these modes 

of human involvement can be utilized in future work to improve the efficacy of our 

process. 

 

5.3.2.1 Implement Wizard of Oz Studies 

An emerging field of research is how authors can design and test the functionalities 

of intelligent coaching software without expending the full resources to implement such 

functionalities. One particular focus of this work is the Wizard-of-Oz (WOZ) study, 

referring to the famous book and then Hollywood movie in which the “wizard” is in fact 

only a “man behind the curtain.” While this name has been applied to a wide variety of 

studies, we consider the definition offered by Mavrikis and Gutierrez-Santo (2010) where 

they distinguish the iterative process of development applied by the approach. During this 

type of WOZ study, a human facilitator is given some ability to choose and send 

feedback to students. This feedback is presented to the student by the system, in the 

standard interface in which the system would normally send automated feedback. In this 

way, the students are not necessarily aware that the feedback is coming from a person, 

but rather often assume it is created by the system itself. The “wizard,” or facilitator, acts 
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in place of the intelligent system, viewing student work and providing feedback that 

appears to come from the system.  

This type of experimentation can provide beginning or intermediate trials of 

feedback systems, and also support the testing of partially implemented approaches. In 

this way, researchers learn the potential benefits of, or issues with, feedback without the 

up-front cost of building a fully functional system. Lessons learned during these 

intermediate studies can then be applied directly to the system as it is developed, rather 

than waiting for completion before testing. These WOZ experiments have mostly been 

used with single students in relatively well-defined domains (Fiedler et al., 2004; 

Maulsby et al., 1993). However, new research efforts are pushing this tactic into more 

open, exploratory domains (Mavrikis & Gutierrez-Santos 2010).  

In addition, this work has been further augmented in recent projects to offer 

facilitators access to higher-level analysis information from the system. For example, 

facilitators can be given access to analysis of the structure or content of student 

contributions (Mavrikis et al., 2012). This method has multiple advantages. First, this 

information can simply ease the facilitator’s role, providing higher-level, more abstract 

understanding of the current students’ state. The facilitator has the difficult task of 

offering feedback over a broad range of topics and across possibly many students. Having 

access to the analysis information provides concise, poignant, summarized information 

about the situation in which they must decide to give feedback. For example, the analysis 

components might report that one part of a student solution is deemed acceptable, while a 

related part of a different student solution is deemed unacceptable (the base components 

to recognize the potential for tutoring content-focused collaboration as presented in 
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Section 3.4.2). The facilitator can use this analysis information to pair students for 

content-focused collaboration if appropriate. The analysis information makes the pairing 

process much more streamlined for the facilitator.  

The second major benefit of using this analysis information within the WOZ 

process is to make the feedback given by facilitators increasingly easier to automate 

directly within the system. As the facilitator relies more on the analysis information and 

less on direct observation, the algorithm with which to automate the facilitator’s efforts 

becomes increasingly clear. As this process reaches its endpoint, facilitators gather the 

information necessary to trigger feedback solely from the analysis system. When 

facilitators are following direct logical rules to offer feedback based purely on this 

analysis information, that behavior can be coded into automated coaching rules. In this 

way, the WOZ experiments begin in a more exploratory fashion, and then refine the 

analysis components and the rules followed by facilitators until specific behaviors can be 

confirmed as useful and encoded. This process of refining the facilitator’s role to allow 

for automation of their tasks is termed Iterative Communication Capacity Tapering 

(Mavrikis & Gutierrez-Santos 2010). 

We see promise in the idea of WOZ-style experimentation in Rashi. The system 

already has a well-defined and implemented method of analyzing the student work in 

comparison to the Expert Knowledge Base (EKB) (see Section 3.2). This system could 

offer the analysis information and prompts for potential interventions to facilitators. The 

facilitators could then be given direct control over the feedback mechanisms currently 

present. This would allow experimentation with both timing and interruption levels of 

this feedback (issues presented in 3.3.5).  
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More importantly, it would also allow for experimentation with direct intervention, 

rather than waiting for students to request help. As discussed in Section 5.2.3, we saw 

very little use of the coach. We suggest this can be remedied through improved classroom 

pedagogy, but can also potentially be improved through interruptive feedback at crucial 

points, given that those crucial points are correctly identified. WOZ-style 

experimentation could provide the means to engage in such experimentation, allowing 

researchers to rapidly test different intervention techniques. This could potentially 

increase the rate of use the coach, and increase the rate at which we learn about the 

coach’s abilities to influence student behavior.  

 

5.3.2.2 Define the Facilitator Role in the Final System 

Section 5.3.2.1 discusses the facilitator’s role in the development process. 

However, future work should also consider the role of a facilitator using the finished 

system. As part of our general classroom pedagogy, we have defined the role of 

facilitators within our pedagogical framework. Specifically, at the start of the Rashi use, 

facilitators introduce the concept of inquiry, introduce the Rashi system and interface, 

and introduce the case at hand. During Rashi use, facilitators encourage the students to 

stay focused, and offer some broad inquiry advice, such as investigating multiple 

hypotheses and searching for both supporting and refuting evidence. 

Moving beyond this type of generic classroom pedagogy external to the system, the 

facilitator’s role in the Rashi system itself should be defined and implemented. Tools and 

data views should be made available to ease this role and to sharpen the facilitators’ 

abilities to engage with students as deemed pedagogically appropriate. First steps could 
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include providing basic statistical information about student work, as is available in many 

systems (Harrer et al., 2008; Kay et al., 2006). Beyond this basic quantitative 

information, we should consider the different higher-level analysis available, and decide 

if this should be given only to the facilitator, used only to create feedback for the 

students, or both. Tools similar to those necessary for the WOZ experiments (Section 

5.3.2.1) could serve this purpose, providing a means for facilitators to have access to 

analysis information that is not provided to students.  

Introducing a facilitator tool that provides specific analysis information not only 

supports facilitators in their roles, but also broadens the possibilities for using less-certain 

analysis information. Information involving a higher rate of uncertainty can be used as 

hints or clues to the facilitator, and double-checked before feedback is given. For 

instance, when the system recognizes a student’s potential misunderstanding, the 

facilitator can be directly alerted to independently judge whether the student does in fact 

have a misunderstanding and feedback is necessary. 

When facilitators receive information from the finished system and choose the 

interventions individually, we see the analysis system acting as somewhat like a 

recommender system for feedback. This occurs outside of a narrower, pre-defined, 

automated feedback system as described in Section 3.3. The facilitator’s role can be to 

review analysis information and recommended feedback related to student work, and to 

decide the feedback to be given. This has been demonstrated in other ill-defined, 

collaborative problem spaces (Keshtkar et al., 2012), and we consider it a promising 

direction for future work in Rashi. 
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5.3.3 Focus on Higher-Order Skills 

Our final recommended direction for future work is to focus upon the higher-order 

and meta-cognitive skills learned and practiced in the inquiry learning and collaborative 

processes. As discussed in Sections 2.3 and 3.3.3, the Rashi system teaches not only 

domain knowledge, but also teaches higher-order skills through inquiry. Additionally, the 

system has potential to teach higher-order skills about collaboration (sharing, help-

seeking and help-giving, etc.) with the introduction of appropriate classroom pedagogy 

for collaboration (Section 5.3.1). These learning goals are the center of a large body of 

current research and play a central role in the conceptualization of 21st Century learning 

(Kellner 2002; Rotherham & Willingham 2010). 

The first step in this direction is to better understand the current system’s actual 

impact on higher-order learning skills. While these skills are challenging to measure 

(Clarke-Midura et al., 2011), a common approach is to monitor log traces of actions as 

students interact (with the system or with each other), and attempt to identify patterns that 

are indicative of the higher-order skills (Clarke-Midura & Dede, 2010). To implement 

this type of analysis, action logging must be implemented to leave a trace of all student 

actions as they interact with the system. These traces then need to be analyzed to identify 

specific patterns of behavior, either through simple rule-based approaches (Dragon et al., 

2012), or with more complex machine-learning algorithms (e.g., clustering (Mondolnado 

et al., 2012), supervised learning (McLaren et al., 2010), etc.). From the identification of 

these log patterns, we gain information about how students are currently engaging in 

higher-order skills, and can estimate their uptake of these skills by recognizing change in 

behavior over time.  
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Considering lessons from Section 5.3.1, it is important to define a pedagogical 

model of the expected higher-order skills linked with specific expected behaviors within 

Rashi, and specific feedback or interventions designed to promote those skills. This 

pedagogical model can then be briefly introduced to students before and during their use 

of Rashi. Considering lessons from 5.3.2, WOZ studies can be carried out to discover 

how these behaviors might be recognized through analysis information, and also to study 

the effects of the given feedback, even before the analysis system is fully functional. In 

this way, we can learn the holistic impact of Rashi, including coaching and collaboration, 

on higher-order learning skills. 

 

5.4 Summary  

In this chapter, we presented a summary of our research, focusing on lessons 

learned and potential avenues for continuation. We discussed in detail the take-away 

messages about classroom pedagogy, collaboration, coaching, and their combination. We 

considered future research efforts in three distinct areas: defining classroom pedagogy, 

increasing human involvement in coaching, and focusing on higher order skills. Through 

the lessons learned we described the final results and conclusions of our work, and in so 

doing we define next steps to enhance or further our current results. 

Our research demonstrates the positive effects of explicating and communicating 

classroom pedagogy. This concept should be taken into account in all future endeavors 

with ITSs, particularly those that bring different pedagogical approaches into classrooms 

(as our research introduced inquiry learning to students). We demonstrate the effect of a 

classroom pedagogy for use of the basic features of the system, but we encourage as 
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future work the development of similar models for collaborative efforts, coaching, and 

content-focused collaboration. In each of these situations, students need clear definitions 

of how these features are useful to them, and specifically how the features should be 

used. A major source to consider formalizing these models is the CSCL research area of 

scripting, which provides such models solely for collaborative concepts. 

Our research also demonstrates that collaboration is a useful learning mechanism 

when approaching ill-defined domains. Our studies show an improvement in student 

solutions when collaborative features are available. We also present our solution to one of 

the main issues in collaborative work: the difficulty for students to collaborate in context 

and with reference to specific domain content. We present the concepts of discussable 

objects and content-focused collaboration as a means to tighten the link between content 

and collaborative contributions. We discuss our approach to supporting this behavior by 

using the automated analysis system. We offer evidence that this automated analysis can 

identify opportunities to promote content-focused collaboration. We also recognize that 

these situations require explicit classroom pedagogy as discussed earlier. 

In relation to coaching, our research does not present clear evidence that the 

possibility to receive coaching has a positive effect on student solutions. However, we 

argue that literature demonstrates in both theory and practice that such a coaching system 

is necessary and can be useful. We consider two major problems with our studies, the 

lack of classroom pedagogy and the lack of explicit human involvement in the process. 

We previously discussed the solution to the lack of classroom pedagogy. 

Addressing the concern of a lack of human involvement in the process, we consider 

two different aspects to this concern.  The first involves the facilitator’s role in the 
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development process. If we involve facilitators in the development (for example in WOZ 

studies), we can iteratively test and develop our software in a way that greatly increases 

our odds of success by shortening development and evaluation cycles. Beyond this role in 

the development cycle, we also need consider the final role of facilitators in the 

classroom pedagogy. We suggest that facilitators can take a more active and productive 

role if they are provided with specific tools in the system; particularly tools that provide 

access to analysis information about their students and feedback mechanisms to connect 

with their students. From this angle, we can also see that a single set of tools can be 

developed that serves both of these purposes, first supporting WOZ experimentation, and 

finally acting a means for facilitators to interact with students in the finished system. 

Finally, we suggest that the evaluation of the Rashi system be lifted to consider the 

higher-order learning skills that Rashi theoretically improves. While the recognition or 

evaluation of these skills is difficult, we see this as an important step towards proving the 

importance and efficacy of the teaching methods that define Rashi. We suggest a close 

review of recent literature that analyzes traces of student behavior to identify key 

behaviors indicative of higher-order learning skills. 

In summary, we present our research on a broad set of topics: ill-defined problem 

spaces, inquiry learning, collaboration, and intelligent systems. To exemplify our work 

and offer a test-bed for experimentation, we offer Rashi, an intelligent, collaborative, 

inquiry learning system for ill-defined domains. Within this system we have run studies 

over several years to demonstrate the effects of collaborative features, coaching features, 

and the combination of these approaches within an inquiry learning experience. We argue 

that both of these approaches are valid and interesting for inquiry learning in ill-defined 
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problem spaces, and that combining these approaches could offer improvements to both 

aspects. 
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APPENDIX 

GLOSSARY OF TERMS 
 
While attempting to remain generically applicable and true to the default meanings of 
these terms, these definitions also reflect the specific context in which the terms are 
employed within this document. 

 
Artificial Intelligence (AI): an active area of research in which machines are imbued 

with the capability to imitate intelligent human behavior.  
 
Artificial Intelligence in Education (AIED): an active area of research in which 

artificial intelligence techniques are applied to computer-based instruction to 
understand and support students as an individual human tutor might in a one-on-
one tutoring scenario. 

 
Computer Based Instruction (CBI): the use of computer systems to teach or provide 

instruction. 
 
Computer Supported Collaborative Learning (CSCL): the use of computers to 

provide tools and shared workspaces that enable multiple users to learn together. 
 
Constraint Based Tutor (CBT): An ITS that offers guidance base on constraints (or 

rules) about the space of acceptable solutions, rather than requiring a specific 
solution or a specific solution path. 

 
Content-focused collaboration: when collaborative contributions are centered on and 

revolve around specific domain content. 
 
Discussable objects: elements of the user environment that can (and should) be the 

subject of dialog between learners.  
 
Environment: the virtual workspaces available to a user that enable exploration, 

manipulation, and data collection. 
 
Expert system: A specific type of Artificial Intelligence that attempts to mimic the 

reasoning of a human specialist. 
 
Expert model: a semantic model of the knowledge of a specialist that can be 

inspected in order to understand the area of specialization. Often used as a part of 
an Expert System. 

 
Expert Knowledge Base (EKB): a semantic representation of individual knowledge 

components and their inter-relations created using expert knowledge in a field, 
often created by technical developers working with Subject Matter Experts 
(SME). 
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Facilitator: any human who is acting in a coordinating, organizing, and help-giving 

role within a learning scenario, most often teachers or Teaching Assistants (TAs). 
 
Free input: the un-restricted end of the input spectrum, representing data entry that 

enables users to submit any manner of input without structural limitations. 
 
Ill-Defined Problem Space: a problem space that does not necessarily have clear start 

states, goal states, and/or intermediate states, or where the transition between 
these states is unclear. 

 
Inquiry learning: A method of learning where students actively engage in solving 

realistic problems, by following certain basic steps: form hypotheses about the 
problem at hand, engage in data collection, and relate observable facts collected to 
support or refute the hypotheses. 

 
Intelligent Tutoring System (ITS): CBI systems that can understand and adapt to the 

user by applying AIED techniques. 
 
Knowledge Base: see Expert Knowledge Base. 

 
Micro-script: a specific type of script that scaffolds students individual contributions, 

usually manifested as structure imposed on contributions (categories, sentence 
openers, etc.). 

 
Natural Language Understanding (NLU): and active area of research in which 

artificial intelligence techniques are applied in order to enable a computer system 
to understand human utterances or dialog, whether written or spoken aloud. 

 
Problem-Based Learning (PBL): a method of learning where students actively 

engage in learning activities through problem-solving, often used synonymously 
with inquiry learning. 

 
Restricted input: the limited end of the input spectrum, representing data entry that 

only allows users to submit input or manipulate input in a certain structure and/or 
from some pre-specified set of inputs. 

 
Script: a set of principles that designers may apply to help scaffold specific classes of 

interaction in learning scenarios. See also micro-script. 
 
Subject matter expert (SME): a person who has authoritative knowledge on a certain 

domain, and shares this knowledge in order to create an expert model. 
 
Student Solution: a representation of the student’s accomplishment on a given 

problem. In the Rashi system, this consists of the contents of their Notebook (both 
argument editor and data table). 
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Wizard of Oz Study (WOZ): a specific study design in which a human facilitator is 

given some ability send feedback to students thorugh the standard interface for 
automated feedback, such that the student is to assume the system itself offers the 
feedback. 
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