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ABSTRACT

SEMANTICALLY GROUNDED LEARNING FROM
UNSTRUCTURED DEMONSTRATIONS

SEPTEMBER 2013

SCOTT D. NIEKUM

B.Sc., CARNEGIE MELLON UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Robots exhibit flexible behavior largely in proportion to their degree of semantic

knowledge about the world. Such knowledge is often meticulously hand-coded for a

narrow class of tasks, limiting the scope of possible robot competencies. Thus, the

primary limiting factor of robot capabilities is often not the physical attributes of

the robot, but the limited time and skill of expert programmers. One way to deal

with the vast number of situations and environments that robots face outside the

laboratory is to provide users with simple methods for programming robots that do

not require the skill of an expert.

For this reason, learning from demonstration (LfD) has become a popular alter-

native to traditional robot programming methods, aiming to provide a natural mech-

anism for quickly teaching robots. By simply showing a robot how to perform a task,

x



users can easily demonstrate new tasks as needed, without any special knowledge

about the robot. Unfortunately, LfD often yields little semantic knowledge about

the world, and thus lacks robust generalization capabilities, especially for complex,

multi-step tasks.

To address this shortcoming of LfD, we present a series of algorithms that draw

from recent advances in Bayesian nonparametric statistics and control theory to au-

tomatically detect and leverage repeated structure at multiple levels of abstraction

in demonstration data. The discovery of repeated structure provides critical insights

into task invariants, features of importance, high-level task structure, and appropri-

ate skills for the task. This culminates in the discovery of semantically meaningful

skills that are flexible and reusable, providing robust generalization and transfer in

complex, multi-step robotic tasks. These algorithms are tested and evaluated using a

PR2 mobile manipulator, showing success on several complex real-world tasks, such

as furniture assembly.
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CHAPTER 1

INTRODUCTION

Civilizations have dreamt for millennia of automata that serve their masters, from

golems in ancient mythology, to the robots of modern science fiction. At present,

autonomous robots are already used in settings such as industrial assembly, but can

be dangerous, unwieldy, and exceptionally task-specific, falling short of a grander

vision of robotics. The emerging field of personal robotics aims to fulfill the promise

of intelligent robots that can safely serve, assist, and cooperate with humans in the

home and workplace. Such robots could revolutionize the modern factory, help to

take care of the disabled and elderly, or simply perform monotonous chores, possibly

becoming as ubiquitous as the personal computer.

Robotic hardware has made great leaps in recent years, and control theory has

advanced to the point that a wide range of behaviors can be programmed, given

enough effort; robots now exist that can fold laundry [61], play catch [8], bake cookies

[15], and play pool [78]. However, despite these impressive developments, general

purpose personal robots that can operate competently in human environments are

conspicuously missing. There are two central reasons for this. First, most robotic

feats are performed in controlled conditions in the laboratory, whereas personal robots

must be able to adaptively function in many different environments. Second, with

few exceptions, robot behaviors are carefully hand-coded by experts to provide the

robot with task-specific functionalities and semantic knowledge. While effective on

a small scale, this is not a sustainable model for programming personal robots to

perform the myriad of tasks desired by end-users.
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One way to deal with the vast number of tasks and environments that personal

robots must face outside the laboratory is to provide end-users with simple methods

for programming robots that do not require the skill of an expert. Thus, in recent

years, learning from demonstration (LfD) [4] has become a popular alternative to

traditional robot programming methods, aiming to provide a natural mechanism for

quickly teaching robots. By simply showing a robot how to perform a task, users can

easily demonstrate new tasks as needed, without any specialized knowledge.

LfD has had many successes in teaching robots tennis swings [89], walking gaits

[64], pick-and-place tasks [63], and even complex helicopter maneuvers [1]. However,

demonstrations are often simply treated as trajectories to be mimicked, providing

little semantic knowledge about the task or the environment. This, in turn, leads

to brittle policies that often cannot generalize well to new situations—especially in

the case of complex, multi-step tasks. The central theme of this dissertation is that

demonstration data, in fact, contains deep, exploitable structure that can be discov-

ered from a small number of examples and leveraged to provide robust generalization

of complex tasks.

This leads us to ask: what information is necessary for strong generalization in

complex robotic tasks? Generalization requires robots to adapt to new placements

of objects in the world, identify and recover from possible contingencies, abstract

away unimportant details, and recognize user intentions, among other things. All of

these requirements can be summarized more simply as being able to identify what

invariants must hold in a task, what is unimportant or allowed to vary, and why. The

answers to these questions provide explanatory power, allowing the robot to explain

the data it has observed and reason about what to do in new situations. However, to

answer these questions, the robot requires a semantic understanding of the world—in

our case, a collection of data that describes actions, objects, and their relationships.
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We present a series of algorithms that look for repeated structure across multiple

demonstrations to discover and exploit these vital task semantics.

The core of the presented algorithms are formed by Bayesian nonparametric

models—models that do not have a fixed size, but instead infer an appropriate com-

plexity in a fully Bayesian manner without overfitting the data or requiring model

selection. These models are used to discover repeated structure in the demonstration

data, identifying subgoals and primitive motions that best explain the demonstra-

tions and that can be recognized across different demonstrations and tasks. This

process converts noisy, continuous demonstrations into a simpler, coherent discrete

representation. This discrete representation can then be leveraged to find additional

structure, such as appropriate coordinate frames for actions, task-level sequencing

information, and higher-level skills that are semantically grounded. Finally, this col-

lection of data is combined to construct robust controllers that use an understanding

of the world to adaptively perform complex, multi-step tasks. These algorithms are

evaluated on several difficult real-world tasks, including furniture assembly, using a

PR2 mobile manipulator.

1.1 Contributions and Chapter Outline

• Chapter 2: Background and Related Work. This chapter provides back-

ground material on the roots of time-series analysis, Bayesian nonparametric

models, and learning from demonstration. Prior work and alternate approaches

to LfD, subgoal identification, and skill discovery are discussed. This discussion

is limited to topics that are relevant to this dissertation as a whole; background

topics that are more chapter-specific are contained in the relevant chapter.

• Chapter 3: Portable Subgoal Discovery. One of the simplest types of user

“demonstrations” are those in which the user specifies domain-specific events

that are task-critical, but does not need to (and may not be able to) demonstrate

3



how these events can be brought about. We describe a method for discovering

useful, reusable skills in this setting, using a Bayesian nonparametric clustering

algorithm and reinforcement learning. The agent collects data from experience

and automatically discovers an appropriate number of subgoals that describe

the sets of conditions that can bring about critical events. Skills, or options,

are then learned to accomplish and sequence these subgoals. This method of

skill discovery places very little responsibility on the user, but it is highly data

intensive, making it inappropriate for use on physical robots. This difficulty

motivates the contribution of the following chapters.

• Chapter 4: Learning from Unstructured Demonstrations. Fortunately,

for tasks that can be demonstrated by an expert, a great deal of additional

structure can be leveraged to make skill discovery and learning more data effi-

cient. We present an algorithm that uses a Bayesian nonparametric model to

segment unstructured demonstrations into motion categories, or skills, that can

be recognized across demonstrations and tasks, maximally leveraging available

data. This, combined with a coordinate frame detection algorithm, allows the

robot to learn a multi-step task from a small number of demonstrations and

generalize it to novel situations.

• Chapter 5: Incremental Semantically Grounded Skill Discovery. Next,

we show how this approach can be extended to handle complex tasks that

may have multiple valid execution paths, contingencies that may arise during

execution, or that exhibit partial observability and/or perceptual aliasing. We

introduce a novel method to further subdivide discovered motion categories into

semantically grounded states in a finite-state representation of the task, enabling

intelligent, adaptive replay. Performance can then be incrementally improved

through interactive corrections that provide additional data where they are
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most needed. Together, this allows for intelligent discovery and sequencing of

semantically grounded skills to create flexible, adaptive behavior that can be

improved through natural interactions with the robot.

• Chapter 6: Conclusions and Future Work. We conclude by summarizing

the work presented in this dissertation and highlighting opportunities for future

research in learning from demonstration.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter surveys of several areas of artificial intelligence and machine learning

that provide a context for the contributions of this thesis. First, related work in skill

learning is discussed within the context of learning from demonstration and reinforce-

ment learning. Next, the Hidden Markov Model is introduced as a Bayesian approach

to time-series analysis, which will be used when analyzing time-series demonstration

data in Chapters 4 and 5. Finally, nonparametric Bayesian methods are introduced

to provide a principled way to overcome the problem of model selection that of-

ten accompanies models with finite parameterizations, such as the Hidden Markov

Model. This discussion is limited to topics that are relevant to this dissertation as a

whole; background topics that are more chapter-specific are contained in the relevant

chapter.

2.1 Skill Learning

Many approaches have been proposed to allow agents to learn skills that ease the

learning of complex tasks and that are reusable in new situations. The majority of

these methods fall into two major categories: learning from demonstration methods

and reinforcement learning methods. This section provides an overview of these

approaches to skill discovery and learning.

2.1.1 Learning from Demonstration

Learning from demonstration (LfD) [4, 11] is an approach to robot programming

in which users demonstrate desired skills to a robot. Ideally, nothing is required of the
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user beyond the ability to demonstrate the task in a way that the robot can interpret.

Example demonstration trajectories are typically represented as time-series sequences

of state-action pairs that are recorded during the teacher’s demonstration. The set

of examples collected from the teacher is then often used to learn a policy (a state to

action mapping) or to infer other useful information about the task that allows for

generalization beyond the given demonstrations.

A variety of approaches have been proposed for LfD, including supervised learn-

ing [5, 18, 20, 38, 27, 2], reinforcement learning [93, 1, 109, 51], and behavior based

approaches [71]. However, this work has generally been limited to tasks that can

be represented with a single monolithic policy or that are broken up into subtasks

by hand. In a recent example, Pastor et al. [78] use Dynamic Movement Primitives

(DMPs) [45] to acquire single motor skills from structured demonstrations of a com-

plex billiards shot. In their framework, multiple imperfect demonstrations of a skill

are used to learn the initial parameters of a DMP controller, which is then improved

using reinforcement learning. In addition, the statistics collected from the examples

are used to predict the outcome of new executions of the same skill, to allow early

termination if failure seems likely.

While many approaches enable the learning of a single policy or skill from data,

some approaches perform automatic segmentation of the demonstrations into multi-

ple skills. Jenkins and Matarić introduced Spatio-Temporal Isomap in order to find

the underlying low-dimensional manifolds within a set of demonstrated data [47, 48].

This work extends the dimensionality reduction technique Isomap to include tem-

poral information and allows the discovery of repeated motion primitives. However,

segmentation in this model is performed with a heuristic. Dixon and Khosla [26]

demonstrate that generalizable motions can be parameterized as linear dynamical

systems. This algorithm also uses heuristic segmentation and cannot recognize re-

peated instances of skills.
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Gienger et al. [35] segment skills based on co-movement between the demonstra-

tor’s hand and objects in the world and automatically find appropriate task-space

abstractions for each skill. Their method can generalize skills by identifying task

frames of reference, but it cannot describe skills like gestures or actions in which the

relevant object does not move with the hand. Rather than explicitly separate skills

into separate policies, work by Cederborg et al. [19] represents a flexible number of

skills as a single policy using the Incremental Local Online Gaussian Mixture Re-

gression algorithm. These skills are implicitly separated through the use of a local

Gaussian mixture representation, where each mixture is localized in a different part

of the state space.

Other recent work has examined using principled statistical techniques to segment

example trajectories into multiple skills. Grollman and Jenkins [40] introduce the

Realtime Overlapping Gaussian Expert Regression (ROGER) model to estimate the

number of subtasks and their policies in a way that avoids perceptual aliasing, a

condition in which perceptual information alone is not sufficient to choose the correct

next action. Butterfield et al. [17] extend the Hierarchical Dirichlet Processes Hidden

Markov Model (HDP-HMM) to handle perceptual aliasing and automatically discover

an appropriate number of skills. Although we introduce a Bayesian mechanism to

parse demonstration trajectories in this thesis, rather than inferring policies directly,

we discover repeated dynamical systems which are considerably simpler to model than

policies and generally require less data for inference.

The CST algorithm [52, 51] uses an online changepoint detection method to seg-

ment example trajectories and then merges the resulting chains of skills into a skill

tree. This approach simultaneously segments the trajectories and discovers abstrac-

tions, but cannot recognize repeated skills to assist with the segmentation process.

Kulic et al. [56] demonstrate an online method that can recognize repeated motion

primitives to improve segmentation as additional data is collected by assuming that
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data points from the same primitive are generated by the same underlying distribu-

tion. Ciappa and Peters [21] model repeated skills as being generated by one of a set

of possible hidden trajectories, which is rescaled and noisy. To guide segmentation,

they define an upper bound on the number of possible skills and explicitly constrain

segment lengths.

Several less traditional approaches to LfD exist as well. One approach by Rozo

et al. [88] doesn’t consider trajectory learning at all, but instead learns to cooperate

with a human by learning appropriate stiffness and impedance policies from haptic in-

formation gathered from two-person task demonstrations. Kjellstrom and Kragic [50]

eschew traditional policy learning, and instead use visual data to watch the demon-

strator’s hand to learn the affordances of objects in the environment, leading to a

notion of object-centric skills. Ekvall and Kragic [29] use multiple examples of a task

to learn task constraints and partial orderings of primitive actions so that a planner

can be used to reproduce the task.

2.1.2 Inverse Reinforcement Learning

A special case of learning from demonstration is that of inverse reinforcement

learning (IRL) [70], in which the agent tries to infer an appropriate reward or cost

function from demonstrations. Thus, rather than try to infer a policy directly from

the demonstrations, the inferred cost function allows the agent to learn and improve

a policy from experience to complete the task implied by the cost function. This is

typically done via policy search or reinforcement learning methods.

IRL techniques typically model the problem as an Markov Decision Process (MDP)

and require an accurate model of the environment [1, 85, 67], but two recent methods

have been proposed to circumvent this requirement by creating local control models

[97], and by using an approach based on KL-divergence [16], respectively. Maximum

entropy methods have also been suggested as a way to deal with ambiguity in a
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principled probabilistic manner [109]. As with other LfD methods, IRL can be used

to teach robots any number of individual skills, but to the best of our knowledge

has not yet been used to automatically discover multiple skills within demonstration

data.

2.1.3 Reinforcement Learning and Subgoal Discovery

RL has a rich history of successes in learning control policies from interaction with

the environment, ranging from world-class backgammon play [101], to autonomous

inverted helicopter flight [68]. However, RL has only had limited success in general

robotics applications. RL algorithms can require a large amount of exploration before

a reasonable policy is found, and collecting experience on physical robots can be both

time-consuming and expensive. Worse, in high-dimensional state spaces implied by

robots with many degrees of freedom, commonly used random exploration strategies

are not tractable (when starting from a random policy) and can also be dangerous

to the robot, objects, and people in the environment. Continuous state and action

spaces that are often present in robotic domains also pose challenges to traditional

RL algorithms. Function approximation is commonly used to represent policies in

continuous state spaces, but typical RL methods do not provide any of the stability

guarantees that control theoretic approaches do. Continuous action spaces can also

make the traditional notion of policy optimization in RL very difficult. One notable

method for learning in continuous action spaces is the Natural Actor-Critic [81].

The difficulties that RL faces in real-world, continuous, high-dimensional prob-

lems can often be mitigated by breaking tasks into simpler subgoals that can each be

accomplished with a single skill. Much previous work has investigated ways to auto-

matically discover subgoals in RL tasks to be used as the goals of options. The options

framework [95] models skills as temporally extended actions that can be invoked like

primitive actions. An option o consists of an option policy πo : S × A → [0, 1], giv-
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ing the probability of taking action a in state s, an initiation set Io ⊆ S, giving

the set of states from which the option can be invoked, and a termination condition

βo : S → [0, 1], giving the probability that option execution will terminate upon

reaching state s.

However, most subgoal discovery algorithms work only in discrete state spaces

and require a large amount of data, limiting the practical applicability of this work,

especially in robotic domains where data is a scarce resource. Skill chaining [55] is a

notable exception that can automatically discover subgoal regions in continuous state

spaces. More fundamentally, many skills of interest such as walking or throwing a ball

cannot be fully described by a skill objective that is described only as an endpoint in

state space. Instead they are best characterized by dynamical properties that change

with time.

The simplest subgoal discovery algorithms analyze reward statistics or state vis-

itation frequencies to discover subgoal states [25]. Graph-based algorithms [92, 59]

search for “bottleneck” states on state transition graphs via clustering and other types

of analysis. Algorithms based on intrinsic motivation have included novelty metrics

[91] and hand-coded salience functions [7]. Skill chaining [55] discovers subgoals by

‘chaining’ together options, in which the termination set of one option is the empiri-

cally determined initiation set of the next option in the chain. HASSLE [6] clusters

similar regions of state space to identify single-task subgoals. Reward function search

[72] has also been shown to extract features that could be considered subgoals, though

to the best of our knowledge, no one has tried analyzing such reward functions to

discover subgoal states.

Other algorithms analyze tasks to create skills directly, rather than search for

subgoals. The VISA algorithm [49] creates skills to control factored state variables

in tasks with sparse causal graphs, and one extension to this method adds an active

learning component for efficient exploration [105]. PolicyBlocks [82] looks for policy
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similarities that can be used as templates for skills. The SKILLS algorithm [103]

attempts to minimize description length of policies while preserving a performance

metric. However, these methods only exhibit transfer to identical state spaces and

often rely on discrete state representations. Related work has also used clustering to

determine which of a set of MDPs an agent is currently facing, but does not address

the need for skills within a single MDP [108].

2.2 Time-Series Analysis and the Hidden Markov Model

Time-series data, such as robot task demonstrations, present unique challenges for

analysis, since observations are temporally correlated. Clearly, time-series data are

not independent and identically distributed (nor are they exchangeable), but weaker

assumptions can often be made about the data to make inference tractable.

Define a sequence to be a first-order Markov chain if:

p(xn|x1, x2, . . . , xn−1) = p(xn|xn−1). (2.1)

In other words, given the previous observation xn−1, an observation xn is conditionally

independent of all other previous observations. To capture longer-range interactions,

this concept can be extended to higher orders, such that an observation is dependent

on the previous M observations:

p(xn|x1, x2, . . . , xn−1) = p(xn|xn−1, . . . , xn−M). (2.2)

One way to tractably model time-series data is through the use of a state space

model, in which each observation xi has a corresponding latent variable or hidden

state zi associated with it. The latent variables z1, . . . , zn form a Markov chain and

emit the observations x1, . . . , xn based on conditional distributions of the form p(x|z).

Figure 2.1 shows the graphical representation of a state space model.
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Figure 2.1. A state space model, or standard HMM when the latent variables z are
discrete.

When the latent variables z in a state space model are discrete1, we obtain the

standard Hidden Markov Model (HMM). The standard HMM is defined by the num-

ber of states K that the latent variables can take on, a K ×K transition probability

matrix π (with rows πk) that describes the probabilities p(zi|zi−1), and a parame-

terized distribution2 F (·) that describes the conditional probabilities p(xi|zi). The

generative model for an HMM can be written as:

zi ∼ πzi−1

xi ∼ F (θzi),

where θzi is a parameter vector associated with state zi, and “∼” can be read as

“drawn from” or “distributed as”. In other words, the HMM can describe time series

data with a mixture model in which the latent mixture component indices have a

temporal relationship as a first-order Markov chain.

One drawback of the standard HMM is that the observation xi is conditionally

independent of any other observation xj, given the generating hidden state zi. This

1The term “Hidden Markov Model” is typically used to refer to a model with discrete latent
variables. When latent variables are continuous, a discrete transition matrix can no longer be used
to describe transitions, instead requiring formulations like linear-Gaussian systems. These models
are sometimes referred to by different names in the literature, rather than as an HMM.

2Technically, each hidden state z can have its own unique parameterized distribution Fz(·), but
in practice all hidden state emission distributions usually share a common form, such as a Gaussian
distribution. However, each hidden state still has a unique set of parameters θz for this distribution.
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independence assumption is clearly not well founded for much time-series data, such

as robot demonstrations, in which the observations, as well as the hidden states,

have temporal dependencies. The autoregressive HMM (AR-HMM) addresses this by

adding links between successive observations, forming a Markov chain, as shown in

Figure 2.2. This can be extended to a M th order AR-HMM, as shown in Figure 2.3.

z1

x1

z2

x2

z3

x3

zN

xN

Figure 2.2. A first-order autoregressive HMM.

z1

x1

z2

x2

z3

x3

zN

xN

Figure 2.3. Additional links can be added to make an M th-order autoregressive
HMM. This example shows a second-order AR-HMM.

AR-HMMs face a problem in cases where the observations are not discrete—a sim-

ple transition matrix cannot be used to describe the probabilities p(xi|zi, xi−1, . . . , xi−M).

For example, demonstration data is often comprised of continuously valued state-

action pairs representing robot joint poses and actuations. In this case the condi-

tional probability density function over xi must be able to be written in terms of

a continuous function of its predecessors. For example, a linear dynamical system

governing the conditional distribution can be used, such that:

p(xi|zi, xi−1, . . . , xi−M) =
M∑
j=1

Aj,zixi−j + ei(zi),
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for transition matrices Aj,zi and covariance terms ei(zi). In this way, time-series data

can be flexibly modeled as a mixture of linear dynamical systems.

2.3 Nonparametric Bayesian Methods

Graphical models and Bayesian inference have seen great success in artificial in-

telligence and machine learning applications spanning many fields including natural

language processing [14], computer vision [84], social science [65], genetics [10], and

medicine [57]. The Bayesian paradigm provides principled mechanisms to allow the

specification of prior beliefs, model dependencies between variables, and perform ef-

ficient inference. However, one persistent difficulty in Bayesian inference is that of

model selection. Often, it is not known a priori how complex a model must be to

capture all the important structure of a dataset without overfitting, making it diffi-

cult to even provide a reasonable prior over such models. A classic example of this

is choosing the polynomial degree in polynomial regression; too low of a degree will

miss important characteristics of the data, while too high of a degree will begin to fit

noise. This problem is also commonly found when trying to determine the appropri-

ate number of components in a mixture model or the number of hidden states in an

HMM.

Many techniques have been developed to select amongst models with fixed, fi-

nite parameterizations, including cross validation, Bayesian information criterion, and

maximization of model evidence. However, many of these methods rely on heuristics,

approximations, or the specification of a prior over model complexity, which may

not be practical to specify for complex data. By contrast, Bayesian nonparametric

methods sidestep having to explicitly perform model comparison by using an infinite

parameterization that can determine an appropriate model complexity directly from

data in a fully Bayesian manner. The next section will discuss how such parame-

terizations are possible. These infinite, nonparametric representations will be used
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in Chapter 3 to automatically select an appropriate number of data clusters, repre-

senting candidate skill goals, and in Chapters 4 and 5 to determine an appropriate

number of dynamical systems that adequately describe the observed demonstration

data.

2.3.1 De Finetti’s Theorem

A common simplifying assumption in statistics is that of independence, in which

the joint probability of data can be expressed as the product of the probabilities of

each individual data point:

p(x1, x2, . . . , xn) =
n∏
i=1

p(xi). (2.3)

A somewhat weaker assumption that nonparametric Bayesian methods leverage is

that of exchangeability. A finite sequence of random variables is considered to be

finitely exchangeable if every possible permutation of the random variables has an

identical joint distribution, making the order in which data arrives irrelevant. An

infinite sequence is considered infinitely exchangeable if every finite subset is finitely

exchangeable. It can be seen from this that independence implies exchangeability,

but that exchangeability does not necessarily imply independence.

De Finetti’s theorem [23] states that a sequence x1, x2, . . . of binary random vari-

ables is infinitely exchangeable if and only if there exists a random variable θ with

cumulative distribution function Q on [0, 1], such that for all n:

p(x1, x2, . . . , xn) =

∫ 1

0

n∏
i=1

θxi(1− θ)1−xidQ(θ), (2.4)

or equivalently:

p(x1, x2, . . . , xn) =

∫ 1

0

p(x1, x2, . . . , xn|θ)dQ(θ), (2.5)
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where Q(θ) is typically (but not required to be) well-behaved, such that dQ(θ) =

Q′(θ)dθ = p(θ)dθ. De Finetti only proved this for the case of infinite sequences of

binary variables, but more general formulations exist, such as that of Hewitt and

Savage [43], that extend this result to arbitrarily distributed real-valued random vari-

ables.

This formulation provides important insight into the nature of exchangeabil-

ity. Specifically, it reveals the surprising fact that given the parameter θ, the data

x1, x2, . . . , xn is conditionally independent and identically distributed (IID). In other

words, the joint probability distribution p(x1, x2, . . . , xn) of an exchangeable sequence

can always be represented as a mixture of IID sequences of random variables with

mixing distribution p(θ). The key thing to notice here is that the parameterization

of θ is not restricted in complexity; in fact, the parameterization may need to be

infinite-dimensional, providing motivation for the search for nonparametric Bayesian

methods.

Thus, we have seen that exchangeable data can be viewed as being conditionally

IID from a mixture, providing an analogue for IID data in the frequentist paradigm,

and thus making efficient inference possible for this type of data. However, such

mixtures may be arbitrarily complex, and may even require an infinite-dimensional

parameterization to describe. Next, we will examine how to formalize and perform

inference over such distributions.

2.3.2 The Chinese Restaurant Process and the Dirichlet Process

The Chinese restaurant process (CRP) [3] is a discrete-time stochastic process

that produces exchangeable data and is often used to illustrate a generative model

for cluster data in Bayesian nonparametrics. Informally, it can be imagined as a

Chinese restaurant that contains in infinite number of empty tables that each have

infinite capacity; at each time step, a customer enters the restaurant and either joins
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a previously occupied table, or sits at a new empty table. The ith customer will

choose to sit at an empty table with probability α
i−1+α

(all empty tables are identical;

this is a total probability for sitting at any of them), where α is a “concentration”

parameter that determines the degree of dispersion of customers to different tables.

The probability of the customer instead choosing a particular occupied table z is

proportional to the number of people sz already sitting at it, causing a clustering or

“rich-get-richer” effect, and is defined as sz
i−1+α

. Additionally, the first person to sit

at each table chooses a unique dish for everyone at the table to share from an infinite

menu, where the dish corresponds to a vector of parameters θi that parameterize some

distribution F (·). In other words, in terms of a clustering problem, each customer is

a data point, each table is a cluster, or mixture component in a mixture model, and

the table’s dish represents the parameters of that mixture component (for example,

the mean and variance of a Gaussian).

The sequence of customer assignments generated by the CRP is not IID, but it

is exchangeable, so according to de Finetti’s theorem, there exists a representation of

the sequence that is conditionally IID with respect to some parameter, which in this

case is θ. The mixing distribution G over the various possible settings of θi is simply

defined by the number of customers sitting at the each of the corresponding tables.

Thus, since each θi is a parameterization of a distribution, or a mixture component,

G can be viewed as the mixing distribution of a mixture model.

However, there are an infinite number of tables, so G must be an infinite dimen-

sional categorical distribution (a special case of a multinomial distribution where the

number of trials is equal to 1). To take a Bayesian perspective on inference in such a

model, we must specify a prior on G. If G were a fixed-dimensional, finite categorical

distribution, then the appropriate conjugate prior would be a Dirichlet distribution.

In this case, the appropriate prior is an infinite dimensional extension of the Dirichlet

distribution, the Dirichlet Process.
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Let us consider this model from a generative Bayesian perspective. The generative

model for observations generated from a CRP partitioning is called a Dirichlet Process

Mixture Model (DPMM) and can be specified as follows. A Dirichlet process (DP),

parameterized by a base distributionG0 over a parameter space θ, and a concentration

parameter α, is used as a prior over the distribution G of mixture components. For

data points X, mixture component parameters θ, and a parameterized distribution

F (·), the DPMM can be written as [66]:

G|α,G0 ∼ DP (α,G0)

θi|G ∼ G

xi|θi ∼ F (θi).

A draw G from a Dirichlet process is discrete with probability 1, as shown in the

example in Figure 2.4. This draw provides the set of atoms, or mixture components,

to which data points are assigned according to the distribution G, corresponding

to the assignment of customers to tables in the CRP. Finally, each data point xi

can be generated by drawing from the distribution parameterized by the assigned

mixture component θi. In the CRP analogy, this means that a customer xi walks

in and sits at the table with dish θi (in the generative view, the tables/dishes can

be seen as generating the customers). Note that G must integrate to 1. From this,

it can be seen that the Dirichlet process can be interpreted as a distribution over

probability distributions. Figure 2.5 shows the corresponding graphical model for the

DPMM. This model will be used in Chapter 3 to cluster state visitation data to find

an appropriate number of subgoals for a task.

To show the relationship between the Dirichlet process and the CRP, let us first

examine the simpler case of a finite mixture, defining it in such a way that the

assignment of data to components is more explicit. Define ci ∈ {1 . . . k} as the index
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Figure 2.4. A discrete draw G from a Dirichlet process parameterized by G0 over a
parameter space θ.

of the mixture component assigned to observation xi , where k is the number of

mixture components, and πj as the mixing weight on the jth component. Thus, the

generative model for this finite mixture is:

θi|G0 ∼ G0

π ∼ Dirichlet(α/k, . . . , α/k)

ci|π ∼ Categorical(π)

xi|θ, ci ∼ F (θci).

Thus, the conditional probability of a mixture assignment3 ci, given all the other

assignments c−i, can be found by integrating out the weights π:

p(ci = z | c−i, α) =

∫
p(ci = z | π)p(π | c−i, α)dπ. (2.6)

The first term in the integral, is simply equal to the zth component of the weight

vector:

3Note that due to the exchangeable nature of the data, we can always assume that the observation
ci in question is observed last given all the others, such that i=N, the total number of observations.
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p(ci = z | π) = πz. (2.7)

The second term is the posterior probability of the weight vector, given all but the

ith mixture assignment, and can be written as:

p(π | c−i, α) ∝ p(c−i | π)p(π | α). (2.8)

Since the first term has a categorical distribution and the second term is Dirichlet

distributed, by conjugacy, the posterior p(π | c−i, α) is also Dirichlet distributed.

Define the normalization function for the Dirichlet distribution as:

Z(β) =

∫ k∏
j=1

π
βj−1
j dπ (2.9)

=

∏k
j=1 Γ(βj)

Γ(
∑k

j=1 βj)
, (2.10)

where Γ(·) is the standard Gamma function and βj is a concentration parameters

that can be conceptualized as a pseudocount of the number of times that the jth

event has previously been observed. Define the vector s = (s1, . . . , sk), where sj is

the total number of assignment variables in c−i that indicate mixture component j.

Using this, the posterior probability of the weight vector can be written in terms of

the previous number of counts, s:

p(π | c−i, α) =
1

Z(s + α
k
)

k∏
j=1

π
sj+

α
k
−1

j . (2.11)

Finally, combining equations 2.7 and 2.11, and using the fact that Γ(x+ 1) = xΓ(x),

we can rewrite the posterior for the assignment variables (equation 2.6) as:
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Figure 2.5. A Dirichlet Process Mixture Model (DPMM), where the rectangle is
plate notation, denoting N copies of the outlined structure

p(ci = z | c−i, α) (2.12)

∝ 1

Z(s + α
k
)

∫
πz

k∏
j=1

π
sj+

α
k
−1

j dπ (2.13)

=
Z(s + α

k
+ 1(z))

Z(s + α
k
)

(2.14)

=

∏k
j=1 Γ

(
sj + α

k
+ 1

(z)
j

)
∏k

j=1 Γ
(
sj + α

k

) Γ
(∑k

j=1 sj + α
k

)
Γ
(∑k

j=1 sj + α
k

+ 1
(z)
j

) (2.15)

=

[∏
j 6=z Γ

(
sj + α

k

)]
Γ
(
sz + α

k
+ 1
)

∏k
j=1 Γ

(
sj + α

k

) Γ
(∑k

j=1 sj + α
k

)
(∑k

j=1 sj + α
k

)
Γ
(∑k

j=1 sj + α
k

) (2.16)

=

[∏k
j=1 Γ

(
sj + α

k

)] (
sz + α

k

)
∏k

j=1 Γ
(
sj + α

k

) 1∑k
j=1 si + α

k

(2.17)

=
sz + α

k

N − 1 + α
, (2.18)

where N is the total number of observations (including the current one whose mixture

assignment is in question), and 1(z) is a vector of length k with a 1 in the zth position,

and zeros elsewhere.
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Now, the behavior of this posterior probability can be examined as the number of

mixture components k goes to infinity. Since only a finite number of samples, N − 1,

have been observed so far, then only a finite number of the counts s1, . . . , s∞ are

non-zero. This divides the mixture components into two sets: a set Q that contains

components with non-zero counts and a set Q̂ that contains components with zero

counts. First, consider the probability that a new observation gets assigned to one

particular mixture component z that already has a non-zero count sz:

p(ci = z ∈ Q | c−i, α) = lim
k→∞

(
sz + α

k

N − 1 + α

)
(2.19)

=
sz

N − 1 + α
. (2.20)

Next, consider the total probability that a new observation gets assigned to any

component that does not already have an associated observation (i.e. all components

z such that the corresponding count sz is equal to zero):

p(ci ∈ Q̂ | c−i, α) = lim
k→∞

∑
z∈Q̂

sz + α
k

N − 1 + α

 (2.21)

= lim
k→∞

∑
z∈Q̂

α
k

N − 1 + α

 (2.22)

=
α

N − 1 + α
lim
k→∞

∑
z∈Q̂

1
k

N − 1 + α

 (2.23)

=
α

N − 1 + α
lim
k→∞

(
|Q̂|

k(N − 1 + α)

)
(2.24)

=
α

N − 1 + α
, (2.25)

since |Q̂| → ∞ as k →∞.

It can be seen that these probabilities are identical to those in the CRP for a

customer joining an occupied table and an unoccupied table, respectively, showing
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the correspondence between the CRP and the Dirichlet process. Thus, the CRP is

an illustrative description of a Bayesian prior over an infinite dimensional categorical

distribution—in other words, the Dirichlet process. Equations 2.20 and 2.25 also

illustrate that most of the data will have a tendency to cluster into a small number

of components, since the likelihood of a new component forming becomes very small

as N gets large. In fact, it can be shown that the number of non-zero components

increases roughly logarithmically with respect to N [65].

Given a data set, inference can be performed on a DPMM to find an appropriate

number of mixture components and their associated parameters that best explain

the data without overfitting (of course, subject to the clustering strength assump-

tions made by setting the concentration parameter or its hyperparameters), in a fully

Bayesian manner. This sidesteps the difficult problem of model selection and pro-

vides a principled framework for representing distributions of arbitrary complexity

with mixtures of simpler distributions, such as Gaussians. This technique can be

used for tasks such as unsupervised clustering of data and density estimation of com-

plex distributions from samples. For a more complete discussion of how to perform

inference in such a model, or how the full DPMM can be derived as the limit of finite

mixture models, see [86].

2.3.3 The Chinese Restaurant Franchise and the Hierarchical Dirichlet

Process

Now that the connection between the CRP and the Dirichlet process has been

established, other similar metaphors can be explored that describe new classes of

Bayesian nonparametric priors and their properties. One possible shortcoming of

the standard Dirichlet process mixture model is that all component parameters θi

are drawn from the same distribution G—in other words, that all data is drawn

from the same underlying mixture distribution. However, in many data sets, data
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may be come from several distinct, but related, groups or distributions. By explicitly

modeling these groups, the underlying distribution of the data can often be estimated

more accurately and efficiently.

For example, imagine the distribution over words from a physics textbook com-

pared to that of a chemistry textbook. Each component in a mixture model describing

either book could represent a topic that generates words; since both books are sci-

ence books, many such topics would appear in both books. Thus, to model the joint

distribution of words across both books, it would be desirable to have a model that

allowed some parameters, or atoms, to be shared across books, while still being able

to model each book as having unique topics and distributions of topics. The Hier-

archical Dirichlet Process, and its corresponding metaphor, the Chinese restaurant

franchise (CRF) [98], allow such sharing.

The CRF can be described similarly to the CRP, but can share mixture compo-

nents amongst groups (of data) that may have different, but related, characteristics.

The primary difference is that the CRF assigns each group (or set of customers) to

a separate restaurant. Each restaurant still has an infinite number of tables, but

instead of each table’s dish being globally unique, a dish can be chosen at additional

tables at other restaurants in the franchise. Again, the first person to sit at each table

chooses that table’s dish from the menu, but in the CRF, the probability of choosing

a particular dish is proportional to the number of tables that have already chosen

that dish franchise-wide. Thus, dishes (i.e. mixture components such as topics) can

be shared across restaurants, but each restaurant can have a unique distribution of

dishes.

Just as the CRP describes a Dirichlet process prior, the CRF corresponds to a hi-

erarchical Dirichlet process prior (HDP). The generative model for data sets produced

by an HDP mixture model can be written as [98]:
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G0|γ,H ∼ DP (γ,H)

Gj|α,G0 ∼ DP (α,G0)

θji|Gj ∼ Gj

xji|θji ∼ F (θji),

where H is a base distribution, γ is a concentration parameter, j is the index of a

data group (i.e. an index that corresponds to all data generated from the atoms of

a particular Gj), and both G0 and Gj are discrete distributions. Here, the Dirichlet

process that serves as a prior over G0 defines a prior over the entire parameter space,

whereas G0 and Gj represent the franchise-wide and restaurant-specific menus, re-

spectively. This model is said to be hierarchical since there are two levels (i.e. draws

that take place in the generative model) at which atoms are selected that are then

later used at lower levels; the atoms from G0 can be shared amongst the various Gj,

since G0 is used as a base distribution to parameterize a second Dirichlet process that

acts as a prior over Gj, encouraging sharing amongst the groups. Returning to our

earlier example, it can be seen that an HDP mixture can be used to jointly model

the word distribution from several documents that may share some topics, while also

retaining unique topics and distributions over topics as well.

HDP priors also can be useful for modeling time-series data by acting as a prior

over the transition matrix in a Hidden Markov model, forming an HDP-HMM [9]. In

this case, the groups being modeled are the rows of the transition matrix; in other

words, state-specific transition distributions. The HDP prior allows each transition

distribution to be unique, while sharing global characteristics such as the overall

popularity of particular states. Since the nonparametric prior allows this transition

matrix to be infinite, an appropriate number of states (and their corresponding emis-

sion distributions) can be found that best explain the data without overfitting.
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Figure 2.6. A Hierarchical Dirichlet Process Mixture Model (HDPMM)

2.3.4 The Indian Buffet Process and the Beta Process

The HDP-HMM is an effective model for analyzing a single time series. However,

it is often desirable to be able to jointly analyze multiple time series sequences, each of

which may have unique transition dynamics—for instance, demonstrations of several

different robotic tasks. Furthermore, each sequence may only exhibit some subset

of the larger set of states that are observed across all the sequences. It is relatively

straightforward to extend the HDP-HMM so that it jointly models the transition and

emission parameters of all the sequences. However, such a model assumes that all the

sequences exhibit the same set of states and transition between them in an identical

manner, precluding the desired flexibility. Instead, a more flexible featural model is

required, in which each sequence can exhibit some subset of a larger library of states

and transition between them in a unique manner.
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The culinary metaphor that describes a statistical model with the properties that

we desire is the Indian Buffet Process (IBP) [37]. In the IBP, the first customer

enters the restaurant and select Poisson(α) dishes from an infinite buffet. After that,

the ith customer can select multiple dishes from the buffet; each existing dish z is

selected with probability sz
i

, where sz is the number of times dish z has previously

been selected. The customer then also selects Poisson(α/i) new dishes. The IBP

describes a nonparametric Bayesian prior known as the Beta process.

Recall that a draw from a Dirichlet process is a probability distribution—a draw

from a Dirichlet process results in an infinite number of weights on point masses that

sum to 1. A draw from a Beta process is also an infinite collection of point masses,

but the weight of each point is drawn from a Beta distribution parameterized by the

value of the base distribution at that point. Thus, the weights from a Beta process

draw can each be interpreted as a [0, 1] probability and do not sum to one. This

draw can be seen as an infinite vector of probabilities corresponding to the chance

of “heads” on an infinite set of unfair coins. The featural property of Beta processes

stems from this view—in the generative view, when generating any given piece of

data, a particular feature manifests with probability proportional to its weight in the

draw from the Beta process.

A Beta process prior can be used over the transition matrices of hidden Markov

models for multiple time series sequences, much like the HDP, but elicits a featural

representation, in which hidden states can be shared across sequences. One such

model is the Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM) [33],

shown in Figure 2.7, in which hidden states correspond to dynamic modes defined

by linear dynamical systems. The BP-AR-HMM is able to jointly model a library of

dynamical modes over many time series sequences, while allowing each time series to

exhibit some subset of those modes and switch between them in a unique manner.

Thus, a potentially infinite library of modes can be constructed in a fully Bayesian
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way, in which modes are flexibly shared between time series, and an appropriate

number of modes is inferred directly from the data, without the need for model

selection. In other words, each time series corresponds to a customer in the IBP and

each dynamical mode corresponds to a dish.

The generative model for the BP-AR-HMM can be summarized as follows [33]:

B|B0 ∼ BP(1, B0)

Xi|B ∼ BeP(B)

π
(i)
j |fi, γ, κ ∼ Dir([γ, ..., γ + κ, γ, ...]⊗ fi)

z
(i)
t ∼ π

(i)

z
(i)
t−1

y
(i)
t =

r∑
j=1

A
j,z

(i)
t

y
(i)
t−j + e

(i)
t (z

(i)
t )

First, a draw B from a Beta Process (BP) provides a set of global weights for the

potentially infinite number of states. Then, for each time series, an Xi is drawn from

a Bernoulli Process (BeP) parameterized by B. Each Xi can be used to construct a

binary vector fi indicating which of the global features, or states, are present in the

ith time series. Thus, B encourages sharing of features amongst multiple time series,

while the Xi leave room for variability. Next, given the features that are present in

each time series, for all states j, the transition probability vector π
(i)
j is drawn from

a Dirichlet distribution with self transition bias κ. A state z
(i)
t is then drawn for each

time step t from the transition distribution of the state at the previous time step.

Finally, given the state at each time step and the order of the model, r, the observation

is computed as a sum of state-dependent linear transformations of the previous r

observations, plus mode-dependent noise. This model will be used in Chapters 4 and

5 to discover an appropriate number of dynamical systems that describe, and can be

shared across, multiple observed robot demonstration trajectories.
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Figure 2.7. The Beta Process Autoregressive Hidden Markov Model (BP-AR-
HMM). Here, the Beta Process draw B has been separated into masses ω and pa-
rameters θ. Each parameter θk consists of r transition matrices A and a covariance
term e.

2.3.5 Nonparametric Bayesian Inference

Several nonparametric Bayesian methods have been discussed that can model

various types of data of unknown complexity and sidestep the problem of model se-

lection in a principled Bayesian manner. Thus far, these models have been explored

from a generative point of view, with little discussion of how inference can be per-

formed. In general, efficient Bayesian inference is model-specific and tailored to the

unique statistical properties of the model. However, there are several core techniques

and principles that are generally useful in performing interference in nonparametric

Bayesian models, which we will now introduce.

First, how is it possible to perform inference on a model that has an infinite number

of parameters? While it is not possible to optimize an infinite number of parameters,

for problems like clustering with the DPMM, where only the assignments of data

points to mixture components matter, it is possible to integrate the parameters out

and look for high-likelihood configurations of the auxiliary variables that assign each
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observed data point to a mixture component. Other models like the BP-AR-HMM

use incremental techniques like birth and death proposals [33] so that there are only a

finite number of parameters to work with at any given time; the number of parameters

can incrementally grow and shrink unboundedly, but is always practically limited by

the size of the data.

Inferring the MAP distribution of the hidden variables in nonparametric models

is often difficult, especially in the non-conjugate case. However, in applications like

clustering, only unbiased samples from the posterior are required, rather than the full

distribution. Leveraging this, Markov chain Monte Carlo (MCMC) sampling methods

can be used to draw samples from the posterior when inferring the full posterior

is impossible or intractable due to problems like high-dimensionality, difficulty of

integration, and non-conjugacy.

Define zi as the ith variable in a model and z−i as the set of all other variables in

z except zi. In cases where the conditionals p(zi|z−i) cannot be written as a known

distribution that can easily be sampled from, Metropolis-Hastings sampling [60, 42]

can be used to obtain samples of the joint distribution p(z). Algorithm 1 describes

Metropolis-Hastings sampling, given a starting configuration of the variables z(0),

a proposal distribution q(z|z′) that is easy to sample from, and an unnormalized

distribution p̃(z) = 1
Z p(z), where Z may be unknown. It is assumed that while p(z)

cannot easily be sampled from, p̃(z) can be easily evaluated at a single point.

Under mild conditions, the Metropolis-Hastings algorithm creates a Markov chain

whose stationary distribution approximates p(z). It does this through a careful choice

of the acceptance probability function that determines whether a step in the Markov

chain is accepted or rejected. This function is designed so that the distribution being

sampled at each time step is invariant and equal to the correct distribution p(z). For

more details on the derivation, see [12].
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The Metropolis-Hastings algorithm has several drawbacks, most notably that it

requires a “burn-in period”—a number of early samples that are thrown out, because

of the bias introduced by the starting configuration. Additionally, successive samples

are correlated, so if independent samples are desired, some number of samples must

be ignored between each independent sample. An appropriate number can often be

found by looking at the autocorrelation of samples.

Algorithm 1 Metropolis-Hastings Sampling

Given: Distributions p̃(z), q(z|z′)
Input: Starting configuration z(0)

1. Initialize z(0)

2. For τ = 0, . . . , T :

(a) Sample z∗ ∼ q(z|z(τ))

(b) Calculate acceptance probability:

A(z∗, z(τ)) = min

(
1,
p̃(z∗)q(z(τ)|z∗)
p̃(z(τ))q(z|z(τ))

)
(c) Sample u ∼ uniform(0, 1)

(d) Assign z(τ+1):

if A(z∗, z(τ)) > u then
z(τ+1) = z∗

else
z(τ+1) = z(τ)

end if

3. Return z(1), . . . , z(T+1)

When the conditional distributions p(zi|z−i) can be written in a standard form for

which the CDF can easily be calculated, a special case of Metropolis-Hastings sam-

pling called Gibbs sampling [34] can be used. Algorithm 2 outlines the Gibbs sampling

procedure. Gibbs sampling uses the conditionals p(zi|z−i) as proposal distributions,

cycling through and sampling from them one at a time. Instead of calculating an ac-

ceptance probability, it can be shown that under this choice of proposal distribution,
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the new draw should always be accepted. Thus, when the conditionals are available

in a standard form, Gibbs sampling can show substantial efficiency gains over more

general Metropolis-Hastings sampling.

Algorithm 2 Gibbs Sampling

Given: Conditionals p(z1|z−1), . . . , p(zM |z−M)
Input: Starting configuration z(0)

1. Initialize z(0)

2. For τ = 0, . . . , T :

Sample z
(τ+1)
1 ∼ p(z1|z(τ)

−1 )
...
Sample z

(τ+1)
M ∼ p(zM |z(τ)

−M)

3. Return z(1), . . . , z(T+1)

The full details of inference for the models described earlier are outside the scope

of this document, but there exist many good references on this topic [30, 65, 66, 86].
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CHAPTER 3

PORTABLE SUBGOAL DISCOVERY

3.1 Introduction

One of the simplest types of demonstrations are those in which the user specifies

domain-specific events that are task-critical, but does not need to demonstrate how

these events can be brought about. This requires the user to have some descriptive

knowledge about important features of the task but does not require them to be

skilled at the task itself. This method of demonstration places little onus on the user

and can be useful for tasks that are difficult for humans, as well as tasks in which the

number of different approaches are difficult to capture programmatically.

For example, consider the potentially useful subgoal of capturing the queen in

chess. A beginner at chess may know that this subgoal is useful, but not know how

to effectively accomplish it in many situations; an expert may know how to capture

the queen, but may have trouble explicitly characterizing all the possible paths to

this goal. Thus, it can be more efficient to simply specify the critical events, allow

the agent to discover an appropriate number of skills to bring about these events in

various situations, and use reinforcement learning to allow the agent to automatically

learn and improve skill policies from experience.

Reinforcement learning (RL) is often used to solve single tasks for which it is

tractable to learn a good policy with minimal initial knowledge. However, many real-

world problems cannot be solved in this fashion, motivating recent research on transfer

and hierarchical RL methods that allow knowledge to be generalized to new problems

and encapsulated in modular skills. Although skills have been shown to improve
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agent learning performance [7], representational power [55], and adaptation to non-

stationarity [25], most current methods lack the ability to automatically discover skills

that are transferable to related state spaces and novel tasks, especially in continuous

domains.

Skill discovery algorithms in reinforcement learning typically identify single states

or regions in state space that correspond to task-specific subgoals. However, such

methods do not directly address the question of how many distinct skills are appro-

priate for solving the tasks that the agent faces. This can be highly inefficient when

many identified subgoals correspond to the same underlying skill, but are all used

individually as skill goals. For example, opening a door ought to be the same skill

whether an agent is one inch or two inches away from the door, or whether the door

is red or blue; making each possible configuration a separate skill would be unwise.

Furthermore, skills created in this manner are often only transferable to tasks that

share identical state spaces, since corresponding subgoals across tasks are not merged

into a single skill goal.

In this chapter, we show that these problems can be overcome by collecting subgoal

data from a series of tasks and clustering it in an agent-space [54], a shared feature

space across multiple tasks. The resulting clusters generalize subgoals within and

across tasks and can be used as templates for portable skill termination conditions.

Clustering also allows the creation of skill termination conditions in a data-driven

way that makes minimal assumptions and can be tailored to the domain through

a careful choice of clustering algorithm. Additionally, this framework extends the

utility of single-state subgoal discovery algorithms to continuous domains, in which

the agent may never see the same state twice. We argue that clustering based on

a Dirichlet process mixture model is appropriate in the general case when little is

known about the nature or number of skills needed in a domain. Experiments in a
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continuous domain demonstrate the utility of this approach and illustrate how it may

be useful even when traditional subgoal discovery methods are infeasible.

3.2 Background

3.2.1 Reinforcement learning

Reinforcement learning (RL) [96] is a well-studied methodology that allows agents

to learn to maximize a reward signal through experience in an environment. The RL

paradigm usually models a problem faced by the agent as a Markov decision process

(MDP), expressed as M = 〈S,A, P,R〉, where S is the set of environment states the

agent can observe, A is the set of actions that the agent can execute, P (s, a, s′) is the

probability that the environment transitions to s′ ∈ S when action a ∈ A is taken in

state s ∈ S, and R(s, a, s′) is the expected scalar reward given to the agent when the

environment transitions to state s′ from s after the agent takes action a.

Given the reward function, the agent’s objective is to learn the optimal policy

π∗ that maximizs a measure of the cumulative reward it receives. Commonly, this

measure is the discounted cumulative reward, defined as
∑∞

i=0 γ
irt+i+1, where rt is the

reward received at time t and 0 ≤ γ < 1 is a discount factor that specifies to what

degree the agent prefers immediate rewards to future ones.

3.2.2 Options

The options framework [95] models skills as temporally extended actions that can

be invoked like primitive actions. An option o consists of an option policy πo : S×A→

[0, 1], giving the probability of taking action a in state s, an initiation set Io ⊆ S,

giving the set of states from which the option can be invoked, and a termination

condition βo : S → [0, 1], giving the probability that option execution will terminate

upon reaching state s. In this chapter, termination conditions are binary, so that

36



we can define a termination set of states, To ⊆ S, in which option execution always

terminates.

3.2.3 Agent-spaces

To facilitate option transfer across multiple tasks, Konidaris and Barto [54] pro-

pose separating problems into two representations. The first is a problem-space rep-

resentation which is Markov for the current task being faced by the agent, but may

change across tasks; this is the typical formulation of a problem in RL. The second

is an agent-space representation, which is identical across all tasks to be faced by

the agent, but may not be Markov for any particular task. An agent-space is often

a set of agent-centric features, like a robot’s sensor readings, that are present and

retain semantics across tasks. The decision about which features to include in the

agent-space typically requires some knowledge of the domain to determine which fea-

tures are likely to have an invariant interpretation across problem instances. If the

agent represents its top-level policy in a task-specific problem-space but represents

its options in an agent-space, the task at hand will always be Markov while allowing

the options to transfer between tasks.

Agent-spaces enable the transfer of an option’s policy between tasks, but are

based on the assumption that this policy was learned under an option termination

set that is portable; the termination set must accurately reflect how the goal of the

skill varies across tasks. Previous work using agent-spaces has produced portable

option policies when the termination sets were hand-coded; our contribution is the

automatic discovery of portable termination sets, so that such skills can be acquired

autonomously.

3.2.4 Expectation-maximization

Expectation-maximization (E-M) [24] is a general method for finding maximum

likelihood parameters for models with latent variables. E-M can be used to estimate
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the means µ1...µK , covariances Σ1...ΣK , and mixing coefficients π1...πK of a Gaussian

mixture model [12], where we specify a priori a number of Gaussians, K, and are

given data points x1...xN . A solution is iteratively computed through an expectation

step defined by:

γnk =
πkN (xn|µk,Σk)
K∑
j=1

πjN (xn|µk,Σk)

,

and a maximization step defined by:

Nk =
N∑
n=1

γnk

µk =
1

Nk

N∑
n=1

γnkxn

Σk =
1

Nk

N∑
n=1

γnk(xn − µk)(xn − µk)T

πk =
Nk

N
.

These steps are iterated until convergence of the log likelihood:

ln p(X|µ,Σ, π) =
N∑
n=1

ln

(
K∑
k=1

πkN (xn|µk,Σk)

)

After convergence, each data point xn can be given a hard assignment to the cluster

corresponding to the component with the maximum γnk for all k. This algorithm is

subject to local minima, so it may be beneficial to run it multiple times and to use

the resulting clustering with the highest log likelihood—in our experiments, we use

10 repetitions. Also, due to numerical precision issues, some of the quantities above

must be approximated or rescaled when actually implementing the algorithm.
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3.2.5 The Infinite Gaussian Mixture Model

Many popular clustering algorithms require the number of data clusters to be

known a priori or use heuristics to choose an approximate number. By contrast,

Dirichlet process mixture models (DPMMs) provide a non-parametric Bayesian frame-

work to describe distributions over mixture models with an infinite number of mixture

components. One type of DPMM can be implemented as an infinite Gaussian mix-

ture model (IGMM) in which all parameters are inferred from the data [86]. The

generative model for the IGMM can be written as:

G|α,G0 ∼ DP (α,G0)

θi|G ∼ G

xi|θi ∼ N (θµi , θ
Σ
i ),

where parameters θi consist of a mean θµi and covariance θΣ
i of a Gaussian.

Gibbs sampling is used to generate samples from the posterior distribution of

the IGMM and adaptive rejection sampling [36] is used for the probabilities which

are not in a standard form. After a “burn-in” period, unbiased samples from the

posterior distribution of the IGMM can be drawn from the Gibbs sampler. A hard

clustering can be found by drawing many such samples and using the sample with

the highest joint likelihood of the class indicator variables. We use a modified IGMM

implementation written by M. Mandel.1

3.3 Latent Skill Discovery

To aid thinking about our algorithm, subgoals can be viewed as samples from the

termination sets of latent options that are implicitly defined by the distribution of

1Source code can be found at http://mr-pc.org/work/
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tasks, the chosen subgoal discovery algorithm, and the agent definition. Specifically,

we define the latent options as those whose termination sets contain all of the sampled

subgoal data and that maximize the expected discounted cumulative reward when

used by a particular agent on a distribution of tasks (assuming optimal option policies

given the termination sets). When many such maximizing sets exist, we assume that

the latent options are one particular set from amongst these choices; for our discussion,

the particular choice does not matter, but it is important to have a single set.

Therefore, our goal is to recover the termination sets of the latent options from

the sampled subgoal data; these can be used to construct a library of options that

approximate the latent options and have the following desirable properties:

• Recall: The termination sets of the library options should contain a maximal

portion of the termination sets of the latent options.

• Precision: The termination sets of the library options should contain minimal

regions that are not in the termination sets of the latent options.

• Separability: The termination set of each library option should be entirely

contained within the termination set of some single latent option.

• Minimality: A minimal number of options should be defined, while still meeting

the above criteria. Ideally, this will be equal to the number of latent options.

Most of these properties are straightforward, but the importance of separability should

be emphasized. Imagine an agent that faces a distribution of tasks with several latent

options that need to be sequenced in various ways for each task. If a clustering

breaks each latent option termination set into two options (minimality is violated,

but separability is preserved), some exploration inefficiency may be introduced, but

each option will reliably terminate in a skill-appropriate state. However, if a clustering

combines the termination sets of two latent options into that of a single library option,
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the library option becomes unreliable; when the functionality of a single latent option

is needed, the combined option may exhibit behavior corresponding to either.

We cannot reason directly about latent options since we do not know what they

are a priori, so we must estimate them with respect to the above constraints from

sampled subgoal data alone. We assume that subgoal samples corresponding to the

same latent option form a contiguous region on some manifold, which is reflected in

the problem representation. If they do not, then our method cannot cluster and find

skills; we view this as a failing of the representation and not of our methodology.

Under this assumption, clustering of sampled subgoals can be used to approx-

imate latent option termination sets. We propose a method of converting clusters

parameterized by Gaussians into termination sets that respect the recall and preci-

sion properties. Knowing the number of skills a priori or discovering the appropriate

number of clusters from the data satisfies the minimality property. Separability is

more complicated, but can be satisfied by any method that can handle overlapping

clusters without merging them and that is not inherently biased toward a small num-

ber of skills. Methods like spectral clustering [69] that rely on point-wise distance

metrics cannot easily handle cluster overlap and are unsuitable for this sort of task.

In the general case where little is known about the number and nature of the latent

options, IGMM-based clustering is an attractive choice, as it can model any number

of clusters of arbitrary complexity; when clusters have a complex shape, an IGMM

may over-segment the data, but this still produces separable options.

3.4 Algorithm

We present a general algorithm shown in Algorithm 3 to discover latent options

when using any particular subgoal discovery method and clustering algorithm [73].

Note that some subgoal discovery methods discover state regions, rather than single

states; in such cases, sampling techniques or a clustering algorithm such as NPClu
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[41] that can handle non-point data must be used. We then describe a specific imple-

mentation of the general algorithm that is used in our experiments.

Algorithm 3 Portable Subgoal Discovery

Given: An agent A, task distribution τ , subgoal discovery algorithm D, and clus-
tering algorithm C

1. Compute a set of sample agent-space subgoals X = {x1, x2, ..., xn}, where X =
D(A, τ).

2. Cluster the subgoals X into clusters with parameters θ = {θ1, θ2, ..., θk}, where
θ = C(X). If the clustering method is parametric, then the elements of θ are
cluster parameters, otherwise they are data point assignments to clusters.

3. Define option termination sets T1, T2, ..., Tk, where Ti = M(θi), and M is a
mapping from elements of θ to termination set definitions.

4. Instantiate and train options O1,O2, ...,Ok using T1, T2, ..., Tk as termination
sets.

3.4.1 Experimental implementation

We now present an example implementation of the general algorithm that is used

in our experiments. As to not confound error from our clustering method with error

introduced by a subgoal discovery algorithm, we use a hand-coded binary salience

function; the main contribution of this work is the clustering strategy that enables

generalization and transfer, so we are not concerned with the details of any particular

subgoal discovery algorithm. This also demonstrates the possible utility of our ap-

proach, even when automatic subgoal discovery is inappropriate or infeasible. More

details on this are presented in the following sections.

First, a distribution of tasks and an RL agent are defined. We allow the agent

to solve tasks drawn from this distribution while collecting subgoal state samples

every time the salience function is triggered. This continues until 10,000 subgoal

state samples are collected. These points are then clustered using one of two different

clustering methods. Gaussian expectation-maximization (E-M), for which we must
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provide the number of clusters a priori, provides an approximate upper bound on

the performance of any clustering method based on a Gaussian mixture model. We

compare this to IGMM-based clustering that must discover the number of clusters

automatically. E-M is used as a baseline metric to separate error caused by not

knowing the number of clusters a priori from error caused by using a Gaussian mixture

model. Since E-M can get stuck in local minima, we run it 10 times and choose the

clustering with the highest log-likelihood. For the IGMM-based clustering, we let

the Gibbs sampler burn-in for 10,000 samples and then collect an additional 10,000

samples, from which we choose the sample with the highest joint likelihood of the

class indicator variables as defined by Rasmussen [86].

We now must define a mapping functionM that maps our clusters to termination

sets. Both of our clustering methods return a list of K sets of Gaussian means µ and

covariances Σ. We would like to choose a ridge on each Gaussian to be the cluster’s

termination set boundary; thus, we use Mahalanobis distance from each cluster mean,

where

DMahalanobis
i (x) =

√
(x− µi)TΣ−1

i (x− µi) ,

and the termination set Ti is defined as:

Ti(x) =

 1 : DMahalanobis
i (x) ≤ εi

0 : otherwise,

where εi is a threshold. An appropriate value for each εi is found automatically by

calculating the maximum DMahalanobis
i (x) of any of the subgoal state points x assigned

to the ith cluster. This makes each εi just large enough so that all the subgoal state

data points assigned to the ith cluster are within the εi-Mahalanobis distance of that

cluster mean, satisfying both our recall and precision conditions. Note that some

states can be contained in multiple termination sets.
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Using these termination sets, we create options that are given to the agent for a

100 episode “gestation period”, during which the agent can learn option policies using

off-policy learning, but cannot invoke the options. After this period, the options can

be invoked from any state.

3.5 Experiments

3.5.1 Light-Chain domain

We test the various implementations of our algorithm on a continuous domain

similar to the Lightworld domain [54], designed to provide intuition about the ca-

pabilities of our skill discovery method. In our version, the Light-Chain domain, an

agent is placed in a 10×10 room that contains a primary beacon, a secondary beacon,

and a goal beacon placed in random locations. If the agent moves within 1 unit of

the primary beacon, the beacon becomes “activated” for 30 time steps. Similarly, if

the agent moves within 1 unit of the secondary beacon while the primary beacon is

activated, it also becomes activated for 30 time steps. The goal of the task is for the

agent to move within 1 unit of the goal beacon while the secondary beacon is acti-

vated, upon which it receives a reward of 100, ending the episode. In all other states,

the agent receives a reward of −1. Additionally, each beacon emits a uniquely colored

light—either red, green, or blue—that is selected randomly for each task. Figure 3.1

shows two instances of the Light-Chain domain with different beacon locations and

light color assignments.

There are four actions available to the agent in every state: move north, south,

east, or west. The actions are stochastic, moving the agent between 0.9 and 1.1

units (uniformly distributed) in the specified direction. In the case of an action that

would move an agent through a wall, the agent simply moves up to the wall and

stops. The problem-space for this domain is 4-dimensional: The x-position of the

agent, the y-position of the agent, and two boolean variables denoting whether or
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not the primary and secondary beacons are activated, respectively. The agent-space

is 6-dimensional and defined by RGB range sensors that the agent is equipped with.

Three of the sensors describe the north/south distance of the agent from each of the

three colored lights (0 if the agent is at the light, positive values for being north of

it, and negative vales for being south of it). The other three sensors are identical,

but measure east/west distance. Since the beacon color associations change with

every task, a portable top-level policy cannot be learned in agent-space, but portable

agent-space options can be learned that reliably direct the agent toward each of the

lights.

The agent’s salience function is defined as:

salient(t) =

 1 : At time t, a beacon became activated for the first time in this episode.

0 : otherwise.

Our algorithm clusters subgoal state data to create option termination conditions

that generalize properly within a task and across tasks. In the Light-Chain domain,

there are three latent options—one corresponding to each light color. Generalization

within a task requires each option to terminate in any state within a 1 unit radius

of its corresponding light color. However, if the agent only sees one task, all such

states will be within some small fixed range of the other two lights; a termination set

built from such data would not transfer to another task, since the relative positions

of the lights might change. Thus, generalization across tasks requires each option to

terminate when it is close to the proper light, regardless of the observed positions

of the other two lights. When provided with data from many tasks, our algorithm

can discover these relationships between agent-space variables and use them to define

portable options. These options can then be used in each task, although in a different

order for each, based on that task’s color associations with the beacons.

45



Figure 3.1. Two instances of the Light-Chain domain. The numbers 1–3 indicate
the primary, secondary, and goal beacons respectively, while color signifies the light
color each beacon emits. Notice that both beacon placement and color associations
change between tasks.

Although we provide a broad subgoal (activate beacons) to the agent through

the salience function, our algorithm does the work of discovering how many ways

there are to accomplish these subgoals (three—one for each light color) and how to

achieve each of these (get within 1 unit of that light). In each instance of the task,

it is unknown which light color will correspond to each beacon. Therefore, it is not

possible to define a skill that reliably guides the agent to a particular beacon (e.g.

the primary beacon) and is portable across tasks. Instead, our algorithm discovers

skills to navigate to particular lights, leading the agent to beacons by proxy. Note

that this number of skills is independent of the number of beacons; if there were four

possible colors of light, but only three beacons, four skills would be created so that

the agent could perform well when presented with any three of the four colors in a

given task. Similarly, such a setup can be used in other tasks where a broad subgoal

is known, but the different means and number of ways of achieving it are unknown a

priori.
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3.5.2 Experimental structure

Two different agent types were used in our experiments: agents with and without

options. The parameters for each agent type were optimized separately via a grid

search. Top-level policies were learned using ε-greedy SARSA(λ) (α = 0.001, γ =

0.99, λ = 0.7, ε = 0.1 without options, α = 0.0005, γ = 0.99, λ = 0.9, ε = 0.1 with

options) and the state-action value function was represented with a linear function

approximator using the third order Fourier basis [53]. Option policies were learned

off-policy (with an option reward of 1000 when in a terminating state), using Q(λ)

(α = 0.000025, γ = 0.99, λ = 0.9) and the fifth order decoupled Fourier basis.

For the agents that discover options, we used the procedure outlined in the previ-

ous section to collect subgoal state samples and learn option policies. We compared

these agents to an agent with perfect, hand-coded termination sets (each option ter-

minated within 1 unit of a particular light) that followed the same learning procedure,

but without the subgoal discovery step. After option policies were learned for 100

episodes, they were frozen and agent performance was measured for 10 episodes in

each of 1,000 novel tasks, with a maximum episode length of 5,000 steps and a maxi-

mum option execution time of 50 steps. After each task, the top-level policy was reset,

but the option policies were kept constant. We compared performance of the agents

using options to that of an agent without options, tested under the same conditions.

This entire experiment was repeated 10 times.

3.6 Results

Figure 3.2 shows an IGMM-based clustering (only 1,000 points shown for read-

ability), in which the original data points are projected onto 2 of the 6 agent-space

dimensions at a time for visualization purposes, where cluster assignment is denoted

with unique markers. It can be seen that three clusters (the intuitively optimal num-

ber) have been found. In 3.2(a), the data is projected onto the green north/south
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and green east/west dimensions. A central circular cluster is apparent, containing

subgoals triggered by being near the green light. In 3.2(b), the north/south dimen-

sions of two different light colors are compared. Here, there are two long clusters

that each have a small variance with respect to one color and a large variance with

respect to the other. These findings correspond to our intuitive notion of skills in this

domain, in which an option should terminate when it is close to a particular light

color, regardless of the positions of the other two lights. Note that these clusters

actually overlap in 6 dimensions, not just in the projected view, since the activation

radii of the beacons can occasionally overlap, depending on their placement.

Figure 3.3(a) compares the cumulative time it takes to solve 10 episodes for agents

with no options, IGMM options, E-M options (with three clusters), and options with

perfect, hand-coded termination sets. As expected, in all cases, options provide a

significant learning advantage when facing a novel task. The agent using E-M op-

tions performs only slightly worse than the agent using perfect, hand-coded options,

showing that clustering effectively discovers options in this domain and that very

little error is introduced by using a Gaussian mixture model. Possibly more surpris-

ingly, the agent using IGMM options performs equally as well as the agent using

E-M options (making the lines difficult to distinguish in the graph), demonstrating

that estimating the number of clusters automatically is feasible in this domain and

introduces negligible error. In fact, the IGMM-based clustering finds three clusters

in all 10 trials of the experiment.

Figure 3.3(b) shows the performance of agents using E-M options where the num-

ber of pre-specified clusters varies. As expected, the agent with three options (the

intuitively optimal number of skills in this domain) performs the best, but the agents

using five and six options still retain a significant advantage over an agent with no op-

tions. Most notably, when less than the optimal number of options are used, the agent

actually performs worse than the baseline agent with no options. This confirms our
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Figure 3.2. IGMM clusterings of 6-dimensional subgoal data projected onto 2 di-
mensions at a time for visualization. The color/shape of each point denotes cluster
membership.
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intuition that option separability is more important than minimality. Thus, it seems

that E-M may be effective if the designer can come up with a good approximation of

the number of latent options, but it is critical to overestimate this number.

3.7 Discussion and Conclusions

We have demonstrated a general method for clustering agent-space subgoal data

to form the termination sets of portable skills in the options framework. This method

works in both discrete and continuous domains and can be used with any choice of

subgoal discovery and clustering algorithms. Our analysis of the Light-Chain domain

suggests that if the number of latent options is approximately known a priori, cluster-

ing algorithms like E-M can perform well. However, in the general case, IGMM-based

clustering is able to discover an appropriate number of options automatically without

sacrificing performance.

The collection and analysis of subgoal state samples can be computationally ex-

pensive, but this is a one-time cost. Our method is most relevant when a distribution

of tasks is known ahead of time and we can spend computational time up front to

improve agent performance on new tasks to be faced later, drawn from the same

distribution. This can be beneficial when an agent will have to face a large num-

ber of related tasks, like in DRAM memory access scheduling [46], or for problems

where fast learning and adaptation to non-stationarity is critical, such as automatic

anesthesia administration [62].

In domains where traditional subgoal discovery algorithms fail or are too compu-

tationally expensive, it may be possible to define a salience function that specifies

useful subgoals, while still allowing the clustering algorithm to decide how many

skills are appropriate. Such a setup is advantageous when a broad subgoal is known

a priori, but the various means and number of ways in which the subgoal might be

accomplished are unknown, as in our Light-Chain experiment. This extends the pos-
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sibility of skill discovery to a class of domains in which it may have previously been

intractable.

We make an assumption that the subgoal state data is organized in a way such

that an appropriate clustering algorithm can properly break it up into useful option

termination sets; this is a function of both the problem representation and the clus-

tering method. Therefore, future work may include using representation discovery

techniques such as manifold learning to re-represent the data in a way that is eas-

ier to cluster. All clustering methods are biased in some way, but we have reason to

believe that methods that preserve skill separability and favor a larger number of clus-

ters are preferable. Given these criteria, clustering methods built on Dirichlet process

mixture models are attractive, regardless of the shape, complexity, and overlap of the

latent option termination sets.

This work also assumes the existence of an appropriate agent-space for the dis-

tribution of tasks. While this can be difficult to design by hand for some problems,

previous work has proposed methods for automatically identifying agent-spaces em-

bedded within problem-spaces [94]. Furthermore, defining an agent-space is trivial

when an embodied agent is being used, as in robotic domains; the agent’s sensors

naturally define a feature space that is common to all tasks that the agent can face.

An agent with a library of appropriate portable options ought to be able to learn

novel tasks faster than an agent without options. However, as this library grows,

the number of available actions actually increases and agent performance may begin

to decline. This counter-intuitive notion, commonly known as the utility problem,

reveals a fundamental problem with using skills outside the context of hierarchies.

For skill discovery to be useful in larger problems, future work will have to address

basic questions about how to automatically construct appropriate skill hierarchies

that allow the agent to explore in simpler, more abstract action spaces as it gains

more skills and competency.
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Finally, the most fundamental problem with this approach is revealed when trying

to apply it in contexts where it is infeasible to collect a sufficient amount of subgoal

data, as it is in many robotic domains. Unless a very good simulator is available, it is

simply not possible to collect the amount of data necessary to properly characterize

the skill termination conditions in the way that we have shown in our simulated

experiment. This problem motivates the following chapters, in which we leverage

the additional structure that can be found in full demonstrations of robotic tasks to

discover useful, generalizable skills from a small number of examples.
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CHAPTER 4

LEARNING FROM UNSTRUCTURED
DEMONSTRATIONS

In the previous chapter, a nonparametric Bayesian algorithm was used to find

an appropriate number of subgoals, or skill termination sets, allowing an agent to

automatically learn skill policies using RL. However, this method proved to require

large amounts of execution data, becoming intractable for problems involving physical

robots. Fortunately, for tasks that can be demonstrated by an expert, a great deal

of additional structure that can be leveraged to make skill discovery and learning

more data efficient. In this chapter, we again use a nonparametric Bayesian model to

discover skills, but within the context of learning from demonstration. This, combined

with a coordinate frame detection algorithm, allows the robot to learn the necessary

skills for a multi-step task from a small number of demonstrations and generalize

them to novel situations.

4.1 Introduction

A simple system that allows end-users to intuitively program robots is a key step

in getting robots out of the laboratory and into the real world. Although in many

cases it is possible for an expert to successfully program a robot to perform complex

tasks, such programming requires a great deal of knowledge, is time-consuming, and

is often task-specific. In response to this, much recent work has focused on robot

learning from demonstration (LfD) [4], where non-expert users can teach a robot how

to perform a task by example. Such demonstrations eliminate the need for knowledge
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of the robotic system, and in many cases require only a fraction of the time that it

would take an expert to design a controller by hand.

Ideally, an LfD system can learn to perform and generalize complex tasks given

a minimal number of demonstrations without requiring knowledge about the robot.

Much LfD research has focused on the case in which the robot learns a monolithic

policy from a demonstration of a simple task with a well-defined beginning and end

[1, 45, 78]. This approach often fails for complex tasks that are difficult to model with

a single policy. Thus, structured demonstrations are often provided for a sequence of

subtasks, or skills, that are easier to learn and generalize than the task as a whole,

and which may be reusable in other tasks.

However, a number of problems are associated with segmenting tasks by hand and

providing individual skill demonstrations. Since the most natural way to demonstrate

a task is by performing it continuously from start to finish, dividing a task into compo-

nent skills is not only time-consuming, but often difficult—an effective segmentation

can require knowledge of the robot’s kinematic properties, internal representations,

and existing skill competencies. Since skills may be repeated within and across tasks,

defining skills also requires qualitative judgements about when two segments can be

considered a single skill, or in deciding the appropriate level of granularity at which to

perform segmentation. Users cannot be expected to manually manage this collection

of skills as it grows over time.

For this reason, recent work has aimed at automating the segmentation process

[17, 21, 40, 51, 52, 56]. Collectively, this body of work has addressed four key issues

that are critical to any system that aims to learn increasingly complex tasks from

unstructured demonstrations. (By unstructured, we refer to demonstrations that are

unsegmented, possibly incomplete, and may originate from multiple tasks or skills.)

First, the robot must be able to recognize repeated instances of skills and generalize

them to new settings. Second, segmentation should be able to be performed without
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the need for a priori knowledge about the number or structure of skills involved in

a task. Third, the robot should be able to identify a broad, general class of skills,

including object manipulation skills, gestures, and goal-based actions. Fourth, the

representation of skill policies should be such that they can be improved through

practice.

Although many of these issues have already been addressed individually, no sys-

tem that we are aware of has jointly addressed them all in a principled manner. Our

contribution is a framework that addresses all of these issues by integrating a prin-

cipled Bayesian nonparametric approach to segmentation with state-of-the-art LfD

techniques as a first step towards a natural, scalable system that will be practical for

deployment to end users. Segmentation and recognition are achieved using a Beta-

Process Autoregressive HMM [32], while Dynamic Movement Primitives [45] are used

to address LfD, policy representation, and generalization.

The combination and extension of these techniques allows a robot to segment and

identify repeated skills in unstructured human demonstrations, create baseline skill

policies from demonstration segments, leverage previous skill learning, and expand

its skill library as needed. This approach is a first step toward a fully integrated LfD

system that enables the long-term scaling up of task learning through the manage-

ment, extension, and reuse of a growing skill library. We demonstrate this approach

with experimental results using the PR2 mobile manipulator on both a simulated and

physical task.

4.2 Background

4.2.1 Bayesian Nonparametric Time Series Analysis

Hidden Markov models (HMMs) are generative Bayesian models that have long

been used to make inferences about time series data. An HMM models a Markov
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process with discrete, unobservable hidden states, or modes1, which generate obser-

vations through mode-specific emission distributions. A transition function describes

the probability of each mode at time t+ 1 given the mode at time t, but observations

are limited to being conditionally independent given the generating modes. Given

a set of observations, the forward-backward and Viterbi algorithms can be used to

efficiently infer parameters for the model and determine the most likely sequence of

modes that generated the data. Unfortunately, the number of modes must be speci-

fied a priori or chosen via model selection, which is prone to overfitting. This severely

limits the usefulness of HMM inference when dealing with unstructured data. How-

ever, recent work in Bayesian nonparametrics offers a principled way to overcome

these limitations.

The Hierarchical Dirichlet Process HMM (HDP-HMM) [99] uses a Hierarchical

Dirichlet process prior over the transition and emission distributions of an HMM.

The HDP-HMM allows for a potentially infinite number of latent modes to be discov-

ered in a fully Bayesian manner, without the risk of overfitting or the need for prior

knowledge. Since an HDP-HMM models an underlying Markov process, the proba-

bility of staying in the same mode for n consecutive steps is multiplicative, implying

geometric mode durations, which can cause rapid mode switching. This assumption is

incorrect for many real-world data sets, motivating the Sticky HDP-HMM [31], which

adds a learned self-transition bias for each mode. An HDP-HMM also assumes that

a mode emits observations that are independent and identically distributed, but this

is clearly not true in the case where the observations exhibit temporal dependencies.

Autoregressive HMMs [83] have been proposed to represent the these dependencies

by adding causal links between observations in the HMM, but it can be difficult to

represent the transition structure when the observation space is large or continuous.

1We refer to hidden states as modes, as to not confuse them with the RL concept of states.
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The Beta Process Autoregressive HMM (BP-AR-HMM) [32] is a recent model that

integrates many of the advantages of the aforementioned models, while extending

them and providing principled solutions to some of their shortcomings. Like the

Sticky HDP-HMM, it learns duration distributions from data. Improving on the

HDP-HMM mechanism for sharing modes across time series, the BP-AR-HMM uses

a beta process prior that leverages an infinite feature-based representation, in which

each time series can exhibit a subset of the total number of discovered modes and

switch between them in a unique manner. Thus, a potentially infinite library of

modes can be constructed in a fully Bayesian way, in which modes are flexibly shared

between time series, and an appropriate number of modes is inferred directly from the

data, without the need for model selection. The BP-AR-HMM is also autoregressive

and can describe temporal dependencies between continuous observations as a Vector

Autoregressive (VAR) process, a special case of a linear dynamical system (LDS). A

more complete description of the BP-AR-HMM can be found in Section 2.3.4.

4.2.2 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) [45] provide a framework in which dy-

namical systems can be described as a set of nonlinear differential equations in which

a linear point attractive system or limit cycle oscillator is modulated by a nonlin-

ear function. Stability and convergence are guaranteed by introducing an additional

canonical system, governed by linear equations that control a 0 to 1 phase variable

that attenuates the influence of the nonlinear function over time. DMPs provide sim-

ple mechanisms for LfD, RL policy improvement, and execution, which scale easily

in time and space and can support discrete or oscillatory movements [90]. In this

chapter, we focus on the use of point attractive systems for implementing discrete

movements with DMPs.

A discrete movement DMP can be described by the transformation system,
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τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (4.1)

τ ẋ = v, (4.2)

and the canonical system,

τ ṡ = −αs, (4.3)

for spring constant K, damping constant D, position x, velocity v, goal g, phase

s, temporal scaling factor τ , and constant α [77]. The nonlinear function f can

be represented as a linear combination of basis functions ψi(s), scaled by the phase

variable, s:

f(s) =
N∑
i=1

wiψi(s)s. (4.4)

We use the univariate Fourier basis [53] for our function approximator, though others

have commonly used normalized radial basis functions [77]. The spring and damping

constants can be set to ensure critical damping, but we still must find appropriate

weights wi for the nonlinear function f .

Given a demonstration trajectory x(t), ẋ(t), ẍ(t) with duration T , we can use LfD

to learn a set of values for these weights [90]. Rearranging equation 4.1, integrating

equation 4.3 to convert time to phase, and substituting in the demonstration for the

appropriate variables, we get:

ftarget(s) =
−K(g − x(s)) +Dẋ(s) + τ ẍ(s)

g − x0

. (4.5)

Setting the goal to g = x(T ), and choosing τ such that the DMP reaches 95% con-

vergence at time t = T , we obtain a simple supervised learning problem to find the

weights wi for the basis functions. We use standard linear regression for this task.
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This LfD procedure provides us with weights for a baseline controller that can be

further improved through practice using RL [90], though we do not do so.

Several experiments have shown DMPs to be a promising solution to problems of

control from both a computational and neuroscience perspective. DMPs have suc-

cessfully been used to teach high-DOF robots complex tasks such as bipedal walking

[90], an oscillatory tennis ball bouncing task [89], and skills for billiards [78]. In

addition to the computational successes and theoretical guarantees of DMPs, there

is experimental evidence that DMPs may provide a compelling account of human

behavioral and neurological data. DMPs have been used as a model to explain and

overturn the decades-old “2/3 power law” and the theory of planar piecewise move-

ment segmentation in humans and primates [89]. Other experiments have shown that

DMPs exhibit similar dynamical solutions for a ball bouncing task to those of human

subjects and provide an improved explanation of the coupling structure of discrete

and rhythmic motions [89]. Thus, DMPs provide a powerful framework in which to

model and understand skill representation in both robot and human actors.

4.3 Learning from Unstructured Demonstrations

We now introduce a framework which integrates four major capabilities critical for

the robust learning of complex tasks from unstructured demonstrations [75]. First,

the robot must be able to recognize repeated instances of skills and generalize them

to new settings. Given a set of demonstrations for a task, we use the BP-AR-HMM

to parse the demonstrations into segments that can be explained by a set of latent

skills, represented as VAR processes. The BP-AR-HMM enables these skills to be

shared across demonstrations and tasks by employing a feature-based representation

in which each skill corresponds to a feature that may or may not be present in

a particular trajectory. Furthermore, this representation allows each trajectory to
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transition between skills in a unique manner, so that skills can be identified flexibly

in a variety of situations, while still retaining globally shared properties.

Segmentation of trajectories into VAR models allows for tractable inference over

the time-series dependencies of observations and provides a parameterization of each

skill so that repeat instances can be recognized. This representation models how state

changes over time, based on previous state values, potentially allowing instances of the

same underlying skill to be recognized, even when performed with respect to different

coordinate frames. The BP-AR-HMM also models skill-dependent noise characteris-

tics to improve the identification of repeated skills. By recognizing repeated skills, a

skill library can be incrementally constructed over time to assist in segmenting new

demonstrations. Additionally, skill controllers that have been previously learned and

improved through practice can be reused on new tasks. Thus, recognition of repeated

skills can reduce the amount of demonstration data required to successfully segment

and learn complex tasks. Similarly, if we have multiple examples of a skill, we can

discover invariants that allow us to generalize the skill to new situations robustly. In

this chapter, we use these data to identify the coordinate frames that each skill takes

place in, as described in detail in the next section.

Second, segmentation must be able to be performed without the need for a priori

knowledge about the number or structure of skills involved in a task. The BP-AR-

HMM places a beta process prior over the matrix of trajectory-feature assignments,

so that a potentially infinite number of skills can be represented; the actual finite

number of represented skills is decided upon in a principled, fully Bayesian way. Skill

durations are modeled indirectly through a learned self-transition bias, preventing

skills from being over-segmented into many small components unnecessarily. The

BP-AR-HMM also provides reliable inference, having only a few free parameters that

are robust to a wide range of initial settings and hyperparameters that conform to
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the data as inference progresses. Thus, little tuning should be necessary for varying

tasks for a given robotic platform.

Third, our system must be able to identify a broad, general class of skills. Since

our segmentation method is based upon state changes, rather than absolute state

values, we are able to identify a wide array of movement types ranging from object

manipulation skills to gestures and goal-based actions. Furthermore, by identifying

the relevant coordinate frame of repeated skills, we can discover specific objects and

goals in the world that skills are associated with.

Fourth, the representation of skill policies should be such that they can be easily

generalized and improved through practice. To accomplish this, we represent skill

controllers in the DMP framework. The spring-damper mechanics of a DMP allow

for easy generalization, since the start and goal set-points can be moved, while still

guaranteeing convergence and maintaining the “spirit” of the demonstration through

the output of the nonlinear function. In addition to affording a simple LfD algorithm,

the linear function approximator used to represent the nonlinear forcing function

allows for skill improvement through practice by modifying the weights through an

RL algorithm such as the Natural Actor-Critic [81], though we do not do so in this

work.

4.4 Methodology

4.4.1 Demonstrations

For the first two experiments in the following section, we use a simulated Willow

Garage PR2 mobile manipulator and the ROS framework; the final experiment uses

a real PR2. The PR2 personal robot [107] is a two-armed robot platform with an

omnidirectional base designed for mobile-manipulation tasks. The PR2 is equipped

with 7-degrees of freedom compliant arms. The PR2 has a sensor suite useful for

mobile manipulation tasks, including a tilting laser scanner attached to the head,
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two stereo cameras, a Microsoft Kinect, a laser scanner mounted on the base, and a

body mounted IMU. By design, the PR2 does not have to deal with the many degrees

of freedom that come along with legs or complex hands, making it easier to design

interfaces, create controllers, and interact with the robot.

We used hand-coded controllers to provide task demonstrations to the simulated

robot. The robot is placed in a fixed position in front of a table, as shown in Figure

4.1. At the beginning of each demonstration, the robot looks downward and captures

a stereo image of the table. It then removes the flat table top and obtains a point

cloud for each of the objects on the table, recording their positions and dimensions.

On the real robot, object positions are determined by a visual fiducial placed on each

object of interest. Once the demonstration begins, data are collected by recording

the 7 joint angles in the left arm and the gripper state (a scalar indicating its degree

of closed-ness). Offline, the joint angles are converted to a series of 3D Cartesian

positions and 4D quaternion orientations, which are subsampled down to 10 Hz and

smoothed, along with the gripper positions.

4.4.2 Segmentation

We build on a BP-AR-HMM implementation made available by Emily Fox2 to

segment sets of demonstration trajectories. We preprocess the demonstrations so

that the variance of the first differences of each dimension of the data is 1, as in

Fox et al. [33], and adjust it to be mean zero. We choose an autoregressive order

of 1 and use identical parameters as those used by Fox on a human exercise motion

capture dataset [33], with one exception—in the simulated experiments, we adjust the

matrix-normal inverse-Wishart prior on the dynamic parameters, since the simulated

data have significantly different statistical properties from that in Fox et al. [33]. To

segment the demonstrations, we run the combined Metropolis-Hastings and Gibbs

2http://stat.wharton.upenn.edu/~ebfox/software
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Figure 4.1. A top-down view of the robot and table layout for 5 task demonstration
configurations (top) and 5 novel test configurations (bottom).
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sampler 10 times for 1000 iterations each, producing 10 segmentations. Qualitatively,

the segmentations across runs were very consistent, but to ensure good results, the

segmentation from the 10 runs with the highest log likelihood of the feature settings

is selected.

4.4.3 Coordinate Frame Detection

After the demonstrations are segmented, each segment is examined to infer the

coordinate frame that it is occurring in. Even though segments assigned to the same

skill correspond to similar movements, they may be happening in different frames

of reference. For example, a repeated reaching motion may be classified as being

generated by the same skill, but be reaching toward several different objects. In

order to robustly replay tasks in novel configurations, it is desirable to determine

which coordinate frame each segment is associated with, so that DMP goals can be

generalized correctly.

We define a coordinate frame centered on each known object, along with one

centered at the torso of the robot. Other frames could be used as well if desired,

such as a frame relative to the gripper, or a world frame. Then, the final point of

each segment is plotted separately in each of the coordinate frames, and clusters are

found in each frame by identifying points within a Euclidean distance threshold of

each other. The reasoning is that clusters of points indicate that multiple segments

have similar endpoints in a particular coordinate frame, suggesting that the skill often

occurs in that frame of reference.

After the points are clustered in each frame, all the singleton clusters are dis-

carded. If any remaining segment endpoint belongs only to a cluster in a single

coordinate frame, then the evidence is unambiguous, and that segment is assigned

to that coordinate frame. Otherwise, if a segment endpoint belongs to clusters in

multiple frames, it is simply assigned to the frame corresponding to the largest clus-
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World Torso Object 1 Object 2

Figure 4.2. An illustrative example showing the endpoints of seven trajectories
plotted with respect to four different coordinate frames. The solid circles denote
detected clusters, while the dotted circle indicates a candidate cluster that is rejected
as noise, since all associated points can be assigned to a potentially larger cluster.
In our experiments, this clustering happens in three dimensions, rather than two as
illustrated here.

ter. Figure 4.2 shows an example of this clustering process. It should be emphasized

that any coordinate frame inference method could be used in place of ours, and many

other skill invariants could be exploited. The purpose of this method is primarily to

demonstrate the utility of being able to segment and recognize repeated skills.

4.4.4 Task Replay

To perform a task in a novel configuration, we first determine the poses and

identities of objects in the scene, using either stereo data (simulated experiment) or

visual fiducials (real robot). The position of each object is then examined to find

the demonstration that begins with the objects in a configuration that is closest to

the current one in a Euclidean sense. We only consider demonstrations that have an

identified coordinate frame for every segment, so that the task will generalize properly.

A DMP is then created and trained using the LfD algorithm from section 4.2.2 for

each segment in the demonstration. However, rather than using the final point of a

segment as the goal of a DMP, each goal is adjusted based on the coordinate frame

that the segment takes place in. If the segment is associated with the torso frame, it
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requires no adjustment. Otherwise, if it is associated with an object frame, the goal

is adjusted by the difference between the object’s current position and its position in

the demonstration. Finally, the DMPs are executed in the sequence specified by the

demonstration. A plan is generated by each of the DMPs until the predicted state

is within a small threshold of the goal. Each plan is a Cartesian trajectory (plus

a synchronized gripper state) that is converted into smooth joint commands using

inverse kinematics and spline interpolation. Algorithm 4 provides a summary of our

method, along with the graphical overview shown in Figure 4.3.

Algorithm 4 Learning from Unstructured Demonstrations

Input: Demonstration trajectories T = (T1, . . . , TN), corresponding object pose ob-
servations O = (O1, . . . , ON), and current object poses Ocurrent

1. Segment the demonstrations with the BP-AR-HMM:

(segments, labels) = Segmentation(T)

2. Find coordinate frame assignments:

coord frames = CoordinateFrameDetection(segments, labels, O)

3. Learn params of a DMP for each segment:

dmps = LearnDmpParams(segments, coord frames)

4. Execute sequence of DMPs corresponding to the segment ordering of the most
similar demonstration:

demo num = NearestF irstObservation(Ocurrent,T)
ExecuteSequence(dmps, demo num)

4.5 Experiments

4.5.1 Experiment 1: Pick and Place (Simulated)

The first experiment demonstrates the ability of a robot in our framework to learn

and generalize a complex task by segmenting multiple task demonstrations, identi-

fying repeated skills, and discovering appropriate segment reference frames. Each

instance of the task begins with two blocks on the table—a smaller red block and a

larger green block. The robot always starts in a “home” configuration, with its arms
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at its sides so that its field of view is unobstructed. We provide 5 task demonstra-

tions for 5 different configurations of the blocks, as shown in the first row of Figure

4.1 (configurations 1 and 5 are identical, but the demonstration is performed at a

higher speed in the latter configuration). In each demonstration, the robot first picks

up the red block, returns to the home position, places the red block on the green

block, and returns to the home position once more.3

Figure 4.4 shows the results of segmentation. The top row shows one colored

bar per skill, while the bottom row displays the skill divisions overlaid on a plot of

each of the 8 dimensions of the demonstration data. The BP-AR-HMM consistently

recognizes repeated skills across demonstrations, even though they occur at differ-

ing speeds and with different goals. The segmentations are highly similar, with the

exception of the second demonstration, which identifies one additional skill that the

others do not have. It is worth noting that despite the extra skill being inserted in

the segmentation, the rest of the segmentation is essentially the same as the others.

This is a direct benefit of the BP-AR-HMM allowing each trajectory to have its own

switching dynamics, while sharing global features.

Next, we examine task generalization to 5 novel test configurations, shown in the

bottom row of Figure 4.1, to determine whether our segmentation produced seman-

tically meaningful results. Our method was able to successfully identify a coordinate

frame for every segment except the extra segment in demonstration two (which is

impossible to infer, since there is only one example of it). Using this information,

the robot performed task replay as described in section 4.4.4. In all 5 novel configu-

3Due to the planning delay in the hand written controllers there are some pauses between segments
which we remove to avoid giving the segmentation algorithm an unfair advantage.
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(a) Starting pose (b) Reaches toward red block
(red block frame)

(c) Picks up red block
(red block frame)

(d) Returns to home
position (torso frame)

(e) Places red block
on green block

(green block frame)

(f) Returns to home
position (torso frame)

Figure 4.5. Successful task replay on a novel test configuration for the pick and
place task, demonstrating generalization. From left to right: the starting pose and
the final point of each executed DMP. Automatically detected coordinate frames used
for each segment are listed in parentheses.

rations, the robot was able to successfully generalize and place the red block on the

green block.4

Figure 4.5 shows the starting state of the robot and the resulting state after each

DMP is executed in a novel test configuration. Here, it becomes clear that the results

of both the segmentation and coordinate frame detection are semantically intelligible.

The first skill is a reaching skill to right above the red block. The second skill moves

down, grasps the red block, and moves back upward. The third skill goes back to the

home position. The fourth skill reaches toward the green block, moves downward,

4The green block in novel configuration 4 was partially out of the robot’s visual range, causing
part of it to be cut off. Thus, it placed the red block too close to the edge of the green block, causing
it to tumble off. However, given the available information, it acted correctly.
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releases the red block and moves back upward. Finally, the fifth skill goes back to

the home position. Notice that the second and fourth segments are identified by the

BP-AR-HMM as being the same skill, despite having different relevant coordinate

frames. However, in both skills, the arm moves down toward an object, changes the

gripper pose, and moves back upward; the reach from the home position toward the

green block gets rolled into this skill, rather than getting its own, seemingly because

it is a smoother, more integrated motion than the reach and grasp associated with

the red block.

Given the commonality of pick and place tasks in robotics, success in this domain

may seem trivial. However, it is important to keep in mind that the robot is given

only demonstrations in joint space and absolutely no other a priori knowledge about

the nature of the task. It does not know that it is being shown a pick and place task

(or doing grasping at all). It is unaware of the number of subtasks that comprise

the task and whether the subtasks will be object-related, gestural, or have other

sorts of objectives. Beginning with only motion data and a simple assumption about

the types of coordinate frames that are relevant to inspect, the robot is able to

automatically segment and generalize a task with multiple parts, each having its own

relevant coordinate frame.

4.5.2 Experiment 2: Using a Skill Library (Simulated)

The first experiment demonstrated that our method can learn and generalize a

complex task when given a sufficient number of demonstrations. However, this type of

learning will not scale up to more complex tasks easily unless the robot can incremen-

tally build a library of skills over time that allows it to quickly recognize previously

seen skill / coordinate frame combinations and reuse complex skill controllers that

have been improved through practice. To demonstrate our system’s capability to

recognize skills in this manner, we simulate a previously existing library of skills by
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providing the robot with a pre-segmented demonstration of the previous experiment.

We then give it a single demonstration of the task to see if it can segment it using

the “library” of skills.

The BP-AR-HMM correctly recognized each of the skills in the task as being a

skill from the pre-existing library. Thus, assuming the robot already had learned

about these skills from previous experiences, it would allow a user to provide only a

single demonstration of this task and have the robot correctly segment and generalize

the task to new configurations. This serves as a proof-of-concept that our proposed

framework has the right basic properties to serve as a building block for future models

that will scale up LfD to more complex tasks than have previously been possible. It

also emphasizes that our method can learn tasks from unstructured demonstrations,

as the majority of demonstrations were not even of the task in question, but of a

sub-component, unbeknownst to the robot. This is a significant result, as it suggests

that a similar technique could be used to incrementally build a growing library of

skills over time that could be leveraged to perform one-shot learning of complex tasks

from demonstration.

4.5.3 Experiment 3: The Whiteboard Survey (Physical PR2)

Finally, we demonstrate that our method is scalable to a real robot system, using

a physical PR2. Figure 4.6 shows one configuration of a task in which the PR2 must

fill out a survey on a whiteboard by picking up a red marker and drawing an ’X’ in

the checkbox corresponding to “robot” while ignoring the checkboxes for “male” and

“female”. Each checkbox has its own unique fiducial placed one inch to the left of

it, while the container that holds the marker has a fiducial directly on its front. The

positions of the checkboxes and the marker container on the whiteboard, as well as the

position of the whiteboard itself, change between task configurations. Two kinesthetic

demonstrations in each of three task configurations (various arrangements of the
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Figure 4.6. Example configuration of the whiteboard survey task.

checkboxes and marker box) were provided, along with one additional demonstration

in which the marker is picked up and then lifted above the robot’s head. Kinesthetic

refers to demonstrations in which the robot is physically manipulated by the user to

perform the task. An example demonstration is shown in Figure 4.7.

Figure 4.8 shows that the BP-AR-HMM generally parses the demonstrations into

three main segments, corresponding to reaching for the marker, grasping and lifting

the marker, and drawing an ’X’ in the checkbox. However, the reaching and draw-

ing segments are considered to be the same skill. This appears to happen because

both motions are statistically similar, not in terms of absolute position, but in the

way that the positions evolve over time as a VAR system. Our coordinate frame

detection successfully disambiguates these skills and splits them into two separate

skill/coordinate frame combinations. Demonstrations 1, 2, and 5 contain a small

additional skill near the beginning that corresponds to a significant twitch in the

shoulder joint before any other movement starts, which appears to correspond to the

teacher’s first contact with the arm, prior to the demonstration. Finally, although

the last demonstration is of a different task, the reaching and grasping/lifting skills

are still successfully recognized, while the final motion of lifting the marker over the
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Figure 4.7. A kinesthetic demonstration of the whiteboard survey task.

robot’s head is given a unique skill of its own. Despite having only a single example

of the over-head skill, the BP-AR-HMM robustly identified it as being unique in 50

out of 50 trial segmentations, while also recognizing other skills from the main task.

After the learning phase, the robot was able to successfully replay the task in three

novel configurations, an example of which is shown in Figure 4.9.

4.6 Discussion

In this chapter, we presented a novel method for segmenting demonstrations, rec-

ognizing repeated skills, and generalizing complex tasks from unstructured demon-

strations. Though previous research has addressed many of these issues individually,

our method aims to address them all in a single integrated and principled framework.
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(a) Starting pose (b) Reaches for marker
(marker frame)

(c) Grasps marker and lifts toward check-
box (robot checkbox frame)

(d) Draws ’X’
(robot checkbox frame)

Figure 4.9. Successful task replay on a novel test configuration for the whiteboard
survey task, demonstrating generalization. From left to right: the starting pose and
the final point of each executed DMP. Automatically detected coordinate frames used
for each segment are listed in parentheses.
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By using the BP-AR-HMM and DMPs, we are able to experimentally learn and gen-

eralize a multiple step task on the PR2 mobile manipulator and to demonstrate the

potential of our framework to learn a large library of skills over time.

Our framework demonstrates several of the critical components of an LfD system

that can incrementally expand a robot’s competencies and scale to more complex tasks

over time. However, this work is only a first step toward such a system, and leaves a

great number of directions open for future research. A more nuanced method must

be developed for managing the growing library of skills over time, so that inference in

our model does not become prohibitively expensive as the size of the library grows;

currently inference in the BP-AR-HMM takes several minutes for only 7 demonstra-

tions on a laptop with a 2.2 GHz Intel quad-core i7 processor and 8 GB of RAM. One

possible way to mitigate this in the future is to “freeze” some skills in the library,

such that they can be recognized in new demonstrations, but are no longer candidates

for modification during inference.

While our model allows for DMP policy improvement through RL, we did not

address such improvement experimentally in this chapter. Future work may use

techniques such as inverse RL [1] to derive an appropriate reward function for each

skill so that policy improvement can be effectively applied. A learned reward (cost)

function could also be used to in conjunction with a motion planner as a more adaptive

alternate to DMP motion generation.

There are also many more opportunities to take advantage of abstractions and

invariants in the data; searching for skill coordinate frames is a very simple example

of a much richer class of generalization techniques. For example, in this chapter, we

constructed DMPs from and ordering of single segments that came from the task

configuration most similar to the current one that the robot faces. This is a rather

inflexible way to sequencing skills that can lead to failure in cases where errors might

be made during execution or where adaptive behavior is required. In the next chapter,
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we examine more intelligent methods for skill sequencing that can be applied to make

better use of the demonstration data that we have available. By leveraging additional

structure, the robot can learn to classify and sequence skills adaptively based on

observations and learn through interactive corrections how to deal with contingencies

encountered during execution.
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CHAPTER 5

INCREMENTAL SEMANTICALLY GROUNDED SKILL
DISCOVERY

In the previous chapter, a novel system was introduced to segment demonstra-

tions into motion categories, find appropriate coordinate frames for these motions,

and create skill controllers for each category using DMPs. However, task replay con-

sisted of essentially blind replay of a sequence of skills that had been seen previously,

which can lead to brittle performance in many tasks. More complex tasks often have

multiple valid execution paths, contingencies that may arise during execution, or ex-

hibit partial observability and/or perceptual aliasing. We introduce a novel method

to further subdivide discovered motion categories into semantically grounded states

in a finite-state representation of a task, enabling intelligent, adaptive replay. Per-

formance can then be incrementally improved through interactive corrections that

provide additional data where they are most needed. Together, this allows for in-

telligent discovery and sequencing of semantically grounded skills to create flexible,

adaptive behavior that can be improved through natural interactions with the robot.

5.1 Introduction

Automatic segmentation and recognition of repeated structure in a task makes

learning more tractable, enables data reuse and transfer, and can reveal exploitable

invariants in the data, as shown in the previous chapter. However, in all but the sim-

plest of tasks, a fully autonomous, flexible system requires the automated sequencing

of these primitives to perform a task, rather than rote execution in a fixed order.
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Current LfD methods take a variety of approaches to sequencing, ranging from as-

sociative skill memories [79], in which all primitives are made available for selection

at each decision point, to other schemes in which primitives are executed in a fixed

order [2, 75]. We argue that a method between these two extremes is most effective,

in which there is flexibility in choosing what primitive is scheduled next, but the

choices are limited at each decision point to keep the discriminative task tractable as

the number of primitives grow.

A novel method is presented to sequence automatically discovered primitives that

makes minimal assumptions about the structure of the task and can sequence primi-

tives in previously unseen ways to create new, adaptive behaviors. As in the previous

chapter, a Beta Process Autoregressive Hidden Markov Model is used to segment con-

tinuous demonstration data into motion categories with associated coordinate frames.

Tests are then performed on the motion categories to further subdivide them into se-

mantically grounded movement primitives, in which exemplars of the motions are

correlated with data about observed actions, objects, and their relationships. These

grounded primitives are then used to create a finite-state representation of the task,

in which each state has an associated set of exemplars of the relevant movement

primitive, plus a trained classifier used to determine state transitions. The resulting

finite-state automaton (FSA) can then be used to replay a complex, multi-step task

[74].

However, initial demonstrations do not always cover all the possible contingencies

that may arise during the execution of a task. When most LfD methods fail at task

replay, the onus is on the user to design new demonstrations that can fill in the

gaps in the robot’s knowledge. Instead, a data-driven approach is introduced that

provides additional data where they are most needed through interactive corrections.

These corrections are provided by the user at the time of failure and are treated as

additional demonstrations that can be segmented, used to improve the structure of the
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FSA, and provide additional examples of relevant primitives. Together, this allows for

iterative, incremental learning and improvement of a complex task from unsegmented

demonstrations. The utility of this system is shown on a complex furniture assembly

task using a PR2 mobile manipulator.

5.2 Constructing Finite-State Task Representations

When performing complex multi-step tasks, it is vital to not just have the right

skills for the task, but also to choose and execute skills intelligently based on the

current situation. Tasks cannot always be broken down into a simple linear chain of

controllers; rather, many complex tasks require the ability to adaptively handle novel

and changing situations in addition to unforeseen contingencies that may arise. Some

recent work has focused on developing associative skill memories [79] to adaptively

match sensory input with predefined skills to perform a task. However, such skills

cannot always be known ahead of time, and more structure than pure associativity

may be required when there is perceptual aliasing [39] in the task. By automatically

segmenting primitives from data and constructing a finite-state representation of a

task, it is possible to combine skill-associativity with a powerful state framework

that enables robots to automatically discover appropriate skills, reuse data efficiently,

adapt to novel situations, and handle perceptual aliasing.

A finite-state automaton (FSA) is a natural representation for modeling transi-

tions between discrete primitives. By using DMPs at a low-level to represent move-

ment primitives and an FSA for high-level decision making, the advantages of both

can be gained, allowing the representation of virtually any continuous motion, while

also being able to flexibly make critical choices at a small number of discrete decision

points. To define an FSA that represents a task, a notion of states and transitions is

required. A state in the FSA ideally corresponds to a semantically meaningful step or

action in the task that implies that a particular primitive should be executed. Each
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state stores a list of exemplars of a particular primitive that have been observed from

demonstration. Transitions are dictated by a mapping from observations to successor

states, which can be implemented as a multi-class classifier.

However, segmentation of demonstrations via the BP-AR-HMM provides us with

motion categories based on statistical properties of the movements, not semantically

meaningful actions. For example, a small twist of the wrist required as part of a grasp

can have a nearly identical VAR formulation as the continuous twisting required to

screw a piece in during an assembly task; these movements have different seman-

tic meanings, but similar statistical properties. So how can semantically grounded

primitives be created from motion categories?

We make the assumption that exemplars of a semantically grounded primitive will

generally fall into the same motion category (i.e. have similar statistical properties),

but that all examples of a particular motion category will not necessarily belong to

the same primitive. Following this logic, exemplars of motion categories can be split

into multiple groups that correspond to grounded primitives by using semantically

meaningful splitting criteria. This can be achieved by performing splits based on

the correlation of state visitation history with other types of semantic information,

such as the exemplar’s coordinate frame, length, or successor state. The state visi-

tation history of an exemplar (the states in the FSA that the previous segments in

the demonstration trajectory belong to) is a critical piece of information for split-

ting, because it provides a notion of sequence—examples of a motion category may

be repeated several times in a task, but may correspond to semantically different

primitives that are appropriate during various phases of task progress. In this case,

only parent states are examined, i.e. one-step histories, due to the relative sparsity

of data in an LfD setting.

If a semantic difference between exemplars at a single state (such as the coordi-

nate frame of the exemplar) can be predicted by the parentage of the exemplar, then
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splitting the state has several benefits. First, it helps to determine which exemplars

should be considered in different phases of the task. Such a split reduces the number

of possible transitions from a single state, removing some of the burden from the

transition classifiers and mitigating perceptual aliasing, where perceptual informa-

tion alone is not enough to correctly determine the next action. This also has the

effect of minimizing the number of inappropriate exemplars that can be chosen at a

particular state, while maximizing data reuse by only splitting when it is warranted

by correlative evidence—splitting at every node with multiple parents would induce

a very strong notion of sequence, but would over-segment the data into many states,

each of which would have very few associated exemplars and could only be executed

in an order that had previously been observed.

It is not expected that this process will always work on the first try, due to factors

like unforeseen contingencies and lack of sufficient data. Thus, a way to incrementally

improve the FSA structure and task performance is required. For this, a data-driven

method of providing interactive corrections is used that allows the user to halt task

execution at any time and provide a corrective demonstration of the remainder of

the task. This provides additional data where they are most needed—situations in

which intervention is required for successful execution—through a natural, intuitive

mechanism. Corrections can be used to account for unanticipated situations that

were not covered in the original demonstrations, contingencies like missing a grasp

or dropping an object, or incorrect movement sequencing. These corrections can

then be treated as additional demonstrations and jointly segmented with the rest of

the existing data, producing an improved FSA structure with additional exemplars

of relevant primitives. This iterative process can be repeated as needed to address

shortcomings in performance as errors occur. Figure 5.1 shows an overview of the

whole system, which is described in greater detail in the following section.
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5.3 Methodology

5.3.1 Demonstrations and segmentation

For all experiments, a PR2 mobile manipulator is used as the robotic platform.

Task examples are provided to the robot via kinesthetic demonstrations, in which the

teacher physically moves the arms of the robot to perform the task and uses a joystick

to set the degree of closure of the grippers. AR tags, a type of visual fiducial, are

used to track relevant pre-determined task objects using combined visual and depth

data from a head-mounted RGB-D camera on the PR2.

During the ith demonstration, the pose information Xi = (xi,1, . . . , xi,τi) with xi,t ∈

SE(3)× SE(3)×R2 is recorded for each time t at 10 Hz, consisting of the Cartesian

pose of the end effector plus gripper pose (1-D measure of openness) for both arms.

The active arm can be changed by pressing a button on a joystick; the previously

active arm becomes stiff, the inactive arm becomes loose and ready for interaction,

and the arm switch event is recorded for later use. Additionally, a filtered estimate

of the last observed Cartesian pose of all n task objects Oi = (oi,1,1, . . . , oi,n,τi), with

oi,j,t ∈ SE(3) recorded for each object j at each time step t. At the beginning

of the task, if not all relevant task objects are visible, the robot will prohibit the

demonstration from starting and look around until an initial pose is known for all n

objects.

After a set of m demonstrations (X1, O1), . . . , (Xm, Om) of the task have been

collected in various configurations, the robot pose information X1, . . . , Xm can be

segmented and labeled by the BP-AR-HMM using the same procedure and parameters

as Niekum et al. [75]. However, this is done separately for data that comes from each

arm, forcing segment breaks in locations where the active arm is switched and creates

a separate library of motion categories for each arm.

The segmentation process provides a set of segment lists S1, . . . , Sn, such that Si =

(si,1, . . . , si,qi) and concat(si,1, . . . , si,qi) = Xi. Additionally, segmentation returns
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corresponding label vectors L1, . . . , Lm, such that Li = (li,1, . . . , li,qi), where li,j ∈ Z

is a label for the jth segment in Si, si,j. Each integer label corresponds to a unique

motion category discovered by the BP-AR-HMM segmentation that is parameterized

as a VAR process. Finally, the clustering method described in Niekum et al. [75]

is used to automatically discover coordinate frame assignment lists A1, . . . , An with

Ai = (ai,1, . . . , ai,qi) and ai,j ∈ {‘object 1’, . . . , ‘object n’, ‘torso’, ‘none’}.

5.3.2 FSA construction

Defining the set L∗ as the union of all the unique labels from the segment label

vectors L1, . . . , Lm, a finite-state automaton that represents the task can begin to

be constructed by creating nodes1 N1, . . . , Nu, with corresponding labels L∗1, . . . , L
∗
u,

where u = |L∗|. For k ∈ {1, . . . , u}, each node Nk is assigned a set Ek of all exemplars

si,j that have the same label as Nk, and the label of the previous and next segments

is also recorded (or start or end if there is no previous or next segment), which we

denote as prev(s) and next(s). A u×u transition matrix T can then be constructed,

where each entry Ta,b is set to 1 if there exists a directed transition from Na to Nb,

and 0 otherwise. This matrix is initialized using the sequence data, such that:

Ta,b = 1⇔ ∃i, j | (si,j = L∗a) ∧ (si,j+1 = L∗b).

Once this baseline FSA is constructed, nodes can be split by looking for differences

amongst groupings of exemplars, based on the label of the segment that preceded

the exemplar in the observed execution; in other words, separating exemplars based

on groupings of the node’s parents in the FSA. For each node Nk with more than

one parent, each possible split of the parents into two disjoint sets, Pin and Pout is

1The term ‘node’ is used rather than ‘state’ to avoid confusing it with the current observation or
state of the robot.
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examined, with associated exemplar sets Ein and Eout, and descendant sets Din and

Dout such that:

Ein := {e : e ∈ Ek | prev(e) ∈ Pin}

Eout := {e : e ∈ Ek | prev(e) ∈ Pout}

Din := {next(e) : e ∈ Ein}

Dout := {next(e) : e ∈ Eout}

Three criteria are then used to determine if the node should be split into two: (a)

if the unique set of coordinate frame assignments corresponding to the exemplars in

Ein is disjoint from that of Eout, (b) if the unique set of next segment labels (the

next(e)) corresponding to the exemplars in Ein is disjoint from that of Eout, and (c)

if the segment lengths of the exemplars in Ein come from a significantly different

distribution than those in Eout. The difference in the length distributions is tested

using the Kolmogorov-Smirnov test [58] as follows. Let Fin and Fout be the empirical

cumulative distribution functions of the lengths of the exemplars in Ein and Eout.

The test statistic z is then calculated based on the maximum distance between the

empirical CDFs, without making any assumptions about the distributions involved:

G = sup
x
|Fin(x)− Fout(x)|

z = G

√
|Ein| |Eout|
|Ein|+ |Eout|

.

This suggests the node should be split if z < Kα, the critical value for significance

value α. Here, α = 0.05 is used.

If any of the three tests indicate to split the node, the node Nk is deleted and two

new nodes Nk−A and Nk−B are created with exemplars Ek−A and Ek−B, such that:
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Tp,Nk−A = 1⇔ p ∈ Pin

Tp,Nk−A = 1⇔ p ∈ Pout

TNk−B ,d = 1⇔ d ∈ Din

TNk−B ,d = 1⇔ d ∈ Dout

Ek−A := Ein

Ek−B := Eout

This process, which we call semantic splitting, is then repeated, iterating over all the

nodes until no more splits can be made.

Once the structure of the FSA is finalized, then a classifier is trained for each

node that has multiple descendants. This is used as a transition classifier to determine

which node to transition to next, once execution of a primitive at that node has taken

place. For this task, a nearest neighbor classifier is used, but could be replaced by

any multi-class classifier. For each classifier Ck corresponding to node Nk, training

examples Yk = (yk,1, . . . , yk,rk) are provided, corresponding to the final observation of

the robot pose and object poses during each exemplar, plus a class label corresponding

to the label of the node the given exemplar transitioned to next. Thus, training

examples are recorded as y ∈ SE(3)1 × · · · × SE(3)n+2 × R2, where n is the number

of task objects. One exception to the above rule is the start node, which has no

data associated with it; for this, the first observation of the first segment of the

demonstration is used as training data.

Each classifier Ck is then trained using the training examples Yk, along with their

appropriate class labels. Once the classifier has been trained, future observations y

can be classified so that appropriate transitions can be made at each decision point.
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5.3.3 Task replay

Given a novel situation, the FSA can be used to replay the task by beginning at

the start node that has no exemplars associated with it. The current observation is

classified using Cstart to determine which node to transition to first. This is a standard

node Ni that contains exemplars Ei. To execute an appropriate movement, a DMP

must be constructed from the exemplars; a single exemplar is chosen by examining the

first observations associated with each exemplar and choosing the nearest candidate

to the current observation y. The chosen exemplar is used to learn the weights for a

DMP as described in Section 4.2.2.

To execute the DMP, the goal is shifted based on the coordinate frame that the

segment was assigned to, so that the relative 6-DOF offset of the goal from the

current origin of the coordinate frame is the same as it was in the exemplar. Then,

the current robot pose is given as a starting state and the DMP is used to generate

a movement plan to the goal with a resolution of 0.1 seconds. The plan is then

executed, followed by a transition dictated by the node’s transition classifier, using

the current observation as input. This process is repeated until the end node is

reached, a timeout occurs, or the robot is manually stopped by the user.

5.3.4 Interactive corrections

At any time during execution, the user can push a button on the joystick to stop

the robot so that an interactive correction can be made. The robot immediately

stops execution of the current movement and switches modes to accept a kinesthetic

demonstration from the user. From the beginning of execution, the robot has been

recording pose data in case of an interactive correction, and it continues to record as

the user provides a demonstration of the remainder of the task.

After any number of replays and interactive corrections have taken place, the

corrections can be integrated with the existing data for improved performance. All
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the old data plus the recordings from the interactive corrections are segmented from

scratch; we do not begin with the old burned-in BP-AR-HMM, because the addi-

tion of new data may require a significantly different segmentation, and we wish to

avoid systematic biasing of the sampling process. Following segmentation, the FSA

is reconstructed as described above with the new data included, providing additional

exemplars and refining the structure of the FSA. Algorithm 5 provides pseudocode

for this iterative process.

5.4 Experiments

5.4.1 Experiment 1: demonstrations, corrections, and replay

We evaluated our system on a furniture assembly task, using a PR2 mobile ma-

nipulator to partially assemble a small off-the-shelf table2. The table consists of a

tabletop with four pre-drilled holes and four legs that each have a screw protruding

from one end. Eight kinesthetic demonstrations of the assembly task were provided,

in which the tabletop and one leg were placed in front of the robot in various po-

sitions. In each demonstration, the robot was made to pick up the leg, insert the

screw-end into the hole in the tabletop, switch arms to grasp the top of the leg, hold

the tabletop in place, and screw in the leg until it is tight. An example of this pro-

gression is shown in Figure 5.2. To make the insertion more robust, a bit of human

insight is applied by sliding the screw around the area of the hole until is slides in.

This allows the insertion to be successful even when perception is slightly inaccurate.

The demonstrations were then segmented and and an FSA was built as described

in Section 5.3. Figures 5.3(a)–(b) show the structure of the FSA before and after

semantic splitting occurred; it can be seen that the node splits yield a much simpler,

linear structure that better characterizes the flow of task progress, while leaving room

2Ikea LACK table: http://www.ikea.com/us/en/catalog/products/20011413/
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Algorithm 5 Incremental Semantically Grounded Learning from Demonstration

Input: Demonstration trajectories T = (T1, . . . , TN) and corresponding object pose
observations O = (O1, . . . , ON)

Loop as desired:

1. Segment the demonstrations with the BP-AR-HMM:

(segments, labels) = Segmentation(T)

2. Find coordinate frame assignments:

coord frames = CoordinateFrameDetection(segments, labels, O)

3. Learn params of a DMP for each segment:

dmps = LearnDmpParams(segments, coord frames)

4. Construct FSM:

fsm = BuildFSM(segments)
sfsm = SemanticSplit(fsm)
classifiers = TrainClassifiers(sfsm, segments)

5. Replay task based on current observations:

state = START
while state != END and IsInterrupted() == False do

curr obs = GetCurrentObservation()
action = Classify(classifiers, state, curr obs)
state = GetNextState(sfsm, state, action)
ExecuteDmp(action)

end while

6. Collect interactive correction if necessary:

if IsInterrupted() = True then
(Tcorr, Ocorr) = GetCorrectionTrajectory()
T = (T1, . . . , TN , Tcorr)
O = (O1, . . . , ON , Ocorr)

end if
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Figure 5.2. A kinesthetic demonstration of the table assembly task.

for branching when necessary. At this stage, task replay was sometimes successful,

but several types of errors occurred intermittently. Two particular types of errors

that occurred were (a) when the table leg was at certain angles, the robot was prone

to missing the grasp, and (b) when the leg was too far from the robot, it could not

reach far enough to grasp the leg at the desired point near the center of mass. In

both cases interactive corrections were provided to recover from these contingencies.

In the first case, a re-grasp was demonstrated, and then the task was continued as

usual. In the second case, the robot was shown how to grasp the leg at a closer point,

pull it towards itself, and then re-grasp it at the desired location.

After the interactive corrections were collected, the old data was re-segmented

with the two new corrections and used to re-build the FSA. Figures 5.4(a)–(b) show

the structure of the FSA before and after semantic splitting occurred. After splitting,

this FSA is similar to that of Figure 5.3(b), but with several branching pathways

near the beginning that then bottleneck into a linear flow. This is exactly the sort

of structure that would be expected, given the nature of the corrections—the robot
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(a) Demonstrations only, before se-
mantic splitting

(b) Demonstrations only, after seman-
tic splitting

Figure 5.3. FSA structure from demos before and after semantic splitting with-
out interactive corrections. Nodes are labeled with the relevant arm (left/right), ID
numbers, and A’s and B’s to denote splits.

attempts a grasp, chooses a path based on the outcome of the grasp, and then once

the leg is successfully picked up and ready to be inserted, all paths converge on a

common (nearly) linear sequence for the rest of the task.

Using this new FSA, the robot was able to recover from two types of errors in

novel situations. Figure 5.5 shows a successful recovery from a missed grasp, while

Figure 5.6 shows the robot bringing the table leg closer for a re-grasp when it is too far

away. Finally, Figure 5.7 shows a full successful execution of the task without human
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(a) Demonstrations + interactive corrections, be-
fore semantic splitting

(b) Demonstrations + interactive corrections,
after semantic splitting

Figure 5.4. FSA structures before and after semantic splitting with interactive cor-
rections added in. Nodes are labeled with the relevant arm (left/right), ID numbers,
and A’s and B’s to denote splits.

intervention, demonstrating that these error recovery capabilities did not interfere

with smooth execution in cases where no contingencies were encountered.

5.4.2 Experiment 2: method comparisons

The table in Figure 5.1 shows a quantitative comparison that demonstrates the

benefits of FSA-based sequencing and interactive corrections. Ten trials of the ta-

ble assembly task were attempted using four different sequencing methods with the

segmented demonstration data from Experiment 1. The first method (‘ASM’) used
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Figure 5.5. A recovery behavior when the robot misses the original grasp.

a framework similar to that of Associative Skill Memories by Pastor et al. [79], in

which all primitives were available to be chosen at every decision point; classification

was performed via a nearest neighbor classifier over the first observations of the exem-

plars associated with each movement category. The second (‘FSA-basic’) and third

(‘FSA-split’) methods used an FSA before and after semantic splitting, respectively.

Finally, the fourth method(‘FSA-IC’) used an FSA after splitting with interactive

corrections (also from Experiment 1) integrated as well.

Each set of ten trials was split up into three groups: four trials in which the table

leg was straight and close to the PR2 (‘Straight’), three trials in which the leg was too

far away to grasp at the center of balance (‘Far away’), and three trials in which the

leg was at a difficult angle that could cause a missed grasp (‘Difficult angle’). These

were all novel configurations that had not been seen before, but the latter two were

designed to produce situations similar to the interactive corrections collected earlier.
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Figure 5.6. A recovery behavior when the table leg is too far away to grasp at the
desired location.

During each trial, the operator was allowed to provide small assists to help the robot

by moving an object or the robot’s end effector by a maximum of 5 cm to compensate

for minor perceptual or generalization errors. The entries in the table in Figure 5.1

denote the number of assists that were required during each trial, or ‘Fail’ if the robot

failed to complete the task successfully. Here, we defined success as screwing the leg

in far enough so that it was freestanding when the robot released it.

All ten trials with the ‘ASM’ and ‘FSA-basic’ methods resulted in failure, but for

different reasons. While the ASM provided maximum sequencing flexibility, it also

inherently made the classification problem difficult, since all choices were available at

every step. Indeed, most failures were caused by misclassifications that caused the

robot to choose inappropriate primitives or get stuck in an infinite loop, repeating the

same primitive indefinitely. The FSA avoided infinite loops by reducing the number of

choices at each decision point and providing ordering constraints between the nodes.
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Figure 5.7. A full successful execution of the table assembly task without any human
intervention. The task FSM is constructed using both the original demonstrations
and the interactive corrections.

However, it still frequently chose poor exemplars or inappropriate primitives. Without

semantic splitting, several semantically different primitives often got combined into

a single node, corrupting the structure of the FSA, and making classification and

exemplar selection more difficult.

Using semantic splitting, we observed seven successes and a modest number of

required assists with the ‘FSA-split’ method, failing only in the ‘Far away’ case. In

these cases, the robot reached for the leg until its arm was fully extended, but stopped

far short of the intended grasp point; the difference was far too large to be fixed with

a small assist. Once interactive corrections were added in ‘FSA-IC’, the number of

successes increased to nine and the number of required assists dropped by more than

25%—a significant improvement. The remaining assists were largely due to small

perceptual errors during the screw insertion, which requires a high level of precision.
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ASM FSA-basic FSA-split FSA-IC

Straight

Fail Fail 1 0
Fail Fail 1 2
Fail Fail 2 2
Fail Fail 1 2

Far away
Fail Fail Fail 1
Fail Fail Fail 1
Fail Fail Fail Fail

Difficult angle
Fail Fail 2 1
Fail Fail 3 1
Fail Fail 3 2

Successes /
Avg assists 0 / – 0 / – 7 / 1.857 9 / 1.333

Table 5.1. Ten trials of the task with corresponding performance data for four
different types of sequencing: an associative skill memory (ASM), an FSA without
semantic splitting (FSA-basic), an FSA with semantic splitting (FSA-split), and an
FSA with splitting and interactive corrections (FSA-IC). ‘Fail’ indicates failure and
integer values correspond to the number of human assists required during successful
executions.

These errors appeared to be random, lacking structure that could be leveraged; addi-

tional interactive corrections were provided, but did not further improve performance.

This reveals an important limitation of interactive corrections—in general, they can

only be used to recover from observable, structured errors.

5.4.3 Experiment 3: looping behaviors

For this final experiment we designed a task that contains a behavioral loop, with

the goal of capturing this loopy structure in the FSA. Figure 5.8 shows a demon-

stration of a peg-in-hole task in which the robot must pick up a rectangular peg and

insert it in the hole in the center of the table. In three of the demonstrations of this

task, the robot was shown how to complete the task normally by picking up the peg

and inserting it in the hole immediately. However, in eight other demonstrations,

trajectories were provided that slightly miss the hole several times before successfully
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Figure 5.8. A demonstration of the peg-in-hole task. Panels 3 and 4 show failed
insertions attempts and and retries, while panel 5 shows the final successful insertion.

getting the peg in. This is a looping “retry” behavior, in which the peg is lifted in

the air and attempted to be inserted again until successful.

The goal of this experiment was for the robot to learn a loopy FSA, such that it

would automatically retry the peg insertion step until it was classified as successful.

For such an FSA to be learned, the segmentation of the demonstrations would have

to identify each insertion attempt as a distinct segment. Unfortunately, this was not

the case; Figure 5.9 shows a segmentation of the demonstrations in which all insertion

attempts are clumped together into one long segment at the end of each demo (the
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green segment). This final segment is longer or shorter in each demo depending on

the number of repetitions, but is never split into more than one segment.

This failure reveals an interesting feature and limitation of our algorithm. Our

method makes no distinction between seeing the same motion category several times

in succession and seeing that motion category once for a longer period of time—each

segment is just a contiguous string of observations where the same motion category is

active, so there cannot be multiple adjacent segments of identical motion categories.

Thus, since the system identified the lifting and insertion of the peg all as a single

motion category, it was not possible to segment out each repetition of that motion.

Interestingly, if lifting the peg and inserting the peg were identified as separate motion

categories, the repeating pattern would have been able to be discovered as a two-

segment cycle.

Thus, we conclude that in principle, the proposed system can find looping struc-

ture in tasks, but in practice it may often fail, due to the granularity at which seg-

mentation occurs. At a deeper level, this may be a fundamental problem with a

segmentation system that infers statistical motion categories rather than subgoals

that the demonstrations imply. Future work may examine ways to overcome this

difficulty.

5.5 Related Work

The most closely related work to ours is that of Grollman et al. [39], which

addresses perceptual aliasing by using a nonparametric Bayesian model to infer a

mixture of experts from unsegmented demonstration data and then using multi-map

regression to assign observed states to experts. Butterfield et al. [17] extend this work

by getting rid of the assumption that data is independent and identically distributed,

leading to policies that better model the time-series nature of tasks.
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Figure 5.9. Segmentation of 8 demonstrations of the peg-in-hole task with repeated
retries of insertions (top 2 rows) and 3 demonstrations of successful first-try insertions
(bottom row).
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Other work aims to intelligently sequence predefined primitives, rather than dis-

cover them from data. Toussaint et al. [104] use heuristics to translate perceptions

into predefined symbols, which are then used by a rule-based planner. In the control

basis framework [44], a graph of admissible behaviors is automatically built based

on the predicates and constraints of multiple hand-crafted controllers, allowing safe

composite policies to be learned. Given a set of predefined skills, Riano et al. [87]

evolve the structure of a finite-state automaton that defines transition behavior be-

tween the skills. Pastor et al. [79] demonstrate one skill at a time and then use

nearest neighbor classification to associate skills with observations, while also moni-

toring skill executions for proprioceptive anomalies so that recovery behaviors can be

initiated. Wilcox et al. [106] use a dynamic scheduling algorithm to adapt execution

of a predefined set of events to a user’s preferences and temporal disruptions, while

maintaining critical synchronization invariants. Ekvall and Kragic [28] search for skill

ordering constraints in tasks with many valid execution orderings.

Several other approaches also allow users to interactively provide additional data

and corrections to a robot. Thomaz and Breazeal [102] provide an interface that

allows users to bias the robot’s exploration and provide positive and negative feedback

during task execution. Another approach uses user-defined keyframes that identify

critical points in a task that must be reproduced [2]. Upon replay, the teacher can use

an interface to view and edit keyframes to fine-tune task performance. Muhlig et al.

[63] rely entirely on real-time human-robot interaction to ensure proper sequencing

of skills and recovery from errors, using hand signals and speech to control skill flow,

halt execution, and identify important task objects.

5.6 Conclusion

Flexible discovery and sequencing of primitives is essential for tractable learning

of complex robotic tasks from demonstration. We introduced a novel method to split

103



automatically discovered motion categories into semantically grounded primitives,

sequence them intelligently, and provide interactive corrections for incremental per-

formance improvement. Sequencing primitives with a finite-state automaton allows

exemplars of movement primitives to be grouped together in a semantically mean-

ingful way that attempts to maximize data reuse, while minimizing the number of

options that the agent must choose amongst at each step. This approach makes

the sequencing classification task easier, while also providing a mechanism for se-

mantically grounding each primitive based on state visitation history and observed

characteristics like coordinate frame, length, and successor state.

This approach was validated on a furniture assembly task using a PR2 mobile

manipulator. It was shown that the robot could learn the basic structure of the task

from a small number of demonstrations, which were supplemented with interactive

corrections as the robot encountered contingencies that would have lead to failure.

The corrections were then used to refine the structure of the FSA, leading to new

recovery behaviors when these contingencies were encountered again, without dis-

rupting performance in the nominal case. A quantitative measure was also provided

to show that using an FSA with semantic splitting provides advantages that lead to

improved classification and task performance compared to more naive methods.

While performance was able to be improved through interactive corrections, fu-

ture work could include a mechanism to improve task performance and individual

primitives automatically though self-practice. Additionally, we only took advantage

of the multiple exemplars of each primitive by selecting amongst them; in the future,

it would be beneficial to integrate the exemplars to better model the user’s inten-

tions. Only vision and pose data were used as part of the discriminative state space,

but several other types of input such as force data could be valuable for decision

making, or even for modulating our DMPs, as in [80]. Finally, the useful looped

structure of repetitive behavior proved difficult to capture, so future work may look

104



at ways to capture contiguous repetitions of the same movement. With improvements

such as these, the presented method might function as one element of a deployable

system that allows researchers and end users alike to efficiently program robots via

unsegmented, natural demonstrations.
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CHAPTER 6

DISCUSSION AND CONCLUSION

The goal of this thesis was to develop techniques that extend the generalization

capabilities of learning from demonstration algorithms in complex robotic tasks. This

goal was met through the development of three novel skill discovery algorithms, cul-

minating in an incremental method for learning semantically meaningful skills from

demonstration. First, we introduced a nonparametric Bayesian clustering method

that can automatically learn an appropriate number of skills to accomplish important

subtasks in a simulated reinforcement learning setting. Next, a tractable algorithm

for use on physical robots was introduced that leverages additional data from task

demonstrations. In this method, repeated structure was discovered through nonpara-

metric Bayesian segmentation and coordinate frame detection algorithms to create

flexible skill controllers. Finally, an algorithm was introduced to incrementally learn

and improve a finite-state representation of the task that allows for intelligent, adap-

tive sequencing of skills and recovery from errors. Skills in the FSA were correlated

with external observations, imbuing the skills with semantic meaning and greater

reusability.

Several experiments were performed to validate these algorithms, both in simula-

tion and on a PR2 mobile manipulator. We showed how our methods can be used

to teach robots complex, multi-step tasks from a relatively small number of demon-

strations. In the final set of experiments in Chapter 5, the PR2 was able to learn

to partially assemble a small IKEA table from only 8 demonstrations. Performance

was then improved by providing interactive corrections to the robot as mistakes were
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made during execution. Finally, it was shown that this combination of techniques

allowed the robot to incrementally learn to perform a task, recover from errors, and

adapt to novel situations and unforeseen contingencies.

6.1 Future Work

The techniques presented in this thesis reveal new possibilities for more gener-

ally applicable robot learning from demonstration algorithms. However, both the

presented algorithms and experiments are necessarily limited in scope, leaving many

opportunities for improvement in future work.

A key piece of our system, the Beta Process Autoregressive Hidden Markov Model,

may be able to be improved in several ways that could lead to improved segmentation

and performance. We used the BP-AR-HMM to find repeated dynamical systems in

the data and then performed coordinate frame detection as a separate step afterwards.

Ideally, this would be done all as a single step, in a principled, fully Bayesian way dur-

ing inference on the model. Aside from being more principled, performing coordinate

frame detection within the model might allow us to find repeated dynamical systems

that would have previously eluded the BP-AR-HMM; some motions may look very

different in the robot frame, but may look very similar in some other object’s frame

of reference. Additionally, the development of more efficient inference mechanisms

would allow our method to work on larger data sets. Finally, it may be worthwhile

to explore other types of time-series dynamics than linear dynamical systems.

Our system only considered spatial data for the purposes of evaluating the state

of the world and creating DMP plans. However, other sensing modalities such as

force/torque could be used to enhance the capabilities of the robot. Force sensing,

for example, could allow the robot to feel whether a screw was in place, rather than

having to guess based on noisy and/or occluded spatial observations. Some work

has already been done by Pastor et al. [80] on adapting DMP plans on-line based
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on force data so that executions “feel” the same to the robot as they did during

demonstrations, resulting in improved performance and robustness to small errors.

However, complex concepts like “screw is in hole” may require an additional level

of semantic understanding that has not yet been reached with current techniques.

Our approach gave semantic meaning to states in a finite-state representation of a

task by correlating each state with observations of the world or associated actions

executed when in that state. However, more abstract, complex concepts may require

functional analysis—for example, realizing that both a fork and a toothpick can be

used to pick up a piece of cheese, since they both have pointed ends to skewer it with.

Task replay can also be improved through further innovations. Rather than in-

tegrate all examples of a particular skill that we have identified, our system uses a

simple nearest-neighbor strategy to choose the single most relevant example to use

for DMP training. However, all the available data could be used more efficiently if

a principled way to integrate this data was designed. However, it is well known that

the average of solutions to a problem is often not itself a solution, making this prob-

lem non-trivial, though some approaches have been explored [22, 13]. Furthermore,

by using DMPs, we are performing somewhat “blind” replay of skills. If precondi-

tions and postconditions for each skill could be discovered, more traditional planning

algorithms could be used to perform each skill more adaptively. Finally, for more

dynamic tasks than we considered in this thesis, each skill could also be improved

through reinforcement learning if necessary, by inferring a reward function through

inverse reinforcement learning.

The experiment in this thesis were limited to a single task at a time with relatively

few demonstrations. However, in the future, algorithms such as these must scale to

demonstrations of many tasks, producing a library of skills over time that can be

reused in many situations. This requires more efficient inference algorithms, as well

as strategies to manage such a library of skills and to choose appropriate skills in

108



various situations. Furthermore, collecting all this data of many different tasks may

take more time than any one user is willing to put in. Further research into web

robotics and remote laboratories [76] may provide mechanisms to crowdsource this

type of data collection.

Finally, natural language integration may be useful for providing a simpler in-

terface for the user to command tasks and give feedback to the robot. This could

allow the user to teach the robot the names of objects, actions, and tasks during

demonstrations. The robot may be able to infer associations between language and

actions, allowing it to perform novel tasks from natural language commands, as long

as it has seen similar components of the task before. In fact, some existing related

work has already demonstrated a principled system for inferring user intentions from

natural language [100]. Natural language commands could also be used for feedback

on a task, such as “good” and “bad”, or to modify the robot’s behavior, like “slower”

or “harder”.

6.2 Conclusion

A perennial goal of robotics has been the creation of robots that can exhibit

a wide range of intelligent behaviors in diverse environments. While advances in

machine learning techniques have improved the quality of such learned behaviors,

both researchers and end-users alike need tools that can help them deal with the vast

number of behaviors and environments that must be mastered by a robot deployed in

the real world. Learning from demonstration has shown to be a promising paradigm

to quickly program robots in a natural way, but has often been limited by poor

generalization.

We have shown that learning from demonstration algorithms can partially over-

come their traditionally limited generalization capabilities by acquiring semantically

meaningful skills through the discovery of repeated statistical structure in demon-
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strations. The discovery of repeated structure provided critical insights into task

invariants, features of importance, high-level task structure, and appropriate skills

for the task. This allowed the robot to reproduce complex, multi-step tasks in novel

situations by learning from a small number of unstructured, whole-task demonstra-

tions and interactive corrections.

To achieve this goal, this thesis drew from recent advances in Bayesian nonpara-

metric statistics and control theory to develop novel learning from demonstration

algorithms and an integrated system capable of learning tasks from start to finish;

this system combined perception, kinesthetic input, control, segmentation, clustering,

and classification algorithms to enable experimentation on a PR2 mobile manipula-

tor. A series of experiments were conducted, culminating in a complex table assembly

task that the PR2 was able to reproduce in a number of novel situations, even when

contingencies and error conditions were encountered.

While this thesis advanced the state of the art in learning from demonstration

algorithms, we also believe that the integrated system itself is an equally important

contribution. As robotics attempts to move forward into the home and workplace,

it is our belief that many of the most difficult technical problems will be integrative

in nature, rather than limited to a particular subfield such as perception or control.

The scope of our work was necessarily limited and leaves much room for future im-

provement, but we have provided the basis for a principled way identify and leverage

semantic structure in demonstration data. Going forward, we hope this can serve

as a step toward a deployable system that allows researchers and end users alike to

efficiently program robots, paving the way for robots in the home and workplace.
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to Isomap nonlinear dimension reduction. In Proceedings of the Twenty-First
International Conference on Machine Learning (Jul 2004), pp. 441–448.

[48] Jenkins, Odest Chadwicke, and Matarić, Maja J. Performance-derived behav-
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[71] Nicolescu, M., and Matarić, M. J. Natural methods for robot task learning:
Instructive demonstration, generalization and practice. In Proceedings of the
Second International Joint Conference on Autonomous Agents and Multi-Agent
Systems (2003), pp. 241–248.

[72] Niekum, S., Barto, A.G., and Spector, L. Genetic programming for reward
function search. IEEE Transactions on Autonomous Mental Development 2, 2
(2010), 83–90.

[73] Niekum, Scott, and Barto, Andrew G. Clustering via dirichlet process mix-
ture models for portable skill discovery. In Advances in Neural Information
Processing Systems 24 (2011), pp. 1818–1826.

116



[74] Niekum, Scott, Chitta, Sachin, Marthi, Bhaskara, Osentoski, Sarah, and Barto,
Andrew G. Incremental semantically grounded learning from demonstration.
In Robotics: Science and Systems (2013).

[75] Niekum, Scott, Osentoski, Sarah, Konidaris, George, and Barto, Andrew G.
Learning and generalization of complex tasks from unstructured demonstra-
tions. IEEE/RSJ International Conference on Intelligent Robots and Systems
(2012), 5239–5246.

[76] Osentoski, Sarah, Pitzer, Benjamin, Crick, Christopher, Jay, Graylin, Dong,
Shuonan, Grollman, Daniel, Suay, Halit Bener, and Jenkins, Odest Chadwicke.
Remote robotic laboratories for learning from demonstration. International
Journal of Social Robotics 4, 4 (2012), 449–461.

[77] Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. Learning and general-
ization of motor skills by learning from demonstration. In IEEE International
Conference on Robotics and Automation (2009), IEEE, pp. 763–768.

[78] Pastor, Peter, Kalakrishnan, Mrinal, Chitta, Sachin, Theodorou, Evangelos,
and Schaal, Stefan. Skill learning and task outcome prediction for manipula-
tion. In Proceedings of the 2011 IEEE International Conference on Robotics &
Automation (2011).

[79] Pastor, Peter, Kalakrishnan, Mrinal, Righetti, Ludovic, and Schaal, Stefan.
Towards associative skill memories. IEEE-RAS International Conference on
Humanoid Robots (2012).

[80] Pastor, Peter, Righetti, Ludovic, Kalakrishnan, Mrinal, and Schaal, Stefan.
Online movement adaptation based on previous sensor experiences. IEEE/RSJ
International Conference on Intelligent Robots and Systems (2011), 365–371.

[81] Peters, J., Vijayakumar, S., and Schaal, S. Natural actor-critic. In Proceedings
of the 16th European Conference on Machine Learning (2005), pp. 280–291.

[82] Pickett, Marc, and Barto, Andrew G. Policyblocks: An algorithm for creating
useful macro-actions in reinforcement learning. In ICML (2002), pp. 506–513.

[83] Poritz, A. Linear predictive hidden markov models and the speech signal. In
Proceedings of the Seventh IEEE International Conference on Acoustics, Speech,
and Signal Processing (1982), IEEE, pp. 1291–1294.

[84] Quattoni, Ariadna, Collins, Michael, and Darrell, Trevor. Conditional random
fields for object recognition. In In NIPS (2004), MIT Press, pp. 1097–1104.

[85] Ramachandran, D., and Amir, E. Bayesian inverse reinforcement learning.
Proceedings of the 20th International Joint Conference on Artificial Intelligence
(2007).

117



[86] Rasmussen, Carl Edward. The infinite Gaussian mixture model. In Advances
in Neural Information Processing Systems 12 (2000), MIT Press, pp. 554–560.

[87] Riano, Lorenzo, and McGinnity, T.M. Automatically composing and param-
eterizing skills by evolving finite state automata. Robotics and Autonomous
Systems 60, 4 (2012), 639–650.

[88] Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., and Torras, C. Learning col-
laborative impedance-based robot behaviors. In AAAI Conference on Artificial
Intelligence (Bellevue, Washington, USA, 2013).

[89] Schaal, S. Dynamic movement primitives–a framework for motor control in
humans and humanoid robotics. The International Symposium on Adaptive
Motion of Animals and Machines (2003).

[90] Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. Learning movement prim-
itives. International Symposium on Robotics Research (2004), 561–572.
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