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ABSTRACT

CHARACTERIZATION AND NETWORK CONSEQUENCES OF
LOW SPREADING LOSS IN UNDERWATER ACOUSTIC

NETWORKS

SEPTEMBER 2013

JAMES W. PARTAN

B.A., WILLIAMS COLLEGE

B.A., UNIVERSITY OF CAMBRIDGE

M.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Brian Levine

This thesis presents several related pieces of work on underwater acoustic networks (UANs).

Underwater wireless networks generally use acoustics, as radio is heavily attenuated and light is

strongly scattered underwater.

UANs are becoming more widely deployed for scientific, environmental, industrial, and military

applications. The network nodes can be stationary sensor nodes, underwater vehicles, surface buoys

or vehicles providing a gateway to radio networks, or bottom nodes providing a gateway to cabled

undersea networks.

Packet detection in interference in UANs, and its critical role in the effectiveness of collision-

avoidance medium-access control (MAC) protocols, is a primary focus of this thesis. Spreading

loss measures the decrease in received energy as a function of range, and determines the level of

long-range interference.

vi



We present a new spreading model, the mixed-exponent spreading model, for UAN nodes using

a matched-filter detector as a low-power wakeup detector. Under this model, there are distinct

spreading-loss exponents for packet detection and interference, due to the matched-filter detector’s

signal processing. We validate this spreading model numerically, and with direct measurements

of the spreading exponents from shallow-water experimental data. The widely used, but poorly

grounded, “practical spreading” model is inconsistent with our experimental measurements. Our

results suggest caution for its continued use to model performance of UANs.

Building on our spreading analysis, we analyze the effectiveness of collision-avoidance MAC pro-

tocols in UANs, namely what fraction of collisions are avoided when using the protocol, indepen-

dent of propagation delay. The low spreading loss in UANs, in particular with the mixed-exponent

spreading model, can lead to low collision-avoidance effectiveness compared with radio networks.

In addition, we argue that many UANs will be relatively mobile and sparse relative to terres-

trial sensor networks, reducing the importance of network energy consumption and throughput of

medium-access control protocols as metrics. This survey challenges some of the assumptions made

in past UAN research, with a goal of aiding researchers entering the area of UANs from terrestrial

sensor networks.

Finally, we document the design decisions for a new underwater acoustic modem, as a contri-

bution to researchers entering the field from terrestrial sensor networks.
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2.25 Energy-versus-range data (corrected for noise, then absorption) for JD190,SYS3.
There appears to be a systematic effect where the coherent energy estimates are
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2.28 Energy-versus-range data (corrected for noise, then absorption) for both JD189 and
JD190, all data. JD189,SYS3 is readily apparent, with its large excursions from
a propagation model with a simple energy-loss exponent. The variances of the
incoherent energy estimates for LFM are significantly smaller than they are for
MLS, as discussed in the text. The incoherent data is tighter around the fitted
lines than the coherent data is. The errorbars are standard deviations, with the
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Unweighted LLSE fits are plotted with solid lines, and weighted fits with dashed
lines. Confidence intervals are 99% to maximize reported margins of error.
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2.32 Received energy-versus-range plots for raytraced modeling of the KAM11
environment. Both plots use the KAM11 soundspeed profile shown in
Figure 2.29. The upper plot has lossless boundaries, while the lower plot models
KAM11 boundary losses shown in Figure 2.31. The energy-loss exponent
estimates for the lossless boundaries are inconsistent with measured values.
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and receiver at 20 m depth, in the surface mixed layer, in a modeled KAM11
environment. When the green detection energy curve is above the red
interference energy curve, detection occurs, otherwise detection is disrupted.
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2.39 A preliminary estimate of how the margins of error (for a 95% confidence interval)
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measurements. The estimates are derived from randomly selecting subsets of
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3.1 Three scenarios: (I) Interference range Ri is less than transmission range Rtx, and
all potential interferers suppressed by the RTS/CTS handshake; (IIa) Some of
the potential interferers are not suppressed by the RTS/CTS handshake (red);
(IIb) Many potential interferers not suppressed (red). Scenario IIb is not
considered in previous radio-based work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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INTRODUCTION

This thesis presents several related pieces of work on underwater acoustic networks (UANs).

Underwater wireless networks generally use acoustics, as radio is heavily attenuated and light is

strongly scattered underwater.

UANs are becoming more widely deployed for scientific, environmental, industrial, and military

applications. The network nodes can be stationary sensor nodes, underwater vehicles, surface buoys

or vehicles providing a gateway to radio networks, or bottom nodes providing a gateway to cabled

undersea networks.

Packet detection in interference in UANs, and its critical role in the effectiveness of collision-

avoidance medium-access control (MAC) protocols, is a primary focus of this thesis. Spreading

loss measures the decrease in received energy as a function of range, and determines the level of

long-range interference.

In Chapter 2, we present a new spreading model, the mixed-exponent spreading model, for UAN

nodes using a matched-filter detector as a low-power wakeup detector. Under this model, there

are distinct spreading-loss exponents for packet detection and interference, due to the matched-

filter detectors signal processing. We validate this spreading model numerically, and with direct

measurements of the spreading exponents from shallow-water experimental data. The “practical

spreading” model, which is widely used to model UANs, but which is poorly grounded in experiment

and theory, is inconsistent with our experimental measurements. Our results suggest caution for

its continued use to model performance of UANs.

Building on our spreading analysis, in Chapter 3, we analyze the effectiveness of collision-

avoidance MAC protocols in UANs, namely what fraction of collisions are avoided when using the

protocol, independent of propagation delay. The low spreading loss in UANs, in particular with the
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mixed-exponent spreading model, can lead to low collision-avoidance effectiveness compared with

radio networks.

In addition, in Chapter 1, we argue that many UANs will be relatively mobile and sparse

relative to terrestrial sensor networks, reducing the importance of network energy consumption

and throughput of medium-access control protocols as metrics. This survey challenges some of the

assumptions made in past UAN research, with a goal of aiding researchers entering the area of

UANs from terrestrial sensor networks.

Finally, in Chapter 4, we document the design decisions for a new underwater acoustic modem,

as a contribution to researchers entering the field from terrestrial sensor networks.

The following sections of this chapter provide an additional introduction to each of the topics

mentioned above.

Practical Issues in Underwater Acoustic Networks

Chapter 1 presents a practical introduction to UANs which we completed and published in 2006

and 2007 [84,85]. The goal of this chapter is to aid researchers entering the field of UANs from the

terrestrial wireless sensor network community. Our survey followed several other surveys of UANs

that drew primarily from terrestrial sensor networks, and that focused primarily on the challenges

of medium access control (MAC) protocols with long acoustic propagation delays, and that assumed

that network nodes were severely energy-constrained and relatively dense.

We based our survey on extensive experience with actual deployments of underwater vehicles

and sensor networks. We highlighted other critical underlying physical and economic differences

between UANs and terrestrial radio-based sensor networks, and questioned the focus of the earlier

surveys on energy efficiency and MAC throughput as the primary metrics for performance of UANs.

We argue that, although there is no single UAN design, due to enduring economic and physical

constraints, UANs in general will remain sparser and more mobile than terrestrial radio-based

sensor networks for otherwise similar applications.

In mobile networks, propulsion energy will generally dominate communication, and so network

energy constraints are not universal in UANs. The cost of underwater instrumentation and the size
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of the regions to be instrumented also leads towards sparse and mobile networks. In sparse regions

of the network, the MAC protocol does not necessarily determine throughput.

Our survey brought together the communities and literature of ocean engineering and terrestrial

wireless sensor networks, providing a more practically-grounded survey than its predecessors. It

has been widely cited.

The contributions of Chapter 1 are:

• We bring practical experience from deployments as well as literature from the ocean engi-

neering literature into the sensor network community. Previous UAN surveys were drawing

largely from terrestrial sensor networking literature, and did not adequately emphasize the

importance of mobility in UANs, nor the sparseness of many UANs.

• We identify and diagram UAN operating regimes versus geographic area and node population.

We identify the network challenges in regimes ranging from dense, small networks to sparse,

geographically large networks. There is no single regime for UANs, but in general they are

likely to be sparser and more mobile than terrestrial sensor networks with similar applications.

• In mobile networks, the energy efficiency of the network is not necessarily a constraint, since

the network energy consumption is usually dominated by vehicle propulsion energy. This is in

contrast to the assumptions of many sensor networks, as well as the assumptions of previous

UAN surveys.

• In sparse networks, channel access is not necessarily a constraint. Many papers in UANs focus

on energy-efficient medium access control protocols, which are not necessarily important for

in sparse regions of mobile UANs.

• We highlighted the issue of channel access for periodic acoustic navigation signals, which for

physical reasons share the communications band in mobile UANs, unlike in terrestrial radio-

based networks.
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• We also raised the issue of long-term fairness in disconnected mobile UANs, where mobile

nodes returning briefly to a connected region of the network need increased access to the

channel relative to nodes remaining in the connected region.

Speading Models: Understanding Interference in UANs

Interference is an inherent property of wireless networks, including UANs. The physical-layer

details of received energy as a function of range from the transmitter, as well as the signal processing

details of packet detection, determine the impacts of interference on medium access control (MAC)

network protocols. The goal of Chapter 2 is to understand packet detection in UANs in the presence

of interference. In turn, understanding packet detection in interference allows us to determine the

effectiveness of collision-avoidance MAC protocols in UANs, which is the topic of Chapter 3.

Chapter 2 presents the results of basic research into the physical-layer underwater acoustic

spreading model. Spreading models describe how the acoustic energy at a point receiver decreases

when moving away from the transmitter; there are other energy loss components, namely absorption

loss and scattering and reflection losses at boundaries, but within the operating regime of links in

a UAN, spreading loss is generally the most significant pathloss component.

For example, in free space far from boundaries, received energy generally decreases with “spher-

ical spreading”, scaling as 1/r2 at range r from the transmitter. Simple models of spreading loss

generally are described by a spreading exponent, k, modeling the energy as decreasing as 1/rk.

Spreading loss is a primary component in determining the level of interference from distant

nodes in a UAN. Due to waveguide effects in underwater acoustic channels, spreading losses in

UANs have been assumed to be significantly lower than corresponding pathloss in terrestrial radio-

based networks, which would lead to larger long-range interference relative to radio-based networks.

The widely-used “practical spreading” model in UANs, with a spreading exponent of k = 1.5

has minimal theoretical or experimental grounding. In designing acoustic communications methods

for single-user, point-to-point links, the details of the spreading loss are relatively unimportant

compared with correcting for the time-varying channel. The existing spreading models therefore

have been adequate for the acoustic communications community, but are not adequate for modeling

4



and designing UANs. As more and larger underwater acoustic networks are deployed, the details

of the spreading model will become important for modeling and designing larger networks. In

addition, the details of the packet detection method are critical, because the most vulnerable period

for network interference is at the moment of packet detection.

The contributions of Chapter 2 include:

• We derive an alternate spreading model, which call the mixed-exponent model, using physical

reasoning. The mixed-exponent model applies to energy-constrained acoustic modems that

use matched-filter detectors as a low-power wakeup detector. A distinction is drawn between

the spreading exponents for the matched-filter detector’s response to the wakeup signal versus

distant interference. The model retains most of the simplicity of the “practical spreading”

model, aiding in intuitive physical understanding of network performance.

• We validate the mixed-exponent model in uniform soundspeed profiles using two distinct nu-

merical acoustic propagation packages, on based on raytracing and one based on solving the

forward-propagating wave equation.

• We analyze data from the Kauai Acomms MURI 2011 (KAM11) shallow-water field experi-

ment, directly measuring energy-loss exponents. With scattering losses from the boundaries,

we are measuring energy-loss exponents rather than spreading-loss exponents. For modeling

shallow-water underwater acoustic networks, we recommend generalizing the spreading loss

model to an energy-loss model that includes scattering losses. We identify periods in time

where simple exponent models appear to hold, and other periods where they do not.

• We provide physical explanations for propagation differences explaining the differences between

periods when simple spreading-loss exponent models appear to hold, and when they do not.

• The “practical spreading” model is inconsistent with the measured energy-loss exponent values

for this particular experiment. The measured energy-loss exponents, k, were significantly

larger than 2, compared with k = 1.5 for the practical spreading model. Caution should be

used if “practical spreading” is used to model network performance.
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• We partially validate the mixed-exponent model from the field experiment data analysis. In

most cases, even when simple exponent models do not hold, there is a difference between the

exponents for packet detection and interference. Usually the energy-loss exponent for packet

detection is larger than that for interference, implying that long-range interference will be a

problem for MAC protocols in UANs. Due to experimental limitations, we were not able to

validate or invalidate the waterdepth-dependence and bandwidth-dependence of the transition

ranges in the mixed-exponent spreading model.

• Using results developed in Chapter 3, on the effects of spreading on the effectiveness of

RTS/CTS MAC protocols, we evaluate RTS/CTS effectiveness for a potential network de-

ployed at the field experiment site, using the energy-loss exponent measurements from the

KAM11 field experiment.

• The extreme variability acoustic propagation at the KAM11 experiment site suggests that

robustness of network protocols would be critical in such an environment, likely in a tradeoff

with energy consumption.

Collision-Avoidance Effectiveness in UANs

The effectiveness of a collision-avoidance medium access control (MAC) protocol is a measure of

how well the protocol prevents packet collisions. Effectiveness depends upon the level of interference

from distant nodes which cannot detect the MAC control packets, and hence cannot follow the

protocol. The level of interference and ability to detect packets are in turn affected by the spreading

loss. Effectiveness is different from throughput, and effectiveness does not depend upon propagation

delay.

Despite well-known throughput issues due to propagation delay, collision-avoidance MAC pro-

tocols are used due to their simplicity in building ad hoc wireless networks. The goal of Chapter 3

is to understand what physical-layer effects govern collision-avoidance effectiveness in UANs, and

what the level of collision-avoidance effectiveness will be in different UAN scenarios.
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In Chapter 3, we present analytic and simulation results analyzing the effects of spreading

loss on the effectiveness of MACAW-based (RTS/CTS) MAC protocols. We have published an

earlier and shorter version of this chapter [83]. We significantly extend earlier work [135] analyzing

network implications of a simple pathloss model for radio-based 802.11 MAC efficiency to a more

involved model of the underwater channel. We incorporate models for spreading loss, absorption

loss, and ambient noise specific to the underwater acoustic channel. We present results for both

the “practical spreading” model as well as the mixed-exponent spreading model. We show the

detailed effects of spreading loss, ambient noise, and detection threshold on RTS/CTS effectiveness

in UANs. Under the “practical spreading” model, the decreased spreading loss relative to radio-

based networks leads to significantly increased long-range interference, in particular at lower carrier

frequencies. Furthermore, the mixed-exponent spreading model detailed in Chapter 2 leads to even

more pronounced long-range interference, further emphasizing the importance of spreading loss

in understanding UAN performance. As a potential solution, we propose modifying the standard

RTS/CTS protocol with a long-range CTS signal to reduce collisions. Transmit power control and

frequency agility are alternate methods of improving spatial reuse, but are not always possible due

to limitations of underwater acoustic modems and transducers.

The contributions of Chapter 3 include:

• We identify collision-avoidance effectiveness as an additional area of performance loss for

RTS/CTS MAC protocols in UANs, independent of propagation delay and throughput.

• We first extend previous radio-based work [135] in order to analyze RTS/CTS effectiveness for

the “practical spreading” model for UANs. With this simple spreading-only channel model,

neglecting absorption and ambient noise, the results initially suggest that RTS/CTS effec-

tiveness is significantly lower in UANs than in radio networks, with RTS/CTS handshakes

beginning to lose effectiveness for node separations of only 22% of the maximum range, versus

about 56% for radio networks, for typical parameters.

• We next derive analytic expressions explaining how various physical-layer communication pa-

rameters affect RTS/CTS effectiveness in UANs, with a more realistic underwater acoustic
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channel model, incorporating absorption and ambient noise, and again using the “practical

spreading” model with a spreading exponent of k = 1.5. These communication parameters

include detection threshold, node separation, transmit power, and center frequency (deter-

mining absorption coefficients and ambient noise power). We find that the strong effects from

absorption improve spatial reuse for most intermediate node separations to approximately the

level of collision-avoidance performance in radio networks.

• We analyze how the mixed-exponent spreading model studied in Chapter 2 affects RTS/CTS

effectiveness. With this model, RTS/CTS effectiveness drops significantly compared with the

widely used “practical spreading” model, especially at lower frequencies. For example, at

3 kHz center frequency, on average the RTS/CTS handshake would suppress under 10% of

potential interferers for all but the smallest node separations.

• We validate the results from our analytical model with network simulations incorporating the

channel model and physical layer.

Micromodem-2: An Acoustic Modem Enabling Next-Generation UANs

Chapter 4 details and documents the design decisions for a new underwater acoustic modem, the

Micromodem-2, to enable the next generation of underwater acoustic networks. We have published

the design analysis as a conference paper [48], describing the design decisions, motivations, consider-

ations, and tradeoffs. The goal of this chapter is to aid other groups designing underwater acoustic

modems, in particular those coming from the terrestrial wireless sensor network community.

The modem’s design goals were drawn in large part from the experience and analysis underlying

the survey in Chapter 1, as well as the spatial reuse results of Chapters 2 and 3. We designed the

modem to be highly scalable, to support both energy-constrained multi-year deployments as well as

computationally-contrained, short-term, mobile deployments. The modem design is frequency-agile

to deal with, and to take advantage of, the highly frequency-dependent absorption component of

the channel’s pathloss. As a result, we support carriers from below 1 kHz for 100 km network links

under the ice in the Arctic, up to carriers well over 100 kHz to support high data rate communication
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between vehicles passing at close range, for instance data mules in a sparse mobile network. The

modem goes well beyond typical communication functionality to support the precision transmit and

receive timing required for underwater acoustic vehicle navigation, as discussed in Chapter 1. In

addition, it has a shared medium access transmit queue to allow both communication and navigation

signals to operate in a shared channel. The modem is designed to support transmit power control

and frequency agility to improve spatial reuse by reducing the long-range interference described in

Chapters 2 and 3.

The contributions of Chapter 4 include:

• We document design decisions and tradeoffs for the electronics hardware design of an under-

water acoustic modem, to aid other researchers in their own designs.

• Design decisions were drawn from extensive deployment experience, as well as the practical

considerations described in Chapter 1.

• Frequency agility is designed in from the start, allowing operation from below 1 kHz to over

100 kHz, and supporting new wideband transducers. Long-range, low-frequency, low-datarate

links are supported, for example for 100 km links under the Arctic ice at 1 kHz and 10 bps [40].

In addition, short-range, high-frequency, higher-datarate links will be supported with car-

rier frequencies over 100 kHz, improving data rate, covertness, and spatial reuse as well as

RTS/CTS effectiveness as described in Chapter 3.

• Precision timing is supported and tightly integrated, with precision and power consumption

ranging from an onboard 2 ppm temperature-compensated crystal consuming 3 μW, up to

chip-scale atomic clocks with drifts on the order of milliseconds per year consuming about

120 mW. As described in Chapter 1, precision timing is critical for vehicle navigation methods

that use travel-time measurements. Critically for scientific surveys, vehicle navigation allows

sensor measurements to be geo-referenced. On small underwater vehicles, a single acoustic

transducer is generally shared between acoustic communication and navigation, so navigation

functions must be integrated with the acoustic modem.
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• We describe interface requirements for robust integrations in vehicles and subsea systems,

again drawing from deployment experience. These include practical details on voltage ranges

and power supply protection, input and output protection, and data interfaces.

Summary

In this thesis, we present several related areas of work in underwater acoustic networks (UANs).

In Chapter 1, we document practical considerations, UAN deployment experience, and ocean

engineering literature to aid researchers entering the field from the terrestrial wireless sensor net-

work community. We question the widely-used assumptions of energy-constrained nodes and MAC

throughput as the primary metrics of UAN performance, and we argue that counterexamples will

be common with mobile and sparse UANs.

Chapter 2 examines packet detection in interference in UANs from first principles, with the goal

of providing the background for the analysis in Chapter 3 on the effectiveness of collision-avoidance

medium-access control (MAC) protocols in UANs.

The effects of interference on collision-avoidance medium-access control (MAC) protocols in

UANs are governed in large part by spreading loss and packet detection. The widely used “practical

spreading” model with a spreading-loss exponent of k = 1.5 is poorly grounded in theory and

experiment. To allow us to understand and properly model the performance of collision-avoidance

MAC protocols in UANs in Chapter 3, we studied spreading loss and packet detection in interference

in UANs in Chapter 2.

In Chapter 2, we derive the mixed-exponent spreading model from first principles of packet

detection. We validate the mixed-exponent spreading model with numerical acoustic propagation

packages. In a shallow-water experiment, we directly measured the spreading-loss exponent, gener-

alized to an energy-loss exponent when incorporating scattering losses from the surface and bottom.

The measured energy-loss exponents, k, were larger than 2, and therefore were inconsistent with

the “practical spreading” model, which is widely used to model UANs. We partially validated the

mixed-exponent model from the experimental field data, in that there were different exponents

for packet detection and interference. Furthermore, the measured energy-loss exponent for packet
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detection was generally smaller than the measured energy-loss exponent for interference, implying

that the effectiveness of MAC protocols will be reduced, as studied in Chapter 3.

In Chapter 3, we analyze the effects of spreading loss models on RTS/CTS-based MAC protocols,

with both the “practical spreading” model as well as the mixed-exponent spreading model studied

in Chapter 2. Despite well-known throughput issues due to propagation delay, these protocols are

used due to their simplicity in building ad hoc wireless networks. Our contribution is to identify

and analyze another signficant type of performance loss, namely low collision-avoidance effectiveness

and decreased spatial reuse due to low spreading loss.

Finally, in Chapter 4, drawing on our survey analysis in Chapter 1 and our spreading loss

analysis in Chapters 2 and 3, we document the design decisions for an improved underwater acoustic

modem to enable the next generation of UANs. We have published the design motivations, tradeoffs,

decisions as a contribution to other acoustic modem developers, in particular those coming from

the terrestrial wireless sensor network community.
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CHAPTER 1

A SURVEY OF PRACTICAL ISSUES IN UNDERWATER
NETWORKS

1.1 Introduction

Underwater sensor networks are attracting increasing interest from researchers in terrestrial

radio-based sensor networks. There are important physical, technological, and economic differences

between terrestrial and underwater sensor networks. Previous surveys have provided thorough back-

ground material in underwater communications, and an introduction to underwater networks. This

past work has included detail on the physical characteristics of the channel [17,91], on underwater

acoustic communications [42, 64, 113], and surveys of underwater acoustic networks [4, 20, 55, 112].

In this survey, we highlight a number of important practical issues that are not emphasized in

the recent surveys of underwater networks, with references from the ocean engineering literature,

and an intended audience of researchers who are moving from radio-based terrestrial networks into

underwater networks.

We believe that many, though not all, underwater networks will remain characterized by more

expensive equipment, higher mobility, sparser deployments, and different energy regimes when

compared with terrestrial sensor networks. We discuss the role of these factors in the different

set of challenges that face underwater networks. We identify several of these points in the outline

below, and we expand upon them in later sections.

In Section 1.2, we provide a classification scheme for underwater networks. Link-layer range,

node density, and geographic coverage of nodes are key factors in determining the type of network

deployed.

1This chapter is published as: J.Partan, J.Kurose, and B.N. Levine. A Survey of Practical Issues in Underwater
Networks. ACM SIGMOBILE MC2R, 11(4), 2007. [85]
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The key differentiating factor for underwater networks is the use of an acoustic channel. In

Section 1.3, we review the basics of such channels. We also mention results from underwater optical

and radio communication systems, explain the half-duplex nature of the channel, and discuss the

impact of the physical layer on network topology.

Medium access control (MAC) protocols for underwater acoustic sensor networks are still an

open problem. In Section 1.4, we briefly review recent work and mention some directions for future

work, including a brief overview of the difficulties with CDMA underwater. For stationary sensor

networks, the combination of high propagation delays with energy constraints introduces a new

MAC operating regime.

We make an economic argument in Section 1.5 that many (though not all) underwater sensor

networks will remain more mobile and more sparse than terrestrial sensor networks, even as node

cost falls. Though sampling is highly non-uniform, the world-wide ocean is vast, and for decades

to come, there will be more places to explore than can be covered by dense sensor networks.

In mobile underwater networks, there is often contention between communication and navigation

signals sharing the same physical channel, leading to new MAC issues. In addition, the combination

of mobility and sparsity introduces long-term fairness as a MAC issue, perhaps leading to prioritized

access for nodes that are rarely in contact.

The energy costs in underwater acoustic networks are different from those in terrestrial radio-

based networks, as we discuss in Section 1.6. In acoustic networks transmit power dominates

compared with receive power. Protocols that optimize energy usage need to be evaluated with this

in mind. In addition, in mobile underwater networks with high propulsion energy costs, minimizing

network communication energy is not always an important concern. Thus, protocol designers may

want to consider alternate metrics, such as reliability, fairness, quality-of-service, or covertness.

1.2 Underwater Network Operating Regimes

Underwater networks can be characterized by their spatial coverage and by the density of nodes.

These factors have significant implications for the MAC- and network-layer issues that must be
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addressed at design time. In this section, we create a taxonomy of underwater network operating

regimes with the goal of providing context for the discussion later in this chapter.

Our taxonomy is illustrated in Figure 1.1. We characterize the spatial extent of a network

by comparing it to the acoustic range of the nodes. If all nodes are in direct contact, we have a

single-hop network, with either centralized or distributed control. In networks covering larger areas,

communications will require multiple hops to reach destinations. When the geographic coverage is

greater than the unpartitioned link-layer coverage of all nodes, routing requires techniques from

disruption-tolerant networking (DTN). When even the mobility of nodes does not overlap, no

techniques exist to form a network.

There are several additional differences of note between terrestrial radio-based networks and

underwater acoustic sensor networks. One is that large populations of nodes in small areas can

cause conflicts between throughput and navigation, as we discuss below in Section 1.5.2. A second

point is that densely populating even a moderately large geographic area can be prohibitively

expensive, as we discuss in Section 1.5.1. This latter point makes DTNs an attractive solution, as

we discuss in Section 1.5.3.

In practice, all of the network types shown in Figure 1.1 are relevant and can exist within an

extended network. In other words, clusters of single- or multi-hop networks can be deployed that

use DTN routing to exchange information infrequently.

In the following sections, we discuss the physical layer and medium access protocols, with

particular attention to the differences between underwater networks and terrestrial radio-based

networks.

1.3 Physical Layer

The physical characteristics of the underwater acoustic channel are well-described in Catipovic [17]

and Preisig [91], and they are summarized here. In addition, we review recent work in long-

wave radio and optical underwater networks, and explain some technological limitations for space-

constrained nodes, influencing network topology and leading to a half-duplex channel.
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Figure 1.1. A taxonomy of underwater networking regimes.

1.3.1 Physical Channel

Almost all underwater communication uses acoustics. Radio waves are extremely strongly at-

tenuated in salt water [101]. Long-wave radio, however, can be used for short distances; for ex-

ample, about 1kbit/sec at carriers of 1–100kHz for ranges up to 6–20m [32, 101]. Light is strongly
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scattered and absorbed underwater, though blue-green wavelengths may be used for short-range,

high-bandwidth connections in extremely clear (often very deep) water. In very clear water, optical

modems are expected to achieve data rates up to several Mbits/sec at ranges up to 100m [30]. Un-

derwater optical communication is also being considered for very low-cost, short-range connections

of order 1–2m at standard IrDA rates such as 57.6kbits/sec [101,128].

For longer ranges and more typical water clarity, acoustic communication is the only practical

method. A rough performance limit for current acoustic communications is the limit of 40 km·kbps
for the range-rate product, though this mostly applies to vertical channels in deep water, and it

dramatically overestimates the performance in difficult shallow-water, horizontal channels [64].

The speed of sound underwater is approximately 1500 m/s, 2e5 times lower than the speed of

light. This leads to large propagation delays and relatively large motion-induced Doppler effects.

Phase and amplitude fluctuations lead to a high bit-error probability relative to most radio channels,

requiring forward error correction (also called error correction coding). In addition, the acoustic

channel has strong attenuation with increasing frequency [117], leading to very limited bandwidth.

Multipath interference is common in underwater acoustic networks, causing frequency-selectivity

of the channel. This frequency-dependent interference is generally time-varying due to surface waves

or vehicle motion, causing fading. To achieve high bandwidth efficiency, computationally intensive

adaptive equalizers are generally required [113], though OFDM-based systems may provide a lower-

complexity alternative [115]. While multipath interference is mostly a source of difficulty, recent

work using arrays for both transmit and receive (multiple-input, multiple-output, or MIMO) takes

advantage of the independent channels created by different multipath paths to increase through-

put [42].

Over longer paths, ray bending can lead to shadow zones, or spatial regions where almost

no acoustic signal exists [17]. Also, strong attenuation (on the order of 20dB/m or even higher,

persisting for tens of seconds) can occur in near-surface regions with bubble clouds, which are

entrained into the water by breaking waves [28]. Both of these effects cause network connectivity

dropouts. Relatively small movements can sometimes lead to significantly better channel conditions,

and mobile nodes may be able to take advantage of this.
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Although the underwater acoustic channel is time-varying, propagation delays can certainly be

estimated, and are stable enough to use in setting parameters for network protocols.

1.3.2 Technological Limitations

Standard acoustic transducers cannot simultaneously transmit and receive. On space-constrained

autonomous underwater vehicles (AUVs) and compact stationary nodes, transducers in different

frequency bands generally cannot be spatially separated far enough to provide full-duplex connec-

tions, since the transmitted signals will saturate the receivers even when the bands are fairly widely

separated. Underwater network communications are therefore almost always half-duplex. Further-

more, transducer sizes are proportional to wavelength, and due to space constraints, small AUVs

are often restricted to using higher center frequencies, generally above 10kHz.

Another issue is that it is easy for small AUVs to transmit at high data rates but often harder

for them to receive at high rates. (A high data rate in shallow water would be 5kbits/sec at a range

of 2km, for example; a low rate at this range might be as low as 80bits/sec.) The two main reasons

for this asymmetry are propulsion noise and some difficulties in mounting receiver arrays on small

AUVs [34,37].

Higher data rates typically use phase-shift keying (PSK) [94], which can be transmitted with a

single transducer. Due to the multipath interference, however, equalizing PSK works much better

with the spatial diversity provided by an array of receivers [113]. A vertical array is best for

equalizing the multipath structure of a typical shallow-water horizontal channel, while a horizontal

array can work well for multi-user CDMA systems (see Section 1.4.2), because users are generally

separated azimuthally [34]. Either conformal horizontal arrays or small vertical arrays can be used

on AUVs, but performance is somewhat degraded due to propulsion noise and space constraints.

On the other hand, frequency-hopped frequency-shift-keying (FH-FSK) [94] provides a lower data

rate, which is more robust to AUV propulsion noise and can be received with a single transducer.

The asymmetry in send and receive rates is technological rather than fundamental, but is a

current reality, and is one reason that star topologies with base stations are common in existing

mobile underwater networks [38]. In these networks, AUVs receive small commands using a low
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data rate, and transmit larger sensor data packets at a high data rate back to the base station,

generally a gateway buoy with a vertical array to receive PSK, and a radio antenna above the

water [72]. Issues at the physical layer can drive topology, affecting routing, medium access, and

even applications.

1.4 MAC Protocols

Medium access control (MAC) is an unresolved problem in underwater acoustic networks [4,20,

55, 112], but has been studied for decades in traditional radio networks [94, 98], and has received

significant attention in radio-based sensor networks as well, recently reviewed by Ali et al. [5].

We briefly review recent work in underwater MAC protocols in Section 1.4.1, discuss some

challenges with CDMA in Section 1.4.2, and outline possible future directions in Section 1.4.3.

1.4.1 Recent Work in Underwater MAC

A range of MAC protocols have been explored in underwater networks.

The Seaweb experiments have been the most extensive and longest-running series of underwater

acoustic networking deployments. Seaweb ’98 and ’99 used FDMA due to modem limitations.

With the limited bandwidth and frequency-selectivity of the underwater channel, this was not

ideal [96]. More recent Seaweb experiments have used hybrid TDMA-CDMA clusters (see below)

with MACA-style [62] RTS/CTS/DATA handshakes. Seaweb includes selective retransmit and

provision for channel-adaptive protocol parameters. Seaweb goes well beyond the MAC-layer, and

also uses neighbor discovery to determine network routing tables, though using a centralized server

architecture [95]. Deployment and configuration takes more than a day, and operate for many days,

covering regions of over 100 km2 [96].

Freitag et al. [38] describe a single-hop, star-topology AUV network for Mine Countermeasures

(MCM) operations. These networks can be rapidly deployed (about 1 hour), and operate for many

hours over regions of order 5 km2, with many deployments to date. A central gateway buoy provides

remote operator control of the AUVs using TDMA with low-rate (e.g., 80bits/sec) commands sent
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to the AUVs and high-rate (e.g., 5kbits/sec) data returned to the operator via the gateway buoy.

The AUV navigation pings (see Section 1.5.2) are also coordinated by the network.

Açar and Adams [1] describe ACMENet, which uses a centralized TDMA protocol, with adaptive

data rates and power control. They report results from sea trials, and provide background discussion

on multiple access and MAC protocols for underwater networks.

Smith et al. [110] describe an ad hoc network protocol based on CSMA/CA, with prioritized

messages and improved access for multi-packet transfers. They report results from a small demon-

stration. Lapierre et al. [66] propose using CSMA/CD, although it is unclear how the collision

detection will work in a half-duplex channel. In general, CSMA-based protocols are vulnerable to

both hidden and exposed terminal problems [94].

In multi-hop underwater networks, hidden terminals will be common. MACA [62] uses RTS,

CTS, and DATA packets to reduce the hidden terminal problem, and MACAW [11] adds ACK at

the link-layer, which can be helpful in the unreliable underwater channel [112]. FAMA [46] extends

the duration of the RTS and CTS packets to prevent collisions with data packets. The efficiency of

these protocols are impacted heavily by propagation delays, due to their multi-way handshakes.

A number of adaptations have been proposed to adopt MACA, MACAW, and FAMA for un-

derwater networks. Molins and Stojanovic [76] recently proposed Slotted FAMA, adding timeslots

to FAMA to limit the impact of propagation delays, with simulation results. Another approach to

limit the impact of long RTS/CTS handshake packets is proposed by Peleato and Stojanovic [86],

where handshake timing is proportional to the separation of the communicating nodes, and the

receivers can tolerate some interference from more distant nodes. As a small part of their review

article, Sözer et al. [112] described a simulation using MACA with an added WAIT command to

reduce collisions and to improve power efficiency. Kebkal et al. [63] propose a means to reduce the

impact of propagation delay on FAMA- and MACAW-based protocols, with ACK and DATA pack-

ets simultaneously in flight. They also suggest an extension to FAMA, using CDMA for the RTS

packets, to develop a collision-free FAMA protocol. Related ideas are proposed in more detail in

Foo et al. [31], with CDMA extensions to MACA and references to the radio-based MAC literature.
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Foo et al. also simulate a MACAW-based underwater network, and also adapt the AODV reactive

ad-hoc routing protocol for a sparse underwater network with low mobility.

Another potential approach is using combined TDMA-CDMA clusters, used in current Seaweb

implementations, and described in more detail by Salvá-Garau and Stojanovic [99]. This allows

shortening the TDMA slot lengths, but increases overhead (cluster assignment) and the potential

for interference from a neighboring cluster (using a different code). Doukkali and Nuaymi compare

several approaches to underwater MAC, and adopt TDMA-CDMA clusters as well [23].

Energy efficiency is also important in underwater networks (see Section 1.6). In terrestrial

sensor networks, energy constraints have led to coordinated-sleeping MAC protocols such as S-

MAC [137]. Park and Rodoplu [81] extend these ideas and others, proposing UWAN-MAC, an

energy-efficient MAC protocol for delay-tolerant underwater sensor networks; the combination of

energy constraints and high propagation delays is a new operating regime for MAC protocols. They

also provide references to MAC protocols in underwater networks and terrestrial sensor networks.

1.4.2 CDMA

Code-division multiple access (CDMA) [94] is a conflict-free multiple access method which is

promising for future underwater networks. Implementing a CDMA-based underwater network is

very challenging, however, as we discuss briefly below.

Multi-user spread-spectrum methods include frequency-hopped spread spectrum (FHSS, using

FSK modulation, and lower data rates) and direct-sequence spread spectrum (DSSS, using PSK

modulation, and higher data rates); the term CDMA usually refers to multi-user DSSS [43,94]. Each

user is assigned a different spreading code with which to transmit. While this reduces each user’s

throughput compared with the single-user case, users can transmit packets without considering

what other users are doing. This would effectively solve many of the MAC problems related to high

propagation delay. Furthermore, CDMA has no hard limit on the number of users, and DSSS-based

CDMA can perform especially well in multipath environments [41].

Stojanovic and Freitag [118] report very promising CDMA results for four users. An important

caveat for this work, however, is that the received power for each of the users was equal. If the
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received power for all users are not roughly similar, signals from distant users cannot be received

successfully [94]. This is the near-far problem. This requires that the transmit power of each user

be controlled, as each user’s channel varies. This is certainly possible, but CDMA is more tractable

in radio channels than in underwater acoustic channels. In CDMA-based cell phone networks,

closed-loop power control updates are sent 800 times per second, with the feedback propagated at

the speed of light. Open-loop power control is also used, where nodes set their transmit power based

on the received signal strength from the base station (see Rappaport, Section 10.4, CDMA Digital

Cellular Standard (IS-95) [94]). Underwater networks have a time-varying, half-duplex channel

with a low propagation speed, and so closed-loop transmitter power control is a difficult and open

problem. The range of received powers, however, can be moderately wide — up to about 10dB —

easing the power control problem somewhat, but with high computational complexity [120].

As an additional note, the power control required with CDMA usually implies a star topology

with a single base-station receiver, rather than an arbitrary ad hoc topology. Morns et al. [77],

however, describe a decentralized configuration using CDMA. Each node in a cluster has its own

receive timeslot, during which other nodes can transmit to it using CDMA.

1.4.3 Future Directions

Cross-layer optimization and adaptive parameter setting is important given the limited band-

width and high propagation delays of underwater channels. The control packets in many MAC

protocols can provide a means to sample the channel and set network parameters, for example

measuring propagation delays to set timeouts, received signal strength to set transmit power, or

signal-to-noise ratio to set coding rates. Networks such as Seaweb [95,96] and ACMENet [1] include

provisions for adaptation, but is an important feature to emphasize.

The frequency-dependent attenuation of the underwater channel is different from the radio

channel, and it might be used in several different ways. While logistically difficult, a dual-frequency

(but still half-duplex) modem [35, 37] could use a lower-frequency transducer for a longer-range,

lower-bandwidth link, and a high-frequency transducer for a short-range, high-bandwidth link.

This would increase throughput on individual short-range links, and also improve spatial reuse,
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increasing the network’s overall throughput. Such a system might also split control and data;

long-range control signals would help alleviate hidden-terminal problems.

Some new approaches also try to preserve the broadcast nature of the channel, for omnicast

within swarms of AUVs, as suggested by Schill et al. [102], using TDMA to share control and data

for collective behavior of AUVs in an underwater long-wave radio network.

Finally, propagation delays have been dealt with in satellite and fiber optic networks for many

years. In satellite radio networks, several approaches include demand-assignment multiple access

(DAMA) [88] and interleaved collision-resolution protocols [70]. Fiber optic networks have used

slotted Aloha and coding to deal with propagation delays on the order of 1000 slots, much higher

than in satellite channels [97]. These approaches may provide new ideas for MAC in underwater

acoustic networks.

1.5 Mobility and Sparsity

Terrestrial sensor networks generally assume fairly dense, continuously connected coverage of an

area using inexpensive, stationary nodes. In contrast, economics push many underwater networks

towards sparse and mobile deployments.

As we discuss in Section 1.5.1, underwater sensor nodes are expensive, and areas of interest in

ocean environments are often large, which implies sparse network deployments. Ship-based surveys

and sensor deployments are also expensive, and a sparse sensor network with stationary nodes is

limited. This has led to the widespread use of mobile AUVs.

In a mobile sensor network, nodes require periodic navigation information. For physical reasons,

in underwater networks, navigation and communication signals often share frequency bands. The

combined demands on the channel for both navigation and communication places further limits on

the density of mobile nodes in a network. We survey network-based approaches to navigation in

Section 1.5.2.

The sparsity and mobility of many underwater networks means that disruption-tolerant networks

(DTNs) will arise, and mobility patterns strongly influence performance in DTNs. We briefly
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introduce results from terrestrial DTNs in Sections 1.5.3 and 1.5.4, with applicability to underwater

networks.

Finally, the sparsity and mobility implies a new operating regime for MAC protocols. As we

discuss in Section 1.5.5, in some networks, MAC protocols may prioritize access for AUVs that are

within communication range only briefly, to maintain long-term fair access to the channel.

1.5.1 Economics of Oceanographic Operations

We believe that many, though not all, underwater networks will be sparsely deployed for a long

time to come, largely because of the economic costs of individual nodes, but also because of the

potentially huge areas to be surveyed. There are several components to the costs of these networks,

including fabrication, deployment, and recovery.

Fabrication. An acoustic modem with a rugged pressure housing currently costs1 roughly $3k.

This does not include any underwater sensors, which are often more expensive than the modem

itself. Supporting hardware can also drive up costs; e.g., a simple underwater cable connector is

often over $100. The high costs are due in part to the rugged construction required to survive

storms at sea and deployment at depth2, but largely due to a small market of demanding users

(military, industrial, scientific), and no consumer market to speak of.

Significantly less expensive sensors, vehicles, and modems (500m-range acoustic and very short-

range optical and radio) are being designed and built [55,58,101,105,128]. These efforts may change

the economics for dense underwater sensor networks, as we discuss further below.

Deployment. Oceanographic research ships typically cost from about $5k/day for a coastal boat

to $25k/day for a large ocean-going ship [125] (and more when submersibles are used), and their

operations are limited in rough weather. Once deployed, stationary or mobile sensor nodes can

1All our estimates are in US dollars.

2The pressure increases by an additional atmosphere for every 10m of depth, so even a “shallow”-water (generally
100m) instrument must be able to withstand 10 atmospheres, while “deep”-water instruments (typically 4km) must
be rated to at least 400 atmospheres.
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operate autonomously in almost any weather, a significant advantage. Nodes, however, must be

robust and well-engineered, since any repairs will be very expensive.

Recovery. Until nodes are inexpensive (i.e., disposable) and underwater networks have enough

bandwidth to enable nodes to fully offload all interesting archived sensor data, recovery will remain

a costly operation. Mobile nodes can make the recovery process somewhat easier by moving them-

selves to a rendezvous point.

Economics and flexibility have led to the use of AUVs as a key element in most underwater

network architectures. They operate autonomously once deployed and they have relatively easy

deployment and recovery (e.g., about $2k/day for coastal deployment and recovery from a small

boat). While AUVs are inexpensive relative to ship time, they are not cheap, starting at over

$50k and usually over $250k per vehicle to fabricate and equip. Given the huge size of the ocean,

there is a spatial coverage for which deploying an unpartitioned sensor network of AUVs becomes

cost-prohibitive, for any given application.

Currently, economics drive underwater sensor networks to be sparse and mobile, as pointed

out by several others [20, 55], as well as by us. There are some applications for which a dense,

stationary network makes economic sense, for example the oilfield monitoring application described

by Heidemann et al. [55]. The low-cost modems being developed within that project could enable

dense underwater sensor networks for other applications, but we believe that sparse and mobile

sensor networks will still certainly remain in operation. The ocean covers 70% of the Earth’s

surface, with an average depth of 4km. This is an immense volume of ocean to survey, even when

considering that coverage is generally highly focused and non-uniform. No matter how cheap nodes

become, sparse and mobile will remain an important type of underwater sensor network. Ideally,

the network protocols will adapt to let mobile nodes move easily between sparse and dense regions

of an extended sensor network.
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1.5.2 Contention between Navigation and Data Signals

Autonomous mobile vehicles require navigation information. Underwater, this cannot be sup-

plied by GPS, so, for AUVs, it is often supplied by acoustic transponders, generally in a long-

baseline (LBL) configuration [39]. In typical high-speed REMUS surveys, each vehicle pings nav-

igation transponders roughly three times per minute to minimize navigation errors. Due to the

frequency- and range-dependent attenuation of the channel, high-resolution navigation systems

and high-throughput communications systems covering a region of a given size will generally use

similar center frequencies, hence often have interfering signals. In fact, because of this, navigation

and communication systems often even share the same transducer [38].

MAC protocols in mobile underwater networks therefore need to be able to share the channel

between network communications and navigation signals, with a given navigation quality-of-service.

When many vehicles are in an area, each vehicle must reduce the rate at which it pings LBL

transponders, which leads to navigation errors.

Several network-based navigation methods have been presented. Freitag et al. [39] describe

results from a passive navigation system, where a large number of vehicles can passively share nav-

igation signals, analogous to terrestrial GPS, without each vehicle actively pinging a transponder.

When vehicles need a more accurate location fix, they can request a slot for an active LBL ping.

Elsewhere, Freitag et al. [35], have outlined a system for collaborative AUV searches, where high-

quality inertial navigation information from a master vehicle is transmitted to companion vehicles,

using synchronized hardware clocks and one-way travel-time measurements. Stojanovic et al. [119]

propose a protocol for collaborative mapping with AUVs. AUVs share their individual maps over

the broadcast network, in the process making travel-time measurements and creating a unified map,

which can in turn be used for routing. Ouimet et al. [80] describe experiments with Seaweb using

a broadcast ping packet for AUV localization. Another protocol, ICoN [61], prioritizes navigation

and communication packets to ensure that AUVs receive adequate navigation information, yet are

still responsive to command packets.
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1.5.3 Disruption-Tolerant Networks

In a sparse and mobile network, DTNs will arise as the link-layer coverage becomes partitioned.

When the mobility of nodes overlap, they have transfer opportunities from the time they discover

one another until they are out of acoustic range. Even in radio networks, the amount of data that

can be transferred during each opportunity is the most constrained resource; the bandwidths of

acoustic modems exacerbate this constraint. (By comparison, the limits on storage at each node

are less problematic: storage is generally inexpensive, compact, and energy efficient.) A series of

non-contemporaneous meetings between nodes can form a path to a destination. If meetings are

frequent and common, then the total throughput that can be delivered by the network can be

reasonable for data that remains valuable after long delays. DTNs can also be used to connect

geographically remote clusters of nodes.

DTNs have primarily been researched under the assumptions of radio-based terrestrial networks,

yet many of the techniques are directly applicable to underwater networking. Most approaches

replicate packets epidemically during intermittent opportunities for transfer. At the same time,

the protocols attempt to limit replication to only the nodes that appear to have some path to the

destination. Many approaches to discovering non-contemporaneous paths to destinations use his-

toric information about which nodes meet regularly [13,14,22,67,69,138]. Several other techniques

are complementary. For example, old packets representing delivered data can be removed from

the network using broadcast acknowledgments [13], and network coding [132, 139] can be used to

efficiently take advantage of multiple paths.

1.5.4 Network-Motion Interactions

While the motion of vehicles is primarily determined by their survey patterns, networks can

influence the motion in several ways. The most typical is through adaptive and collaborative

sampling, where sensor data influences survey patterns [68].

In addition, there is a growing body of work that seeks to improve DTN performance by making

use of vehicles with controllable movements. Dunbabin et al. [25] have deployed a system on an

AUV in a test pool that plans a route to visit stationary underwater nodes in known locations.
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Zhao et al. [140–142] have several works that investigate DTN routing based on ferries that operate

on planned mobility paths; the paths are designed to optimize network performance and known

to all other nodes. Burns et al. [14–16] have proposed a method for robotic agents to dynamically

adjust movements according to perceived network conditions and according to multiple network

objectives, such as maximizing delivery rate and minimizing delivery latency.

Finally, in terms of MAC protocols, AUVs might alter their survey tracklines to alleviate hidden-

or exposed-terminal problems and to increase spatial reuse, in a MAC incorporating actual physical

“backoffs”.

1.5.5 MAC Fairness in Mobile Networks

With the large propagation delays of the underwater acoustic channel, it is advantageous to

transmit packet trains rather than individual packets [114]. Long packet trains can capture the

channel, however, and in a mobile DTN, AUVs may move out of range before they are allowed

sufficient access to the channel.

This is especially true with AUVs such as the next generation of REMUS vehicles, doubling their

speed to 5m/s, and likely reducing their acoustic transmission range to maintain covert communi-

cations. With current REMUS vehicles (2.5m/s speed, 2km communication range), a back-of-the-

envelope characteristic time to stay within contact is 2km/(2.5m/s)=13 minutes, or about 130 slots

for 4-second, 20-kbit data packets with 2-second propagation delays. For the next generation, with

a speed of 5m/s and a covert communication range of perhaps 500m, the characteristic time within

contact drops to about 2 minutes, or about 20 slots.

In such a network, long-term average fairness in accessing the channel becomes an issue. When

a previously disconnected AUV re-enters contact briefly, it must be given prioritized access to the

channel. One possible mechanism to achieve this is a MAC protocol that adapts its prioritization or

backoff probability distribution to account for mobility and disconnectedness, perhaps along with

utility-based metrics. We are considering this problem, among others.
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1.6 Energy Efficiency

Energy is limited in both terrestrial and underwater sensor networks. Energy efficiency has been

a top priority in MAC protocols for terrestrial sensor networks, with coordinated-sleeping protocols

such as S-MAC [137], extended into underwater networks with UWAN-MAC [81]. In addition,

a range of approaches to energy-efficient and latency-tolerant underwater network protocols are

discussed by Heidemann et al. [55].

Despite the constraints on overall system energy, in some mobile underwater acoustic networks,

communication energy is not a critical metric for which to optimize. Along similar lines, some

terrestrial sensor networks are starting to optimize MAC protocols for a wider range of metrics,

such as reliability and quality-of-service [5].

While energy efficiency is likely to improve for both modems and vehicles, current numbers are

included below, for comparison purposes.

1.6.1 Communication Energy Costs

In most terrestrial radio networks, the power required for transmitting and receiving are approx-

imately the same, with the respective energies being determined by the time spent in the transmit or

receive states. In underwater acoustic networks, transmit power dominates, and is typically about

100 times more than receive power. A standard acoustic modem currently uses about 0.2W while

listening for incoming packets, between 0.2W and 2W for equalizing and decoding packets (depend-

ing on the packet’s data rate), and typically 50W for transmitting. These figures are representative

of sending packets over a range of 2-3km at a 25kHz center frequency, ranging from FH-FSK at

80bits/sec (for poor channel conditions; 0.2W to detect and decode) to PSK at 5kbits/sec (for good

channel conditions; 0.2W to detect, 2W during equalization and decoding) [36]. For good channel

conditions and shorter ranges, however, the transmit power can be lower, potentially as low as 1W

for good conditions and short (500m) ranges [33]. As processors become more energy-efficient, the

receive power will continue to drop, while the transmit power will remain roughly constant, as it is

determined by channel physics and detector algorithms.
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1.6.2 AUV Energy Costs

As we discussed in Section 1.5, underwater sensor networks are likely to be more mobile than

terrestrial sensor networks, with AUVs as a key element of networks. For many AUVs, the propul-

sion power dominates network-communication power. Although energy on AUVs is clearly limited,

there will be important underwater networks for which network communication energy efficiency is

not a primary concern.

As examples, REMUS-class AUVs have missions which are high-speed (1.0m/s-2.9m/s) and

short-duration (generally 5-20 hours). Missions can be extended by recharging at sub-sea dock-

ing stations. Their “hotel” power load (non-propulsion power: sensors, communication, control

computers) is typically about 30W, with a propulsion power consumption ranging from 15W at

the optimum speed of 1.5m/s, to 110W at 2.9m/s [121]. In contrast, gliders are low-speed, long-

duration vehicles [131]. A glider with electric propulsion has a total power consumption (hotel

and propulsion) of about 2W at speeds of 0.2m/s-0.4m/s, for a mission of up to about one month.

Thermally-powered gliders use variable buoyancy to extract propulsion energy from ocean ther-

moclines, have extremely long missions (many months or years), and have an extremely low hotel

power budget [130]. For high-speed AUV missions, network communication energy can be neglected,

whereas it is critical for long-duration glider missions.

1.6.3 Future Energy Directions

Finally, transmit power may be limited for reasons other than battery capacity. One standard

networking reason would be to promote spatial reuse. In addition, a concern is the acoustic impact

on marine mammals, and for military networks, maintaining covert communications is also an

important goal.

1.7 Conclusions

We have summarized a number of practical issues differentiating underwater acoustic networks

from terrestrial radio-based sensor networks. There is no single operating regime for underwater

networks, and a wide range will exist. Nevertheless, we believe that many important underwater
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networks will be more mobile and more sparse than terrestrial sensor networks, with different energy

and economic considerations. Underwater network protocols will have to adapt to moving between

sparse and dense regions, with different optimization metrics for each regime.

30



CHAPTER 2

MIXED-EXPONENT SPREADING MODEL: THEORETICAL,
NUMERICAL, AND EXPERIMENTAL INVESTIGATION

2.1 Introduction

Interference is fundamental to wireless networks. Physical-layer spreading loss is a major de-

termining factor in the level of interference experienced by nodes in a network. In particular,

interference affects the effectiveness of medium access control (MAC) protocols.

Research in underwater acoustic networks (UANs) has brought together several different com-

munities, including computer scientists, underwater acoustic communication engineers, and ocean

acousticians. The spreading models and approaches that were adequate for these communities —

underwater acoustic communications, deep-water ocean acoustics, and terrestrial radio-based wire-

less networks — are not necessarily adequate for analyzing underwater acoustic networks. In

particular, despite the significant role spreading loss plays in determining underwater network per-

formance, it has been largely neglected in the underwater acoustic networking literature.

Many underwater acoustic networks are modeled using the “practical spreading” model with a

spreading exponent of k = 1.5 [112], which has little grounding in theory or experiment [18]. In com-

parison with terrestrial radio networks, often modeled with spreading exponents of 2 ≤ k ≤ 6 [94],

spreading exponents in UANs are generally assumed to be much smaller, which would lead to

increased long-range interference relative to radio networks.

In this chapter, we attempt to question and to test the validity of the spreading models that

are assumed to be valid by many researchers in underwater acoustic networks.

There are several contributions in this chapter:

• In Section 2.3, using physical reasoning we derive an alternate spreading model, which we call

the mixed-exponent model. The moment of packet detection is the most vulnerable period for
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network interference [135], and so the detection model is critically important in determining

interference. The mixed-exponent model applies to energy-constrained acoustic modems that

use matched filter detectors as a low-power wakeup detector. A distinction is drawn in the

spreading exponents for the matched filter’s response to the wakeup signal versus distant

interference.

• In Section 2.4, we validate the mixed-exponent model using the raytracing acoustic propagation

package Bellhop.

• In Section 2.5, we provide additional validation of the mixed-exponent model using RAM,

an underwater acoustic propagation modeling package which solves the forward-propagating

wave equation. Both the theoretical derivation mixed-exponent model as well as the raytracing

results are based on high-frequency ray approximations with lossless boundary reflections. The

RAM results provide a more independent validation, with no ray approximation, and with

lossy bottom reflections. With both Bellhop and RAM, we use uniform soundspeed profiles.

• In Section 2.6, we analyze data from a shallow-water field experiment, directly measuring

energy-loss exponents. With scattering losses from the boundaries, we are measuring energy-

loss exponents rather than spreading-loss exponents. We identify periods in time where simple

exponent models appear to hold, and other periods where they do not. For this particular

experiment, even when simple exponent models do hold, the energy-loss exponent values

are significantly larger than 2, and are therefore not consistent with the “practical spreading”

model. For modeling shallow-water underwater acoustic networks, we recommend generalizing

the spreading loss model to an energy-loss model that includes scattering losses. Furthermore,

caution should be used if “practical spreading” is used to model network performance.

In addition, we partially validate the mixed-exponent model from the field experiment data

analysis. In most cases, even when simple exponent models do not hold, there is a difference

between the exponents for packet detection and interference. Usually the energy-loss exponent

for packet detection is larger than that for interference, implying that long-range interference

will be a problem for MAC protocols in UANs.
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• In Section 2.7, we use results developed in the next chapter, Chapter 3, on the effects of

spreading on the effectiveness of RTS/CTS MAC protocols, along with the energy-loss expo-

nent measurements of Section 2.6 to evaluate RTS/CTS effectiveness for a potential network

at our field experiment site.

In the first section of this chapter, we start by summarizing previous work that has led to the

presently accepted spreading model.

2.2 Previous Work and Present Model

The physical channel models used in reseach on underwater acoustic networks (UANs) have

primarily come from the underwater acoustic communications community. The spreading model in

particular was introduced by Sözer et al. [112] and Stojanovic [117], who in turn refer to Coates [18],

who summarizes the model’s basis simply as:

A “practical” law, intermediate between the spherical and cylindrical laws, is thus
often invoked for “first-cut” calculations in sonar system design.

Sözer and Stojanovic are certainly aware of the limitations of the practical spreading model, and

use it just for convenience in calculations and system-level design. Nevertheless, it has become

standardized as the default spreading model used to model UANs.

The “practical spreading” model is adequate for high-level system design of many acoustic

communications links, in large part because the details of the spreading loss model are not significant

in acoustic communications research; the communications challenges are in estimating and tracking

the time-varying multipath channel [17,42,64,113], and spreading losses change slowly for a point-

to-point link. As a result, the practical spreading model, with minimal theoretical or experimental

grounding, has become the standard spreading model for underwater acoustic network research

without significant questioning. In contrast to the situation with point-to-point communication

links, interference is a fundamental aspect of wireless networks, and the details of the spreading

model are important.

The ocean acoustics community has performed much of the fundamental reseach that in turn

underlies and informs the underwater acoustic communications community. Ocean acoustics re-
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searchers primarily analyze signal propagation in the frequency domain rather than the time do-

main [44], and again deal with point-to-point propagation without interferers. Detection of incoming

packets, however, is performed in the time domain, and potentially in the presence of interfering

packets in a multipath waveguide formed by the watercolumn and its boundaries.

Finally, spreading has not been explored by the new underwater acoustic networking community,

largely in favor of studying the effects of greatly increased propagation delay relative to radio

channels [3, 20, 55]. Terrestrial radio-based wireless networks typically experience higher pathloss

exponents (hence less long-range interference) than in underwater acoustic networks, perhaps also

leading researchers coming from radio-based networks to ignore spreading loss (see Chapter 3). An

additional reason that the networking community specifically might have neglected spreading is

that of the two pathloss terms, spreading loss and absorption loss, spreading loss is polynomial in

distance and absorption loss is exponential in distance. Perhaps counterintuitively, spreading is

generally the more important of the pathloss terms precisely because it is polynomial rather than

exponential: the exponential pathloss term (absorption) ultimately limits a link’s maximum range

and maximum bandwidth, but within the operating range of a communications link, the polynomial

pathloss term (spreading) is more usually important in determining network performance, as shown

in Figure 2.1.

Recently, several groups [7, 52, 87] have have integrated the ocean acoustics modeling package

Bellhop [79, 90] as a physical propagation layer in the network simulator ns2 [74]. This approach

is promising and interesting. It will provide more realistic pathlosses compared with the practical

spreading model, but it has the disadvantage that the black box of Bellhop may obscure the intuitive

physical understanding promoted by simpler models.

Furthermore, these approaches have not incorporated our hypothesized distinction between

incoherent processing of interference and coherent, single-arrival processing of packet detection,

which we present in the next section.
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Figure 2.1. The solid lines show the range, for a given frequency, where the absorption loss
equals the spreading loss for several spreading exponents k. The absorption loss is modeled with
Thorp’s expression [117,126]. The dashed lines show maximum detection ranges for SNR detection
thresholds of 0 dB and 10 dB. The figure shows that within the typical operating regimes of most
underwater acoustic communication links, spreading losses are more significant than absorption
losses. The figure also shows that, at lower frequencies, spreading losses dominate absorption losses
out to ranges well beyond the detection limit, leading to higher levels of unsuppressed interference
at lower frequencies (see Chapter 3). (Note: The SNR is calculated with a transmitter power of
185 dB re:1μPa2@1m, Thorp absorption, a spreading exponent of k = 1.5, a transducer bandwidth
of 1/3 the center frequency (i.e., quality factor Q = 3), and ambient noise modeled with parameter-
ized power spectral density expressions from [18, 117] with a wind speed of 3 m/s and a “shipping
factor” of 0.5.)

2.3 Theoretical Basis for Mixed-Exponent Spreading Model

In this section, we use physical reasoning from first principles to provide the theoretical basis for

a hypothesized mixed-exponent spreading model. We are not trying to provide detailed propagation

modeling such as that done by the ocean acoustics community, but rather to extend the simple and

intuitive “practical spreading” model for point-to-point communication links, to a slightly more

complicated model which can model the instant of packet detection in the prescence of interference.

The receiver model for our mixed-exponent spreading model is an energy-constrained underwater

acoustic modem, running a low-complexity, low-power-consumption matched-filter detector to save
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energy while waiting for an incoming packet. Upon detecting an incoming packet, the modem wakes

up the primary communications receiver. When the communications receiver finishes processing

the packet, the modem returns to the low-power detection state. This is the way that the WHOI

Micromodem [36] operates, and the Micromodem in its packet-detection mode specifically is our

receiver model.

The model of our communications packet structure is a wakeup signal to trigger the matched-

filter detector, followed by a short delay to allow the primary communications receiver to become

active, followed by the data packet. In this model, we take the data packet to be a PSK packet,

which has a spectrum within the communications band similar to noise.

A matched-filter detector correlates its input against the known wakeup signal, preserving the

phase differences among the samples. It has no estimate of the channel’s multipath structure. Until

the multipath arrivals become unresolvable and start to combine coherently, the matched-filter

detector does not combine energy from multiple arrivals. It detects on the energy from a single

arrival.

Mathematically, a detection will occur when the peak output energy of the matched-filter de-

tector exceeds a threshold. Denoting the matched-filter coefficients by hmf , the channel’s impulse

response by hchannel, the transmitted wakeup signal by d, and the ambient noise at the receiver by

n, the expected value of the detector’s peak output energy is

E [output|wakeup signal] = E

[
max |hmf ∗ (hchannel ∗ d+ n)|2

]
∼ E

[
max |hchannel[k]|2

]
,

where ∗ is the convolution operator. In the expression above, we have used the facts that convolution

is commutative, and that the matched filter convolved with the desired wakeup signal approximates

a delta function (i.e., (hmf ∗ d) ≈ δ[k]), and the processing gain is generally large enough that the

noise can be neglected.

For the rest of this chapter, we therefore model the coherent detection energy by the expected

value of the peak energy of the channel’s impulse response.

36



An interfering data packet from a distant node that is below the detection threshold will not

be detected itself, but its energy will add to the noise floor of the matched filter detector. Energy

from all of the multipath arrivals will combine incoherently into the detector’s noise floor — the

energies of all the multipath arrival sum.

Mathematically, with an undetected interfering packet payload as the detector input, the ex-

pected value of the matched-filter detector output will be

E [output|interference] = E

[
|hmf ∗ (hchannel ∗ s+ n)|2

]
,

where s is an interfering packet payload, below the detection threshold but still larger than the

ambient noise n. In our model, the packet payloads use PSK modulation, which is similar to

uncorrelated noise in the frequency band of interest. Let s′ = (hmf ∗ s). If the samples of s′ are still

uncorrelated, then the detector output due to an interfering packet is

E [output|interference] ≈ E

[
|hchannel ∗ s′|2

]
≈ σ2

s′

N−1∑
k=0

|hchannel[k]|2 ,

or proportional to the incoherent sum of the energy in the channel’s impulse response.

In a coherent energy sum, the sum of the complex amplitudes is taken first, and the magnitude-

squared of the sum is the energy. In an incoherent energy sum, the sum of the squared magnitudes

of the individual amplitudes is taken.

For the rest of this chapter, we therefore model the interference energy by the incoherent sum of

energy in the channel’s impulse response.

The acoustic energy transmitted from a point source (without absorption losses) spreads spher-

ically as it propagates away from the source, i.e., decays as r−k with spreading exponent k = 2.

As the energy from the point source reflects from the sea surface and the seafloor in shallow water

(or refracts from sound speed gradients in deep water), the energy in different multipath paths

recombines in the far-field.

The energy in both the interference and the wakeup signal will spread spherically close to their

source, until the range at which another multipath arrival combines with them in the appropriate
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Figure 2.2. Geometry for transition range analysis. The source and receiver are separated by the
direct path of length r, with a surface-bounce path of length r′. The water depth is wd, and the
source and receiver are located at depth wd/2.

way. We have called this range the transition range. The transition range for interfering packets

is the range at which the first additional multipath arrival combines incoherently. The transition

range for the wakeup signal, as coherently processed by the matched-filter detector, is the range at

which the first additional multipath arrival becomes unresolvable in time.

2.3.1 Transition Range for Coherent Processing (Packet Detection)

We want to derive an order-of-magnitude estimate of the range where the transition away from

spherical spreading occurs, for coherent packet detection.

Let r be the separation between the transmitter and receiver. Let wd be the water depth in

the shallow-water case (or a measure of the vertical extent of the sound channel in the deep-water

case). Let the signal have bandwidth B.

For an order-of-magnitude approximation, consider a source and receiver that are each at a

depth of wd/2, halfway down the water column. Consider just one arrival from the direct path and

one arrival from the path with a single surface-bounce, shown in Figure 2.2.
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In this geometry, the direct path has length r, and the surface-bounce path has length

r′ = 2

√(r
2

)2
+
(wd

2

)2
(2.1)

The pathlength difference between the two paths is

Δr = r′ − r =

(
2

√(r
2

)2
+
(wd

2

)2)
− r = r

(√
1 +

(wd

r

)2
− 1

)
≈ 1

2

w2
d

r
,

where the approximation is for large separations relative to the water depth, r � wd. The path-

length difference leads to a difference in arrival times,

Δt =
Δr

c
≈ w2

d

2rc
.

With a signal bandwidth B, the time resolution is of order 1/B. For the direct-path and

surface-bounce path, if Δt < 1/B, then the arrivals are not resolvable, and energy from other

arrivals combines coherently into the peak of the matched-filter detector. This gives an approximate

transition range of order

rT,coh ≈ w2
dB

2c
.

If r � rT,coh, then the arrivals are not resolvable.

Next we will derive the coherent spreading exponent beyond the transition range. The key

question here is: How many arrivals are non-resolvable from the direct-path arrival as a function of

range?

First, we conceptually extend Figure 2.2 to a find the pathlength for a ray with N bounces.

The pathlength is

rN = 2N

√( r

2N

)2
+
(wd

2

)2
.

For r � wd, the N -bounce pathlength becomes

rN ≈ r +
N2w2

d

2r
.

The direct pathlength, with zero bounces, r0, is just the horizontal range r.
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For the arrival with N bounces, as well as all arrivals with fewer bounces, to become non-

resolvable from the direct-path arrival, we need

Δr

c
≤ 1

B
,

where Δr = rN − r = N2d2/2r. Therefore, at equality, we have the maximum number of bounces

a ray can have and still be non-resolvable from the direct-path arrival:

Nb,n.r.(r) =

√
2cr

Bw2
d

.

At range r, all rays with Nb,n.r.(r) or fewer bounces will be non-resolvable from the direct-path

arrival. Rays with more than Nb,n.r.(r) bounces will be resolvable in time from the direct-path

arrival. There are (2N + 1) rays with N or fewer bounces (one direct path, plus one ray initially

propagating down, and one ray initially propagating up for each combination of N bounces).

Again, in a coherent energy sum, the sum of the complex amplitudes is taken first, and the

magnitude-squared of the sum is the energy. In an incoherent energy sum, the sum of the squared

magnitudes of the individual amplitudes is taken.

The expected value of the coherent energy is then the expected value of the energy in the

coherent sum of the arrivals that are non-resolvable from the direct-path arrivals, i.e., the arrivals

from paths with Nb,n.r.(r) or fewer bounces:

E [coherent energy] ≈ E

⎡
⎢⎣
∣∣∣∣∣∣
2Nb,n.r.(r)∑

i=0

ai(r)

∣∣∣∣∣∣
2
⎤
⎥⎦ ,

where ai(r) is the complex amplitude of the ith arrival as a function of range r. Due to random

fluctuations (“micro-multipath”) in phase along each path [17], the complex amplitudes of the

different arrivals, ai(r) are uncorrelated, so

E [coherent energy] ≈
2Nb,n.r.(r)∑

i=0

E

[
|ai(r)|2

]
∼ 2Nb,n.r.(r)

( |ao|
r

)2

∼ 2

(√
2cr

Bw2
d

)( |ao|
r

)2

∼ r−1.5

(2.2)
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Here we have assumed that each of the arrivals individually experiences spherical spreading, and

that all the rays have similar energy when transmitted, i.e., the transmitter is omnidirectional.

Therefore the expected value of the energy in a single arrival as a function of range is

E

[
|ai(r)|2

]
=

( |ao|
r

)2

,

where |ao|2 is proportional to the total transmitted energy.

Equation 2.2 shows that the expected value of the overall coherent energy sum therefore scales

as k = 1.5 for ranges beyond the coherent transition range.

2.3.2 Spreading Model for Incoherent Energy (Interference)

For interference, the situation is different. Energy combines incoherently for the entire length

of the delay spread, the delay from the first multipath arrival until the last arrival of appreciable

energy.

With perfectly reflecting boundaries, there would be no incoherent energy lost in the depth-range

plane, but the energy would still spread azimuthally, i.e., cylindrical spreading with k = 1.

The key question here is: How long do we have to sum energy in delay in order to capture the

entire delay spread of the channel?

The idealization of perfectly reflecting lossless boundaries is not realistic, and would lead to an

infinite delay spread. There is an angle dependence to the reflection coefficients, due to roughness

at the surface and due to both bottom roughness as well as the impedance mismatch of acoustic

propagation in the water column versus acoustic propagation in the bottom [75].

We approximate the surface and bottom reflection coefficient magnitudes as unity up to a

grazing angle of θmax, and zero for larger grazing angles. (The grazing angle is the angle between

the horizontal and the propagation path, the complement of the angle of incidence.)

We again consider a ray with N bounces, discussed in the previous section on the coherent

energy transition range. The launch angle of this ray from the source is the same as its grazing

angle with the boundaries. So for reflection coefficients with a given maximum grazing angle θmax,

there is a maximum launch angle which is propagated from the source. Therefore there is a ray
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with a maximum number of bounces, because any ray with more bounces would have a steeper

launch angle, and would not be reflected.

Expressing the maximum launch angle in terms of the number of bounces for the steepest

reflected ray,

tan(θmax) =

(
wd/2

r/2Nsteepest

)

Using the Taylor series of arctan(x) = x− x3/3 + · · · to first order,

θmax ≈ Nsteepestwd

r
,

or

Nsteepest(r) =
rθmax

wd
.

The pathlength difference between the steepest reflected ray and the direct path is

Δr = rN − r =
w2

dN
2
steepest

2r
,

using the result on pathlength difference from the previous section on the coherent transition range.

The maximum delay spread is the maximum pathlength difference divided by the speed of sound,

or

δmax(r) =
ΔrN
c

=
w2

dN
2
steepest

2rc
=

rθ2max

2c
. (2.3)

If we integrate incoherent across the entire delay spread for a given maximum launch angle, we will

have captured all of the incoherent energy, and the incoherent will spread cylindrically, i.e., k = 1.

The transition range to go from spherical to cylindrical spreading for incoherent energy depends

upon the maximum launch angle. In terms of range, the first ray to return to a receiver in the

middle of the water column will be the steepest reflected ray. The range at which it will return to

a receiver in the middle of the water column will be r/Nsteepest = wd/θmax. The incoherent energy

transition range is therefore proportional to the water depth, increasing for decreasing maximum

launch angles.
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It should be noted that in general, the steepest reflected ray will be resolved in time from the

direct-path arrival, and so the maximum number of bounces for an arrival which is not resolved

from the direct-path arrival will be less than the number of bounces in the steepest reflected ray,

i.e., Nb,n.r.(r) ≤ Nsteepest. Equality would only be achieved if the range r were large enough that

no arrivals at all are resolved from the direct-path arrival.

2.3.3 Summary of Mixed-Exponent Spreading Model

Summarizing the derivations above, the coherent transition range is

rT,coh ≈ w2
dB

2c
.

Before the transition range, coherent energy spreads spherically with exponent k = 2. Afterwards,

it spreads with exponent k = 1.5.

The incoherent transition range is

rT,inc ≈ wd/θmax,

where θmax is the maximum propagating launch angle, which will usually be determined by the

angular dependence of the reflection coefficients. Before the transition range, incoherent energy

will spread spherically with exponent k = 2, and cylindrically after the transition range, with

exponent k = 1.

2.3.4 Implications of the Mixed-Exponent Spreading Model

Even with the practical spreading model, long-range interference is already a larger problem

for underwater acoustic networks than it is in radio-based terrestrial wireless networks. With the

hypothesized mixed-exponent spreading model, there will be a significant regime where interfering

packets will experience smaller pathlosses than detection of desired packets. Therefore, under the

hypothesized mixed-exponent spreading model, long-range interference will be a larger problem for
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underwater acoustic networks than would be predicted by the practical spreading model. Chapter 3

describes the effects of the various spreading models on network medium access (MAC) protocols.

The next three sections of this chapter are dedicated to measuring spreading exponents and

transition ranges. The next section, Section 2.4, validates the mixed-exponent spreading model

using Bellhop, a raytracing propagation package. Since our model was derived using ray approxi-

mations, we also want to validate it using a different propagation modeling package. In Section 2.5,

we also validate the existence of different transition ranges for coherent and incoherent processing,

using RAM, which does not make ray approximations.

Finally, in Section 2.6, we measure spreading exponents from field data. From the field data, we

are able to partially validate the mixed-exponent spreading model: There were measured differences

between the coherent and incoherent spreading-loss exponents, with the coherent exponent usually

larger, implying unsuppressed long-range interference will be present. The hypothesized transition

ranges were not observed in the experimental data, though the only data were from ranges larger

than the incoherent transition range and smaller than the coherent transition range.

2.4 Raytracing Modeling and Validation of Mixed-Exponent Spreading

Model

The contribution of this section is validation of the mixed-exponent model in an idealized en-

vironment. All the predictions that were made in Section 2.3.3 are validated, namely the location

of the coherent and incoherent transition regions as a function of depth and bandwidth, as well as

the values of the coherent and incoherent exponents before and after the transition regions.

Our hypothesized mixed-exponent model of spreading exponents and transition ranges was

derived using physical reasoning on rays in an idealized channel with uniform soundspeed and

lossless reflection coefficients (reflection coefficients of magnitude 1.0 for all angles for surface and

bottom). The results in this section are using a raytracing model with uniform soundspeed and

perfect reflection coefficients. So while the agreement between theory and modeling results is
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excellent, the underlying assumptions in both cases are nearly identical. Therefore this section is

considered to be only one step in the validation of the theory.

2.4.1 Introduction to Bellhop

Bellhop [90] is a widely-used ocean acoustics raytracing program1. Raytracing is a high-

frequency approximation, approximating the acoustic propagation as geometric rays refracting in

the soundspeed profile and reflecting from the boundaries. Raytracing methods are generally con-

sidered acceptable approximations so long as the wavelength is small with respect to any physical

feature in the environment [59]. At 5.5 kHz, the wavelength is about 27 cm with a nominal sound-

speed of 1500 m/s. Our smallest depth is 50 m, or nearly 200 times the wavelength, so using the

ray approximation is reasonable.

The ray paths and multipath arrival times are frequency-independent, so raytracing is inherently

broadband and very fast computationally. We used Bellhop in its “arrivals” mode where it calculates

the arrival times and magnitudes of the multipath rays connecting the source and receiver (the

eigenrays of the system). Bellhop outputs the arrivals as an idealized train of infinitely narrow

impulses in time, which can then be convolved with a broadening pulse to generate an impulse

response of the desired (finite) bandwidth.

One of the strengths of using Bellhop for this work is that we can manipulate the phase of each

arrival individually. A fundamental feature of the underwater acoustic channel is the existence of

random phase fluctuations on each of the multipath arrivals [17]. Bellhop allows randomizing the

phases of arrivals very easily, to investigate coherent and incoherent energy combining.

The primary drawback of validating the model with Bellhop and the idealized environment is

that both make similar high-frequency ray approximations and underlying assumptions. Validating

the model with an acoustic propagation package that explicitly solves the wave equation would be

a stronger result.

1We are using Bellhop as distributed with the Acoustics Toolbox updated on 1 Sept 2010, downloaded from
http://oalib.hlsresearch.com/ on 13 Jan 2012.
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2.4.2 Method and Environment

The environment modeled in Bellhop is a range-independent uniform soundspeed of 1500 m/s.

For the results in this section, the surface and bottom are perfectly reflecting, i.e., the surface and

bottom reflections are lossless.

The source and receiver are at the same depth, but offset slightly from the center of the water

column, to break the symmetry between arrivals with an odd number of reflections. With a uniform

soundspeed waveguide, arrivals with an even number of reflections will still be coincident in time.

The source and receiver depths are both set to 55% of the overall water depth.

To focus our measurements on spreading loss, no absorption loss is included in the model.

We use model parameters similar to those for the KAM11 experiment described in Section 2.6

of this chapter, namely water depths on the order of 100 m (model runs were performed at water

depths of 50 m to 200 m), and signal bandwidths divided down in powers of 2 from the KAM11

bandwidth of 4 kHz, with model runs down to 31 Hz bandwidth.

2.4.3 Construction of Impulse Responses and Phase Randomization

Bellhop outputs the delays and amplitudes of the multipath arrivals for a receiver at a specified

range. We discard arrivals whose amplitudes are below -100 dB relative to the largest arrival, and

arrivals that are more than a specified delay after the first arrival.

By manipulating the phase of each individual arrival, we generate realizations of a complex-

valued impulse train. The delays and magnitudes are set deterministically by Bellhop, and phases

randomized uniformly and independently between 0 and 2π.

We convolve each of 1000 realizations of the phase-randomized impulse train with a Gaussian

broadening pulse to generate realizations of the impulse response with the desired bandwidth.

The Gaussian broadening pulse has its frequency-domain full-width-half-max (FWHM) equal to

the desired bandwidth. The convolution is summed with complex amplitudes rather than real

magnitudes, so the individual arrivals are coherently combined (i.e., random phases preserved)

during the convolution.
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Each of the individual impulse response realizations has its incoherent energy estimated as the

sum of the magnitude-squared of the impulse response across delay. The reported incoherent energy

estimate for a given range is the mean value of incoherent energy for each of the 1000 realizations.

The coherent energy estimate for each individual realization is the magnitude-squared of the

first peak of that impulse response, for two reasons. First, using the first peak more directly models

a practical low-complexity, low-power-consumption matched-filter detector implementation, which

will detect on the first peak above the threshold. Second, with a uniform soundspeed and constant-

depth waveguide, arrivals with an even number of reflections (e.g., surface-bottom or bottom-

surface) will be coincident in time, and some realizations will have large energies. If we selected the

global maximum energy of the impulse response rather than the first local maximum, the energy

estimate would be skewed by not always averaging from the same peak.

The reported coherent energy estimate for a given range point is the mean value of the coherent

energies for the 1000 realizations.

We have also verified that the direct arrival itself (without allowing any multipath combining)

experiences spherical spreading loss with range, as expected. Bellhop is not assuming or enforcing

any particular spreading model internally.

2.4.3.1 Launch Angles

For these results, the maximum arrival delay we allow is 1500 ms. Using Equation 2.3 for the

maximum delay spread, we set the maximum launch angle to ±11◦, for which the estimated delay

spread is 1300 ms at 100 km range. While maximum ranges of 100 km are not realistic for shallow

water, propagating to large ranges allows us to investigate the coherent transition range over the

full set of depths and bandwidths.

Limiting the launch angles does not change the energy exponent estimate. But by limiting

the launch angles, Bellhop runs much faster, and the delay spreads are shorter, so the energy

calculations on the impulse responses are also much faster. Furthermore, a launch angle limit of

±11◦ is reasonable physically, especially for longer ranges. For example, Figure 2.31 shows modeled

surface and bottom reflection coefficients dropping after grazing angles of 10◦-20◦.
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2.4.4 Variation of Impulse Responses with Bandwidth, Range, and Depth

Figures 2.3-2.5 show the variation of impulse responses varying with bandwidth, range, and

depth. The figures help to visualize and develop intuition about how impulse responses would differ

in different situations. As bandwidth increases, more arrivals are resolved. As range increases, the

pathlength differences decrease, and the arrivals get closer together, eventually becoming unresolv-

able. As depth increases, the pathlength differences increase and arrivals move apart in delay. The

number of arrivals as a function of range is plotted in Figure 2.6. The number of arrivals as a

function of range increases roughly as the square root of range.
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Figure 2.3. Variation of impulse responses with bandwidth. As bandwidth increases, more arrivals
are resolved. As range increases, the pathlength differences decrease and arrival resolution decreases.
As depth increases, the pathlength differences increase and arrival resolution increases.

2.4.5 Estimation of transition ranges and spreading exponents

The energy estimates are then plotted versus range on a log-log plot. The transition range is

manually selected. (The transition ranges are selected manually to help in less-idealized environ-

ments, where the energy-versus-range plots can be much more variable.) The spreading exponents,

k, are estimated by fitting the model

log10(energy) = −k log10(range) + b
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Figure 2.4. Variation of impulse responses with range. As range increases, the pathlength differ-
ences decrease and arrival resolution decreases.

using unweighted linear least squares estimates (LLSE) over the selected range. The margins of

error are calculated using a 95% confidence interval. The fitting region for the spherical spreading

regime extends from the closest modeled range out to the transition range. The region for estimating

the exponent beyond the transition range is manually selected such that the slope of the line has

stabilized.

2.4.6 Results

Figure 2.7 shows an example of coherent and incoherent energy varying as a function of range,

for a fixed bandwidth of 4k Hz and a depth of 100 m. Similar plots are shown in Appendix A, for

a fixed bandwidth of 4 kHz and varying depths of 50 m, 75 m, 100 m, 150 m, and 200 m, as well

as at a fixed depth of 100 m and varying bandwidths of 4 kHz to 31 Hz. Similar runs were made

for every combination of depth and bandwidth.

As described in Section 2.4.3, each energy estimate at each range shown in the energy-versus-

range plots such as Figure 2.7 and the plots in Appendix A is the average of 1000 realizations of

impulse responses with independent randomized phases.
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Figure 2.5. Variation of impulse responses with depth. As depth increases, the pathlength differ-
ences increase and arrival resolution increases.

The energy in the transition region is more variable since the combining of just a single additional

arrival can have a relatively large impact. The estimation error on the value of the transition range is

taken to be the spacing of the data points in range, since selection of one range over the neighboring

range is sometimes arbitrary. (For points spaced logarithmically in range, the more distant one is

always the one at the next higher range value.)

For all the plots in Figure 2.7 and Appendix A, the coherent and incoherent spreading expo-

nent before the transition region is 2.0, and after the transition region, the incoherent spreading

exponents are very close to 1.0, while the coherent spreading exponents go to approximately 1.5.

The Bellhop runs were run to a maximum range of 100 km, with logarithmic spacing of the

points in range. While this maximum range in unrealistic in these water depths, the goal was to

validate the depth- and bandwidth-dependence of the coherent transition range. With the widest

bandwidth of 4 kHz and the deepest water depths, 200 m and 150 m, the coherent transition ranges

are predicted to be 53 km and 30 km, respectively. There are only a few (range,energy) data

points to estimate the coherent spreading exponent beyond these large transition ranges, and so

the quality of the exponent estimate is lower and the margins of error are higher. The estimated

coherent spreading exponent for a depth of 200 m, bandwidth of 4 kHz is estimated as 1.1± 0.5 with
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a 95% confidence interval. For depth 150 m, bandwidth 4 kHz, the estimated coherent spreading

exponent is 1.3± 0.1, again with a 95% confidence interval. The other exponent estimates are

extremely close to the hypothesized values.

Figure 2.8 summarizes the coherent transition range versus depth and bandwidth, respectively,

as well as the spreading exponents before and after the transition range. Figure 2.9 does the same

for the incoherent transition range. The results agree with the hypothesized theory very well.

The model for coherent transition range is

rT,coh = ac

(
Wd2

2c

)
,

where W is the signal bandwidth, d is the waterdepth, c is the speed of sound, and ac is a dimen-

sionless scale factor. The model for the incoherent transition range is rT,inc = aid, where again d

is the waterdepth and ai is a dimensionless scale factor. Models derived using dimensional analysis

and simple physical reasoning, such as our models of transition ranges, typically have dimensionless

scale factors of order unity [6]. The scale factor is essentially related to when a transition is declared

to have truly occurred.

The fits in Figures 2.8 and 2.9 use weighted linear least-squares estimates to estimate the single

unknown parameter in the models, the scale factors ac and ai. To estimate the errors in the

estimates of the scale factors, we used weighted LLSE to fit each of the individual curves plotted,

and found the maximum deviation in the individual fits from the fit with all of the data.

2.4.7 Conclusions

The results from Bellhop have excellent agreement with the mixed-exponent spreading model.

The coherent and incoherent transition ranges and values of the exponents are validated.

It is only a preliminary validation, however, because the derivation of the mixed-exponent model

also made the high-frequency ray approximation in a uniform soundspeed channel with perfectly

reflecting boundaries.

The next section validates the mixed-exponent spreading model with a RAM, an acoustic prop-

agation modeling package which does not make the ray approximation.
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Figure 2.6. The number of arrivals as a function of range increases roughly as the square root of
range. Again, in real channels, boundary losses will result in far fewer arrivals being significant; this
plot is to aid intuition with an idealized lossless channel. (The number of arrivals for 50 m depth
dips slightly at very long ranges because of the large number of boundary interactions. As the
boundary interactions increase, even with perfect reflection, the pathlength increases, and along-
path spreading continues to reduce the energy. Changing the energy cutoff for arrivals from a
minimum of -100 dB to a completely unrealistic minimum of -1000 dB generates the dashed blue
line for number of arrivals at 50 m depth, with no dip in the trend line.)
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Figure 2.7. Coherent and incoherent energy at a depth of 100 m and a bandwidth of 4 kHz.
Incoherent transition range is unaffected by bandwidth, whereas coherent transition range scales
linearly with bandwidth. Similar energy-versus-range plots are in Appendix A for a fixed bandwidth
of 4 kHz and varying depths of 50 m, 75 m, 100 m, 150 m, and 200 m, as well as at a fixed depth
of 100 m and varying bandwidths of 4 kHz to 31 Hz. Each energy estimate at each range is the
average of 1000 realizations of impulse responses with independent randomized phases, as described
in Section 2.4.3.
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Figure 2.8. In the upper pair of plots, coherent transition range, for several bandwidths and vary-
ing depths, as well as several depths and varying bandwidths. In the lower pair of plots, coherent
spreading exponents before (blue) and after (red) the transition range, again varying with band-
width and depth. In the upper pair of plots, the errorbars in transition range show the uncertainty
in transition range due to the resolution of the log-spaced data points in range. The uncertainty in
the scale factor ac is estimated by estimating the scale factor for each of the transition-range curves
individually, compared against estimating the scale factor from all the curves simultaneously. The
reported uncertainties are the largest deviations of the individual estimates below and above the
combined estimate. The coherent spreading exponent transitions from spherical spreading (k1 = 2)
to k2 = 1.5. As discussed in the text, for 4 kHz bandwidth and the deepest water depths (150 m
and 200 m), the coherent transition range is large (30 km and 53 km, respectively), and there are
only a few points in range used in the LLS exponent estimate, leading to larger uncertainty in those
estimates.
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Figure 2.9. Incoherent transition range versus depth and bandwidth. The depth dependence is
linear and there is no bandwidth dependence. The scale factor ai is controlled by the maximum
launch angle used in the model runs. Here the maximum launch angle is ±11◦, from which we
would expect the first non-direct arrival to combine incoherently at about ai ∼ 5 waterdepths; the
estimate gives ai = 4.2 + {−0.2,+0.3}, with uncertainties calculated as they are for the coherent
case. Around the transition range, the incoherent spreading exponent transitions from spherical
spreading (k1 = 2) to cylindrical spreading (k2 = 1).
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2.5 Wave-Equation Modeling and Validation of Mixed-Exponent Spread-

ing Model

The contribution of this section is further validation of the mixed-exponent spreading model.

The results in this section are generated using the RAM [19] acoustic propagation modeling program.

RAM solves a “parabolic” approximation to the wave equation, valid for a forward-propagating

acoustic wave [59]. It does not make a high-frequency ray approximation as Bellhop does. The

hypothesized mixed-exponent spreading model was derived using a ray approximation. While the

results from Bellhop had excellent agreement with the hypothesized model, the model and Bellhop

both use the high-frequency ray approximation. Therefore validation by RAM of some of the

model’s key predictions is a stronger result than validation by Bellhop. In particular, the RAM

results show two regimes for the spreading exponents, with transitions in the exponents at ranges

that have a depth and bandwidth dependence similar to what the model predicts.

The Bellhop results in the previous section were generated using idealized perfect (lossless) re-

flection coefficients. The RAM results in this section include bottom reflection losses, and effectively

some surface reflection loss as well, due to the maximum propagation angle in parabolic equation

methods, which can be viewed as a reflection coefficient of zero beyond the maximum propagation

angle.

The RAM environment used is therefore less idealized than the Bellhop environment from the

previous section, providing an additional measure of validation to the model. RAM is still an

idealized modeling program, so it is not definitive validation of the mixed-exponent model, but the

model is validated by two distinct propagation modeling methods.

In Section 2.5.1, we describe RAM, and in Section 2.5.2, the modeled environment. In Sec-

tion 2.5.3, we describe the method for generating impulse responses using RAM. In Section 2.5.4,

we describe how the energy estimates are made, including the mechanism used to allow averaging

of phase-randomized realizations. We present the energy-versus range and spreading exponent esti-

mates in Section 2.5.4. In Section 2.5.5, we compare the transition ranges and exponent estimates

with the mixed-exponent model. We conclude the section on RAM modeling results in Section 2.5.6.
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2.5.1 RAM

As mentioned above, RAM implements a parabolic equation method to solve a one-way forward-

propagating approximation to the wave equation. A single frequency at a time is propagated

through the environment from source to receiver. The output is the complex pressure field at the

receiver for that particular frequency. The complex pressure field values can be used as the Fourier

synthesis coefficients to construct the time-domain impulse response at the receiver.

An important difference from Bellhop is that the phases of the individual arrivals cannot be

manipulated, since arrivals are not explicitly generated. RAM propagates the phase information

precisely and deterministically. In some sense, RAM’s propagation model is too precise, since it

does not provide a straightforward way to include the random micro-multipath phase fluctuations

that are present in the real underwater channel [17]. Synthesis of the impulse responses and the

method used for randomizing phases of arrivals are described in Section 2.5.3.

The RAM code we are using is Version 1.1, dated 30 April 1998 by M.D. Collins, but it has been

modified by J. Preisig and T. Duda to output complex pressure amplitude rather than the magnitude

of pressure. In order to build impulse responses, we need the complex pressure amplitude. The

source code listing, including the modifications, is in Appendix B.

2.5.2 Modeled Environment

As with Bellhop, the environmental model used with RAM is a range-independent uniform

soundspeed of 1500 m/s and a water density of 1.0 g/cm3. The water depths are again taken to

be the same order of magnitude as the 100 m water depth in the KAM11 experiment, discussed

in Section 2.6. Water depths of 50 m, 75 m, 100 m, 150 m, and 200 m are modeled to investigate

the depth dependence of the mixed-exponent spreading model. The impulse responses, described

in the next section, had bandwidths starting at the KAM11 bandwidth of 4 kHz, dividing down to

500 Hz bandwidth in powers of two.

As with Bellhop, the source and receiver are both at 55% of the water depth, offset slightly

from the center of the water column, to break the symmetry between arrivals with an odd number

of reflections.
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The RAM results do not include absorption loss, which again focuses our results primarily on

spreading loss.

These results do however include reflection losses from the bottom and surface. By including

reflection losses [75], we can validate the spreading model even without perfect reflection coefficients.

The seafloor models a typical sediment seafloor, with a sound speed of 1600 m/s and a density of

1.6 g/cm3. The reflection coefficients are shown in Figure 2.10. An characteristic of parabolic

equation methods (including RAM) is that only the wave equation solution is only for forward-

propagating waves. As a result, there is a maximum propagation angle, which is about 45◦ for

RAM. One way of viewing this effect is in terms of effective reflection coefficients, which go to zero

beyond the maximum propagation angle, as illustrated in Figure 2.10.
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Figure 2.10. Surface and bottom reflection coefficients used for the RAM results. The bottom is
modeled as a sediment seafloor. The reflection coefficients effectively go to zero beyond RAM’s max-
imum propagation angle of about 45◦. The plotted reflection coefficients are in terms of amplitude;
their magnitude-squared values give reflection coefficients for intensity.
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2.5.3 Synthesis of Impulse Responses and Method for Phase Randomization

The impulse responses can be constructed using Fourier synthesis [59]. For each frequency run,

at passband frequency fk, RAM outputs the complex pressure field, Hk, at the receiver, including

the phase from propagating from the source to the receiver. The complex pressure field values at

a given frequency are the Fourier coefficients for the corresponding Fourier synthesis component.

The synthesized baseband impulse response, h[n], is

h[n] =

N/2−1∑
k=−N/2

Hk exp

(
−jωkn

fs

)
.

We ran RAM at N = 2048 frequency components, spanning the KAM11 experiment’s band of

B = 4 kHz bandwidth centered at fc = 5.5 kHz. The passband frequencies where RAM was

run were fk = fc +Bk/N , with N/2 ≤ k ≤ (N/2)− 1. For the baseband synthesis, the baseband

sampling rate was fs = 10240 Hz, and the synthesized impulse response was 2048 samples in time,

or 200 ms long. The baseband frequencies were ωk = 2πBk/N , again with N/2 ≤ k ≤ (N/2)− 1.

The negative sign in the complex exponential is conventional in acoustics modeling, and is the

opposite sign convention from that used in some other research communities.

Narrower bandwidths were generated by filtering the baseband impulse response with Gaussian

low-pass filters to avoid introduction of time-domain sidelobes. The frequency-domain full-width-

half-max of the low-pass filters was set to be the desired bandwidth. The bandwidths used were

4 kHz, 2 kHz, 1 kHz, and 500 Hz. When filtering the impulse responses to below 500 Hz bandwidth,

the energy estimates became very noisy.

2.5.3.1 Phase Randomization of Arrivals

An important part of the coherent energy estimate is phase randomization of the arrivals at

the receiver. We are trying to estimate the expected value of the coherent energy. With any given

realization of the arrival phases, that particular coherent energy measurement might not be very

close to the expected value. With the Bellhop, the phases of the arrivals were immediately available.

In RAM, they are not, and the phase at the receiver is deterministically calculated.
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The approach we used to randomize the phase of arrivals in RAM was to perturb the receiver

location slightly. Visualizing multipath rays converging on the receiver, each ray’s pathlength will

then change, and the arrival phases will be perturbed as well. We used a 3× 3 receiver grid

centered on the nominal receiver location. The grid spacing was 10 m, over 30 wavelengths at the

center frequency, so the arrival phases are will be randomized in this process. The reported energy

estimates are the mean of the energies from the nine receivers. Since the grid spacing was constant

with range, at the very smallest ranges the grid size was comparable with the total range, and the

variation from receiver to receiver was high.

As future work, it may be possible to investigate randomizing the arrival phases after Fourier

synthesis. The likely problem with that approach, however, is that the place where phase random-

ization is critical is in coherent sum of the arrivals which are non-resolvable from the first arrival.

It is unclear how the phases of the non-resolvable arrivals could be independently randomized after

Fourier synthesis.

2.5.4 Estimation of transition ranges and spreading exponents

Estimating transition ranges and spreading exponents was almost identical to the method used

for Bellhop: transition ranges were selected manually, and we used unweighted linear least squares

estimates (LLSE) for the exponents. The unweighted LLSE fits appear to fit fairly well despite the

relatively large standard deviations on the energy measurements. We did not do a residual analysis

for the RAM fits, as we did for the KAM11 fits in Section 2.6.

An example energy-versus-range plot for the RAM results with a water depth of 100 m and a

signal bandwidth of 4 kHz is shown in Figure 2.11. Similar energy-versus-range plots are shown in

Appendix C for water depths of 50 m, 75 m, 100 m, 150 m, and 200 m at a signal bandwidth of

4 kHz, as well as bandwidths of 4 kHz, 2 kHz, 1 kHz, and 500 Hz at a water depth of 100 m.

One difference between the methods for RAM and Bellhop was in calculating the margins of

error. The uncertainty of the energy estimate was negligible with Bellhop’s 1000 realizations per

point, and we used an explicit closed-form formula for the margin of error for the exponent estimate.

For RAM, we bootstrapped [26] 400 trials for each of the LLSE fits, and used the standard deviation
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Figure 2.11. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 100 m.

of the exponent estimates as the standard error. From the standard error, we calculated margins

of error for a 95% confidence interval from a t-distribution with (N − 2) degrees of freedom, since

the slope and intercept were both estimated.

2.5.5 Results and Discussion

While the results from RAM are significantly noisier than the Bellhop results, there are spreading

exponent transitions visible in the plots and in the estimates. The goal of the modeling with

RAM was to further validate or invalidate the mixed-exponent spreading model. The results do

provide further validation that there are differences between the coherent and incoherent spreading

exponents in terms of their transition ranges and dependences upon depth and bandwidth.

In the Bellhop raytracing results from Section 2.4, the incoherent energy exponent beyond the

transition range was very close to 1.0, whereas for the RAM results, it is on the order of 1.5.

Although this is unconfirmed and is left for future work, it is likely that the incoherent energy-loss

exponent is larger for the RAM results than it was for the Bellhop results is due to the reflection

coefficients. For the Bellhop raytracing, the boundaries were lossless, while for the RAM modeling,
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the boundaries introduce some losses, which would cause additional energy loss. In order to capture

the full delay spread for the incoherent energy estimate, rays with more bounces (and hence higher

loss) are required than for the coherent energy estimate (i.e., from Section 2.3, the maximum number

of bounces for rays which are non-resolvable from direct path is less than the number of bounces

of the last ray with the last arrival in the delay spread, the steepest ray: Nb,n.r. < Nsteepest).

Figures 2.12 and 2.13 show the coherent and incoherent transition ranges versus depth and

bandwidth. They also show the estimates of the scale factors ai and ac. The estimates of the

incoherent scale factor, ai, are roughly consistent between Bellhop and RAM, considering their

maximum angles of ±11◦ and about ±45◦, respectively. The incoherent scale factor estimate from

the RAM results is âi = 2.3 + {−0.3,+0.1}.
There is a significant difference for the coherent scale factor, however. With Bellhop, it was

estimated at âc = 1.0 + (−0.1,+1.5). With the RAM results, the estimate is about three times

smaller, âc = 0.3 + (−0.1,+0.2).

The first thing which would need to be determined is whether or not this effect is real. Potential

issues with selection of transition ranges from noisy curves, the spatial perturbation for phase

randomization, or other processing steps would have to be double-checked. But if this result is

indeed real, then it would suggest that there is a propagation effect in one of the models that is not

being properly captured, potentially indicating an issue with the ray approximation.

The incoherent energy estimates in the spherical spreading region have particularly high margins

of error. Three potential improvements would be: (1) scale the receiver perturbation grid, at least

at short ranges, to try to reduce the largest error; (2) add more receivers in the perturbed grid; and

(3) try weighted LLSE to de-emphasize the noisiest points.

2.5.6 Conclusions

The RAM results further validate the behavior of the mixed-exponent spreading model. RAM

does not use a high-frequency ray approximation, and so it is a stronger validation of the mixed-

exponent spreading model than Bellhop’s validation was, even though Bellhop’s results are much

clearer. In addition, the RAM environment has reflection losses at the boundaries, validating the
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mixed-exponent model in a less-idealized environment than the raytraced Bellhop results, which

had lossless boundaries.

The RAM results are noisy, making it difficult to estimate transition ranges and spreading

exponents. The method of averaging energy could be extended to average further and reduce noise.

With reduced noise, some of the questions about the potential difference in coherent transition

range between Bellhop and RAM could be further addressed.
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Figure 2.12. Coherent transition range versus depth and bandwidth. The estimate of the coherent
scale factor from the RAM results is âc = 0.3 + {−0.1,+0.2}, or about a factor of three smaller than
the scale factor estimate is for the Bellhop results.
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Figure 2.13. Incoherent transition range versus depth and bandwidth. The scale factor ai is
controlled by the maximum launch angle used in the model runs. For RAM’s parabolic equa-
tion method, the maximum launch angle is about ±45◦, which from which we would expect the
first non-direct arrival to combine incoherently at roughly ai ∼ 1 waterdepth; the estimate gives
âi = 2.3 + {−0.3,+0.1}, with uncertainties calculated as they are for the coherent case.
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2.6 Measurement of Spreading Exponents from the KAM11 Field Ex-

periment

The contribution of this section is a measurement of the coherent and incoherent energy-loss

exponents from experimental field data. The energy-loss exponents include spreading loss and other

losses, such as scattering loss from surface and bottom reflections. One goal of this work was to

attempt to validate the mixed-exponent spreading model with field data. A second goal was to

determine from field data how often simple spreading loss models are applicable, and, when they

are applicable, what the spreading exponents are. The recurring goal of this thesis in general is to

evaluate the assumptions underlying research in underwater acoustic networks (UANs).

It has been standard to model UANs using the “practical spreading” model [18, 112], although

it is becoming more common to use propagation modeling tools such as Bellhop within simulations

of UANs [87]. The advantage of simple spreading models is that they give the researcher physical

intuition, while a modeling package such as Bellhop can be a black box without promoting physical

insight. On the other hand, it needs to be determined how often the simple spreading models are

valid, and if they are valid at times, what the values of the energy loss exponents are.

In the experimental data presented in this chapter, we found significant periods of time in

which simple spreading loss models did not hold. In the periods when simple energy-loss exponent

models did appear to hold, our estimates of the energy loss exponents were well over 2.0. These

results suggest that caution should be exercised when using the “practical spreading” model with

a spreading loss exponent of 1.5.

Our experimental field data is from the Kauai Acomms MURI 2011 (KAM11) Experiment [57].

The location was chosen in part due to its highly variable environmental conditions, to test the

performance of acoustic communications methods. The location and experiment were not chosen

or designed to measure spreading exponents.

As one component of the overall KAM11 experiment, a ship towed a transmitter and recordings

were made on fixed-location receivers. Among the transmitted signals were channel-characterization

signals, from which the received impulse responses as a function of range can be estimated. From
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the impulse response estimates, the coherent and incoherent energies can be estimated as function

of range, similar to the approach in the first sections of this chapter.

We first describe the source tows and the environment, then the processing methods, the re-

sults, and finally potential physical explanations of the results along with suggestions for potential

future work. The addition energy loss beyond what is generally expected from spreading loss is cur-

rently unexplained, though scattering losses from surface and bottom reflections may be a potential

explanation.

2.6.1 Description of Source Tows and Environment

Of the source tow datasets collected during KAM11, three of them had roughly linear ship’s

tracks at a constant depth (approximately 100 m), and transmitted channel-characterization sig-

nals. (Other source tows had circular tracks, had varying water depths, or transmitted acoustic

communications test packets rather than channel-characterization signals.)

Those three source tow datasets were conducted on Julian Days JD180, JD189, and JD190

(June 29, July 8, and July 9, 2011, respectively). There were two sets of two receive arrays each,

deployed by the Woods Hole Oceanographic Institution (WHOI) and the Scripps Institution of

Oceanography. Our results in this chapter are from the two WHOI receive arrays, called “SYS3”

and “SYS4”. The SYS3 and SYS4 arrays were separated by about 4 km, roughly along the direction

of the source tow tracks. The results from the JD180 dataset are not presented, because the receive

arrays were deployed high in the watercolumn (15 m depth) and had low signal-to-noise ratios

(SNR). The receivers were re-deployed at 45 m depth for datasets JD189 and JD190, resulting in

higher SNR. The tows lasted approximately 1.5 to 2 hours each, and the ranges from source to

receivers spanned approximately 500 m to 12 km.The nominal source depth was 50 m. The source

tow tracks are shown in Figure 2.14, and follow the 100 m constant-depth bathymetry contour. The

waterdepth increases rapidly to the west of the track, and decreases to about 50 m depth within

1 km-2 km east of the track. At the longer ranges, the shallow bottom to the east may be partially

shadowing receptions at SYS4.
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The receive array element spacing were 5 cm and 20 cm for SYS3 and SYS4 respectively, and

so the total array lengths were 1.2 m and 4.8 m. Our data analysis uses one channel at the center

of each of the receive arrays (channel 12 of 24). If receive energies are statistically independent

among the different channels, using multiple channels would improve our energy estimate statistics.

The main uncertainty in the exponent estimates, however, is not due to energy variations at a

particular range, but rather what appear to be large-scale environmental variations in time and/or

range. Therefore, it is unlikely that analyzing multiple channels would improve the estimates of

the spreading exponents.

During each source tow, transmissions were made in multiple frequency bands, a low-frequency

band centered at 5.5 kHz with approximately 4 kHz of bandwidth, and a mid-frequency band

centered at approximately 16.5 kHz with nominally 8 kHz of bandwidth. Absorption loss (and

scattering loss) increases with frequency, so to focus on measuring spreading loss rather than ab-

sorption loss, we analyzed data from the low-frequency band. Some of transmitted waveforms in

the mid-frequency band had spectra which extended into the low-frequency band, requiring filtering

to prevent contamination of the estimates of noise energy and incoherent energy.

Figure 2.15 shows example soundspeed profiles during the experiment [57]. The soundspeed

profiles vary in both time and space, changing the acoustic propagation characteristics. Typical

features of the soundspeed profiles are a surface mixed layer of roughly uniform soundspeed down

to depths of roughly 20 m to 40 m, with soundspeed decreasing in the cooler bottom water. Rays

propagating in this environment will refract downwards towards the soundspeed minimum, resulting

in increased scattering losses from reflections from the seafloor at longer ranges.

The RMS surface wave height2 was roughly 70 cm-100 cm during the source tows. The wave

periods were about 5-7 seconds, which is relatively short, leading to relatively steep waves [57].

The acoustic wavelength at 5.5 kHz center frequency, with a measured soundspeed at the surface

of roughly 1537 m/s, is about 28 cm. The RMS surface wave heights are significantly larger than

2“Significant” wave height is the standard oceanographic measure, and is what is provided in the trip report.
RMS wave height is approximately 1.4 times less than significant wave height.
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the acoustic wavelength, and so the surface is acoustically rough at these frequencies [75]. Surface

reflections will on average experience relatively large scattering losses.

It is important to note that the experiment location, with its challenging environmental con-

ditions, was selected to provide a proving ground for acoustic communications methods. It was

not selected for the purpose of studying spreading exponents. Spreading exponents are an average

measure in both time and space, and the single set of realizations from each source tow, and only

two source tows complicated the estimation of spreading exponents in this variable environment.
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Figure 2.14. Source tow tracks for JD189 and JD190, showing receivers SYS3 and SYS4. The
start of each track is shown with a dot. The tracks were about 10 km long, with ranges to SYS3 of
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Figure 2.15. Soundspeed profiles from KAM11, showing spatial and temporal variation. There is
a mixed surface layer of approximately uniform soundspeed down to about 20 m-50 m depth, with
decreasing soundspeed in the deeper colder water. Rays refract toward lower soundspeeds, so this
is a downward-refracting environment, refracting rays towards the bottom. The soundspeed profile
cast numbers and geo-spatial station location are noted on the plots. The center and right-hand
plots are taken about an hour apart, at Stations 4 and 6, which are separated by just over 1 km [57].
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2.6.2 Processing Methods

Estimating spreading exponents requires three steps: (1) estimating the range; (2) estimating

the received coherent, incoherent, and noise energies; and (3) fitting the spreading model to estimate

the spreading exponent. Steps 1 and 2 are detailed in this section, and Step 3 in Section 3.5.4, on

Results.

2.6.2.1 Estimating Range

Estimating the range is straightforward. The ship’s GPS location during the source tows was

recorded, and the GPS locations of the receive arrays were also. The range estimates were taken

to be the distance between the ship and each receiver, averaged from the distance at the start and

end of each minute-long recording. The ship moved at typical speeds of about 1.6 m/s to 1.8 m/s,

or on the order of 100 m during each minute. The range estimate was not corrected for the length

of the cable towing the source, which will either slightly increase or decrease the range estimate

based on whether the ship was moving towards or away from the receivers.

2.6.2.2 Estimating Received Energy: Coherent, Incoherent, and Noise

In each minute of the experiment, a signal was transmitted from the towed source, and the re-

ceived signal was recorded on the fixed receivers, segmented into one-minute files. Each transmitted

signal was active for approximately 53 seconds out of the minute, followed by approximately six

seconds of silence, allowing a propagation delay corresponding to about 9 km of range.

For estimating the received energy, two types of channel-characterization signals were used.

One type was linear frequency-modulated (LFM) sweeps, and the other type was maximal-length

pseudorandom sequences (MLS) [100]. The center frequency for both signal types was 5.5 kHz. The

individual LFM sweeps were 48 ms long, with 4 kHz bandwidth around the center frequency. The

sweep repetition period was 144 ms, resulting in a transmit duty cycle of 1/3. The MLS signals

had a sequence length of 4095 chips3 and a chip rate of 2.778 kHz. Each ML sequence had a length

3At baseband prior to modulation, ML sequences are composed of pulses with amplitude +1 or -1. A chip is a
single pulse of the sequence after modulation.
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of 1.4742 seconds, and the sequences were transmitted continuously back-to-back, resulting in a

transmit duty cycle of 1.

The original sampling rate was 39.063 kHz=10 MHz/256, derived from the 10 MHz output of

an atomic clock, to eliminate clock drift. The MLS signals were transmitted with 36 samples per

chip at 100 kHz sampling rate. To end up with an integer number of samples per chip, the recorded

signals were resampled to fs = 25 kHz. To keep the processing consistent between LFM and MLS,

the LFM signals were also resampled to 25 kHz, although this is not strictly required.

On Julian Day JD189, only MLS signals were transmitted, whereas on JD190 (and JD180), the

transmissions alternated between six minutes of LFM signals and six minutes of MLS signals.

The processing steps are summarized here, and detailed below. Summarizing the steps, the

signals are Doppler-corrected, demodulated to baseband (zero frequency), and low-pass filtered.

The coherent energy estimates are made from the peak energy (magnitude-squared) of the matched-

filter output. For the MLS signals, with a duty cycle of 1, incoherent energy and noise estimates are

made from the mean energy of the low-pass filtered baseband signals in the signal and noise regions

of the recording, respectively. For the LFM signals, with a duty-cycle of 1/3, the incoherent energy

estimates are made from the mean of the matched-filter output energy over the manually selected

delay spread. The LFM noise energy estimate is also made from the mean of the matched-filter

output energy. The MLS and LFM matched filters are normalized to have unity gain, to allow

merging of results from the MLS and LFM datasets, as well as directly comparing the coherent,

incoherent, and noise energy estimates.

Since the signal and noise are uncorrelated, the incoherent energy estimate is corrected for noise

by subtracting the noise energy estimate. Similarly, the coherent energy estimate is also corrected

for noise by subtracting the noise energy, but the matched-filter processing gain means that the

noise correction is less significant for the coherent energy estimates. The noise energy estimate

is not made at the same instant in time as the initial incoherent and coherent energy estimates,

but the estimates are made within the same minute-long recording, so the noise energy is likely

relatively constant during that time. Obvious impulsive noise spikes were avoided in the manual

selection process of the regions for estimating noise and incoherent energy.
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The noise-corrected coherent and incoherent energy are then corrected for absorption loss at

the center frequency, fc = 5.5 kHz, using Thorp’s expression [12]. At 5.5 kHz, Thorp’s expression

predicts an absorption loss of 0.44 dB/km. (The high end of the band, at 7.5 kHz, has a predicted

absorption loss of 0.72 dB/km, while the low end of the band, at 3.5 kHz, has a predicted absorption

loss of 0.24 dB/km.)

2.6.3 Detailed Processing Steps

The coherent energy estimates are intended to model the energy received in a matched-filter

detector when detecting a packet. A matched-filter detector is a correlator of the expected “replica”

signal and the received signal plus noise. For the KAM11 experiment, the expected signal is either

an LFM sweep or a subsequence of the ML sequence. The coherent energy estimate is taken to be

the peak energy (magnitude-squared) of the matched-filter output. To relate the KAM11 energy

estimates and the Bellhop and RAM energy estimates from earlier in this chapter, it is useful to

note that the output of a matched filter is an estimate of the channel’s impulse response, so the

peak of the matched filter output is a measure of the peak of the impulse response.

The matched filter’s maximum processing gain for the LFM sweeps is the time-bandwidth

product, or nominally about 46 dB. For the ML sequences, the matched filter’s maximum processing

gain would be equal to the sequence length if the full sequence were used as the replica, or about

72 dB. The matched filter output of an ML sequence is very sensitive to uncorrected Doppler shifts,

however, as described by ambiguity function analysis [127]. The Doppler sensitivity increases with

sequence length. The MLS signals therefore need to be corrected for their Doppler shifts prior to

applying the matched-filter. (In contrast, ambiguity function analysis shows that the matched filter

output of an LFM signal is very tolerant of uncorrected Doppler shifts, though the LFM signals

were Doppler-corrected anyway to both keep the MLS and LFM processing steps similar, but also

to make manual selection of the box bounding the first arrivals on the time-delay plot easier. On

a Doppler-corrected signal, the bounding box is a rectangle on the time-delay plot, rather than a

general parallelogram.)
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The Doppler correction is done iteratively, starting with an initial estimate of the range rate,

β = v/c, either from the previous recording’s final Doppler estimate, if one exists, or from the

ship’s GPS track. Typical tow speeds were on the order of v = 1.5 m/s with a soundspeed of

roughly 1500 m/s, for a range-rate of order β = 1e− 3. The iteration stopped when the arrival

delays on the time-delay plot were approximately constant in time.

With the final estimate of the relative Doppler shift, (1 + β), the original passband files were

resampled with a relative resampling rate of (1 + β), and demodulated to bring the Doppler-shifted

center frequency fc(1 + β) to baseband (zero frequency) at the new sampling rate of fs(1 + β). A

low-pass filter was then applied at baseband with a total bandwidth of 4 kHz, prior to matched

filtering and energy estimation. Initially, we used a Gaussian low-pass filter to avoid introducing

time-domain sidelobes into the signal. There was contamination from the mid-frequency band,

however, with an example shown in Figure 2.16. We therefore sharpened the low-pass filter’s

frequency cutoff using a 512-tap filter generated using Matlab’s fir1() function, with a cutoff

frequency of 2 kHz, which had a peak-to-sidelobe ratio of 18 dB. For a given low-pass filter, the

peak-to-sidelobe ratio will be fixed, and the coherent energy spreading exponent estimate will not

be affected.

After Doppler correction, we had typical residual uncorrected Doppler range-rates of about

βresidual = 1e− 4, due to slight variations in transmitter tow speed from instant to instant. The

residual range-rate limits the MLS matched filter length. We used an MLS matched-filter length

of 600 chips, determined empirically by finding the filter length beyond which processing gain did

not significantly improve for many recordings. Some, but not all, recordings benefitted from longer

filter lengths. The autocorrelation properties of ML sequences are changed dramatically when using

a partial subsequence, and so the matched filter had a peak-to-sidelobe ratio, or effective processing

gain, of only about 20 dB.

Despite the limited MLS processing gain, for JD189, MLS files were successfully processed at all

the source tow ranges for which files were recorded, out to nearly 13 km. For JD190 SYS4, the low

MLS processing gain appeared to have been a limiting factor beyond about 7 km in range, since

no receptions were identified beyond that range. With the LFM signal’s tolerance for uncorrected
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Doppler errors and higher effective processing gain, a few LFM signals were identified and processed

beyond 7 km for JD190 SYS4 (two successful measurements at about 9 km and one at about 11 km).

Even for the LFM signals, most of the potential receptions beyond 7 km range were not detected

or processed.

Alternate MLS processing approaches, such as estimating the impulse response with a recursive-

least-squares filter, or tracking and correcting Doppler throughout each recording, could be em-

ployed, but aside from the missed MLS signals on JD190, SYS4 at long ranges, the MLS processing

gain was not a limiting factor in estimating coherent energy. Fewer missed signals at long ranges

would lead to improved spreading exponent estimates.

After the matched filter was applied, the first (and strongest) arrivals were selected manually

with a rectangle on a time-delay plot, as shown in Figures 2.17 and 2.18. At each time index in the

time-delay plot, there is an impulse response estimate along the delay axis. The maximum energy

along the delay axis, within the selected rectangle, was taken to be the coherent energy estimate

for the impulse response estimate at that particular time. The rectangle on the time-delay plot

constrains the coherent energy estimate to be made at a delay close to the main arrival, which is

especially helpful at low SNRs to reduce the likelihood that the maximum energy value is from

a noise spike rather than the actual signal. For the LFM signals, there were about 360 impulse

response estimates in the 53-second signal, and for the MLS signals, there were about 36 impulse

response estimates in the signal. Each of the 360 or 36 coherent energy estimates is saved to allow

full statistical characterization.

The LFM signals have their incoherent and noise energies also estimated from the matched-

filtered output on a time-delay plot, shown in Figures 2.17 and 2.18. The delay spread (the delay

extent from the first arrival to the last arrival considered) is manually selected as a rectangle in

time-delay. Depending upon the range, the typical delay spreads go from order 100 ms at close

ranges to order 10 ms at long ranges and low SNRs. The incoherent energy estimate is taken to be

the mean energy over the delay spread for each impulse response estimate, again generating about

360 or about 36 estimates of incoherent energy for LFM and MLS signals, respectively. Again, all

of these estimates are saved for statistical characterization. The noise region is manually selected
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Figure 2.16. Spectrogram showing interference from the mid-frequency band with the low-
frequency band of interest. The mid-frequency energy will corrupt the incoherent and noise energy
estimates. The two signals have different propagation delays because they are transmitted from
different sources. The longer propagation delay pushes the interfering signal into the noise energy
estimate region. This spectrogram is made at the original sampling rate of 39 kHz, prior to re-
sampling. The low-frequency signal is an MLS signal. The energy scale is in dB relative to the
maximum. The recording file plotted is 1890152F0064 C0 S3, channel 12.

from the periods before and/or after the transmitted signal. The noise energy estimate is the

mean energy over all the individual samples within the noise region, which can be on the order of

105 samples. All of the individual noise energies (in this case, samples) are saved for statistical

characterization.

For the MLS signals, the incoherent and noise energy were estimated directly from the low-pass-

filtered baseband signal prior to matched-filtering. The start and end of the received signal, as well

as noise regions before and after the packet, were selected manually using a one-dimensional time

series plot of the matched filtered output, shown in Figure 2.19. The processing gain of the matched
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filter allowed more reliable selection of the signal and noise regions than working from the baseband

signal directly. Both the matched-filter and low-pass filter operations were corrected for the filter’s

group delay, so the signal and noise time indices selected on the matched filter output could be

applied directly to the low-pass-filtered baseband signal, which is where the MLS incoherent energy

and noise energy estimates were actually made. The MLS incoherent and noise energy estimates

are the mean energy (magnitude-squared) of the low-pass-filtered baseband signal during the signal

region and noise region, respectively. All of the individual incoherent energies and noise energies

(again individual samples) are saved for statistical characterization. Since the MLS incoherent

energy estimates are made from on the order of a million samples, and the LFM incoherent energy

estimates are made from on the order of 36 to 360 samples (which each are already averages of

hundreds to thousands of individual samples), the statistical dispersion of the MLS estimates is

much higher than that of the LFM estimates. We discuss this issue further below.

2.6.4 Results

In this section, we first characterize the statistical distributions and statistical dispersion of the

energy estimates. Next, we present the estimates of the spreading exponents. Finally, we discuss

possible physical explanations for the observations.

Briefly summarizing the results, there is relatively high statistical dispersion in the dataset, par-

ticularly in the estimates of incoherent energy and noise energy. The fundamental issue, however,

is not the variance of the underlying energy estimates or the robustness of the fits, but that during

significant portions of the experiment, the acoustic propagation was more complex than a simple

model governed by an energy-loss exponent. The non-uniform and downward-refracting sound-

speed profile, combined with scattering losses from the boundaries and a dynamic time-varying

environment, lead to a complex propagation environment non well-suited to a simple energy-loss

model.

During the periods of the experiment in which a simple energy-loss exponent model was approx-

imated, the exponent estimates are large, over 2.0, and inconsistent with the “practical spreading”
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model of k = 1.5. The overall energy-loss exponent is a measure of the combination of spreading

loss as well as scattering losses.

2.6.4.1 Statistical Characterization of Energy Estimates

Figures 2.21-2.23 show the statistics of the energy estimates for the six low-level datasets: JD190,

receivers SYS3 and SYS4 (both LFM and MLS), and JD189, receivers SYS3 and SYS4 (MLS only).

The coherent, incoherent, and noise energy estimates are plotted as green, red, and black boxplots,

respectively. Even with this first look at the energy estimates, it is clear that there are particular

regions and/or times in each low-level dataset where the energy estimates do not decrease with

range, and so the propagation for that time and location does not conform to a simple spreading

model.

Boxplots succinctly show the median, the central fifty percentiles, “whiskers” showing the ex-

treme values of the distribution, and outliers beyond the whiskers. The central box of the boxplot

points shows the middle two quartiles, with the median plotted as a circle. The definition of whiskers

is not standardized; in the boxplots shown here, the lower and upper whiskers extend to the 1st

percentile value and the 99th percentile value. Outliers beyond the whiskers are plotted with dots.

The boxplots are shown without exponent fits, noise correction, or absorption correction, to show

the distribution and dispersion of the underlying energy estimates more clearly.

The coherent and incoherent energy estimates from JD189, SYS3 and SYS4 vary weakly with

range. For example, for JD189,SYS3, the coherent energy estimate at 600 m is less than the coherent

energy estimate at about 2.5 km. For JD189,SYS4, the coherent energy estimate at about 4.5 km

is about the same as it is at about 9 km, and the coherent energy estimate increases with range

from about 8.5 km to 9 km, rather than decreasing with range as one would expect from a simple

spreading exponent model. There is a gap in the JD189,SYS3 files from about 4 km to 5 km due

to 12 minutes of ambient noise recordings once every two hours, with no transmissions occurring.

There is a large gap in the JD189,SYS4 files from about 4.5 km to about 8.5 km due to recordings

missing from the original dataset. Similarly, the JD189,SYS3 files beyond about 5 km (out to about

9 km) are missing from the original dataset.
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The JD190 results are closer to following a simple spreading model. (In the plots, note that for

JD190, the transmitted signal alternates between MLS and LFM every six minutes.) The energy

estimates are generally decreasing with increasing range, though there are places where the energy

estimates increase with increasing range, for example from about 2.5 km to 3.5 km on SYS3, and

at multiples ranges on SYS4, in particular around 5 km. The JD190,SYS3,LFM plot also shows

the transmitter passing close to SYS3, closing from about 1 km, passing within about 700 m of

SYS3, and moving away; this is shown in overhead plan view in Figure 2.14, the plot of the source

tow track. The two energy estimates at roughly the same ranges (but different bearings) are fairly

similar, matching to within about 3 dB (for example, the energy estimates below about 1.5 km on

SYS3,LFM, at about 1.5 km on SYS3,MLS). The JD190,SYS4,MLS data only extends to about

7 km because the more distant MLS arrivals on that day could not be identified, due to the limited

MLS processing gain combined with propagation conditions.

In the boxplots in Figures 2.21-2.23, the quartiles and whiskers are calculated differently for the

different types of energy estimates. The coherent energy and the LFM incoherent energy estimates

are calculated as the maximum and mean energy in the impulse responses over the observed delay

spread, resulting in about 360 estimates for LFM or about 36 estimates for MLS. The boxplot

median, quartiles, whiskers, and outliers are calculated directly from all of these estimates from a

given one-minute recording. The MLS noise energy and MLS incoherent energy estimates, however,

are calculated as mean energies in the low-pass-filtered baseband signal, and the LFM noise energy

is calculated as the mean energy in the matched-filter output. With this approach, there are tens

of thousands, to over a million, energy samples underlying each of the mean energy estimates. The

energy among all the individual samples in these signals can vary by multiple orders of magnitude,

leading to very high statistical dispersion and an overly busy boxplot which is difficult to visualize.

To make the boxplots easier to visualize and to let patterns be revealed from the data, we

smooth the noise energy for both MLS and LFM, as well as the incoherent estimates for MLS. We

selected smoothing time constants of 20 samples at 25 kHz. This time constant was selected in

part to model the frequency response of the matched filters. The baseband matched filters have
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approximately a low-pass frequency response, with -3 dB points of about 1200 Hz for LFM and

approximately 1300 Hz for MLS, or about 20 samples at 25 kHz in either case.

In the boxplots shown in Figures 2.21-2.23, the noise energy and the MLS incoherent energy are

segmented into non-overlapping chunks of the characteristic smoothing times, and the boxplot shows

the statistics for the means of the segments rather than the statistics of the individual samples.

The overall energy means are unchanged, but the variance and number of outliers are significantly

reduced, while physically approximating the response of the matched filter to noise.

The vertical axis plots energy on a log scale rather than the more commonly used decibels, i.e.,

10 log10(energy). The spreading exponents are estimated directly from the slope of a log-log plot

of energy versus range. For more straightforward comparison with the log-log plots in the next

section, the boxplots use a simple log scale on the vertical axis rather than decibels.

For all but the shortest ranges in the source tows, there is significant overlap between the

propagation paths from the transmitter to receivers SYS3 and SYS4. In general, the energy mea-

surements made at SYS3 and SYS4 at a given time will likely have some correlation due to the

overlapping propagation paths. Because of the 4 km displacement between SYS3 and SYS4, an

energy measurement made at a given range on SYS3 will be measured at the same time as a SYS4

measurement at a range which is about 4 km larger.
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Figure 2.17. A time-delay plot of LFM impulse responses, in a close-range, high-SNR situation.
The impulse responses have been Doppler-corrected, so the arrivals are at nearly fixed delays.
Figure 2.18 on the next page plots the same data, and is overlaid with the manually-selected energy
estimation regions for the coherent, incoherent, and noise estimates. Both plots are relatively large
so that the overlaid regions are more readily visible.
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Figure 2.18. A time-delay plot overlaid with the manually-selected energy estimation regions.
Figure 2.17 on the previous page displays the same data without the overlays, for comparison. The
red rectangle selects the delay spread over which the incoherent LFM energy is estimated, with
one estimate for each impulse response (each vertical slice). The small green rectangle at the first
arrivals (delay of around 20 ms) is the region over which coherent energy is estimated; the green
circles show the locations of maximum energy in the green rectangle, which are the coherent energy
estimates. The black rectangles on the left and right, just before and after the transmitted signals,
are the regions where the mean noise energy is calculated.

81



0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

M
at

ch
ed

−
F

ilt
er

 O
ut

pu
t (

no
rm

.e
ne

rg
y)

Impulse Response Estimates, range 610 m (MLS)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Time (s)

B
as

eb
an

d 
S

ig
na

l E
ne

rg
y

Impulse Response Estimates, range 610 m (MLS)

Figure 2.19. For the MLS signals, the regions for the incoherent energy estimate and the noise
energy estimate were selected manually from a one-dimensional timeseries of the matched-filter
output, shown in the upper plot. The green circles show the coherent energy estimates, which were
calculated from the time-delay plot, but here have had their time indices converted to display as a
timeseries. The start and end of the signal are manually selected for the incoherent energy estimate
region (shown in red), and the noise energy region, shown in black is selected before and/or after
the received signal. The blue buffer regions are not included in either estimate, and allow for more
conservative selection of what region is signal and what is noise, especially in low-SNR situations
where the distinction between signal and noise regions is less obvious. The lower plot shows the
baseband signal energy with the incoherent energy region (red), the noise region (black), and the
buffer regions (blue). The matched filter output is corrected for the filter’s group delay so that the
same time indices can be used for the baseband signal. The corresponding time-delay plot is shown
in Figure 2.20.
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Figure 2.20. For the MLS signals, the coherent energy estimate was selected in the same way as
for the LFM signals: the maximum energy within a rectangle manually selected on the time-delay
plot (rectangle not shown on time-delay plot above). The regions for the incoherent energy estimate
and the noise energy estimate are shown in Figure 2.19. The modest MLS processing gain is evident
in the time-delay plot, though in most cases the MLS processing gain is not the limiting factor.
The MLS signals have a repetition period of 1.4742 s, so the time resolution on the time-delay plot
is much coarser than with the LFM signals with their 144 ms repetition rate.
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Figure 2.21. Boxplots showing the statistical distribution of the JD189 SYS3 energy estimates,
from MLS signals. The coherent energy estimates are only weakly range-dependent.
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Figure 2.22. Boxplots showing the statistical distribution of the JD190, SYS3 energy estimates,
from both LFM and MLS signals. The transmitter passed within about 600 m of SYS3, shown with
the two sets of (range,energy) measurements below about 1.5 km with the LFM signals, and around
1.5 km with the MLS signals. For these particular repeated ranges, the repeatability of the coherent
energy estimate is within several dB. The difference in the statistical dispersions of the LFM and
MLS incoherent energy estimates is due to the number of samples averaged in each, and is discussed
further in the text. The energy increases with range in a couple of places, most notably at around
2.5 km-3.5 km, again indicating more complex acoustic propagation than a simple spreading model.
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Figure 2.23. Boxplots showing the statistical distribution of the JD190,SYS4 energy estimates,
from both LFM and MLS signals. In multiple places, the energy estimates increase with increasing
range, for example around 5km with both the MLS and LFM signals, again indicating more complex
acoustic propagation than a simple spreading model. Note the difference in incoherent energy
statistical dispersion between LFM and MLS, due to the averaging of the LFM method.
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2.6.4.2 Estimation of Spreading Exponents

Spreading exponents are an average measure, most useful for system design, including design

and analysis of network protocols. At any specific period in time or region in space, the physics

of the acoustic propagation may not cleanly follow a simple spreading-loss or energy-loss model.

For example, the discussion of statistical characterization in the previous section identified several

regions of the low-level datasets where the propagation clearly does not reduce to a simple model

described by an energy-loss exponent. In those cases, estimating a value for the spreading exponent

would not be physically meaningful. As the energy-versus-range dataset includes more samples,

however, becoming a longer-term temporal and broader-scale spatial average, the environmental

fluctuations should start to average out, and an estimate of a spreading loss exponent, or more

generally the energy-loss exponent, can be attempted.

The six low-level datasets are JD189 SYS3 MLS and SYS4 MLS, and JD190, SYS3 MLS and

LFM, and JD190, SYS4 MLS and LFM. From the statistical characterization of the low-level

datasets, it appears that the environmental conditions were significantly different between JD189

and JD190, and that the acoustic propagation during JD189 in particular was not following a

simple spreading exponent model. Of the two source tows, we focus first on the JD190 dataset,

which appears to be closer to following a simple energy-loss exponent model. For completeness,

we present plots of all five of the combined datasets, namely JD189 combined (SYS3 and SYS4)

in Figure 2.24, with residuals characterized in Appendix D, Figure D.1; JD190,SYS3 (LFM and

MLS) in Figure 2.25, with residuals in Figure D.2; JD190,SYS4 (LFM and MLS) in Figure 2.26,

with residuals in Figure D.3; JD190 combined (SYS3 and SYS4) in Figure 2.27, with residuals in

Figure D.4; and all data in Figure 2.28, with residuals in Figure D.5. We also tabulate all of the

exponent estimates, including those for all six of the individual low-level datasets, in Table 2.1.

In the plots of energy-versus-range data and the fitted lines, the incoherent and coherent energy

estimates have been corrected first for noise, and then for absorption loss. The fits are on log-log

plots of energy versus range, and the estimates of the spreading exponents, k, are the slopes of the

fitted lines, with the model log10(E) = −k log10(r) + b. There are two fits shown for each of the

types of energy, one using unweighted linear least-squares estimation (LLSE) and the other using
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Dataset kcoh (unw) R2 (c) kinc (unw) R2 (i) knoise (unw) R2 (n) N
All 2.6± 0.3 0.71 2.1± 0.2 0.86 0.2± 0.1 0.19 237
JD190, all 3.0± 0.3 0.87 2.3± 0.2 0.93 −0.1± 0.1 0.06 114
JD189, all 2.7± 0.3 0.82 2.1± 0.2 0.91 0.3± 0.1 0.62 123
JD190, SYS3 2.8± 0.3 0.90 2.3± 0.2 0.95 −0.1± 0.1 0.14 73
JD190, SYS4 2.9± 1.2 0.51 2.2± 1.0 0.65 −0.4± 0.3 0.29 41
JD190, SYS3 LFM 3.0± 0.3 0.96 2.2± 0.3 0.93 −0.1± 0.2 0.18 36
JD190, SYS3 MLS 2.7± 0.3 0.95 2.3± 0.2 0.97 −0.1± 0.1 0.11 37
JD190, SYS4 LFM 2.6± 1.2 0.76 2.3± 1.4 0.68 −0.5± 0.4 0.42 23
JD190, SYS4 MLS 2.4± 1.5 0.57 2.4± 0.6 0.90 −0.1± 0.5 0.05 18
JD189, SYS3 MLS 1.5± 0.6 0.50 1.4± 0.3 0.77 0.4± 0.2 0.48 55
JD189, SYS4 MLS 3.0± 1.0 0.50 2.1± 0.5 0.66 0.2± 0.2 0.17 68
Dataset kcoh (w) R2 (c) kinc (w) R2 (i) knoise (w) R2 (n) N
All 2.1± 0.3 0.67 2.1± 0.2 0.67 0.2± 0.1 0.19 237
JD190, all 2.2± 0.3 0.86 2.2± 0.2 0.92 −0.1± 0.1 0.06 114
JD189, all 2.5± 0.4 0.79 1.3± 0.3 0.51 0.3± 0.1 0.62 123
JD190, SYS3 2.6± 0.3 0.89 2.3± 0.3 0.95 −0.1± 0.1 0.14 73
JD190, SYS4 2.3± 1.3 0.43 1.6± 0.5 0.37 −0.4± 0.3 0.29 41
JD190, SYS3 LFM 3.0± 0.4 0.96 2.3± 0.3 0.93 −0.2± 0.1 0.18 36
JD190, SYS3 MLS 2.6± 0.2 0.95 2.0± 0.4 0.91 −0.1± 0.1 0.11 37
JD190, SYS4 LFM 3.1± 1.0 0.73 1.6± 0.4 0.57 −0.5± 0.4 0.42 23
JD190, SYS4 MLS 3.1± 1.4 0.46 2.5± 0.5 0.89 −0.1± 0.4 0.05 18
JD189, SYS3 MLS 0.9± 0.7 0.29 1.2± 0.4 0.73 0.4± 0.1 0.48 55
JD189, SYS4 MLS 2.7± 1.8 0.48 1.5± 0.5 0.44 0.2± 0.1 0.17 68

Table 2.1. Estimated exponents for all datasets, for unweighted (unw) and weighted (w) LLSE fits
to the coherent (c), incoherent (i), and noise (n) energy-loss exponents. For the margins of error,
99% confidence intervals are used. The R2 value and number of points N for the fits is also shown.
The upper portion of the table gives data for the unweighted fits, and the lower portion of the table
gives data for the weighted fits.
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weighted LLSE. The markers on the plots indicate which of the low-level datasets a particular

measurement came from. The errorbars are the standard deviations of the energy estimates, which

appear asymmetric about the mean when plotted on a log-log plot.

2.6.4.2.1 Weights For weighted LLSE, the weights are typically the inverses of the (sample)

variance for the values being fit, in which case the estimator is the best linear unbiased estimator of

the parameters. Since we are fitting the slope of a log-log plot, rather than a linear-scale plot, we use

1/var(log10(energy)) as the weights. Using the inverse of the variances of the energies themselves

as the weights would effectively discard all of the short-range measurements, where the variances

in energy are large simply because the energy is large, but where the relative size of the residuals

is small. The weights are then normalized so that the largest weight is unity, so that weighted and

unweighted residuals can be compared more easily.

2.6.4.2.2 Residuals For the weighted LLSE fit, the residual plots display unweighted rather

than weighted residuals. The reasoning is that weighted LLSE will produce a more robust estimate

of the parameters in the case of non-equal variances, especially if the outliers have high variances,

but weighting the reported residuals would make the fit appear better than it is. As would be

expected, the distributions of weighted residuals (not shown), where each raw residual is scaled by

its weight, are much more tightly peaked than the unweighted residuals are. Similarly, in the Table

1, the R2 values, measuring the fraction of total data variation explained by the fit, are calculated

from the unweighted residuals for both the weighted and unweighted fits [133]. Therefore R2 for the

weighted fits will always be smaller than R2 for the unweighted fits. Using the weighted residuals

to calculate R2 would result in all of the weighted fits having R2 values of essentially 1.0.

The noise should have no dependence upon range. Therefore fitting noise over as a function of

range should give an ideal R2 value of 0, rather than the usual 1, since the fit should explain none

of the variance of the data.

2.6.4.2.3 Margins of Error The margins of error are calculated using 99% confidence intervals

from a t-distribution with (N − 2) degrees of freedom (two model parameters are fit, the slope and
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the intercept). For unweighted fits, there is an explicit formula for the standard error of the

slope [24]:

standard error of slope =
s√∑

(x−mx)2
.

In this formula, the unbiased estimator of the sample variance for the slope, s2, is

s2 =

∑
(residuals)2

N − 2
,

and mx is the mean of the horizontal-axis values (where the horizontal axis is log10(range) in this

case).

For the weighted fits, the standard errors for the estimate of the slope were estimated by

bootstrapping [26] the data: in each of B = 200 trials, there were N randomly-selected tuples

of (range,energy,weight) selected with replacement from the original dataset, where N is the size of

the original dataset. There was a weighted LLS estimate of the slope k made with each randomized

trial. The sample standard deviation of the B randomized trials is then taken as the estimate of the

standard error of the statistic in question, namely the standard error of the estimate of the slope.

As a check of the bootstrapping method, its calculated margins of error for the case of unweighted

LLSE matched the formula.

The confidence intervals were selected to be 99% rather than the typical 95% to increase the

sizes of the reported margins of error; there are clearly large uncertainties in the fits.

2.6.4.2.4 Noise Exponent The noise energy exponent is a useful metric for assessing the

quality of the data and the fit. The noise energy should have no range dependence; its estimated

spreading exponent should be close to zero. The noise energy may have some variation in time,

however, and since range and time are related in the source tow experiments, variations in the noise

level in time that do not average out over the finite duration of the source tow could appear as

a variation in range and result in a non-zero noise spreading exponent. In general, however, the

noise spreading exponent estimate should be close to zero. For example, we increased the sharpness

of the low-pass filter’s frequency cutoff after observing non-zero noise spreading exponents due to

contamination from signals in the mid-frequency band.
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2.6.4.2.5 Discussion There are many issues with these fits. There are robust estimation tech-

niques [73] that might handle outliers in the data better than LLS estimates do. The problems

with the fits, however, do not necessarily have to do with rejecting spurious outliers, but instead

appear to be more fundamental issues, and so at this point we do not need a more robust estimation

method.

For example, there are the previously mentioned issues with JD189, both SYS3 and SYS4, where

for much of the track, the energy does not decrease with range. An energy-loss exponent of zero

is not physically meaningful, and likely the received energy at the closest ranges was suppressed

due to propagation effects. These effects are real, however, and are not due to noisy measurements:

The energy estimates in JD189 do not have especially high variances, and the noise exponent for

JD189,SYS4 is fairly flat, knoise = 0.2± 0.1, and looks fine. The noise exponent for JD189,SYS3 has

a stronger slope, knoise = 0.4± 0.1, but even a flat noise exponent would not make the JD189,SYS3

dataset usable on its own to estimate spreading exponents. There do not appear to be significant

processing problems for JD189; it just appears to reflect more complex propagation effects than

simple spreading loss. Furthermore, the propagation effects are clearly time-varying, because the

source tows of JD189 and JD190 followed nearly identical tracks, one day apart in time, and the

energy-versus-range plots are very different.

In JD190, SYS4 (MLS and LFM), however, the noise energy has a relatively strong range

dependence, knoise = −0.5± 0.4, suggesting that signal energy may be contaminating the noise

estimates, or possibly there is a time-varying noise level near that receiver. JD190, SYS4 is the

receiver which had long-range signal detection problems, mentioned previously when discussing

MLS processing gain. There are only a few LFM signals which were detected beyond 7 km range,

and no MLS signals detected beyond that range. The handful of low-SNR measurements from long

range may be skewing the estimates. When the noise correction is done on the incoherent energy

estimate, if the corrected incoherent energy becomes negative, we could either drop that data point

or set it to a tiny positive value. We have chosen to reset negative corrected energies to tiny positive

values, with the reasoning that if the lowest values were dropped completely, the energy estimates
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at long ranges (low SNRs) would be skewed even higher, since only the highest-energy points would

be retained.

In the combined dataset of JD190, SYS4 LFM and MLS, there is also a clear pattern of the

MLS signals having systematically higher coherent estimates than the LFM signals. JD190, SYS3

also appears to have a slight systematic effect of the MLS coherent energy estimates are higher

than the LFM coherent energy estimates, but the effect is much less pronounced, even though

the processing steps are identical to JD190,SYS4. The pattern appears to be reversed with the

JD190,SYS4 incoherent energy estimates, where the LFM incoherent energies appear to have a

systematic effect of being higher than the MLS energies. JD190,SYS3 may have LFM incoherent

energies systematically very slightly higher than MLS incoherent energies, but again the effect is

much weaker than with JD190,SYS4, even though the processing steps are the same. The noise

energy exponent in JD190 SYS3 appears to be fine, knoise = −0.1± 0.1.

Potential future work with the JD190 datasets would include re-checking the noise energy on

SYS4, to see if there is contamination from another transmitter or another band, or if the region

selected to estimate the noise energy inadvertently includes some of the signal. In addition, there

may be a normalization mismatch in combining the MLS and LFM coherent energy estimates, al-

though it is unclear why the effect would be more pronounced on JD190,SYS4 than on JD190,SYS3.

The long-range MLS and LFM signals on JD190,SYS4 could perhaps be reprocessed, or perhaps

dropped if their SNR is too low to make them reliable. Finally, there is the previously mentioned

difference in variance between the two different methods used to calculate the MLS and LFM in-

coherent energy, which will weight the LFM incoherent energy estimates much more strongly than

the MLS estimates when using weighted LLSE. On this last point, however, there do not appear

to be any processing problems with the JD190, SYS3 incoherent energy fits, and the weighted and

unweighted incoherent exponent estimates are very similar for that receiver.

Of the six low-level datasets, the two JD189 datasets appear to have complex propagation

effects that do not fit the simple spreading exponent model. JD189 does have two regions where an

energy-loss exponent would appear to hold, but neither makes physical sense as a spreading loss.

The first region, from 600 m to 2.5 km, has no measured energy loss. Physically, there must be
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spreading loss from 600 m to 2.5 km, but perhaps the propagation was such that at the shortest

ranges, the received energy level was suppressed. The second region, from 2.5 km to 11 km, would

have an energy-loss exponent of approximately 5.0. In Section 2.6.5, we present results showing

that energy-loss exponents of order 5 can occur from bottom scattering losses when propagating in

the bottom duct, as further explained in that section.

The two JD190,SYS4 datasets definitely have low SNR at long ranges, may have processing

issues, and either have a time-varying noise level or have their noise estimates contaminated by

signal energy.

The remaining two datasets, JD190,SYS3 give weighted LLSE estimates of kcoh = 2.6± 0.3

(R2 = 0.89) for the coherent exponent, kinc = 2.3± 0.3 (R2 = 0.95) for the incoherent exponent,

and a fairly flat noise exponent, knoise = −0.1± 0.1. With a waterdepth of 100 m and a signal

bandwidth of 4 kHz, the hypothesized incoherent transition range will be of order 100 m, and the

hypothesized coherent transition range will be of order 13 km, using the results from Section 2.3.3.

The energy-versus-range data from JD190,SYS3 spans about 600 m to about 9 km. No transition

ranges were observed, and the hypothesized transition ranges were outside the region spanned by

the data. The estimates were not robust enough to allow bandwidth reduction below the 4 kHz

bandwidth. Therefore, neither the existence nor the depth- and bandwidth-dependence of the

hypothesized transition ranges could be validated experimentally.

Ideally, all of the datasets with no processing problems should be combined into the spreading

exponent estimates, since the spreading exponent should be an average measure over time, depth,

and range. With so few datasets, however, we are not combining JD189 with JD190,SYS3, be-

cause JD189 clearly has more complex propagation physics for which a spreading exponent is not

meaningful.
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Figure 2.24. Energy-versus-range data (corrected for noise, then absorption) for JD189. Energy
barely drops with range from 600 m to 2.5 km, implying a spreading exponent of zero in that region,
which is not physically meaningful, followed by a energy-loss exponent of 5.0 from 2.5 km to 11 km.
The errorbars are the standard deviations of the energy estimates, with the MLS incoherent and
noise estimates averaged in blocks of the matched filter’s characteristic “smoothing time” described
in the text, to reduce their variances. Unweighted LLSE fits are plotted with solid lines, and
weighted fits with dashed lines. Confidence intervals are 99% to maximize reported margins of
error. Residuals are plotted in Appendix D, Figure D.1.
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Figure 2.25. Energy-versus-range data (corrected for noise, then absorption) for JD190,SYS3.
There appears to be a systematic effect where the coherent energy estimates are larger for the
MLS signals than they are for LFM signals, but the effect is not as pronounced here as it is with
JD190,SYS4. The variances of the incoherent energy estimates for LFM are significantly smaller
than they are for MLS, as discussed in the text. The unweighted coherent-energy fit for MLS
signals is plotted as a dashed cyan line, kc = 2.7± 0.3, and for LFM signals as a solid cyan line,
kc = 3.0± 0.3, both within the margin of error of the overall fit. The errorbars are standard
deviations, with the MLS incoherent and noise estimates averaged in blocks of the matched filter’s
characteristic “smoothing time” described in the text, to reduce their variances. Unweighted LLSE
fits are plotted with solid lines, and weighted fits with dashed lines. Confidence intervals are 99%
to maximize reported margins of error. Residuals are plotted in Appendix D, Figure D.2.
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Figure 2.26. Energy-versus-range data (corrected for noise, then absorption) for JD190,SYS4.
The noise exponent is not near zero, suggesting possible contamination. There appears to be a
strong systematic effect where the coherent energy estimates are larger for the MLS signals than
they are for LFM signals, much more pronounced here than with JD190,SYS3. The opposite effect
appears to occur with the incoherent energies, with energies lower for MLS than LFM, which
is not visible with JD190,SYS3. The variances of the incoherent energy estimates for LFM are
significantly smaller than they are for MLS, as discussed in the text. The errorbars are standard
deviations, with the MLS incoherent and noise estimates averaged in blocks of the matched filter’s
characteristic “smoothing time” described in the text, to reduce their variances. Unweighted LLSE
fits are plotted with solid lines, and weighted fits with dashed lines. Confidence intervals are 99%
to maximize reported margins of error. Residuals are plotted in Appendix D, Figure D.3.
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Figure 2.27. Energy-versus-range data (corrected for noise, then absorption) for JD190. The
bad fits for JD190,SYS4 are somewhat obscured because JD190,SYS4 is mostly at larger ranges
with higher variances. The variances of the incoherent energy estimates for LFM are significantly
smaller than they are for MLS, as discussed in the text. The errorbars are standard deviations, with
the MLS incoherent and noise estimates block-averaged in blocks of the matched filter “smoothing
time” described in the text, to reduce their variances. Unweighted LLSE fits are plotted with
solid lines, and weighted fits with dashed lines. Confidence intervals are 99% to maximize reported
margins of error. Residuals are plotted in Appendix D, Figure D.4.
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Figure 2.28. Energy-versus-range data (corrected for noise, then absorption) for both JD189 and
JD190, all data. JD189,SYS3 is readily apparent, with its large excursions from a propagation
model with a simple energy-loss exponent. The variances of the incoherent energy estimates for
LFM are significantly smaller than they are for MLS, as discussed in the text. The incoherent
data is tighter around the fitted lines than the coherent data is. The errorbars are standard
deviations, with the MLS incoherent and noise estimates averaged in blocks of the matched filter’s
characteristic “smoothing time” described in the text, to reduce their variances. Unweighted LLSE
fits are plotted with solid lines, and weighted fits with dashed lines. Confidence intervals are 99%
to maximize reported margins of error. Residuals are plotted in Appendix D, Figure D.5.
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2.6.5 KAM11 Modeling and Physical Explanations for Results

In this section, we model propagation the KAM11 environment to explain the qualitative features

of the experimental results presented in the previous section. In particular, we address the difference

between the JD189 and JD190 propagation and energy-loss exponent measurements, and suggest

physical mechanisms explaining the results. Our model incorporates the KAM11 soundspeed pro-

files, surface and bottom scattering and reflection losses, and shows the qualitative propagation

changes we can expect from internal waves.

2.6.5.1 KAM11 Soundspeed Profiles and Internal Waves

The most fundamental environmental component influencing acoustic propagation is the sound-

speed profile. An example KAM11 soundspeed profile is shown in Figure 2.29, from JD187, two

days before the JD189 source tow. Additional soundspeed profiles are shown in Figure 2.15, showing

spatial and temporal variation.

The KAM11 soundspeed profile has several features to note. The upper portion of the water-

column, from the surface down to about 50 m depth, has an approximately uniform soundspeed,

and is called the mixed layer. Surface waves, usually driven by the wind, mix the water in the

upper portion of the water column, homogenizing the temperature and creating an approximately

uniform soundspeed profile. Below the surface mixed layer is a region of colder water where the

soundspeed decreases due to decreasing temperature. Acoustic rays refract towards a soundspeed

minimum, and in shallow water a soundspeed minimum at the bottom is sometimes called a bottom

duct. A soundspeed profile such as the one shown in Figure 2.29 is called downward-refracting,

and leads to increased bottom interactions as well as potential surface shadow zones, where rays

from transmitters in the bottom duct do not propagate into the mixed layer. An additional feature

to note, shown in the raytraces of Figure 2.30, is that in this downward-refracting environment,

the direct path between the source and receiver is lost at a range of about 3-4 km, introducing

additional scattering losses at all larger ranges.

The interface between the mixed layer and the bottom duct also is important for acoustic

propagation in the KAM11 environment. The surface mixed layer consists of warmer, less dense
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water, whereas the bottom duct consists of colder, denser water. Just as surface gravity waves

propagate at the interface between two fluids of different densities — air and water — internal

waves [49] propagate at the density interface between the mixed layer and the bottom duct. For

internal waves, the difference in densities is relatively small, and so the gravitational restoring forces

are much less than they are for surface gravity waves. The amplitudes, wavelengths, and periods

of internal waves are therefore much larger than they are for surface gravity waves, on the order of

ten or more meters for the amplitudes, hundreds of meters for the wavelengths, and tens of minutes

for the periods of typical internal waves.

Internal waves can shift the depth of the interface between the mixed layer and bottom duct

up or down, dramatically changing the propagation characteristics over relatively short temporal

and spatial scales. Since the KAM11 transmitter and receiver depths (nominally 50 m and 45 m,

respectively), are very close to the interface depth, even relatively small changes in the interface

depth due to an internal wave can have strong effects on the received energy.

For example, the top two plots in Figure 2.30 show raytraces in the soundspeed profile of

Figure 2.29, one with a transmitter at 50 m depth, and the other with a transmitter at 53 m depth,

just above and just below the interface depth. Similarly, these plots could be thought of as an

internal wave perturbing the interface depth such that the transmitter is just above or just below

the interface depth. With the transmitter just above the interface depth at the bottom of the

surface mixed layer (the plot at 50 m depth), the rays propagate throughout the watercolumn out

to about 8-9 km in range, gradually losing energy to the boundary scattering losses. On the other

hand, with the transmitter just below the interface depth at the top of the bottom duct (the plot

at 53 m depth), there is ducted propagation near the bottom, and a surface shadow zone.

With the KAM11 transmitter and receiver very close to the interface depth, internal waves can

have a very strong effect on the received energy level.

2.6.5.2 Modeled KAM11 Reflection Coefficients

The average surface reflection coefficient is modeled following Medwin and Clay [75]. The

KAM11 Trip Report [57] gives RMS surface wave heights of about 70 cm to 100 cm on JD189
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and JD190. The acoustic wavelength at 5.5 kHz is about 27 cm, leading to the average surface

reflection coefficient plotted in Figure 2.31 as a function of grazing angle. The average surface

reflection/scattering coefficient is strongly angle-dependent, and goes to zero for grazing angles

above about 5◦, due to the acoustic roughness of the surface. These modeled average surface

reflection coefficients are heavily averaged and idealized. In reality, the surface scattering losses are

highly variable.

The windspeed at KAM11 on JD189 and JD190 was variable, ranging from 3 m/s to about

15 m/s [57]. The prevailing wind and wave direction was from the northeast, which is essentially

directly exposed to the North Pacific swell without being in the lee of any landmass. Therefore

even in local low-wind conditions, there would be distantly generated swell roughening the surface.

The bottom reflection coefficients are calculated again following Medwin and Clay [75], using

seafloor parameters from Vera et al. [129]. Vera et al. used geo-acoustic inversion methods to

estimate the volcanic seafloor at the KAM11 site as having a soundspeed of 2200 m/s and density

of 2.1 g/cm3.

In addition, the seafloor directly under the source tow trackline is very steep, the edge of a

Hawaiian volcano. Estimating the slope from the bathymetry charts in the KAM11 trip report [57],

right under the trackline, the depth goes from 100 m to 200 m in about 600 m-700 m horizontally,

sloping down to the northwest. Bottom reflections will therefore have some of their energy scattered

out of plane, reducing the forward-scattered reflection coefficient. We model this additional loss

with a crudely modeled roughness scattering loss of an additional 50% loss, independent of grazing

angle.

The overall modeled bottom reflection/scattering coefficient is plotted in Figure 2.31 as a func-

tion of grazing angle.

2.6.5.3 Modeled KAM11 Energy versus Range

Figures 2.32 and 2.33 show modeled coherent and incoherent received energy in the KAM11

environment, using Bellhop raytracing.
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In order to determine the independent effects of the non-uniform soundspeed profile and the

lossy reflection coefficients, sets of raytracing runs were done with (1) uniform soundspeed profile

and modeled KAM11 reflection coefficients, (2) KAM11 soundspeed profile and lossless reflection

coefficients, and (3) KAM11 soundspeed profile and modeled KAM11 reflection coefficients.

With the uniform soundspeed profile and modeled KAM11 reflection coefficients, run (1) showed

little qualitative change from the idealized raytracing runs presented in Section 2.4. The non-

uniform soundspeed profile is therefore shown to be the most critical component of modeling the

KAM11 environment.

To determine the role of the reflection coefficients, energy-versus-range plots with the results of

runs (2) and (3) are shown in Figure 2.32. The results of run (2), with idealized lossless reflection

coefficients, is the upper plot in Figure 2.32, and the estimates of the energy-loss exponents beyond

ranges of about 500 m are kcoh = 1.4± 0.3 and kinc = 0.6± 0.1, with 95% confidence intervals.

These exponent values are smaller than, and inconsistent with, the measurements presented in

Table 2.1. The results of run (3) the lower plot in Figure 2.32, and the estimates of the energy-loss

exponents beyond ranges of about 500 m are kcoh = 3.2± 0.5 and kinc = 2.4± 0.2, again with 95%

confidence intervals.

Therefore both the non-uniform soundspeed profile as well as the lossy reflection coefficients are

required to produce modeled results that are similar to the observed KAM11 field data.

Figure 2.33 plots the energy-versus-range for transmitter and receiver in the surface mixed layer

(upper plot) and the bottom duct (lower plot). In lower plot, with the transmitter and receiver

in the bottom duct, the estimates of the energy-loss exponents beyond ranges of about 1 km

are kcoh = 5.9± 0.4 and kinc = 5.8± 0.4, with 95% confidence intervals. These large energy-loss

exponents are of similar magnitude to those beyond about 2.5 km range in the JD189 source tow.

These results suggest that for the JD189 source tow, the interface depth was above the source

and receiver, effectively putting them in the downward-refracting bottom duct, experiencing large

scattering losses from repeated interactions with the bottom. In contrast, the upper plot shows a

transmitter and receiver in the surface mixed layer, and is qualitatively similar to the JD190 source

tow, with similar exponent estimates of kcoh = 3.1± 0.3 and kinc = 2.7± 0.2, with 95% confidence
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intervals. These results suggest that for the JD190 source tow, the interface depth was below the

source and receiver, effectively putting them in the surface mixed layer.

2.6.5.4 KAM11 Modeling Conclusions

In this section, we presented results modeling the KAM11 environment. We showed that both

the soundspeed profile and the reflection/scattering losses are important in modeling the environ-

ment appropriately. Furthermore, we showed that the interface depth between the surface mixed

layer and the bottom duct is critically important, and can vary spatially and temporally. With

the KAM11 transmitter and receiver both near the interface depth, the propagation is especially

sensitive to perturbations in interface depth, which can be driven by internal waves.
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Figure 2.29. KAM11 soundspeed profile (JD187, 07:23Z, Cast 11). The components of the
soundspeed profile are a surface mixed layer down to almost 50 m depth, above a colder bottom
duct with a soundspeed minimum near the bottom. Sound waves refract towards a soundspeed
minimum, so this is a downward-refracting environment. Sound propagating in the bottom duct
will have many bottom interactions, with corresponding scattering losses. As described in the text,
internal waves can propagate along the interface between fluids of different densities, changing the
depth of the interface between the mixed layer and bottom duct. Raytraces for sources at different
depths in this soundspeed profile are shown in Figure 2.30.
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Figure 2.30. Raytraces for sources at different depths in the soundspeed profile shown in Fig-
ure 2.29. The upper two plots show the sensitivity to the interface depth: With a slight change in
source depth, or similarly, interface depth, the propagation is dramatically different. The lower two
plots show sources in the surface mixed layer (20 m depth) and in the bottom duct (80 m depth).
In the bottom duct, there are many interactions with the bottom, leading to increased scattering
loss. In many of the plots, there are shadow zones, or regions where the rays do not propagate due
to the soundspeed profile.
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Figure 2.31. Bellhop environment’s reflection coefficients to investigate the effects of non-perfect
reflection, as a function of grazing angle (the complement to angle of incidence). The sea sur-
face reflection coefficients are for an RMS wave height of 100 cm, typical from the KAM11 Trip
Report [57], calculated for an acoustic wavelength of 27 cm following Medwin and Clay [75]. The
bottom reflection coefficients are using seafloor parameters from Vera et al. [129], following Medwin
and Clay [75]. The seafloor reflection coefficient is further reduced by an angle-independent 50%
to roughly model the very steep seafloor as discussed in the text, reducing the forward-scattered
energy.
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Figure 2.32. Received energy-versus-range plots for raytraced modeling of the KAM11 environ-
ment. Both plots use the KAM11 soundspeed profile shown in Figure 2.29. The upper plot has
lossless boundaries, while the lower plot models KAM11 boundary losses shown in Figure 2.31. The
energy-loss exponent estimates for the lossless boundaries are inconsistent with measured values.
Therefore, both the soundspeed profile as well as the boundary losses are required to model the
KAM11 environment appropriately.
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Figure 2.33. Received energy-versus-range plots for raytraced modeling of the KAM11 environ-
ment. Both plots use the KAM11 soundspeed profile shown in Figure 2.29. The upper plot has
the source at 20 m depth, in the surface mixed layer, and is qualitatively similar to the JD190
source tow. The lower plot has the source at 80 m depth, in the bottom duct, and is qualitatively
similar to the JD189 source tow. These plots suggest that the interface depth between the surface
mixed layer and the bottom duct was above the source and receiver for JD189 (placing them in
the bottom duct), and below the source and receiver for JD190 (placing them at the bottom of the
mixed layer).
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2.6.6 Conclusions from Field Experiment

We analyzed data from two source tows from the KAM11 experiment, to estimate coherent and

incoherent energy-loss exponents in shallow water of 100m depth. The environmental conditions

were highly variable. We identified some periods in time, namely JD189, where a simple energy-loss

exponent model did not hold. For JD190,SYS3, an energy-loss exponent model did appear to hold.

Our best estimate of the overall energy-loss exponents from the JD190,SYS3 dataset is a coherent

loss exponent of 2.6± 0.3 and an incoherent loss exponent of 2.3± 0.3 (99% confidence intervals,

to try to increase the reported margins of error). The overall energy-loss exponent includes both

spreading loss as well as boundary scattering losses. Scattering losses are likely to be a significant

component of the additional energy loss beyond what we would expect from spreading alone. We

have corrected for absorption loss using Thorp’s expression.

In terms of modeling shallow-water underwater acoustic networks, the results suggest caution

when using simple spreading-loss models. A simple exponent-based model may not be valid at a

particular time or location. Furthermore, even if it is valid, the overall energy-loss exponent may

be significantly larger than the “practical spreading” model of k = 1.5 which is often used. A larger

energy-loss exponent will reduce the distance at which an interferer can disrupt packet detection,

reducing somewhat the problem of long-range interference.

We partially validated the mixed-exponent spreading model. There were differences in the

measured coherent detection and incoherent interference energy-loss exponents. The detection ex-

ponents were usually larger than the interference exponents, implying that long-range unsuppressed

interference would be a problem for a UAN deployed in the KAM11 environment, even considering

the relatively large values of the energy-loss exponents.

Mixed-exponent transition ranges as described in Section 2.3.3 were not observed. The experi-

ment was at a single depth (100m), and the estimates were not robust enough to allow bandwidth

reduction below 4 kHz bandwidth. The hypothesized transition ranges would therefore be order

100 m for the incoherent transition range, and order 13 km for the coherent transition range. We

had energy-versus-range data from approximately 600 m to 12 km. Unfortunately, therefore, the
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depth- and bandwidth-dependence (or even the existence) of the hypothesized transition ranges

could not be validated.

The acoustic propagation was very different between JD189 and JD190. Modeling analysis

suggests that the difference may be due to a change in the depth of the interface layer between

the surface mixed layer and the bottom duct. One possible mechanism for changing the depth of

the interface layer might be internal waves, and while that is unconfirmed for this particular case,

it is known that the KAM11 site has very high internal wave activity. The soundspeed profiles

were downward-refracting and non-uniform, introducing additional range dependence and likely

increasing bottom scattering losses.

The KAM11 experiment site was chosen in large part for its dynamic environmental conditions,

including internal waves [49]. The resulting variability of the results also highlights the shortcomings

of spreading exponents. While there may exist a stable long-term temporal and spatial average of

the spreading exponents, the propagation conditions near a given network node at a specific time and

place may well be fluctuating away from, or simply be different than, the long-term temporal average

and broad-scale spatial average. Furthermore, a source-tow experiment inherently combines space

and time in the measurements: there are no pure temporal averages or pure spatial averages. With

environmental conditions changing in both space and time, results from a source tow experiment

can be complex.

With adequate averaging over time, not necessarily achievable in a source-tow experiment, the

variations in received energy with time due to internal waves should average out of the energy-

loss exponent estimates. Similarly, with adequate spatial averaging in both range and depth,

the variations in received energy at different depths and ranges due to non-uniform soundspeed

profiles will likely average out of the exponent estimates. The scattering losses from the boundaries,

however, will not average out of the exponent estimates. Many classical oceanographic results are

from the deep ocean, which is simpler than shallow water. The “practical spreading” of k = 1.5

result [18], which is commonly used in modeling underwater networks [112], but which has minimal

grounding [18], is sometimes uses as a “rule of thumb” from deep-water propagation. In deep-

water propagation, there is a soundspeed minimum at about 1 km depth, where many propagating
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rays are fully internally refracted, without scattering from the surface and bottom [75]. There are

scattering losses on fully internally refracted rays, but the losses are much less than losses from

interacting with the surface and bottom.

Spreading exponents are inherently averages in time and space. They are not detailed propa-

gation models, but they are important for system design [18], including system design for network

protocols. In particular, the effect of spreading loss on distant interferers is critical to networks, but

it has not been a focus of point-to-point underwater acoustic communications research. Understand-

ing energy-loss exponents and mechanisms is particularly important for designing medium-access

network protocols.

Since scattering losses play a significant role in the amount of energy received by a node in a

shallow-water network, we suggest that the spreading loss term in modeling performance of shallow-

water underwater acoustic networks be updated to include scattering losses.

2.7 RTS/CTS Effectiveness for a Network in the KAM11 Environment

The ultimate goal of measuring the energy-loss exponents is to improve understanding and

modeling of underwater acoustic networks. Using the measured exponents from Section 2.6, we

can use results from Chapter 3 to estimate the effectiveness of the RTS/CTS collision-avoidance

protocol for a network deployed in the KAM11 environment.

For the JD190 source tow, SYS3 measurements, the results followed a simple energy-loss ex-

ponent model. We measured coherent and incoherent energy-loss exponents of kcoh = 2.8 and

kinc = 2.3. The exponents are different, and so the mixed-exponent model applies. No transition

ranges were observed, so we apply the mixed-exponent model with no transition ranges, but with

different exponents for coherent detection and incoherent interference. For JD190,SYS3, the max-

imum range was only about 9 km, and here we are assuming that there were no transition ranges

beyond what we could observe, which may be a questionable assumption, but is all we can do

with the experimental data that we have. Since the KAM11 environment is highly variable, these

measurements apply only to that specific time and location.
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In the two KAM11 source tows, our maximum detection range was about 12 km, and our

matched-filter processing gain was about 20 dB. With a coherent energy-loss exponent of kcoh = 2.8,

Thorp absorption loss at a center frequency of 5.5 kHz, and ambient noise parameterized by 3 m/s

wind and a “shipping factor” of 0.5 [18, 117], for a maximum detection range of about 12 km, we

would need a matched-filter detection threshold of about 2 dB, or a signal-to-noise ratio of about

-18 dB before the matched filter’s processing gain. These values are reasonable, even if they are

not necessarily completely accurate.

In the left-hand plot, Figure 2.34 shows the RTS/CTS effectiveness, defined in detail in Chap-

ter 3. This measure of RTS/CTS effectiveness assumes a heavily loaded, uniformly-distributed,

and relatively dense network, without transmit power control. The mixed-exponent model assumes

modems which use a matched-filter detector as a low-power wakeup detector. The RTS/CTS

effectiveness begins to drop for links with node separations of about 8.5 km or more. The mixed-

exponent model, plotted in blue, generally has lower RTS/CTS effectiveness than the “practical

spreading” model, plotted in red, even though the measured energy loss exponents for JD190,SYS3

were much larger than the practical spreading value of k = 1.5.

In the right-hand plot, Figure 2.34 also shows the interference regions: in the green region are

nodes which are too distant to detect the RTS/CTS collision-avoidance packets, but which are also

too distant to disrupt detection. In the yellow region are nodes which can detect the RTS/CTS

collision-avoidance packets, and hence will not disrupt detection. In the red region are nodes which

are too distant to detection the RTS/CTS collision-avoidance packets, but which are close enough

to disrupt packet detection for receivers on links with the specified node separation, plotted on the

horizontal axis.

Figure 2.35 plots the interference regions for a transmitter and receiver separated by 11 km in

the KAM11 JD190,SYS3 environment. The unsuppressed interferers which can disrupt detection

are in the red region. The potential interferers which will be suppressed are in the green region. The

RTS/CTS effectiveness measure is the fraction of all potential interferers that can disrupt detection

that will be suppress by the RTS/CTS collision-avoidance packets.
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2.7.1 Generalized Interference Range from Detection Criterion

In general, the results from the KAM11 experiment and KAM11 modeling do not necessarily

support simple energy-loss exponent models. For cases where a simple exponent model does not

hold, we cannot directly use the results from Chapter 3 as we did in Figures 2.34 and 2.35. Instead,

we need to return to the detection criterion, namely that the signal-to-interference-and-noise ratio

(SINR) is above a detection threshold, T , i.e., SINR≥ T .

The upper plots of Figures 2.36-2.38 essentially plot the two sides of the detection criterion

inequality. These figures correspond to the energy-versus-range plots in Figures 2.32 and 2.33,

in turn corresponding to the raytraces in Figure 2.30. The green curves are the scaled detection

energy, scaled up by the matched-filter processing gain and down by the detection threshold. The

red curves are the interference plus noise energy. If the green curve is above the red curve for a

particular range r, then for a transmitter and interferer both at range r from the receiver, detection

will occur, otherwise interference will disrupt the detection. As in Chapter 3, however, we are

interested in determining the interference range, the maximum range Ri at which an interferer

will disrupt detection for a source and receiver with node separation d. Therefore, for each node

separation d, we want to determine the maximum range Ri for which the red interference-energy

curve is above the green detection-energy curve at range d.

For example, in the upper plot of Figure 2.36, at a range of d ≈ 1.75 km, the red interference

energy becomes larger than the green detection energy. The maximum range Ri for which the

interference energy is larger than the detection energy at d ≈ 1.75 km is Ri ≈ 5 km. Therefore, on

the lower plot of Figure 2.36, at a node separation of d ≈ 1.75 km there are interfering nodes plotted

at interference ranges out to about Ri ≈ 5 km. Since these interfering nodes are closer than the

maximum transmission range, they are suppressable by the RTS/CTS collision-avoidance protocol,

and so they are plotted in green. Interfering nodes which are more distant than the maximum

transmission range cannot be suppressed by the RTS/CTS protocol, and they are plotted in red.

For example, at a node separation of d ≈ 7 km, there are unsuppressed interferers out to more than

15 km. For Figure 2.36 The noise floor is visible at about 85 dB re:1μPa@1m at ranges above about

12 km.
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The plots of interference ranges are scatterplots rather than continuous curves, since the curves

for the detection energy and the interference energy are not smooth, and cross each other repeatedly.

Since the energy loss is different for each of the environments plotted in Figures 2.36-2.38, the

maximum transmission range is different in each case, ranging from about 9 km for the bottom

duct case in Figure 2.38 to about 27 km for the surface mixed layer case in Figure 2.37.

In each of the three cases, shown in Figures 2.36-2.38, there are node separations less than the

maximum transmission range for which there are unsuppressable interferers.

These results use the raytraced KAM11 modeling results rather than experimental measurements

from field data because in the field data we were not able to make any energy measurements at

ranges larger than the maximum transmission/detection range. This is because our measurement

method required detecting the channel characterization signals in order to estimate their coherent

and incoherent energy. Therefore we were not be able to measure interference energy from field

data at ranges larger than the maximum transmission range. Unfortunately, these missing larger

ranges are exactly the ranges at which interferers would be unsuppressable and would reduce the

RTS/CTS effectiveness.

2.7.2 General Implications for Networks Deployed in KAM11 Environment

With our experimental measurements of energy-loss exponents, as well as propagation modeling

in the KAM11 environment, we can discuss implications for underwater acoustic networks which

would be potentially deployed in this environment.

The primary observation from the KAM11 site is its extreme variability. Propagation conditions

can change dramatically on relatively short timescales, and with relatively small changes in node

location relative to the interface depth. Networks deployed in similar environments will require

robust protocols which do not rely on specific channel conditions.

In general in underwater acoustic networks, vertical links are typically more robust than hori-

zontal links. In an extreme environment such as the KAM11 site, vertical links may become more

critical than they usually are, because at times they may be the only reliable links. Again as

a general rule, the routing algorithms should avoid routing on links that are close to the maxi-
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mum transmission range because of the reduced RTS/CTS effectiveness; this is in contrast to the

suggestion of routing over long links in radio networks [2].

For horizontal links, there are tradeoffs in both the surface mixed layer as well as the bottom

duct. The bottom duct is a relatively strong propagation duct, with the downside that the frequent

bottom scattering losses due to the downward refraction will limit the maximum range of a link,

likely to order 3-7 km. The direct path is lost after about 3 km, and all other paths experience

strong scattering losses.

The surface mixed layer may be relatively benign in low wind conditions and sea states, po-

tentially with long links of greater than 10 km in some cases, especially if there is a weak surface

duct such as the case in the soundspeed profile shown in Figure 2.29. With increasing sea states,

surface scattering loss will become larger. With wind conditions increasing beyond about 8 m/s,

breaking waves will lead to increased bubble production [21], leading to very strong losses in the

upper mixed layer [28, 91]. In windy conditions with strong losses due to bubble clouds, network

links in the bottom duct will likely become preferable to links near the surface, even despite the

relatively large bottom scattering losses.

The relatively large propagation delay of the underwater acoustic channel makes it more difficult

than in radio channels to get current channel state information at the transmitter. On the other

hand, minimal channel state information, such as SNR at the receiver, will probably be adequate.

Furthermore, there is some level of predictability in many underwater acoustic channels [124], which

may mean that channel state information does not always need to be explicitly transmitted.
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Figure 2.34. The left-hand plot shows RTS/CTS effectiveness, defined in detail in Chapter 3.
The blue line shows the RTS/CTS effectiveness for the mixed-exponent model using the measured
energy-loss exponents from the KAM11 JD190,SYS3 source tow results. The red line shows the
RTS/CTS effectiveness for the “practical spreading” model. Even though the energy-loss expo-
nents for JD190,SYS3 are large compared with the practical spreading model, the mixed-exponent
model predicts significantly lower RTS/CTS effectiveness, and the experimental measurements show
different exponenents for detection and interference, supporting the mixed-exponent model. The
right-hand plot shows the interference regions: nodes in the green region are too far away to dis-
rupt detection, nodes in the yellow region will be suppressed by the RTS/CTS collision-avoidance
protocol, but nodes in the red region are too far away to detect the RTS/CTS packets, but close
enough to disrupt detection for receivers on links with the specified node separation, plotted on the
horizontal axis.
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Figure 2.36. In the upper plot, the two sides of the detection criterion are plotted for a source
and receiver at 55 m depth in a modeled KAM11 environment. When the green detection energy
curve is above the red interference energy curve, detection occurs, otherwise detection is disrupted.
The lower plot shows the maximum interference range, Ri, for which detection is disrupted at node
separation d.
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Figure 2.37. In the upper plot, the two sides of the detection criterion are plotted for a source
and receiver at 20 m depth, in the surface mixed layer, in a modeled KAM11 environment. When
the green detection energy curve is above the red interference energy curve, detection occurs,
otherwise detection is disrupted. The lower plot shows the maximum interference range, Ri, for
which detection is disrupted at node separation d.
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Figure 2.38. In the upper plot, the two sides of the detection criterion are plotted for a source
and receiver at 80 m depth, in the bottom duct, in a modeled KAM11 environment. When the
green detection energy curve is above the red interference energy curve, detection occurs, other-
wise detection is disrupted. The lower plot shows the maximum interference range, Ri, for which
detection is disrupted at node separation d.
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2.8 Future Work and Directions

There are several directions for future work. One direction is to change the detector method

so that the energy from all multipath paths is combined, rather than just energy from the non-

resolvable arrivals; one potential approach is discussed in Section 2.8.1. Another direction is in

terms of continued basic research on a long-term yet economically feasible experiment to further

characterize and estimate energy-loss exponents; an experiment is proposed in Section 2.8.2. Finally,

a long-term future direction is described in Section 2.8.3 in which a high-complexity detector would

be implemented in a low-energy (but expensive) method using a custom silicon detector chip.

2.8.1 Autocorrelation Detector

The WHOI Micromodem [36] uses a low-complexity matched-filter detector in order to achieve

low power consumption during the potentially long periods between packet detection. Another

benefit of a matched-filter detector is that it only requires a single receive element to be powered,

rather than powering a multi-element receive array. As discussed in Section 2.3, a matched-filter

detector only detects on the energy of multipath paths whose arrivals are unresolved in time from

the first arrival.

There are, however, other potential detection approaches for energy-constrained modems. One

potential approach would be an autocorrelation detector. The complexity of an autocorrelation

detector would be comparable to the complexity of a matched-filter (correlator) detector. The

transmitter would send a signal, then wait for a lag τ , then re-send the same signal. The receiver

would run an autocorrelator looking for a peak at lag τ . As long as the lag is relatively short, the

channel will not have changed. The received signal will be convolved with the channel response,

and will combine energy from all the multipath arrivals.

Although this is not yet investigated, and is reserved for future work, there may be negative

tradeoffs associated with an autocorrelation detector. In particular, the receiver-operator charac-

teristic (ROC) curve, describing conditional probability of detection and false alarm, may not be

as good for an autocorrelation detector as it is for a matched-filter detector, although this is not

confirmed at this point.
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2.8.2 Proposed Experiment

Measuring spreading exponents requires significant averaging over time and space. To measure

the spreading loss itself, isolated from the boundary scattering losses, would also involve estimating

scattering losses from boundaries, or performing propagation losses without boundaries, for example

in deep water.

Experiment cost scales with the amount of hardware required and the number of ship days

utilized. Many current experimental approaches to measuring spreading exponents would be cost-

prohibitive. For example, the KAM11 experimental setup of a few fixed receivers and a ship-towed

source could be extended into a longer-duration experiment, accumulating ship costs throughout

the entire experiment. Much more expensive would be to deploy many fixed receivers and one

or more fixed transmitters, which would be very expensive in terms of deployment, recovery, and

hardware costs typically this approach is only used where cost is not a significant concern, and

where the hardware infrastructure will be used for years, such as military submarine test ranges,

such as AUTEC, and production monitoring of sub-sea oil reservoirs [56].

An alternate experimental approach would minimize ship costs and hardware costs, while max-

imizing the number of repeated energy measurements for averaging into estimates of energy loss

exponents. The experimental approach would be to deploy two autonomous vehicles with long

deployment durations to run on the order of a hundred trials per month, each one gathering energy-

versus-range data comparable to each of the KAM11 source tows. A surface vehicle with access

to solar power would serve as the transmitter, while an underwater vehicle would be the receiver,

profiling range and depth for received acoustic energy as well as soundspeed profile measurements.

To minimize noise at the receiver, generally acoustic receivers would be placed on stationary

moorings, rather than on moving platforms. For extremely noisy moving platforms, such as ships,

this approach is critical. Even propeller-driven autonomous vehicles can be relatively loud, in part

due to flow noise. Gliders, however, achieve their low energy consumption by having no propeller —

at the turns, a motor drives a buoyancy controller to change dive pitch, but aside from that, there

are no continuously-driven motors generating noise. Furthermore, in terms of flow noise, a glider’s
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typical slow speed of about 20 cm/s through the water is actually lower than the typical flow speeds

due to tidal currents past moored receivers.

A critical question for this proposed experiment, which is mostly unanswered from the data

from the two KAM11 source tows analyzed, is how much variability in energy-versus-range is

there, and how many transects would need to be run for a good characterization of the spreading

exponents? The variability would clearly be site-specific, but some estimates could be made of

energy variability at single ranges from the fixed-transmitter-to-fixed-receiver data from KAM11 and

its similar predecessor experiments, RACE and SPACE. We can make a preliminary estimate of the

variability of exponent estimates with the total number of measurements by using a bootstrapping

approach on the KAM11 results. Figure 2.39 shows the bootstrapped margins of error in exponent

estimates as a function of number of (range,energy) measurements in the dataset. The margin of

error (derived from the standard error) appears to have the expected dependence upon 1/
√
N , but

until we have an approach on how (or even whether) to correct the energy loss exponent estimates

for scattering losses, this preliminary estimate of number of measurements required is premature.

An enabling component of this approach is the availability of autonomous vehicles with long

deployment durations. Gliders are a class of autonomous underwater vehicles with long deployment

durations because they control their motion by infrequently adjusting their buoyancy and “gliding”

to the next turning depth, rather than by continuously driving a propeller. Standard battery-

powered gliders have deployment durations on the order of a month, even in relatively shallow

water where turning is frequent [131]. Wave Gliders are a brand of autonomous surface vehicle with

essentially unlimited deployment duration, using solar panels for electric power and converting wave

motion into propulsion energy [71]. The ship costs would be limited to deployment and recovery of

the vehicles, and would not accumulate throughout the experiment.

A constraint of gliders is that their battery energy is extremely limited. A glider could run a

duty-cycled receiver, but not a transmitter, which requires much more energy. A constraint of Wave

Gliders is that they operate on the surface, in contrast to gliders which could operate over the full

water depth. A Wave Glider could potentially tow a receiver element on a cable [8], perhaps even

down to 50 m depth, but the receiver depth would not be easily controllable and it could not profile
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over depth. A Wave Glider would have the electrical power to run a transmitter, but acoustic

transmitters are physically larger and heavier than receivers, especially at lower frequencies, and

so the transmitter depth would be likely be limited to the length of the Wave Glider umbilical

tether, or about 7 m depth, which is typically in the surface mixed layer of the soundspeed profile.

A deeper transmitter would be preferable, but probably not required, since signals transmitted

from the higher soundspeed of the surface mixed layer would propagate into the lower soundspeeds

in the colder water, but signals propagated from the colder, lower soundspeed region could be

totally internally refracted and not penetrate the warmer, higher-soundspeed surface mixed layer.

Alternately, a single fixed duty-cycled transmitter with a large battery housing could be used —

the amount of experimental hardware and ship time would still be relatively small. Wave Gliders

have continuous GPS fixes for navigation, whereas gliders dead-reckon their navigation between

infrequent surfacings for GPS fixes. Nevertheless, the accuracy of the range estimates required for

the spreading exponent measurement is probably still within the tolerances of dead-reckoned glider

navigation, which might be several hundred meters with a GPS fix every 4-6 hours, and which can

probably be improved with post-processing.

The natural division of roles in this experimental setup would be to have the Wave Glider (or

alternately, a fixed mooring) as the transmitter and an underwater glider as the receiver. The low

speed of the glider limits the flow noise on the receiver, so it can be a fairly quiet acoustic receiver

platform even at low acoustic frequencies [9]. The glider can profile in both range and depth,

including measuring soundspeed profiles for post-experiment propagation modeling. The Wave

Glider can collect sea-state and wave period measurements from accelerometers, to help estimate

and model surface scattering losses in post-processing.

A low acoustic frequency such as 2 kHz would also have less absorption loss and scattering

loss when reflecting from rough surfaces, focusing the measurements on spreading loss rather than

other loss mechanisms. With a center frequency of about 2 kHz, typical transducers would limit

the bandwidth to about 1 kHz or less, roughly 1/4 to 1/3 of the KAM11 bandwidth, reducing

the number of impulse response estimates per minute of recorded data, as well as reducing the

hypothesized coherent transition range. (Longer transition ranges could still be investigated by
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Figure 2.39. A preliminary estimate of how the margins of error (for a 95% confidence interval) for
the energy-loss exponent decrease with the number of (range,energy) measurements. The estimates
are derived from randomly selecting subsets of the full JD189 and JD190 of size N , and in turn
bootstrapping those subsets to estimate the standard error of the exponent estimates. The errorbars
are the standard deviations of the bootstrapped size of the estimated margin of error. To measure
actual spreading exponents rather than energy-loss exponents, the effects of scattering loss would
likely have to be accounted for, which would almost certainly increase the number of measurements
required for a given margin of error.

driving the vehicles to deeper water.) When the Wave Glider and underwater glider were close to

each other, the various multipath arrivals in the impulse responses could potentially be identified

with individual ray paths, based on ray-tracing models using soundspeed profiles collected by the

underwater glider. Identifying multipath arrivals with the type of path (e.g. surface, bottom,

surface-bottom, etc) might allow estimates of surface and bottom reflection coefficients. To help

improve estimates of scattering losses, shorter ranges might be over-sampled, where ray paths could

potentially be identified. To help with initial estimates and modeling of bottom reflection coefficients

and scattering losses, the approximate seafloor characteristics would be determined from a literature

search for previous geological surveys and previous geoacoustic inversions for the seafloor acoustic

parameters [93], if any exist for the desired experiment site.
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Typical underwater glider speeds are slow, about 20 cm/s, while Wave Glider speeds are higher,

about 1 m/s. The movements of the underwater glider and Wave Glider could potentially be

coordinated autonomously [50] to complete transects more quickly than a glider could with a fixed

transmitter. With the Wave Glider’s relatively high speed, a 20 km experiment in range could be

conducted about every six hours, or about four times a day for the month that the underwater

glider’s batteries would last. Transmitting and receiving on an average duty cycle of one minute

out of every five minutes (which could be log-spaced in range) would give energy estimates at about

60-80 ranges per 20 km transect. The experiment site could move with time to provide additional

spatial averaging, or to experiment with different depths.

2.8.3 Technology Advances in Energy-Efficient Detection

This work has focused on a low-complexity, low-power matched-filter detector on a single receive

channel, detecting on energy from a single multipath arrival, implemented on a sequential processor.

When waiting for an incoming packet, an energy-constrained modem needs to minimize power

consumption (hence computational complexity), and a matched-filter detector is an effective and

common way to achieve that.

With a custom-fabricated equalizer/detector chip which has an internal parallelized architec-

ture, or potentially an equivalent design implemented on a low-power FPGA, at some point the

high-complexity approach of equalizing the channel and detecting on energy from multiple combined

multipath arrivals will become feasible in terms of its power consumption, as well as its implemen-

tation and fabrication costs. If the detector can combine energy from multiple arrivals, there will be

no significant difference between the coherent and incoherent spreading exponents, and long-range

interference will become much less of a problem. Furthermore, the combined equalizer/detector

approach would by its nature require multiple receive channels, and the next question is what their

array configuration would be. In shallow-water point-to-point communications, vertical receive ar-

rays are generally used since the multipath arrivals have different vertical angles of arrival. With

shallow-water networks, different nodes will have different azimuthal angles of arrival, but likely a

similar spread in their vertical angles of arrival, and so horizontal arrays will be useful [34]. If the
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receive array for the combined equalizer/detector chip were to include a horizontal aperture as well

as a vertical aperture, packet detection in the presence of interferers would be much less difficult in

most cases. Multiple access protocols for underwater networks are challenging in large part because

of the high propagation delays [3]. Azimuthal beamforming could help to reduce the likelihood of

collisions, by limiting collisions to packets received at similar times with similar angles of arrival

(modulo the array’s angular ambiguity) [10].

2.9 Conclusions

Interference is fundamental to wireless networks, and spreading loss is a major determining factor

in the level of interference experienced by nodes in a network. Nevertheless, there has been little

research into the role of spreading in the performance underwater acoustic networks. Furthermore,

many underwater acoustic networks are modeled using the “practical spreading” model with a

spreading exponent of k = 1.5 [112], which has little grounding in theory or experiment [18].

In this chapter, we have questioned and tested the validity of the spreading model that has been

assumed to be valid by many researchers in underwater acoustic networks.

In addition, we have proposed and tested the validity of a new spreading model, the mixed-

exponent spreading model.

This chapter made several contributions:

• We proposed and derived the theory for the mixed-exponent spreading model, from first princi-

ples in acoustic propagation as well as the detection signal processing of the Micromodem [36],

a commonly-used underwater acoustic modem.

• We validated the mixed-exponent spreading model using numerical acoustic propagation pack-

ages. We used two different packages for validation, a raytracing package as well as a direct

solution of the wave equation.

• We directly measured energy-loss exponents from data from a field experiment. This validated

that there are indeed differences in the measured detection energy exponent and the interfer-

ence energy exponent for a real environment, one of the predictions of the mixed-exponent
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model. As a network-level implication, long-range unsuppressed interference with the mixed-

exponent model is significantly worse than it is with single-exponent spreading model; this is

discussed in much more detail in Chapter 3. The depth- and bandwidth-dependences of the

transition regions in the mixed-exponent model could not be determined from the field data,

and were therefore neither validated nor invalidated.

• The energy-loss exponent estimates from field data were all larger than the k = 1.5 suggested

by the “practical spreading” model. For this particular shallow-water environment, the “prac-

tical spreading” model is invalidated. Caution should be used when using modeling underwater

acoustic networks with the “practical spreading” model, particularly in shallow water.

• We modeled the propagation in the highly-variable field experiment environment, and explained

the qualitative features observed in the estimates of energy-loss exponents from the field data.

• We estimated the interference range and effectiveness of the RTS/CTS collision-avoidance

protocol using field data measurements and modeling, for a potential network deployed at the

field experiment site.

128



CHAPTER 3

LOW SPREADING LOSS IN UNDERWATER ACOUSTIC
NETWORKS REDUCES RTS/CTS EFFECTIVENESS

Effectiveness of collision-avoidance MAC protocols is not a measure of throughput. Rather,

collision-avoidance effectiveness measures the protocol’s ability to prevent collisions, and in this

analysis is independent of propagation delay.

The relatively low spreading loss in underwater acoustic channels allows increased interference

from distant interferers, which reduces the effectiveness of collision-avoidance MAC protocols. These

collisions in turn reduce spatial reuse and network goodput, and increase power consumption. A

competing channel effect, however, is the frequency-dependent absorption. The absorption can

strongly suppress distant interferers, improving the effectiveness of collision-avoidance protocols.

A third channel effect is frequency-dependent ambient noise, which reduces effectiveness for links

consisting of widely separated nodes. RTS/CTS effectiveness generally decreases with decreasing

acoustic frequency.

We present analytic, numerical, and simulated results detailing how each of the major charac-

teristics of the physical channel and physical layer affects the RTS/CTS effectiveness. We analyze

the limiting case of dense ad hoc networks with high offered loads, since this case is where the effects

of low spreading losses will most strongly affect RTS/CTS effectiveness. While in practice most

actual deployments of underwater acoustic networks will not be dense networks with high offered

loads, the analysis in this chapter offers theoretical insight into the physical causes for the limits

on RTS/CTS effectiveness in UANs, beyond propagation delay.

1An earlier and shorter version of this chapter has been published in the proceedings of the ACM 6th International
Workshop on Underwater Networks (WUWNet), 2011, as: J. Partan, J. Kurose, B.N. Levine, and J. Preisig. Low
Spreading Loss in Underwater Acoustic Networks Reduces RTS/CTS Effectiveness. [83]

129



We find that RTS/CTS effectiveness can drop to between 50%–90% for source and receiver

separated by more than about two-thirds of the maximum packet range. The effectiveness depends

heavily on the acoustic frequency.

In this chapter, we study the MAC-layer implications of the alternative mixed-exponent spread-

ing model developed in Chapter 2. That model hypothesizes different spreading exponents for

detection of packets and processing of interfering packets. In the WHOI Micromodem-1, a com-

mon underwater acoustic modem for UANs, packets are detected with a coherent matched-filter

detector, detecting on the energy in the largest of the multipath arrivals. In contrast, interference

combines energy from all of the multipath arrivals, suggesting the hypothesized spreading model.

The hypothesized model allows analysis and intution to be used in understanding spatial reuse in

RTS/CTS MAC protocols, without requiring numerical acoustic propagation models to be run for

every situation.

3.1 Introduction

Underwater wireless sensor networks for oceanographic applications rely on underwater acoustic

communication at the physical layer. Underwater acoustic communication channels have a number

of physical differences from terrestrial radio communication channels, including speed of propaga-

tion, spreading loss model, as well as frequency-dependent absorption and ambient noise. Previous

work on RTS/CTS-based MAC protocols in the domain of underwater acoustic networks (UANs)

has mostly focused on propagation delay issues. While RTS/CTS-based protocols are usually rel-

atively inefficient due to large propagation delays [3, 56], they are nevertheless being proposed for

underwater acoustic networks, in part due to their practical simplicity [53, 76,86,106,112].

In this chapter, we analyze the effects of spreading losses, frequency-dependent absorption, and

frequency-dependent ambient noise on collision-avoidance protocols derived from MACA [62] and

MACAW [11], i.e., using RTS/CTS/DATA handshakes. Specifically, we use analytic results, nu-

merical results, and simulations to evaluate the effectiveness of RTS/CTS-based collision avoidance

in UANs. The collision-avoidance protocol’s effectiveness is related to the spatial reuse available

within the network; if distant nodes must have their transmissions suppressed to avoid collisions,
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then less spatial reuse is possible. Previous work on UAN spatial reuse has dealt with TDMA and

FDMA cellular architectures [116], rather than RTS/CTS-based ad hoc networks.

We build on previous work by Xu et al. [135], which argues that for 802.11-based radio networks,

packets can cause collisions at ranges significantly larger than the range at which they can be

detected. In this case, the RTS/CTS handshake cannot prevent all collisions, which reduces spatial

reuse, network efficiency, and energy efficiency. The range at which interferers can cause collisions

depends upon the distance between transmitter and receiver, the packet detection threshold, and

the physical channel characteristics.

In UANs, physical waveguide effects in the communications channel reduce spreading losses sig-

nificantly relative to radio channels. The small spreading loss allows interference from distant nodes.

A competing physical effect is from absorption, which can suppress distant interferers strongly, im-

proving spatial reuse. A third effect is that of ambient noise, which reduces the effectiveness of

RTS/CTS collision avoidance for widely spaced nodes. Aside from spreading, these effects are

frequency-dependent, and analyzing spatial reuse in UANs is a complex problem.

Our contributions in this chapter include the following:

• We extend Xu et al.’s basic model to a simple channel model for UANs that considers spreading

losses only. One of their approximations is invalid in UANs, which we correct and generalize

appropriately for both UANs and RF networks. With this simple spreading-only channel

model, neglecting absorption and ambient noise, the results initially suggest that RTS/CTS

effectiveness is significantly lower in UANs than in radio networks, with RTS/CTS handshakes

beginning to lose effectiveness for node separations of only 22% of the maximum range, versus

about 56% for radio networks, for typical parameters.

• Using a more realistic channel model, incorporating absorption and ambient noise, we de-

rive analytic expressions to explain how various physical-layer communication parameters

affect RTS/CTS effectiveness. These parameters include detection threshold, node separa-

tion, transmit power, and center frequency (determining absorption coefficients and ambient

noise power). We find that the strong effects from absorption improve spatial reuse for most

131



intermediate node separations to approximately the level of collision-avoidance performance

in radio networks.

• We analyze how the mixed-exponent spreading model studied in Chapter 2 affects RTS/CTS

effectiveness. With this model, RTS/CTS effectiveness would drop significantly compared

with the widely used k ≈ 1.5 “practical spreading” model, especially at lower frequencies.

For example, at 3 kHz center frequency, on average the RTS/CTS handshake would suppress

under 10% of potential interferers for all but the smallest node separations.

• We validate the numerical results from our analytical model with simulations incorporating

the channel model, physical layer, and link-layer MAC protocols.

We conclude with a discussion of several possible methods for improving spatial reuse in UANs

using RTS/CTS-based MAC protocols.

3.2 Background

Our contributions extend a basic model of RF MAC-layer behavior by Xu et al. [135] (and

Ye et al. [136]). Their study of RTS/CTS-based MAC protocols found that interference from nodes

that are out of data communication range can cause collisions; that is, the interference range of

transmissions is typically larger than the data range. In this section, we re-state their model and

results, and in the next section, we extend the model to account for the physical properties of

underwater acoustic communication channels.

Xu et al.’s analysis begins with the simple statement that collision avoidance requires the suc-

cessful detection of RTS/CTS packets. There is a vulnerable period at packet detection, and if

detection is disrupted by interfering packets, the RTS/CTS handshake cannot complete, and no

data will be transferred. The condition for packet detection is

T ≤ SINR, (3.1)
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where T is the receiver’s detection threshold, and SINR is the signal-to-interference-and-noise ratio

at the receiver. Following the notation introduced by Xu et al., let d be the distance between

transmitter and receiver. Let r be the distance from receiver to the closest interferer. The simple

model analyzed by Xu et al. does not include ambient noise and signal absorption, reducing SINR

to SIR, the signal-to-interference ratio. In that case, Eq. 3.1 becomes

T ≤ SIR =
Pd−k

Pr−k
=
( r
d

)k
(3.2)

where P is the transmit power for all nodes. Choosing equality in Eq. 3.2 gives the minimum al-

lowable distance r to the interferer such that detection of the collision-avoidance handshake packets

between source and receiver is successful. Let this minimum allowable distance be denoted by Ri.

Define the interference range ratio, γ, as

γ = Ri/d. (3.3)

The interference range ratio, γ, is the fundamental quantity of interest in this chapter: it determines

the effectiveness of the collision-avoidance protocol. In general, RTS/CTS effectiveness is higher

when γ is lower.

The simple channel model here, with spreading only, and no absorption or ambient noise, gives

a constant value for the interference range ratio, γo = T 1/k. Xu et al. use a detection threshold of

T = 10 dB and a simple single spreading exponent model with k = 4, from the two-ray ground-

reflection model [94]. The interference range ratio is therefore γo = 1.8. Even at this relatively

small value of γo, Xu et al. and Ye et al. conclude that interference in RF networks can greatly

reduce collision-avoidance protocol effectiveness, as detailed below.

For UANs, using the “practical spreading” model with k = 1.5 and again T = 10 dB, we have

γo = 4.6. This results suggests that long-range interference, and reduced RTS/CTS effectiveness,

will be a more significant problem in UANs than in radio-based networks.

We examine the interference range ratio γ in greater detail in the remainder of the chapter,

extending it to a frequency-dependent form for more realistic UAN channel models.
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3.2.1 Definition of RTS/CTS Effectiveness

The RTS/CTS effectiveness can be derived directly from the interference range ratio, γ.

Let Rtx be the maximum transmission range of all packets such that detection is successful. If

Ri ≤ Rtx, then the CTS packet will reach all potential interferers, and suppress their transmissions.

If, however, Ri > Rtx, then some interferers will not be suppressed, leading to packet collisions.

The maximum separation, d, of any two communicating nodes is when d = Rtx, and so if

γ > 1, then Ri can be greater than Rtx for some nodes in the network. In this case, the collision-

avoidance protocol is not fully effective. As Ri (or γ) increases, the number of potential interferers

increases dramatically, roughly as R2
i for a 2-dimensional network deployment with uniform node

distribution. (It is possible for UANs to be 3-dimensional [89], but most applications are in fact

2-dimensional deployments.) While it is well-known that wireless network nodes do not have a

circular (or spherical) coverage region [65], and that UANs can often have low node density and low

offered loads [85] this approximation allows the physical analysis in this chapter, offering theoretical

insight into the protocol performance.

Xu et al. define the RTS/CTS effectiveness, ERTS/CTS, as the fraction of the interference region

that is covered by the collision-avoidance RTS/CTS handshake packets. In a 2-dimensional network

deployment, assuming uniform node distribution and transmission times, this is a ratio of areas:

ERTS/CTS =
A(i ∩ RTS/CTS)

Ai
, (3.4)

where Ai is the area in which there could be a potential interferer, ARTS/CTS is the area covered by

the RTS/CTS collision avoidance protocol, and A(i ∩ RTS/CTS) is the intersection of these regions.

The effectiveness measure is implicitly an average over time, and assumes a high offered load in the

network.
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3.3 Extension of Xu et al. to UANs: Spreading Loss Only

To extend the model to underwater acoustic channels, the first step is to apply the simple

“practical spreading” model [18, 112, 117], with a spreading exponent of k ≈ 1.5 to account for the

waveguide effects and low spreading losses in the underwater acoustic channel.

An additional step is required before simply changing the spreading exponent, in Xu et al.’s work,

since their results make the assumption that Scenario IIb shown in Figure 3.1c does not occur.

Scenario IIb can often occur in underwater acoustic channels, however. In Appendix E to this

chapter, we generalize Xu et al.’s results to cover Scenarios I, IIa, and IIb.

3.3.1 RTS/CTS Effectiveness

RT

(a)

RT

(b)

RT

(c)

Figure 3.1. Three scenarios: (I) Interference range Ri is less than transmission range Rtx, and
all potential interferers suppressed by the RTS/CTS handshake; (IIa) Some of the potential inter-
ferers are not suppressed by the RTS/CTS handshake (red); (IIb) Many potential interferers not
suppressed (red). Scenario IIb is not considered in previous radio-based work.

Figure 3.1 illustrates the three possible scenarios when comparing the distances of the source,

receiver, and interferer:

I: 0 < Ri < Rtx: the spatial range of CTS packets covers all potential interferers.

IIa: Rtx < Ri < Rtx + d: the range of CTS packets covers most of the area from which third

parties can interfere; Xu et al.’s approximation applies.
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IIb: Rtx + d < Ri: The range of CTS packets covers a small fraction of the area from which third

parties can interfere. Generally does not occur in RF networks, and Xu et al.’s approximation

does not apply.

Note that in RF networks with k = 4 and a detection threshold of T < 12 dB, Scenario IIb does

not occur, and so it is not analyzed in previous work. Xu et al. and Ye et al. use an approximation

for A(i ∩ RTS/CTS) based on an idealized circular geometry for wireless range that only is valid

for Scenario IIa. When Scenario IIb does occur, as it will for most underwater networks, that

approximation will lead to a discontinuity in ERTS/CTS.

In Appendix E, we derive a new calculation of A(i ∩ RTS/CTS), exact for the idealized case of

circular transmission ranges, that is valid for all three scenarios. For the simplified channel model

(i.e. without considering absorption or ambient noise), we use the results from the appendix to plot

ERTS/CTS for RF and underwater acoustic networks in Figure 3.2. We set the detection threshold

T = 10 dB, and use spreading exponents of k = 4 and k = 1.5, respectively. In Figure 3.2, the

dashed line shows the values obtained by Xu et al.’s approximation, and the solid lines are the

result of our calculation. In underwater acoustic networks, the approximation in Xu et al.’s results

would lead to incomplete results and a discontinuity for the RTS/CTS effectiveness.

Figure 3.2 replicates Xu et al.’s results, and extends them to a simple underwater acoustic

channel model, with spreading losses only. In an RF network, when the source/receiver pair are

in Scenario I (i.e., when d/Rtx is less than about 56% for T = 10 dB) then the RTS/CTS collision

avoidance protocol is fully effective — all potential interferers are suppressed. For larger source-

to-receiver separations, the RTS/CTS protocol becomes increasingly ineffective. For RF networks

with detection threshold T < 12 dB, the network will always be in Scenarios I or IIa, as Figure 3.3a

illustrates graphically.

For UANs, however, with a typical spreading loss of k = 1.5 and using a detection threshold of

T = 10 dB, the results for the simple spreading-only model considered in this section would suggest

that the RTS/CTS collision avoidance protocol starts losing effectiveness when d/Rtx is larger than

about 22%. The collision-free region would therefore cover less than 5% of the area within the

maximum transmission range.
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Figure 3.2. RTS/CTS effectiveness in underwater networks is hurt significantly by long-range
interference. The dashed lines use the approximation in [135] and [136], and the solid lines use the
equations derived in Appendix E. The plot assumes T = 10 dB and no absorption or ambient noise.

3.3.2 Effects of Detection Threshold on γo

For their analysis of radio-based networks, Xu et al. assume a detection threshold of T = 10 dB,

and they do not analyze the effects of varying the detection threshold on spatial reuse.

In UANs, a 10 dB detection threshold would lead to a large interference range ratio γo and hence

low spatial reuse, according to the simple spreading-only model used in this section. Figure 3.3b

shows that γo increases sharply with an increasing detection threshold T . For RTS/CTS MAC

protocols to have high effectiveness, it is therefore important to minimize the packet detection

threshold.

The WHOI Micromodem-1 [36] implements two modulations, frequency-hopped frequency-shift

keying (FH-FSK) and quadrature phase shift keying (QPSK or more generally, PSK).
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Figure 3.3. (a) Regions for Scenarios I, IIa, and IIb as a function of detection threshold (T on
vertical axis). See Figure 3.1 for scenario definitions. Solid lines separate Scenarios I and IIa,
while dashed lines separate Scenarios IIa and IIb. For the underwater acoustic networks, the lines
separating the scenarios are blue, and for radio networks, the lines are red. (b) Interference range
ratio γo as a function of detection threshold T . In both (a) and (b), the green dashed line indicates
T = 10 dB. These plots are valid only for no ambient noise and no absorption; see Figure 3.6 for
the case with ambient noise and absorption.

Incoherent detection methods, such as detecting the start of the packet by detecting a coded

pattern of of FH-FSK tones, generally have low detection thresholds, which can be 3 dB or less [92].

As shown in Figure 3.3, with a low detection ratio, the interference range ratio γ will be small,

allowing significant spatial reuse.

For PSK-modulated data packets, the standard detection and synchronization signal used by the

Micromodem-1 (a linear frequency-modulated sweep) has had its software-configurable processing

gain increased to drop the detection threshold from its original value of about 7 dB down to its

present default value of approximately 0 dB, to allow communication to be detection-limited when
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using lower-rate error-correcting codes. As a side benefit, with about a 0 dB detection threshold,

spatial reuse will not be appreciably reduced.

There are, however, other underwater acoustic modems focusing on low-power detection states

which in some cases are planning to use analog in-band energy detectors [134]. An analog in-

band energy detector will likely require a detection threshold of 10 dB or higher, increasing the

interference range ratio γ and reducing spatial reuse.

The results presented in the remainder of this chapter use a detection threshold of 10 dB,

for comparison more directly with Xu et al.’s results, to highlight the importance of low detection

thresholds in underwater acoustic modems, and to show the effects of spreading losses and spreading

loss models more clearly than with a lower detection threshold.

3.4 Incorporating Spreading, Absorption, and Ambient Noise into Model

In the previous section, we extended the analysis from Xu et al. a closed-form solution for γ0

using a simple channel model with spreading only. In this section, we introduce a more realis-

tic underwater acoustic channel model, incorporating frequency-dependent absorption losses and

frequency-dependent ambient noise. For this case, we are only able to solve for γ(f, d) with a

numerical solution, though we can find approximate analytic solutions using physical reasoning in

several limiting cases.

Absorption losses are a significant effect, and must be included in the channel model, especially at

higher frequencies. Ambient noise from ships, wind-driven waves, rain, shrimp, etc. is a fundamental

part of the natural acoustic environment and cannot be neglected. Following Stojanovic [117], we

use Thorp’s expression1 for the frequency-dependent acoustic energy absorption coefficient, α(f),

which is generally expressed in dB per unit distance. To model ambient noise power, σN (f), we

use the empirical power spectral density (PSD) from Coates [18, 112, 117], parameterized by wind

speed and an empirical shipping factor between 0 and 1. In the analysis in this chapter, we use a

1Marsh and Schulkin [12] offer an alternative to Thorp’s expression that can be more accurate for frequencies above
about 3 kHz, with somewhat lower absorption, but Thorp’s expression is easier to use, since it depends only upon
frequency. Alternative models for absorption coefficients depend upon temperature, depth, and other parameters.
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wind speed of 3 m/s and a shipping factor of 0.5. We integrate this PSD across a bandwidth of

1/3 of the center frequency, which is typical of acoustic transducers used in UANs.

For our spreading model, at first we again use the “practical spreading” model, with a spreading

exponent of k = 1.5. In Section 3.5, we analyze the MAC-layer implications of the alternate mixed-

exponent spreading model studied in Chapter 2, which has lower spreading losses for interfering

packets and higher spreading losses for packet detection.

The analysis in this chapter does not use transmit power control, since we are using the WHOI

Micromodem-1 as our underwater acoustic modem model. We use a fixed transmit power of

185 dB re:1μPa@1m, a typical value for underwater acoustic modems.

3.4.1 Calculating γ(f, d)

By including absorption and ambient noise, γ is no longer a constant. In this extended model,

γ(f, d) is a function of frequency f and source-receiver separation d. We start with the condition

for detection T ≤ SINR (Eq. 3.1). This expression achieves equality for the minimum allowable

SINR for detection, which occurs at the minimum allowable interferer range, Ri:

T = SINR =
Ps So(d, k) A(f, d)

Pi So(Ri, k) A(f,Ri) + σN (f)
. (3.5)

In this expression, the transmit powers for source and interferer are Ps and Pi, respectively. In

all plots in this section, we set Ps = Pi, since we are not considering transmit power control. The

spreading loss factor is So(r, k) = (r/ro)
−k, where ro is a reference distance, typically taken as

ro = 1 m. The absorption factor is A(f, r) = 10−α(f)r/10, where the absorption coefficient α(f) is

in dB/km, and the range r is converted to kilometers. The ambient noise power at the receiver is

σN (f), the power in the PSD integrated across the transducer bandwidth.

SINR is a critical metric for this chapter, but using it also has a number of practical complica-

tions, explored for radio receivers by Son et al. [111]. In practice, interference power from multiple

interferers does not necessarily add linearly. There can also be hardware variation among receivers,

and adding interferers can increase the effective detection threshold of the detection algorithm [111].

For the purposes of this chapter, we consider a single interferer at range Ri and idealized receivers.
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Since Ri = γ d, then from Eq. 3.5, we have

γ−k (A(f, d))(γ−1) =
Ps

PiT
− σN (f)

Pi S(d, k)A(f, d)
(3.6)

In general, there is no closed-form solution of Eq. 3.6 for γ(f, d). We solve this equation numer-

ically, and we discuss the results below.
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Figure 3.4. Numerical solutions for γ(f, d) for the spreading model k = 1.5, with absorption, for
several frequencies. (a) is without ambient noise; (b) includes ambient noise. The dashed lines show
comparisons with the case of spreading losses only, where γo is constant; the black dashed line is
for underwater acoustic networks, and the red dashed line is for radio networks. The circles show
the node separation, d, where the minimum allowable interferer range equals the maximum packet
transmission range. For larger node separations, the RTS/CTS effectiveness starts to drop.
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3.4.2 Effects of Ambient Noise and Absorption

Absorption and ambient noise add strong frequency-dependent effects to the interference range

ratio, γ(f, d) = Ri/d. Figure 3.4 shows γ(f, d) for typical acoustic communication frequencies rang-

ing from 3 kHz to 80 kHz for a spreading exponent of k = 1.5. Figure 3.4a shows γ(f, d) without

ambient noise, while Figure 3.4b shows γ(f, d) with ambient noise, to help distinguish the effects of

each component of the channel model. We examine the results in three parts: small, intermediate,

and large node separations.

For small node separations, spreading losses dominate. In that case, absorption and ambient

noise can be neglected, and γ approaches γo. This effect can be seen in both Figures 3.4a and 3.4b.

For intermediate node separations, the interferer’s absorption losses dominate the interferer’s

spreading losses. Therefore, the interferer’s absorption losses largely determine the shape of the

γ(f, d) curves in Figure 3.4. If we neglect ambient noise (letting σN (f) = 0), and focus on the

intermediate separation distances, we can ignore the interferer’s spreading term γ−k in Eq. 3.6. In

that case, γ(f, d) for intermediate node separations can be approximated as

γ(f, d) ≈ 1 +

(
10 log10(T )

α(f)

)
1

d
. (3.7)

Spreading losses are polynomial in range, whereas absorption losses are exponential in range (i.e.,

for range r, spreading losses scale as r−k, and absorption losses scale as 10−α(f)r/10). For all but

the smallest node separations, therefore, this intermediate case applies, and γ(f, d) scales as 1/d in

this region.

When node separations are large and approach the maximum transmission range, ambient noise

starts to increase γ(f, d) significantly. This effect can be seen by comparing Figures 3.4a and 3.4b.

The maximum transmission range is when no interferers are present, so the signal-to-noise ratio

equals the detection threshold, i.e., T = SNR. In that case, Rtx is the numerical solution of Eq. 3.5,

with Pi = 0: (
Rtx

ro

)−k

A(f,Rtx) =
T σN (f)

Ps
. (3.8)
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As the node separation approaches the maximum transmission range, even a small amount of

interference will prevent detection. Therefore, the minimum allowable distance from the receiver to

an interferer for successful detection will approach infinity. So, when ambient noise is included in the

model, γ(f, d) will approach infinity as the node separation approaches the maximum transmission

range.

One way to avoid the susceptibility of widely separated nodes to ambient noise is to set the

UAN’s routing tables so that packets are not routed on links whose node separation approaches the

maximum transmission range. This is a caveat to the general idea that one should route over long

hops in a wireless network [2].

The competing effects of absorption and ambient noise lead to the minimum in γ(f, d) apparent

in Figure 3.4b.

3.4.3 RTS/CTS Effectiveness with Absorption and Ambient Noise

The RTS/CTS MAC protocol can avoid all collisions only if all potential interferers can detect

the RTS or CTS successfully. Since interference occurs at the receiver, it is especially important that

a potential interferer can detect the CTS packet. Section 3.2 introduces the RTS/CTS effectiveness

metric, ERTS/CTS. We can derive expressions for ERTS/CTS and the regimes of node separations

over which each expression applies (see Figure 3.3a and Appendix E for the details). Given a node

separation d, we can calculate the interference range, Ri = γ(f, d) d, where γ(f, d) is the numerical

solution of Eq. 3.6, plotted in Figure 3.4. From Eq. 3.8, we can calculate the maximum transmission

range, Rtx.

In the expressions for ERTS/CTS, the terms Ai = πR2
i = πγ2d2, and both ARTS/CTS as well

as A(i∩RTS/CTS), are derived analytically in Appendix E to this chapter. We can then calculate

ERTS/CTS for a given frequency f as a function of node separation d, up to the maximum node

separation, Rtx. This function is plotted in Figure 3.5.

Since the absorption reduces γ(f, d) compared with the spreading-only case, ERTS/CTS is im-

proved compared with the spreading-only case, as shown in Figure 3.5. When ambient noise is
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included, ERTS/CTS drops for node separations which approach the maximum transmission range,

shown in Figure 3.5b. Effectiveness is lower for lower acoustic frequencies.
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Figure 3.5. ERTS/CTS, calculated with γ(f, d) from Figure 3.4 for several frequencies, with spread-
ing and absorption losses. (a) is without ambient noise, while (b) includes ambient noise. The
dashed lines show the cases with spreading losses only, in black for UANs (k = 1.5) and in red for
radio networks (k = 4). The plot legends are the same for both (a) and (b).

3.4.4 Effects of Detection Threshold on γ(f, d)

In Section 3.3.2 and Figure 3.3b, we show the effects of detection threshold T on γo in the

simple spreading-only channel model. With absorption and ambient noise, the results are similar:

γ(f, d) increases rapidly with increasing detection threshold. Figure 3.6 plots γ(f, d) as a function

of detection threshold for several frequencies, and for both the “practical spreading” model with

k = 1.5 as well as the alternate mixed-exponent spreading model introduced in Section 3.5.
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Figure 3.6. γ(f, d) as a function of detection threshold T for several frequencies, with absorption
and ambient noise, for both the “practical” k = 1.5 spreading model and mixed-exponent spreading
model (see Section 3.5). The plots labeled “peak γ” show the highest values of γ in Figures 3.4 and
3.8, as a function of detection threshold, even if RTS/CTS is not necessarily reduced. The plots
labeled “γd = Rtx” show the highest value of γ which reduces RTS/CTS effectiveness, (i.e. where
the minimum allowable range to an interferer, Ri = γd, begins to exceed the maximum packet
transmission range Rtx), again as a function of detection threshold. The green dashed vertical lines
mark the case T = 10 dB. Note different vertical scales of the plots.

3.4.5 Visualization of Unsuppressed Interferers

The effectiveness of the RTS/CTS collision-avoidance protocol depends upon suppressing po-

tential interferers. Figure 3.7 allows visualization of the unsuppressed interferers, which are the

cause of reduced RTS/CTS effectiveness. The figure plots the “operating regime” of UANs, namely
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the maximum link range (maximum detection range) as a function of communications band center

frequency: links below the maximum link range curves, shown as solid lines, are realizable and

useful in UANs. In contrast, nodes in the region above the maximum link range curves cannot

detect the RTS/CTS handshake packets, and therefore are unsuppressed potential interferers.

The dashed curves in Figure 3.7 show the range at which spreading loss equals absorption loss;

below the dashed curves, spreading loss is the larger component of pathloss, and above the curves,

absorption loss is the larger component. Spreading loss is polynomial in increasing range, and

absorption loss is exponential in increasing range. Therefore, as range to an interferer increases

into the region where absorption loss dominates, interfering packets become strongly attenuated

and will no longer disrupt detection of desired packets at the intended receiver.

The region of Figure 3.7 between the maximum packet detection range and the range at which

spreading loss equals absorption loss is where unsuppressed interfering nodes exist. These unsup-

pressed interferers are too far away to detect the RTS/CTS collision-avoidance packets, but are

close enough to disrupt detection of desired packets at the intended receiver.

At lower frequencies, and especially with the mixed-exponent spreading model discussed in

Section 3.5, there can be a significant number of potential unsuppressed interferers, leading to

increased interference range ratio γ(f, d) and hence decreased RTS/CTS effectiveness. The details

of the spreading model are therefore signficant in determining spatial reuse in a UAN.

Providing more details for Figure 3.7, the detection range is determined in turn by the detection

threshold (0 dB and 10 dB are plotted), the spreading model (both the “practical spreading”

model and the mixed-exponent model introduced in Section 3.5 are plotted), the absorption model

(Thorp’s expression [117]), a typical transmit power level (185 dB re:1μPa@1m), and the ambient

noise (Coates’s parameterized Wenz curves [18], using a wind speed of 3 m/s and an empirical

“shipping factor” of 0.5) along with the transducer bandwidth (using a typical quality factor of

Q = 3).
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Figure 3.7. Operating regime for underwater acoustic networks, for the “practical” spreading
model (left), and the mixed-exponent spreading model described in Section 3.5. The blue solid line
shows the maximum link range for a given acoustic frequency with a packet detection threshold of
10 dB, Thorp’s absorption loss, Coates’s parameterized ambient noise model (with wind speed of
3 m/s, empirical shipping factor of 0.5, and transducer quality factor of Q = 3), and a transmitter
power level of 185 dB re:1μPa@1m. The green solid line shows the maximum link range for a
detection threshold of 0 dB. The red dashed line shows the range at which the spreading loss
equals the absorption loss; below the line, spreading losses are more significant, and above the
line, absorption losses dominate. The unsuppressed interferers are located at ranges larger than the
maximum detection range, but before absorption losses reduce the interference energy to a negligible
level. At lower frequencies, there are significant unsuppressed interferers, especially in the mixed-
exponent spreading model. The absorption loss provides the ultimate limit on the maximum link
range, but for links within the UAN operating regime, spreading losses are larger than absorption
losses in general, so the details of the spreading model are significant to network performance.
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3.5 Mixed-Exponent Spreading Model

The so-called “practical spreading” approximation of k ≈ 1.5 is a widely used spreading model

for point-to-point underwater communication links [18,112,117]. The details of the spreading model

are generally not significant in point-to-point acoustic communications research, but the spreading

model is significant for understanding interference in a network.

In Chapter 2, we have presented an alternative spreading model called the mixed-exponent

spreading model, detailed in Section 2.3. The mixed-exponent spreading model applies to acoustic

modems which use a low-power wakeup detector based on a matched-filter detector. For example,

the WHOI Micromodem-1 [36], which is a common underwater acoustic modem for UANs, uses this

method. The mixed-exponent model includes different spreading exponents for packet detection

and for interference, reflecting the Micromodem-1’s signal processing for packet detection.

In the previous chapter, we showed from both experimental and numerical results that there

can be different exponents for packet detection and interference. We also validated the waterdepth-

and bandwidth-dependence of the mixed-exponent model for uniform soundspeed profiles with

numerical modeling. In this chapter, we present results showing that, with the mixed-exponent

spreading model, the RTS/CTS effectiveness can be very low, especially for UANs transmitting on

lower frequencies.

The k ≈ 1.5 “practical spreading” model is not solidly grounded, but has been considered

adequate for underwater acoustic communications because other physical channel effects are much

more significant, though this is not necessarily true at the network layer. On the other hand,

numerical acoustic propagation models [79] are fairly well-accepted, but do not aid intuition and

analysis for understanding the physical channel’s effects upon spatial reuse in RTS/CTS-based

MAC protocols.

Energy from a point source transmitter in an idealized channel of very deep, uniformly mixed

water will experience spherical spreading, such that k ≈ 2. In most situations, however, multipath

effects from either shallow water reflections or a deep-water refractive sound channel will lead to

waveguide effects reducing the effective spreading exponent. In the idealized case of shallow water

with a perfectly reflecting lossless surface and bottom, the incoherent sum of the energy from a

148



point source will experience cylindrical spreading, such that k ≈ 1, at large ranges relative to the

water depth. The practical spreading model with k ≈ 1.5 is simply an average of cylindrical and

spherical spreading, as a first-pass approximation for system design [18].

3.5.1 Signal Spreading During Packet Detection

To minimize energy use, during packet detection, theWHOI Micromodem-1 runs a low-complexity,

low-power-consumption matched-filter detector to detect a known wakeup signal. Upon detection

of the wakeup signal, the primary communcations receiver is enabled.

As described in Section 2.3, the packet detection detects on the energy from just a single peak

in the impulse response, corresponding to one multipath arrival or perhaps several non-resolved

multipath arrivals. When the Micromodem-1 detects the start of a data packet, the detection

signal’s effective spreading loss is hypothesized to be the spreading loss experienced by a single

peak in the impulse response, and accordingly kp ≈ 2; the subscript p is for packet detection.

Beyond a certain range, however, separate multipath arrivals become unresolvable, and they

coherently combine in the received signal. As described in Section 2.3, beyond this transition range,

the coherent detection energy exponent transitions from a spherical-spreading regime (kp ≈ 2) to

a regime with kp ≈ 1.5. This transition range increases linearly with bandwidth and quadratically

with waterdepth, and is discussed in the previous chapter.

Detection generally is the limiting factor for most packets, since the error-correction coding can

be designed appropriately so that essentially all detected packets can be decoded successfully.

3.5.2 Interference Spreading During Packet Detection

As described in Section 2.3, with a matched-filter detector as in the Micromodem-1, interference

is received via all multipath arrivals and combines as noise, degrading the SINR and limiting the

detection of desired signals. The energy from these arrivals is combined incoherently to determine

the interference level.

There still is, however, a transition range for the interference spreading exponent ki. At small

ranges relative to the waterdepth, wd, the interference has not yet interacted with the boundaries

and so spreads spherically. As the range increases, the acoustic paths start to reflect from the
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boundaries and the spreading exponent decreases away from spherical spreading and towards cylin-

drical spreading. The transition range for interference is therefore on the order of the waterdepth.

(Similarly, in deep water, the transition range for the interference would be the vertical extent of

the refractive sound channel for a given interferer.)

3.5.3 Mixed-Exponent Spreading Model Equations

The mixed-exponent spreading model is detailed in Section 2.3, and summarized in Section 2.3.3.

The form of the mixed-exponent spreading model is

Sm(r, rT , k2, k1) =

⎧⎪⎨
⎪⎩
(

r
ro

)−k2

r < rT(
rT
ro

)−k2
(

r
rT

)−k1

r ≥ rT

(3.9)

where r is the range from transmitter to receiver (ignoring slant range for the time being), ro is a

reference distance (typically 1 m), rT is the transition range from spherical spreading. The spreading

exponent before the transition range is roughly spherical, k2 ≈ 2. After the transition range,

the interference spreading exponent is roughly cylindrical, k1 ≈ 1, while the detection spreading

exponent beyond the transition range is roughly k1 ≈ 1.5.

For packet detection, we hypothesize that the transition range, developed in the previous chap-

ter, increases linearly with bandwidth and quadratically with waterdepth, i.e. rTp ∼ w2
dB
2c .

For interference, we hypothesize that the transition range from spherical to cylindrical spreading

occurs at a range of the order of the waterdepth, i.e. rTi ∼ wd.

In general, we expect that the transition range for interference will be smaller than the transition

range for packet detection, i.e. rTi ∼ wd < rTp ∼ w2
dB
2c . In this case, there is a region where the

spreading loss for interfering packets is less than the spreading loss for detection, which means that

the RTS/CTS effectiveness will be reduced, perhaps significantly.

In situations where B < 2c
wd

, however, the ordering of the transition ranges would be reversed,

and the spreading loss for interference would be larger than the spreading loss for packet detection,

improving spatial reuse. Such situations could include OFDM with narrow sub-bands in shallow

water, or, less relevant for UANs, extremely narrowband sources such as RAFOS sources in deep
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water. In the remainder of this chapter, we assume the first ordering of transition ranges, as is true

for the case of a more broadband detection signal, as is currently used in the WHOI Micromodem-1.
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Figure 3.8. Numerical solutions for γ(f, d) for the mixed-exponent spreading model with k2 = 2,
k1i = 1, k1p = 1.5 with absorption, for several frequencies. (a) is without ambient noise; (b) includes
ambient noise. The dashed lines show comparisons with the case of spreading loss only, where γo
is constant, the black dashed line is for underwater acoustic networks, and the red dashed line
is for radio networks. The circles show the node separation, d, where the minimum allowable
interferer range equals the maximum packet transmission range. For larger node separations, the
RTS/CTS effectiveness starts to drop. The steep dotted lines at small node separations show the
spreading-only case, a valid approximation only for small node separations; see Eq. 3.12.

3.5.4 Implications for γ(f, d) and ERTS/CTS

To use the interference spreading model from Eq. 3.9, we adjust Eq. 3.5 slightly:

T = SINR =
Ps Sm(d, rTp, k2p, k1p) A(f, d)

Pi Sm(Ri, rTi, k2i, k1i) A(f,Ri) + σN (f)
, (3.10)
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Where the subscript p refers to packet detection (transition range rTp, roughly spherical spreading

exponent k2p, and spreading exponent k1p ≈ 1.5 beyond the transition range), and the subscript i

refers to interference (rTi, k2i ≈ 2, k1i ≈ 1). As before, the node separation on the desired link is

d, and the interferer is separated from the desired receiver by Ri = γ(f, d)d.

We can then numerically solve for γ(f, d) as before. The transition ranges for both packet

detection as well as interference include the waterdepth. For the results in Figures 3.8 and 3.9, we

use a shallow-water environment with water depth wd = 100 m, since shallow water is often the

situation of most interest for littoral military operations as well as coastal environmental monitoring,

two potential applications of UANs. The bandwidth, B, used in calculating the coherent transition

range, rTp, is f/Q, where f is the channel’s center frequency, and Q is the transducer quality factor,

taken to be Q = 3, which is a typical value.

The notable differences between Figures 3.4 and 3.8 are that there now is a maximum γ(f, d)

value for small node separations, and that maximum can be much larger than the γ(f, d) values

for the single-exponent “practical spreading” model with k = 1.5. For large node separations,

Figures 3.4 and 3.8 are qualitatively similar, though in Figure 3.8, γ(f, d) remains quite large even

for large node separations; for example, for center frequencies of 5 kHz and below, the minimum

value of γ(f, d) is actually larger than the value of γo = 4.6 calculated from a simple spreading-only

channel model, applying Xu et al.’s results directly to UANs.

We can provide an intuitive physical explanation for the maximum in γ(f, d), deriving its location

and amplitude in terms of physical parameters of the communications channel.

For small node separations, we can ignore ambient noise, and we are in the before the detection

transition range, i.e. spherical spreading for the detection energy. Then with the alternate spreading

model, Eq. 3.6 from the previous section becomes

γ−k1i (A(f, d))γ−1 =
Ps

PiT

d(k1i−k2p)

r
(k1i−k2i)
Ti

(
r(k2p−k2i)
o

)
(3.11)

For very small node separations, we can also ignore absorption losses, so A(f, d) = 1 and drops

out of the expression. In the case of very small node separations, with k2 = 2 and k1i = 1, and

152



0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
RTS/CTS

 (no noise)

norm. node sep., d/Rtx

E
R

T
S

/C
T

S

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
RTS/CTS

 (with noise)

norm. node sep., d/Rtx

E
R

T
S

/C
T

S

3 kHz
5 kHz
10 kHz
15 kHz
25 kHz
40 kHz
80 kHz
spr.only
k=1.5 spr.
k=4 spr.

Figure 3.9. ERTS/CTS, calculated with γ(f, d) from Figure 3.8, with absorption losses and the
mixed-exponent spreading model. (a) is without ambient noise, while (b) includes ambient noise.
The dashed and dotted lines show the cases of spreading losses only: the k = 1.5 UAN case in black
dash-dots, the k = 4 RF case in red dash-dots, and the mixed-exponent UAN model with k2 = 2,
k1i = 1, k1p = 1.5 in dots.

with rTi = wd, we have

γ ≈
(
PiT

Ps

d

wd

)
. (3.12)

Therefore, for very small node separations, and with k2 = 2 and k1i = 1, γ(f, d) increases approx-

imately linearly with node separation, up to a maximum. This spreading-only approximation for

γ(f, d), valid only for small node separations, is plotted in dotted lines in Figure 3.8. The maximum

occurs when spreading losses balance with absorption losses for the interferer. When the absorption

losses dominate, then γ(f, d) drops sharply, as explained in Section 3.4.

To find the maximum, γmax = γ(f, dmax), we differentiate Eq. 3.11 with respect to d, and set

the derivative of γ equal to zero. From Figure 3.8 we can see that γmax is relatively large (so for
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this analytical derivation we approximate γmax � 1), and the maximum occurs for small dmax (and

so A(f, dmax) ≈ 1). Again setting k2 = 2, k1i = 1, and rTi = wd, these approximations give

dmax ≈ β

(
Ps

TPi

wd

α(f)

)1/2

, (3.13)

where β = (10 log10(exp(1)))
1/2

. Plugging this value for dmax back into Eq. 3.12 gives an overesti-

mate for γmax, since γ(f, d) is convex in the neighborhood of its maximum:

γmax ≈ β

(
TPi

Ps

1

wd α(f)

)1/2

. (3.14)

This result gives an intuition for which physical parameters control the amplitude and location

of the maximum in γ(f, d). Specifically, the maximum value of γ(f, d) increases with increasing

detection threshold, and decreases with increasing waterdepth and frequency.

With the mixed-exponent spreading model, γ(f, d) obtains much higher values than it does with

the “practical spreading” model. As a result, we see significantly lower RTS/CTS effectiveness, as

shown in Figure 3.9b. For low frequencies, the MAC effectiveness is particularly low. The plot

shows center frequencies as low as 3 kHz. These are realistic frequencies for actual UANs; for

instance, the PLUSNet deployment [51] includes a long-range channel with a center frequency of

about 3 kHz.

The maximum values of γmax do not always reduce RTS/CTS effectiveness, because ERTS/CTS is

only reduced when there are unsuppressed interferers, i.e. γd = Ri > Rtx. The circles in Figure 3.8

show the node separation d where γd = Rtx; for smaller node separations, even though γ(f, d) may

be large, the RTS/CTS effectiveness is not reduced.

One implication of Figure 3.9b is that for multiband UANs [51, 106], different bands might

use different MAC protocols. For certain deployments, RTS/CTS effectiveness might be consid-

ered acceptable on a high-frequency band, which would have small node separations, reducing the

propagation delays. But it might be unacceptable for the low-frequency bands, with long node

separations and the double penalty of low ERTS/CTS due to spreading effects, and low throughput

due to propagation delays.
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3.6 Simulations

To validate our numerical results, we extended the Castalia/ OMNET++ simulator (version 3.1,

http://castalia.npc.nicta.com.au) to include the underwater acoustic physical channel model

described above, with spreading, absorption, and ambient noise. Absorption is simulated according

to Thorp’s expression, and we parameterize noise by the same values as in Section 3.4, using the

empirical PSD in Coates [18, 117]. The modifications we made to adapt Castalia-v3.1’s wireless

channel model to the underwater acoustic channel are in Appendix F.

The main goal of the simulations was to calculate γ(f, d), and therefore the key measurement is

the interference range, Ri. By definition, any interferer within the interference range will prevent

packet detection, preventing the RTS/CTS handshake from completing.

To measure the minimum allowable interference range, we ran simulations with three nodes.

Node 1 and node 2 were a source and receiver pair. They attempted to complete data transfer

handshakes with RTS/CTS/DATA/ACK control packets, with node 2 receiving the DATA packet.

The third node was placed co-linearly with the first two nodes, with the receiver node in the center.

Node 3 transmitted an interfering data packet with a duration equal to the length of the simulation.

Node 3 started at a very large separation where it did not affect packet detection at Node 2, and

gradually moved closer until its interference prevented packet detection at Node 2.

The parameters for a simulation run included the following. (1) The frequency f of the trans-

mitted data and interference packets. We varied f from 3 kHz to 100 kHz, closely matching the

analytical plots. (2) The spreading model. Using Equation 3.9, in one group of runs, we set k = 1.5;

in the second, we set k2 = 2.0 and k1 = 1.0. Note that using a coherent packet detection spreading

exponent of k1p = 1.0 rather than k1p = 1.5 does not visibly change the plots in Figures 3.8 and

3.9, and is not expected to change the results shown in Figure 3.10 either.

(3) The separation distance d of the source and receiver pair (labeled node separation on the

x-axis) (4) The distance r between the interfering node and receiver. (5) Communication channel

parameters such as detection threshold and fixed transmit power, as in Section 3.4.

For each frequency f and source-receiver separation d, we ran simulations where Node 3 grad-

ually reduced its interferer-receiver separation r. The last value of interferer range r for which the
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Figure 3.10. Simulation results for γ(f, d). Note different horizontal and vertical axis scales for the
two plots. Compare against Figs. 3.4b and 3.8b, respectively, which cross validate the simulation
and numerical results. Note that these simulations use a coherent detection exponent beyond the
transition range of k1p = 1.0 rather than k1p = 1.5. This does not significantly change the results,
as described in the text.

RTS/CTS/DATA/ACK transaction between Nodes 1 and 2 succeeded gives an estimate of γ, i.e.

γ̂ = r(last success)/d.

The results in Figure 3.10a should be compared against Figure 3.4b. Figure 3.10b should be

compared against Figure 3.8b. Both simulation results agree well with the numerical results.

3.7 Improving Spatial Reuse

The best and most generally-applicable long-term approach to improving spatial reuse is to

implement transmitter power control. Transmit power control would improve spatial reuse, reduce
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energy consumption, and reduce the probability of detection for covert communication. Linear

power amplifiers are not as power-efficient as clipped non-linear power amplifiers, which are the

standard power amplifiers for many energy-constrained UANs, including those based upon the

WHOI Micromodem-1 [36]. Pulse-width modulation (PWM) amplifiers allow power-efficient trans-

mit power control, however, and will likely solve many of these problems for UANs built using

future underwater acoustic modems. In the meantime, however, UANs built from many existing

acoustic modems, including the Micromodem-1, cannot rely on transmit power control to improve

spatial reuse.

Aside from transmit power control, the main approaches to improving spatial reuse primarily

center on increasing the range of the RTS/CTS handshake. While extending the range of the RTS

suppresses other nodes needlessly (the “exposed terminal” problem), a CTS control packet with

range equal to the interference range would suppress only potential interferers, since interference

occurs at the receiver.

Successful detection is usually the limiting factor in determining the maximum successful trans-

mission range of a packet when the error-correcting coding is designed appropriately. To increase

the maximum transmission range of a packet with a fixed detection threshold T , we need to in-

crease the SINR at the receiver for the start-of-packet synchronization signal. This is usually done

by increasing the transmitter power or by increasing the time duration of the synchronization sig-

nal. Alternately, the frequency band of the packet might be shifted, generally to a band with less

absorption (lower frequencies), though in some situations shifting to a higher-frequency band would

help, since there is generally less ambient noise at higher frequencies. At higher center frequen-

cies of about 40kHz, typical transducer bandwidths (with quality factor Q ≈ 3) are wide enough

to potentially allow a shorter-range channel (for data and RTS) and a longer-range channel (for

CTS) with a single transducer, which might be a future possibility. Similarly, new single-crystal

transducers can be very broadband (Q � 2), and could support multiple channels (e.g. control and

data) with different effective ranges.

In extending the range of the CTS signal, the minimum information that needs to be transmitted

to potential interferers is the single bit that a reception is about to occur within their interference
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range. The interferers do not necessarily need to decode any other information from the CTS

header. This might lend itself to a very practical implementation for existing acoustic modems:

right before transmitting a CTS packet, transmit a signal with high processing gain (and hence

longer range). Any node detecting the CTS signal would enter a quiet backoff state, just as if it

had received the CTS packet itself. This would not require any changes to the existing hardware,

and would not require hardware which supports either transmit power control or frequency agility.

Finally, the mixed-exponent spreading model has significantly worse performance than the “prac-

tical spreading” model in terms of γ and spatial reuse. The primary reason is that with the mixed-

exponent spreading model, packet detection uses energy from only one multipath arrival in the

matched-filter detector. An alternate detector could be an autocorrelation detector: the transmit-

ting node would send the same signal twice, separated by a lag known by the receiver. The receiver

would detect when the autocorrelation at the known lag exceeded the detection threshold. This

approach would have time resolution comparable to the matched-filter detector, but would also use

energy from all multipath arrivals, so that there would not be a difference in effective spreading

loss exponents between packet detection and interference processing.

3.8 Conclusions

Underwater acoustic networks are significantly different environments than RF networks. Our

results demonstrate that RTS/CTS effectiveness in UANs is subject to frequency-dependent physical

channel effects and long-range interference, and not simply acoustic propagation delays.

We significantly extended radio-based results from Xu et al., and we analyze the interference

range ratio γ and its effect on RTS/CTS effectiveness.

We present a closed-form solution for γ0 in a simple channel model, and a numerical solution for

γ(f, d) in an extended channel model. Our results show, for the “practical spreading” model, that

both acoustic networks and RF networks have similar performance predictions, despite dramatically

different channel models. In both cases, RTS/CTS effectiveness can drop to between 50%–90%

for source and receiver separated by more than about two-thirds of the maximum packet range,

depending on the frequency in the underwater acoustic case.

158



We also study the MAC-layer effects of using an alternative physically based spreading model

that distinguishes between spreading losses in packet detection and in processing interfering pack-

ets from distant nodes, using the Micromodem-1 as a model underwater acoustic modem. The

mixed-exponent spreading model allows intuition and understanding of spatial reuse and long-

range interference in UANs, without relying on non-generalizable results from acoustic propagation

packages.

Under the mixed-exponent spreading model, we predict that RTS/CTS effectiveness drops sig-

nificantly, relative to RTS/CTS effectivess using the “practical spreading” model. For example, for

the 3 kHz deployment of PLUSNet, RTS/CTS effectiveness would quickly drop to 10% after source

and receiver were separated by only 20% of signal range.

We implemented our models in a network simulator, and validated that the simulation results

matched our numerical results quantitatively. Finally, we suggest several possible methods of im-

proving spatial reuse; the most effective of which would be at the physical layer. The Micromodem-1

design is frozen, but the Micromodem-2, whose design decisions are detailed in the next chapter,

could implement many of the possible solutions to improving spatial reuse in UANs.
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CHAPTER 4

THE MICROMODEM-2: A SCALABLE SYSTEM FOR ACOUSTIC
COMMUNICATIONS AND NETWORKING

A successor to the WHOI Micromodem-1 underwater acoustic modem has recently been de-

veloped. The Micromodem-2 has the same compact form-factor as the Micromodem-1 and will

support all of the existing applications for the Micromodem-1, as well as interoperate with the

Micromodem-1. Existing acoustic communications protocols using phase-shift keying (PSK) as well

as frequency-hopping frequency-shift keying (FH-FSK) are supported, as are navigation features

including narrow-band and broadband long-baseline (LBL) navigation.

The Micromodem-2 is significantly more capable than the Micromodem-1 in computational

ability and memory, bandwidth, non-volatile data storage, user expansion interfaces, and real-time

clock precision. The expanded capabilities will allow new communications algorithms, modulation,

error correction methods, navigation features, and networking capabilities to be implemented. The

improvements in processing capability and acoustic interfaces on the Micromodem-2 allow it to

operate at acoustic frequencies from approximately 1kHz to 100kHz. The significant increases in

available non-volatile storage enable the Micromodem-2 to capture data in-situ for diagnostic and

research purposes.

The Micromodem-2’s firmware architecture is similar to the Micromodem-1’s firmware architec-

ture, using a real-time operating system based on modular signal processing blocks. It has been

improved to increase modularity and facilitate future portability, and it offers significant improve-

ments in timing for use with navigation and networking applications.

1This chapter is published in very similar form as: E.Gallimore, J.Partan, I.Vaughn, S.Singh, J.Shusta, and
L.Freitag. The WHOI Micromodem-2: A Scalable System for Acoustic Communications and Networking. In Proc.
IEEE Oceans, Sept. 2010 [48]
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Figure 4.1. The 4.5” x 1.75” Micromodem-2 preserves the physical form factor of the
Micromodem-1 while providing improved expansion connectors and I/O capabilities.

4.1 Introduction

TheWHOI Micromodem [36] was originally designed as a compact, low-power modem with mod-

est capabilities, intended for use on small underwater vehicles and to be integrated into oceano-

graphic sensors for point to point or network applications [45, 51]. As it was developed, many

capabilities were added, including navigation and high-rate phase-coherent transmission and recep-

tion.

Navigation features included in the original development phase included compatibility with

REMUS broadband transponders to allow a vehicle to operate in a REMUS navigation network,

and narrow-band transponder compatibility that supports many commercially-available deep and

shallow-water transponders [38]. These features made it easier to add both acoustic communications

and navigation to small vehicles by integrating these functions into one subsystem and transducer.

In the early 2000s, the communications capability of the modem evolved from support of the

frequency-hopping frequency-shift keying (FH-FSK) open standard developed at WHOI for inter-
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operability among multiple modems to high rate phase-coherent signaling. The FH-FSK standard is

slow, only 80 bps, but reliable and simple. Originally the modem could only transmit PSK signals,

requiring a more capable system, the WHOI Utility Acoustic Modem, for reception. However,

in collaboration with NUWC-Newport, a very small floating-point co-processor was designed and

software was ported to perform the adaptive equalization required for use of these signals in shallow

water. The resulting system provides data rates from 80 to 5000 bps (burst rate), and supports not

only shallow-water communications, but deep-water, direct path links as well [109]. An additional

improvement was addition of a multi-channel (4 or 8) analog input card that improves performance

in multi-path environments. The adaptive decision feedback equalizer can optimize over multiple

channels, greatly improving data rate in many situations.

Development of new applications on the Micromodem-1 has been constrained by several factors,

in particular its limited memory, fixed analog front end, and simple expansion buses. With the

Micromodem-2 design (Figure 4.1), these constraints have been addressed, and we are now posi-

tioned to develop new capabilities for underwater networking, add expanded communication rates,

and support acoustic communications research.

The design goals, described in Section 4.3, are derived from the extensive deployment expe-

riences with the Micromodem-1 [36], while also taking advantage of technology advances. The

Micromodem-2 preserves backwards compatibility with the Micromodem-1, in terms of its acoustic

communication packet types, NMEA command set, and physical form factor, while providing a

scalable path for future applications.

4.2 Previous Work

The first fully-embedded underwater acoustic modem from WHOI was the Utility Acoustic

Modem (UAM) [60], designed in 1996. While quite capable, the UAM had a constant 3W power

consumption due to its floating-point DSP, and it had a relatively large form factor.

The Micromodem-1 adopted a fixed-point DSP, reducing the power consumption by about 95%,

and shrinking the form factor significantly, as detailed in Table 4.1. The original Micromodem-1

design is over 11 years old, and, in that time, only minor hardware updates have been incorporated
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Specifications of the Utility Acoustic Modem, Micromodem-1, and Micromodem-2

Utility Acoustic Micromodem-1 Micromodem-2
Modem

First designed 1996 1999 2009
Dimensions 3.5” x 8” 1.75” x 4.5” 1.75” x 4.5”
Input Voltage1 5V-16V 5V-24V (± 5%)
DSP Performance 30 MFLOPS 160 MMACS 1066 MMACS
(nominal maximum) (TI ’C44) (TI ’C5416) (ADI BF548)
FPGA N/A N/A 13k LUTs, flash-based
Boot Time > 1100ms < 100ms

Power

Hibernate N/A 220μW @ 5V 165μW @ 5V
640μW @ 12V 455μW @ 12V

Low-Power Detect N/A < 100mW 80mW
( [45], deprecated) (preliminary est.)

Active 3W 158mW 300mW
(using current software)

Receive PSK 3W 158mW + coproc 300mW + coproc
(using current software)

Transmit2 30W nominal 8W-48W 8W-48W
(185 dB re:1μPa@1m)

Volatile Memory

Data RAM 2 MB 128 kB 8MB (total, shared
with Program RAM)

Program RAM 1 MB 2 MB 8MB (total, shared
with Program RAM)

Non-Volatile Memory

Flash 1 MB NOR 16 MB NAND 64 MB NOR
Configuration N/A 96B, backed by 8kB FRAM

RTC battery
Removable N/A N/A 32 GB microSD

Table 4.1. Specifications and Performance of the Utility Acoustic Modem, Micromodem-1, and
Micromodem-2
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into the system. However, the Micromodem software has continuously evolved, and for several

years, some development has been impeded by hardware limitations.

Based on this experience with the Micromodem-1, the Micromodem-2 has been designed with

the expectation that it will need to be actively supported and used as a development platform for

at least ten years. Table 4.1 compares the specifications of the three systems.

With the Micromodem-1, insufficient processing power and RAM required the use of an add-

on coprocessor card to receive PSK-modulated signals [36]. The coprocessor is based on a TI

TMS320C6713B floating-point DSP, and consumes roughly 2W when equalizing and decoding PSK

signals. It is turned off when not in use.

4.3 Micromodem-2 Design Goals

The Micromodem-2 was designed to support networking and communications research by ad-

dressing the constraints of the Micromodem-1, while maintaining backward compatibility. An

important requirement is scalability to allow the same system to be used in both power-constrained

situations (e.g. multi-year ocean-bottom or glider deployments) and computation-constrained situ-

ations (e.g. short deployments for acoustic communications research or deployments on AUVs). A

further need identified early in the re-design process was higher sampling and baseband processing

rates, to support newer wideband transducers and higher frequencies.

Central to the plan to use the Micromodem-2 for the next decade is design flexibility and

modularity. Advancements in components over the next several years will provide opportunities

to increase capabilities as well as reduce power consumption, and the hardware and software have

been selected and constructed such that these incremental hardware upgrades will be possible.

Additionally, the hardware currently has significant headroom in terms of processing power, RAM,

and storage, which will allow for extensive future development.

A common difficulty encountered when testing Micromodem-1 systems was a lack of data that

could be used forensically to determine the causes of good or poor communication. Statistics had to

be recorded by the host system controlling the Micromodem, and therefore were often incomplete.

To remedy this, the Micromodem-2 includes significant non-volatile storage that can be used to
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record channel statistics or make passband recordings for later analysis. These data can then be

used to analyze the performance of the modem and characterize the propagation channel.

The following subsections provide background on design decisions including processor choice,

power supplies, memory and storage, acoustic input and output stages, and user interfaces.

4.3.1 Computational Capability

While the Micromodem-1 used a Texas Instruments TMS320VC5416 with a nominal maxi-

mum of 160 MMACS (million multiply-accumulates per second), the Micromodem- 2 is equipped

with an Analog Devices Blackfin ADSP-BF548 that provides over 1000 MMACS. Both processors

are 16-bit fixed-point digital signal processors (DSPs), although the Blackfin incorporates more

general-purpose microprocessor functionality and a larger peripheral set than the ’c5416. On both

Micromodems, the DSP’s clock frequency is dynamically scaled based on the processing load.

When selecting the processor for the Micromodem-2, only low-power (and therefore fixed-point)

devices that were readily available at design time were considered. Our view is that, over the

past decade, the market for fixed-point digital signal processors (DSPs) has shifted away from

traditional low-power DSPs with modest memory spaces toward higher power DSPs with features

closer to general-purpose processors. This apparent shift can be seen by observing which DSP

product lines have seen continued development, and which have stalled. We suspect that the shift

has probably been driven by smart phones, which require complex operating systems yet can be

recharged nightly. The TI ’c5x line of traditional DSPs (of which the Micromodem-1’s ’c5416 is

a member) appears to have had its development stalled for quite a few years (although TI’s dual-

core OMAP processors combining a ’c5x DSP and an ARM microprocessor are still being actively

developed for the smartphone market). In contrast to the TI ’c5x product line, the Blackfin DSP

product line appears to have a solid roadmap for the future. Thus, although processors were

available that may have provided an easier software transition from the Micromodem-1, we chose

to switch processor families and use a Blackfin due to its capabilities and a future upgrade path.

After the design decisions for the Micromodem-2 were made, TI came out with the ’c674x series,

which combines a fixed-point DSP with low static power dissipation as well as two-cycle floating-
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point operations. The ’c674x DSPs could address two issues with the Blackfin. The first issue is

that the present Blackfins have fairly high static power dissipation (though their roadmap indicates

an improved fabrication process with lower static power dissipation in the future). The second issue

is that a fixed-point DSP is limited to algorithms which are more stable numerically, in particular

limiting the adaptive equalizer to using LMS (least-mean squares) algorithms rather than various

RLS (recursive least squares) algorithms. Probably as a result of its fabrication process, the TI

’c674x series has both lower static power dissipation but also lower maximum clock rates than the

ADI BF548, so there is a fixed-point performance advantage to using the ADI BF548.

An important use of the increased computational capability will be the implementation of the

adaptive decision feedback equalizer and error-correction software on the Micromodem-2, removing

the need for the current floating-point coprocessor card. This will save a significant amount of power

and reduce the cost of a complete system. However, in the interim, the Micromodem-2 is compatible

with the coprocessor card. In the event that an application needs to scale to higher processing power,

the Micromodem-2 has a high-speed expansion connector which will allow multiple Micromodem-2’s

(or other processors, such as a WHOI Optical Modem [29]) to be connected and used concurrently.

4.3.2 Power Consumption

A trade-off associated with the improved computational ability of the Micromodem-2 DSP is

an increase in the typical power consumption during packet decode relative to the Micromodem-1

(300mW vs 158mW, plus in both cases 2W for the coprocessor when equalizing and decoding

PSK packets). To offset this increase in receive power, we improved the low-power states of the

Micromodem-2. The Micromodem-2 operates in three modes, designated “active”, “low-power

detect”, and “hibernate”.

The active mode is used in standard applications where energy use is not a concern, and it

runs multiple acoustic detectors and provides a full-featured user interface. In this mode, the

Micromodem-2 draws about 300mW (measured at 25C and 5V input voltage; this increases slightly

with input voltage and temperature). In this mode as well as all others, the modem disables power
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Figure 4.2. Micromodem-2 Power Control System

to subsystems that are not in use, such as the microSD card and the analog output circuitry as

illustrated in Figure 4.2.

Hibernate mode is primarily useful on long deployments or other applications where energy is

very limited and the modem can operate with a low duty cycle. In this mode, the primary power

supply on the modem is turned off, along with all the downstream components. Thus, while in

hibernate, the modem cannot detect incoming packets or respond to user input. However, the

modem can transition from hibernate to active mode based on a number of events such as a real-

time clock alarm, a user signal on specific I/O pins, or a signal from another board using the

modem’s expansion bus. With the Micromodem-2, we decreased the hibernate power to 165μW

versus 220μW for the Micromodem-1, with a 5V battery voltage. The hibernate state uses a

linear voltage regulator, so power consumption will scale roughly linearly with battery voltage. For

example, with a 12V battery voltage, the hibernate power consumption is 455μW and 640μW, for

the Micromodem-2 and -1, respectively.
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The low-power detect mode is a new feature of the Micromodem-2 that will run a matched-filter

detector using a flash-based FPGA, while leaving the DSP powered off. The importance of a low-

power detector has been emphasized in many papers [54, 134]. We are currently developing and

testing several different detection algorithms based on matched filter FM sweep detection, as well

as BPSK sequence detection [47]. Based on initial experimentation using the Micromodem-2, we

estimate that a low-power detector state running a matched filter for an FM sweep will use 75mW-

80mW. When a packet is detected, or user serial input is received, the Micromodem-2’s improved

boot time (0.1s vs. 1.1s) allows it to wake rapidly from the low-power detect state and respond.

An alternative approach is analog tone detection, which uses significantly less power, though it is

less robust than FM sweep detection. In addition, an FM sweep provides high-resolution timing

synchronization.

Future revisions will incorporate hardware and software improvements to reduce power in the

low-power detect and active modes.

4.3.3 Memory

Easy implementation of new features is a key aspect of research and development systems such

as the Micromodem, and restrictions on data memory made this difficult or in extreme cases (such

as a PSK equalizer) impossible.

The wider memory address bus of the Blackfin DSP supports more data RAM, 8MB as opposed

to 128 KB. Data RAM may be increased to 128MB in the future, when higher density RAM be-

comes available. To maintain low-power capability yet provide large amounts of RAM, micropower

asynchronous static RAM is used. This memory has a standby power of a few microWatts, at a

cost of slower access speeds relative to high-power synchronous dynamic RAM.

The Micromodem-2 also adds significant non-volatile memory storage. The boot device is a

64MB parallel NOR flash, rather than a serial EEPROM, as was used on the Micromodem-1. This

reduces the boot time and allows additional non-volatile user storage. The configuration parameters

(such as node ID and communication parameters) are now stored in 8kB of FRAM rather than RAM

backed by the real-time clock (RTC) battery. This means that the configuration parameters cannot

168



be lost in the event of RTC battery failure, and no power is required to maintain the configuration

parameters.

Perhaps most significantly, a slot for removable microSD cards with up to tens of GB of storage

was added. This allows temporary storage of network packets, such as in a “data mule” applica-

tion [25], logging communication performance such as bit error rates, transmitting research wave-

forms, and recording raw signals for purposes such as channel characterization or communications

research.

4.3.4 Acoustic Input and Output

There are a wide range of modem acoustic frequencies, depending upon the application. Fre-

quencies down to 900Hz [78] and up to 100kHz or more are of interest. To support this, the

Micromodem-2 has a highly configurable fully-differential analog input, allowing frequency-agile

operation by selecting among four bands, which are defined by high-pass noise rejection and low-

pass anti-aliasing filters. It also has programmable gain and a 16-bit analog-to-digital converter

(ADC) that can sample at up to 1MHz. The Micromodem-1 had fixed high- and low-pass filters,

and a low-power 12-bit ADC which was not well suited to sampling above 80kHz. With our im-

provements in the analog front end, the Micromodem-2 is better suited to supporting multi-band

network deployments [35, 51,106].

To provide flexibility and capability beyond the single analog input on the modem board, both

the Micromodem-1 and the Micromodem-2 can interface to existing multi-channel analog input

boards. Future multi-channel analog input boards with improved capabilities will take advantage

of the high speed SPI or SpaceWire interfaces provided by the Micromodem-2.

Transmit power on the standard Micromodem-1 power amplifier is fixed, using a class D output

stage for efficiency. For short-range networking experiments, a low-power linear power amplifier

(at 25kHz, about 150dB re:1Pa@1m, about 1W electrical power) was developed for experiments

in transmit power control and spatial reuse in a network [83]. New interfaces available on the

Micromodem-2 will allow use of a digital pulse-width-modulated (PWM) power amplifier driven

directly by the modem’s DSP.
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4.3.5 Various Improvements: Input Voltage Range, UARTs, Timing, and Tempera-

ture

Based on direct experience and user feedback a number of new features not present on the

Micromodem-1 have been added. See Table 4.2 for a summary of some of these features.

We have added a wider input power range to support power buses up to 24V, with reverse-

voltage and over-voltage protection. The primary power input from the cable-terminated edge

connector is combined with an alternate power input on a stacking expansion connector using an

pseudo-ideal diode OR circuit, which can be used to provide redundant power to the modem.

The Micromodem-2 incorporates improved I/O capabilities and is designed to reduce overall

complexity, particularly in systems that required a separate microcomputer to interface simple

sensors to the modem. Almost all I/O is routed through the modem’s FPGA, which allows software

configuration of almost all I/O on the board.

In contrast to the Micromodem-1’s two RS232 serial ports, the Micromodem-2 has four asyn-

chronous serial ports, including two standard serial ports with RS232 signaling levels, one serial

port using 3.3V logic levels for low-power integration, and one which can be switched by software

between RS232 and RS485/RS422 signaling. A logic-level (3.3V) serial port is also available via

the high-density stacking interface connector on the modem.

The modem provides a total of 14 reconfigurable digital I/O pins to users, all of which op-

erate at 3.3V and are 5V tolerant. In addition to the aforementioned asynchronous serial ports

(RS232/422/485), the modem offers I2C and SPI synchronous serial buses. For analog signals from

user sensors, the modem includes an auxiliary low-speed analog to digital converter that is capable

of up to 240 samples per second. The modem can also measure its own input voltage. The status of

all of these inputs can be provided to users acoustically or locally via the control interface. Finally,

a switchable 3.3V power output from the modem can provide up to 100mA to external circuitry.

The Micromodem-2 includes a real-time clock with a precision of 2ppm (versus 20ppm for

typical crystals) to provide better support for networks with synchronized sleeping and longer sleep

times [45, 123], as well as improved navigation support [27, 35, 108], and tighter bounds on TDMA

network timeslots [53, 76].
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Features of Micromodem-1 and Micromodem-2
Micromodem-1 Micromodem-2

Async. Serial Ports 2 RS232 4 total (two RS232,
one 3.3V logic level,
one switchable between
RS232 and RS485/RS422)

Transmit timing Transmit on Pulse-Per-Second Transmit on nth PPS,
(PPS) signal hardware line toggle,

and precision timer
System interfaces one general-purpose input, 14 reconfigurable I/O pins,

one general-purpose output I2C, auxiliary analog input,
battery voltage monitor

Expansion interface 8-bit parallel data bus at SpaceWire-based bus
up to 8MHz, half-duplex; SPI capable of 100Mbps; SPI

Real-time Clock accurate to 20ppm; accurate to 2ppm
battery life < 10 years at 25◦C battery life > 15 years at 25◦C

Operating temperature 0◦C to +70◦C −40◦C to +70◦C
or −40◦C to +85◦C
(build options)

Table 4.2. Comparison of features of the Micromodem-1 and Micromodem-2

In some long-term deployments, the modem is configured to spend most time in the hibernate

state and wake periodically to detect scheduled transmissions of acoustic data. The improved

real-time clock accuracy results in further power savings in these applications, as shorter “active”

periods are necessary to account for worst-case clock drift between the transmitter and receiver.

As with the Micromodem-1, the modem also supports an external pulse-per-second (PPS) input,

though now it can also provide a PPS output if desired. The Micromodem-2 now has a dedicated

external transmit trigger input as well as handshake signals for sharing a transducer with another

acoustic system.

All Micromodem-2 components are specified from −40◦C to +85◦C to support Arctic deploy-

ments, though, to reduce cost, some versions include the commercial temperature range FPGA.

Although the commercial-grade FPGA is only guaranteed from 0◦C to +70◦C, the manufacturer

states that it should work properly to −40◦C. In any case, we individually test and qualify units

from −40◦C to +70◦C if required for specific deployments.
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Figure 4.3. Micromodem-2 Expansion Interfaces

4.4 Expansion Interfaces

The original Micromodem-1 uses an expansion header with an 8-bit wide parallel interface to

the floating-point coprocessor board. In addition, the receive hydrophone array is sampled by a

multichannel analog input board that is connected to the main Micromodem-1 board with another

expansion header, using a four-wire SPI synchronous serial interface. Additional connections are

used to provide control signals to power amplifiers. These legacy connectors are included on the

Micromodem-2 to provide backward compatibility (Figure 4.3).

The Micromodem-2 provides a pair of high-density, high-speed stacking connectors to interface

with other devices (Figure 4.3). While intended for future development, the connectors may be

employed by users to eliminate wiring harnesses when connecting the modem to other systems.

These connectors can provide power to the modem, regulated 3.3V power from the Micromodem-2

to other devices, asynchronous logic-level serial communication, wake-from-hibernate functionality,

SPI and I2C synchronous serial buses, digital I/O, and a high-speed SpaceWire interface.
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4.4.1 SpaceWire

The Micromodem-2 incorporates an interface based on SpaceWire (ECSS-E-ST-50-12C) for

high-speed off-board communication. SpaceWire is a flexible yet simple-to-implement protocol

originally developed by the European Space Agency for use in connecting subsystems aboard space-

craft [82]. It uses low-voltage differential signaling (LVDS) to connect devices with bi-directional,

full-duplex, point-to-point links, and a simple protocol allows data packets to be routed among

devices without large processing overhead. Open-source implementations of this protocol are avail-

able, for example on opencores.org. The Micromodem-2 complies with the electrical specifications

of the standard, but it uses the high-speed stacking connector to pass the signals rather than the

prescribed DB-9 connector. As implemented on the modem, it is capable of full-duplex wire speeds

of 100Mbps. Intended uses include communication with coprocessors (including other stacked

Micromodem-2 boards used as coprocessors), multi-channel analog input and output devices, vehi-

cle computers, Ethernet or CAN bridges, sensors, and Gumstix-based single-board Linux control

computers. SpaceWire (and the associated LVDS signaling) is robust enough to operate over dis-

tances of several meters, so it may also be used to transfer high-speed audio data to or from remote

hydrophones or amplifiers.

4.5 Software Architecture

The software architecture for the Micromodem-2 builds upon the real-time operating system

(RTOS) developed for real-time signal processing on the Micromodem-1, previously described

in [36]. The RTOS is a small and portable executive which enforces real-time read-locks and

write-locks on streaming data buffers passing through processing modules, connected together as

drawn in a typical signal-processing block diagram to build the modem and network applications.

At the application level, backward compatibility with the Micromodem-1 is maintained. However,

new features are being added, including transmit queues, a streamlined user interface and built-in

support for some wireless network functions.
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4.5.1 Transmit and Data Queues

Queues for transmit signals and payload data records are now possible due to the additional

memory that is available. These will allow users (or the network stack) to enqueue signals, such

as communication packets or navigation signals, with four different transmit timing methods. The

queue for data records allows sensor samples to be collected before transmission and can be used as

a temporary storage location for network data packets, for example in a ”data-muling” application.

The transmit queue with the highest priority is a timer-driven queue used for enforcing turn-

around times on transmissions such as “ping” packets and long-baseline (LBL) navigation signals,

where a two-way travel time needs to be measured precisely using a specified turn-around time.

An additional use of the timer-driven transmit queue could be for transmitting packets within

appropriate network timeslots [53, 76]. The second-highest priority transmit queue is for signals

which are to be transmitted on an external trigger provided by the user, often used for synchronous

one-way navigation [27, 35, 108]. Third is a queue for transmitting signals at every nth pulse-per-

second (PPS), from either an internally-generated or externally-generated PPS, as required by, for

example, periodic navigation signals. Finally, the default transmit signal queue is for signals with

no detailed timing requirements, such as standard communication packets. Each of the transmit

queues allows enqueueing signals at the tail, at the head (next to be transmitted), or by sorted

priority.

4.5.2 User Interface

The standard user interface to the Micromodem-2 is an NMEA-style asynchronous serial in-

terface (RS232, RS485, or logic-level UART), as is typical of many oceanographic instruments.

Complete backwards compatibility for the Micromodem-1 NMEA commands is preserved. NMEA-

style ASCII interfaces can be somewhat awkward to interact with, however, and they are inefficient

at transferring binary data. While the modem is flexible enough to act as an instrument’s primary

controller, we are investigating various designs for a binary protocol intended to interact with typi-

cal host processors. Although more difficult for a human to read during debugging, a binary mode

would simplify interfacing the modem to the current class of very low-power microcontrollers (e.g.,
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TI’s MSP-430s) that are becoming increasingly popular for low-powered instrument control. In the

process of changing the interface, it will be generalized to all of the modem’s interfaces, including

the acoustic link itself.

4.5.3 Applications and Integrated Networking Support

For user payload data, many Micromodem-1 users have been using the Compact Control Lan-

guage [122]. A recent extensible encoding language payload data has also been developed, the

Dynamic Compact Control Language [103]. The Micromodem-2 continues to support these meth-

ods of transferring user data.

Networking support [107] will be integrated directly onto the Micromodem-2. The goal is

to develop and support a networking toolbox, which will allow users to build simple underwater

networks quickly for specific applications.

4.6 Conclusions

The Micromodem-2 provides significant improvements in processing capability, storage, and

bandwidth. These improvements overcome previous limitations present in the Micromodem-1,

and will allow development of new capabilities with support for expanded communication rates,

underwater network deployments, and research in acoustic communications and underwater acoustic

networks.
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CHAPTER 5

CONCLUSIONS

This thesis has presented several related pieces of work on underwater acoustic networks (UANs).

Packet detection in interference in UANs, and its critical role in the effectiveness of collision-

avoidance medium-access control (MAC) protocols, is a primary focus of this thesis. Spreading

loss measures the decrease in received energy as a function of range, and determines the level of

long-range interference.

In Chapter 2, we presented a new spreading model, the mixed-exponent spreading model, for

UAN nodes using a matched-filter detector as a low-power wakeup detector. Under this model, there

are distinct spreading-loss exponents for packet detection and interference, due to the matched-

filter detector’s signal processing. We validated this spreading model numerically, and with direct

measurements of the spreading exponents from shallow-water experimental data. The “practical

spreading” model, which is widely used to model UANs, but which is poorly grounded in experiment

and theory, is inconsistent with our experimental measurements. Our results suggest caution for

its continued use to model performance of UANs.

Building on our spreading analysis, in Chapter 3, we analyzed the effectiveness of collision-

avoidance MAC protocols in UANs, namely what fraction of collisions are avoided when using the

protocol, independent of propagation delay. The low spreading loss in UANs, in particular with the

mixed-exponent spreading model, can lead to low collision-avoidance effectiveness compared with

radio networks.

In addition, in Chapter 1, we argued that many UANs will be relatively mobile and sparse

relative to terrestrial sensor networks, reducing the importance of network energy consumption

and throughput of medium-access control protocols as metrics. This survey challenges some of the
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assumptions made in past UAN research, with a goal of aiding researchers entering the area of

UANs from terrestrial sensor networks.

Finally, in Chapter 4, we documented the design decisions for a new underwater acoustic modem,

as a contribution to researchers entering the field from terrestrial sensor networks.

The following sections of this concluding chapter provides an additional summary of the contri-

butions of each chapter mentioned above.

Practical Issues in Underwater Acoustic Networks

The contributions of Chapter 1 are:

• We bring practical experience from deployments as well as literature from the ocean engi-

neering literature into the sensor network community. Previous UAN surveys were drawing

largely from terrestrial sensor networking literature, and did not adequately emphasize the

importance of mobility in UANs, nor the sparseness of many UANs.

• We identify and diagram UAN operating regimes versus geographic area and node population.

We identify the network challenges in regimes ranging from dense, small networks to sparse,

geographically large networks. There is no single regime for UANs, but in general they are

likely to be sparser and more mobile than terrestrial sensor networks with similar applications.

• In mobile networks, the energy efficiency of the network is not necessarily a constraint, since

the network energy consumption is usually dominated by vehicle propulsion energy. This is in

contrast to the assumptions of many sensor networks, as well as the assumptions of previous

UAN surveys.

• In sparse networks, channel access is not necessarily a constraint. Many papers in UANs focus

on energy-efficient medium access control protocols, which are not necessarily important for

in sparse regions of mobile UANs.
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• We highlighted the issue of channel access for periodic acoustic navigation signals, which for

physical reasons share the communications band in mobile UANs, unlike in terrestrial radio-

based networks.

• We also raised the issue of long-term fairness in disconnected mobile UANs, where mobile

nodes returning briefly to a connected region of the network need increased access to the

channel relative to nodes remaining in the connected region.

Speading Models: Understanding Interference in UANs

The contributions of Chapter 2 include:

• We derive an alternate spreading model, which call the mixed-exponent model, using physical

reasoning. The mixed-exponent model applies to energy-constrained acoustic modems that

use matched-filter detectors as a low-power wakeup detector. A distinction is drawn between

the spreading exponents for the matched-filter detector’s response to the wakeup signal versus

distant interference. The model retains most of the simplicity of the “practical spreading”

model, aiding in intuitive physical understanding of network performance.

• We validate the mixed-exponent model in uniform soundspeed profiles using two distinct nu-

merical acoustic propagation packages, on based on raytracing and one based on solving the

forward-propagating wave equation.

• We analyze data from the Kauai Acomms MURI 2011 (KAM11) shallow-water field experi-

ment, directly measuring energy-loss exponents. With scattering losses from the boundaries,

we are measuring energy-loss exponents rather than spreading-loss exponents. For modeling

shallow-water underwater acoustic networks, we recommend generalizing the spreading loss

model to an energy-loss model that includes scattering losses. We identify periods in time

where simple exponent models appear to hold, and other periods where they do not.

• We provide physical explanations for propagation differences explaining the differences between

periods when simple spreading-loss exponent models appear to hold, and when they do not.

178



• The “practical spreading” model is inconsistent with the measured energy-loss exponent values

for this particular experiment. The measured energy-loss exponents, k, were significantly

larger than 2, compared with k = 1.5 for the practical spreading model. Caution should be

used if “practical spreading” is used to model network performance.

• We partially validate the mixed-exponent model from the field experiment data analysis. In

most cases, even when simple exponent models do not hold, there is a difference between the

exponents for packet detection and interference. Usually the energy-loss exponent for packet

detection is larger than that for interference, implying that long-range interference will be a

problem for MAC protocols in UANs. Due to experimental limitations, we were not able to

validate or invalidate the waterdepth-dependence and bandwidth-dependence of the transition

ranges in the mixed-exponent spreading model.

• Using results developed in Chapter 3, on the effects of spreading on the effectiveness of

RTS/CTS MAC protocols, we evaluate RTS/CTS effectiveness for a potential network de-

ployed at the field experiment site, using the energy-loss exponent measurements from the

KAM11 field experiment.

• The extreme variability acoustic propagation at the KAM11 experiment site suggests that

robustness of network protocols would be critical in such an environment, likely in a tradeoff

with energy consumption.

Collision-Avoidance Effectiveness in UANs

The contributions of Chapter 3 include:

• We identify collision-avoidance effectiveness as an additional area of performance loss for

RTS/CTS MAC protocols in UANs, independent of propagation delay and throughput.

• We first extend previous radio-based work [135] in order to analyze RTS/CTS effectiveness for

the “practical spreading” model for UANs. With this simple spreading-only channel model,
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neglecting absorption and ambient noise, the results initially suggest that RTS/CTS effec-

tiveness is significantly lower in UANs than in radio networks, with RTS/CTS handshakes

beginning to lose effectiveness for node separations of only 22% of the maximum range, versus

about 56% for radio networks, for typical parameters.

• We next derive analytic expressions explaining how various physical-layer communication pa-

rameters affect RTS/CTS effectiveness in UANs, with a more realistic underwater acoustic

channel model, incorporating absorption and ambient noise, and again using the “practical

spreading” model with a spreading exponent of k = 1.5. These communication parameters

include detection threshold, node separation, transmit power, and center frequency (deter-

mining absorption coefficients and ambient noise power). We find that the strong effects from

absorption improve spatial reuse for most intermediate node separations to approximately the

level of collision-avoidance performance in radio networks.

• We analyze how the mixed-exponent spreading model studied in Chapter 2 affects RTS/CTS

effectiveness. With this model, RTS/CTS effectiveness drops significantly compared with the

widely used “practical spreading” model, especially at lower frequencies. For example, at

3 kHz center frequency, on average the RTS/CTS handshake would suppress under 10% of

potential interferers for all but the smallest node separations.

• We validate the results from our analytical model with network simulations incorporating the

channel model and physical layer.

Micromodem-2: An Acoustic Modem Enabling Next-Generation UANs

The contributions of Chapter 4 include:

• We document design decisions and tradeoffs for the electronics hardware design of an under-

water acoustic modem, to aid other researchers in their own designs.

• Design decisions were drawn from extensive deployment experience, as well as the practical

considerations described in Chapter 1.
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• Frequency agility is designed in from the start, allowing operation from below 1 kHz to over

100 kHz, and supporting new wideband transducers. Long-range, low-frequency, low-datarate

links are supported, for example for 100 km links under the Arctic ice at 1 kHz and 10 bps [40].

In addition, short-range, high-frequency, higher-datarate links will be supported with car-

rier frequencies over 100 kHz, improving data rate, covertness, and spatial reuse as well as

RTS/CTS effectiveness as described in Chapter 3.

• Precision timing is supported and tightly integrated, with precision and power consumption

ranging from an onboard 2 ppm temperature-compensated crystal consuming 3 μW, up to

chip-scale atomic clocks with drifts on the order of milliseconds per year consuming about

120 mW. As described in Chapter 1, precision timing is critical for vehicle navigation methods

that use travel-time measurements. Critically for scientific surveys, vehicle navigation allows

sensor measurements to be geo-referenced. On small underwater vehicles, a single acoustic

transducer is generally shared between acoustic communication and navigation, so navigation

functions must be integrated with the acoustic modem.

• We describe interface requirements for robust integrations in vehicles and subsea systems,

again drawing from deployment experience. These include practical details on voltage ranges

and power supply protection, input and output protection, and data interfaces.
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APPENDIX A

SUPPLEMENTAL ENERGY-VERSUS-RANGE PLOTS FROM
RAYTRACING VALIDATION

For completeness, this appendix presents Bellhop raytracing energy-versus-range results, beyond

the results shown in the main text. Coherent and incoherent energy are plotted for a fixed bandwidth

of 4 kHz and varying depths of 50 m, 75 m, 100 m, 150 m, and 200 m, as well as at a fixed depth

of 100 m and varying bandwidths of 4 kHz to 31 Hz.

Incoherent transition range is unaffected by bandwidth, whereas coherent transition range scales

linearly with bandwidth.

The coherent exponent estimates for depths of 200 m and 150 m beyond the transition range

have only a few points in their fits. Those fits have exponent estimates lower than 1.5 and have

larger margins of error compared with the other coherent exponent estimates. The plot for a

depth of 50 m has its energies dropping slightly at the largest ranges, explained in the caption

for Figure 2.6. The energy within the transition region is somewhat variable since the addition of

individual arrivals still is a relatively large effect to the overall energy.

Each energy estimate at each range is the average of 1000 realizations of impulse responses with

independent randomized phases, as described in Section 2.4.3.
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Figure A.1. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 50 m.
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Figure A.2. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 75 m.
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Figure A.3. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 100 m.
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Figure A.4. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 150 m.
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Figure A.5. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 200 m.
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Figure A.6. Coherent and incoherent energy for a bandwidth of 2 kHz and a depths of 100 m.
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Figure A.7. Coherent and incoherent energy for a bandwidth of 1 kHz and a depths of 100 m.
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Figure A.8. Coherent and incoherent energy for a bandwidth of 500 Hz and a depths of 100 m.
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Figure A.9. Coherent and incoherent energy for a bandwidth of 250 Hz and a depths of 100 m.
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Figure A.10. Coherent and incoherent energy for a bandwidth of 125 Hz and a depths of 100 m.
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Figure A.11. Coherent and incoherent energy for a bandwidth of 63 Hz and a depths of 100 m.
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Figure A.12. Coherent and incoherent energy for a bandwidth of 31 Hz and a depths of 100 m.
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APPENDIX B

RAM CODE

The RAM code we are using is Version 1.1, dated 30 April 1998 by M.D. Collins [19], but it has

been modified by Jim Preisig and Tim Duda to output complex pressure amplitude rather than the

magnitude of pressure. (Due to the linear output of complex pressure amplitudes, the filename is

lorambathfollowbottom.f.)

The Fortran code listing is below:

program ram

c Modified by Tim Duda to take just a single bottom specification in the

c beginning and carry it through in matrc subr. March 2002

c

c Make a new proflu sub to ’update profiles’ for water but not bottom.

c Taken from profl sub.

c

c Bottom profiles are now indexed from the seabed at input time,

c so z=zero on those profiles is equal to the seabed ’surface’.

c

c Extra input parameter in a line by itself at the start, depth range

c of bottom parameters update as bathy varys with range.

c

c Has Jim Preisig’s Linear Output format at toutput time, from lofepe.
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c

c ******************************************************************

c ***** Range-dependent Acoustic Model, Version 1.1, 30-Apr-98 *****

c ******************************************************************

c

c This code was developed by Michael D. Collins at the Naval

c Research Laboratory in Washington, DC. It solves range-dependent

c ocean acoustics problems with the split-step Pade algorithm

c [M. D. Collins, J. Acoust. Soc. Am. 93, 1736-1742 (1993)]. A

c user’s guide and updates of the code are available via anonymous

c ftp from ram.nrl.navy.mil. Version 1.0 is designed for running on

c a single processor. Version 1.0p (which requires double precision

c for very large range steps) is designed for parallel processing.

c

c Version 1.1 contains two improvements:

c

c (1) An improved self starter. Stability is improved by using the

c factor (1-X)**2 instead of (1+X)**2 to smooth the delta function.

c The factor (1+X)**2 is nearly singular for some problems involving

c deep water and/or weak attenuation. Numerical problems associated

c with this singularity were detected by Eddie Scheer of Woods Hole

c Oceanographic Institute.

c

c (2) Elimination of underflow problems. A very small number is

c added to the solution in subroutine solve to prevent underflow,

c which can adversely affect run time on some computers. This

c improvement was suggested by Ed McDonald of the SACLANT Undersea

c Research Centre.
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c

complex ci,ksq,ksqb,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2

real k0,ksqw

character (LEN=256) :: fileroot

c

c mr=bathymetry points, mz=depth grid, mp=pade terms.

c mbz=bottom grid

c

parameter (mr=8000,mz=80000,mp=16,mbz=15000)

dimension rb(mr),zb(mr),cw(mz),cb(mbz),rhob(mbz),

> attn(mbz),alpw(mz),

> alpb(mbz),f1(mz),f2(mz),f3(mz),ksq(mz),

> ksqw(mz),ksqb(mbz),u(mz),

> v(mz),tlg(mz),r1(mz,mp),r2(mz,mp),r3(mz,mp),s1(mz,mp),

> s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)

c

call get_command_argument( 1, fileroot)

open(unit=1,status=’old’, file=trim( fileroot ) // ’.in’)

open(unit=2,status=’unknown’,file=trim( fileroot ) // ’.pch’)

open(unit=3,status=’unknown’,file=trim( fileroot ) // ’.tll’)

open(unit=4,status=’unknown’,file=trim( fileroot ) // ’.tlg’)

open(unit=5,status=’unknown’,file=trim( fileroot ) // ’.afg’)

open(unit=6,status=’unknown’,file=trim( fileroot ) // ’.af1’)

c

c MAIN PROGRAM LOOP ------------------------------------MAIN

c

191



call setup(mr,mz,nz,mp,np,ns,mdr,ndr,ndz,iz,nzplt,lz,ib,ir,dir,dr,

> dz,pi,eta,eps,omega,rmax,c0,k0,ci,r,rp,rs,rb,zb,cw,cb,rhob,

> attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,

> pd1,pd2,tlg,zmaxbot,nzbot,mbz)

c

c March the acoustic field out in range.

c

1 call updat(mr,mz,nz,mp,np,iz,ib,dr,dz,eta,omega,rmax,c0,k0,ci,r,

> rp,rs,rb,zb,cw,cb,rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,

> r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

c

call solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)

r=r+dr

c if(mod(r,1000.0).eq.0)write(*,*)r

call outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)

if(r.lt.rmax)go to 1

c

close(1)

close(2)

close(3)

close(4)

c

close(5)

close(6)

c

stop

end
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c

c -------------------------------------------------------------

c Initialize the parameters, acoustic field, and matrices.

c

c ---------------------------------------------- SETUP

c

subroutine setup(mr,mz,nz,mp,np,ns,mdr,ndr,ndz,iz,nzplt,lz,ib,ir,

> dir,dr,dz,pi,eta,eps,omega,rmax,c0,k0,ci,r,rp,rs,rb,zb,cw,cb,

> rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,

> s3,pd1,pd2,tlg,zmaxbot,nzbot,mbz)

c

complex ci,u(mz),v(mz),ksq(mz),ksqb(mbz),r1(mz,mp),r2(mz,mp),

> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)

real k0,rb(mr),zb(mr),cw(mz),cb(mbz),rhob(mbz),attn(mbz),alpw(mz),

> alpb(mbz),f1(mz),f2(mz),f3(mz),ksqw(mz),tlg(mz)

c

read(1,*)

read(1,*)freq,zs,zr

read(1,*)rmax,dr,ndr

read(1,*)zmax,dz,ndz,zmplt

read(1,*)c0,np,ns,rs

read(1,*)zmaxbot

c --------- Tim D. march 2001 zmaxbot is z max of bottom model

c

write(3,*)(rmax/dr)

c

i=1

1 read(1,*)rb(i),zb(i)
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if(rb(i).lt.0.0)go to 2

i=i+1

go to 1

2 rb(i)=2.0*rmax

zb(i)=zb(i-1)

c

pi=4.0*atan(1.0)

ci=cmplx(0.0,1.0)

eta=1.0/(40.0*pi*alog10(exp(1.0)))

eps=1.0e-20

ib=1

mdr=0

r=dr

omega=2.0*pi*freq

ri=1.0+zr/dz

ir=ifix(ri)

dir=ri-float(ir)

k0=omega/c0

nz=zmax/dz-0.5

nzbot=zmaxbot/dz-0.5

nzplt=zmplt/dz-0.5

z=zb(1)

iz=1.0+z/dz

iz=max(2,iz)

iz=min(nz,iz)

if(rs.lt.dr)rs=2.0*rmax

c

if(nz+2.gt.mz)then

194



write(*,*)’ Need to increase parameter mz to ’,nz+2

stop

end if

if(np.gt.mp)then

write(*,*)’ Need to increase parameter mp to ’,np

stop

end if

if(i.gt.mr)then

write(*,*)’ Need to increase parameter mr to ’,i

stop

end if

c

do 3 j=1,mp

r3(1,j)=0.0

r1(nz+2,j)=0.0

3 continue

do 4 i=1,nz+2

u(i)=0.0

v(i)=0.0

4 continue

lz=0

do 5 i=ndz,nzplt,ndz

lz=lz+1

5 continue

write(4,*)lz

write(5,*)lz,dz,ndz,ndr,dr

c

c The initial profiles and starting field.
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c

call profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,attn,

> alpw,alpb,ksqw,ksqb,nzbot,mbz)

call selfs(mz,nz,mp,np,ns,iz,zs,dr,dz,pi,c0,k0,rhob,alpw,alpb,ksq,

> ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2,mbz,nzbot)

call outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)

c

c The propagation matrices.

c

call epade(mp,np,ns,1,k0,c0,dr,pd1,pd2)

call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,

> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

c

return

end

c

c ----------------------------------------

c

c Initialize all parameter profiles -------------------- PROFL

c

subroutine profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,

> attn,alpw,alpb,ksqw,ksqb,nzbot,mbz)

complex ci,ksqb(mbz)

real k0,cw(mz),cb(mbz),rhob(mbz),attn(mbz),alpw(mz),

> alpb(mbz),ksqw(mz)

c

call zread(mz,nz,dz,cw)
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call zread(mbz,nz,dz,cb)

call zread(mbz,nz,dz,rhob)

call zread(mbz,nz,dz,attn)

rp=2.0*rmax

read(1,*,end=1)rp

c write(*,*)’read the input through next range value’

c

1 do 2 i=1,nz+2

ksqw(i)=(omega/cw(i))**2-k0**2

c ksqb(i)=((omega/cb(i))*(1.0+ci*eta*attn(i)))**2-k0**2

alpw(i)=sqrt(cw(i)/c0)

c alpb(i)=sqrt(rhob(i)*cb(i)/c0)

2 continue

30 do 20 i=1,nzbot+2

ksqb(i)=((omega/cb(i))*(1.0+ci*eta*attn(i)))**2-k0**2

alpb(i)=sqrt(rhob(i)*cb(i)/c0)

c write(*,*)’botdep ksqb alpb ’,i*dz,ksqb(i),alpb(i)

20 continue

c

return

end

c

c Update water profiles while propagating ----------- PROFLU

c

subroutine proflu(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,

> alpw,ksqw)

complex ci
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real k0,cw(mz),alpw(mz),ksqw(mz)

c

call zread(mz,nz,dz,cw)

rp=2.0*rmax

read(1,*,end=1)rp

c

1 do 2 i=1,nz+2

ksqw(i)=(omega/cw(i))**2-k0**2

alpw(i)=sqrt(cw(i)/c0)

2 continue

c

return

end

c

c Individual profile reader and interpolator ---------- ZREAD

c

subroutine zread(mz,nz,dz,prof)

real prof(mz)

c

do 1 i=1,nz+2

prof(i)=-1.0

1 continue

read(1,*)zi,profi

prof(1)=profi

i=1.5+zi/dz

prof(i)=profi

iold=i

2 read(1,*)zi,profi
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if(zi.lt.0.0)go to 3

i=1.5+zi/dz

if(i.eq.iold)i=i+1

prof(i)=profi

iold=i

go to 2

3 prof(nz+2)=prof(i)

i=1

j=1

4 i=i+1

if(prof(i).lt.0.0)go to 4

if(i-j.eq.1)go to 6

do 5 k=j+1,i-1

prof(k)=prof(j)+float(k-j)*(prof(i)-prof(j))/float(i-j)

5 continue

6 j=i

if(j.lt.nz+2)go to 4

c

return

end

c

c The tridiagonal matrices. ----------------------- MATRC

c

subroutine matrc(mz,nz,mp,np,iz,jz,dz,k0,rhob,alpw,alpb,ksq,ksqw,

> ksqb,f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

complex d1,d2,d3,rfact,ksq(mz),ksqb(mbz),r1(mz,mp),r2(mz,mp),

> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)

real k0,rhob(mbz),f1(mz),f2(mz),f3(mz),alpw(mz),alpb(mbz),ksqw(mz)
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c

a1=k0**2/6.0

a2=2.0*k0**2/3.0

a3=k0**2/6.0

cfact=0.5/dz**2

dfact=1.0/12.0

c

c New matrices when iz.eq.jz. NEW INPUT POINTS

c

if(iz.eq.jz)then

i1=2

i2=nz+1

do 1 i=1,iz

f1(i)=1.0/alpw(i)

f2(i)=1.0

f3(i)=alpw(i)

ksq(i)=ksqw(i)

1 continue

ico=0

c do 2 i=iz+1,nz+2 commented out

c CHANGE THE BOTTOM STUFF HERE.

do 2 i=iz+1,iz+1+nzbot

ico=ico+1

f1(i)=rhob(ico)/alpb(ico)

f2(i)=1.0/rhob(ico)

f3(i)=alpb(ico)

ksq(i)=ksqb(ico)

2 continue
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end if

c

c Updated matrices when iz.ne.jz. (Bottom depth changed)

c

if(iz.gt.jz)then

i1=jz

i2=iz+1

c change this to update galerkin with new bottom

i2=nz+1

do 3 i=jz+1,iz

f1(i)=1.0/alpw(i)

f 2(i)=1.0

f3(i)=alpw(i)

ksq(i)=ksqw(i)

c write(*,*)’chgd water pt i= ’, i

3 continue

ico=0;

do 32 i=iz+1,iz+1+nzbot

ico=ico+1

f1(i)=rhob(ico)/alpb(ico)

f2(i)=1.0/rhob(ico)

f3(i)=alpb(ico)

ksq(i)=ksqb(ico)

32 continue

c write(*,*)’ chgd bot to ind i= ’,i

c write(*,*)’ ksq(i-200)= ’,ksq(i-200)

c write(*,*)’ changed bottom through depth i*dz= ’,i*dz

end if

201



c

c CHANGE THE BOTTOM STUFF HERE.

if(iz.lt.jz)then

i1=iz

c i2=jz+1

i2=nz+1

ico=0

do 42 i=iz+1,iz+1+nzbot

ico=ico+1

f1(i)=rhob(ico)/alpb(ico)

f2(i)=1.0/rhob(ico)

f3(i)=alpb(ico)

ksq(i)=ksqb(ico)

42 continue

c write(*,*)’ changed bottom through depth i*dz= ’,i*dz

end if

c

do 6 i=i1,i2

c

c Discretization by Galerkin’s method.

c

c1=cfact*f1(i)*(f2(i-1)+f2(i))*f3(i-1)

c2=-cfact*f1(i)*(f2(i-1)+2.0*f2(i)+f2(i+1))*f3(i)

c3=cfact*f1(i)*(f2(i)+f2(i+1))*f3(i+1)

d1=c1+dfact*(ksq(i-1)+ksq(i))

d2=c2+dfact*(ksq(i-1)+6.0*ksq(i)+ksq(i+1))

d3=c3+dfact*(ksq(i)+ksq(i+1))

c
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do 5 j=1,np

r1(i,j)=a1+pd2(j)*d1

r2(i,j)=a2+pd2(j)*d2

r3(i,j)=a3+pd2(j)*d3

s1(i,j)=a1+pd1(j)*d1

s2(i,j)=a2+pd1(j)*d2

s3(i,j)=a3+pd1(j)*d3

5 continue

6 continue

c

c The matrix decomposition.

c

do 9 j=1,np

do 7 i=i1,iz

rfact=1.0/(r2(i,j)-r1(i,j)*r3(i-1,j))

r1(i,j)=r1(i,j)*rfact

r3(i,j)=r3(i,j)*rfact

s1(i,j)=s1(i,j)*rfact

s2(i,j)=s2(i,j)*rfact

s3(i,j)=s3(i,j)*rfact

7 continue

c

do 8 i=i2,iz+2,-1

rfact=1.0/(r2(i,j)-r3(i,j)*r1(i+1,j))

r1(i,j)=r1(i,j)*rfact

r3(i,j)=r3(i,j)*rfact

s1(i,j)=s1(i,j)*rfact

s2(i,j)=s2(i,j)*rfact
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s3(i,j)=s3(i,j)*rfact

8 continue

c

r2(iz+1,j)=r2(iz+1,j)-r1(iz+1,j)*r3(iz,j)

r2(iz+1,j)=r2(iz+1,j)-r3(iz+1,j)*r1(iz+2,j)

r2(iz+1,j)=1.0/r2(iz+1,j)

c

9 continue

c

return

end

c

c The tridiagonal solver. ----------------------- SOLVE

c

subroutine solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)

complex u(mz),v(mz),r1(mz,mp),r2(mz,mp),r3(mz,mp),s1(mz,mp),

> s2(mz,mp),s3(mz,mp)

eps=1.0e-30

c

do 6 j=1,np

c

c The right side.

c

do 1 i=2,nz+1

v(i)=s1(i,j)*u(i-1)+s2(i,j)*u(i)+s3(i,j)*u(i+1)+eps

1 continue

c

c The elimination steps.
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c

do 2 i=3,iz

v(i)=v(i)-r1(i,j)*v(i-1)+eps

2 continue

do 3 i=nz,iz+2,-1

v(i)=v(i)-r3(i,j)*v(i+1)+eps

3 continue

c

u(iz+1)=(v(iz+1)-r1(iz+1,j)*v(iz)-r3(iz+1,j)*v(iz+2))*

> r2(iz+1,j)+eps

c

c The back substitution steps.

c

do 4 i=iz,2,-1

u(i)=v(i)-r3(i,j)*u(i+1)+eps

4 continue

do 5 i=iz+2,nz+1

u(i)=v(i)-r1(i,j)*u(i-1)+eps

5 continue

6 continue

c

return

end

c

c Matrix updates. ------------------------ UPDAT

c

subroutine updat(mr,mz,nz,mp,np,iz,ib,dr,dz,eta,omega,rmax,c0,k0,

> ci,r,rp,rs,rb,zb,cw,cb,rhob,attn,alpw,alpb,ksq,ksqw,ksqb,f1,f2,
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> f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

complex ci,ksq(mz),ksqb(mbz),r1(mz,mp),r2(mz,mp),r3(mz,mp),

> s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)

real k0,rb(mr),zb(mr),attn(mbz),cb(mbz),rhob(mbz),cw(mz),ksqw(mz),

> f1(mz),f2(mz),f3(mz),alpw(mz),alpb(mbz)

c

c Varying bathymetry.

c

if(r.ge.rb(ib+1))ib=ib+1

jz=iz

z=zb(ib)+(r+0.5*dr-rb(ib))*(zb(ib+1)-zb(ib))/(rb(ib+1)-rb(ib))

iz=1.0+z/dz

iz=max(2,iz)

iz=min(nz,iz)

if(iz.ne.jz)then

c write(*,*)’var bath at range r = ’,r,z,iz,jz,’ ( r z iz jz)’

call matrc(mz,nz,mp,np,iz,jz,dz,k0,rhob,alpw,alpb,ksq,

> ksqw,ksqb,f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

end if

c

c Varying profiles.

c

if(r.ge.rp)then

call profl(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,cb,rhob,

> attn,alpw,alpb,ksqw,ksqb,nzbot,mbz)

c call proflu(mz,nz,ci,dz,eta,omega,rmax,c0,k0,rp,cw,

c > alpw,ksqw)

call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,
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> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

end if

c

c Turn off the stability constraints.

c

if(r.ge.rs)then

ns=0

rs=2.0*rmax

call epade(mp,np,ns,1,k0,c0,dr,pd1,pd2)

call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,

> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

end if

c

return

end

c

c The self-starter. ------------------ SELFS

c

subroutine selfs(mz,nz,mp,np,ns,iz,zs,dr,dz,pi,c0,k0,rhob,alpw,

> alpb,ksq,ksqw,ksqb,f1,f2,f3,u,v,r1,r2,r3,s1,s2,s3,pd1,pd2,mbz,

> nzbot)

complex u(mz),v(mz),ksq(mz),ksqb(mbz),r1(mz,mp),r2(mz,mp),

> r3(mz,mp),s1(mz,mp),s2(mz,mp),s3(mz,mp),pd1(mp),pd2(mp)

real k0,rhob(mbz),alpw(mz),alpb(mbz),f1(mz),f2(mz),f3(mz),

> ksqw(mz)

c

c Conditions for the delta function.

c
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si=1.0+zs/dz

is=ifix(si)

dis=si-float(is)

u(is)=(1.0-dis)*sqrt(2.0*pi/k0)/(dz*alpw(is))

u(is+1)=dis*sqrt(2.0*pi/k0)/(dz*alpw(is))

c

c Divide the delta function by (1-X)**2 to get a smooth rhs.

c

pd1(1)=0.0

pd2(1)=-1.0

call matrc(mz,nz,mp,1,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,

> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

call solve(mz,nz,mp,1,iz,u,v,r1,r2,r3,s1,s2,s3)

call solve(mz,nz,mp,1,iz,u,v,r1,r2,r3,s1,s2,s3)

c

c Apply the operator (1-X)**2*(1+X)**(-1/4)*exp(ci*k0*r*sqrt(1+X)).

c

call epade(mp,np,ns,2,k0,c0,dr,pd1,pd2)

call matrc(mz,nz,mp,np,iz,iz,dz,k0,rhob,alpw,alpb,ksq,ksqw,ksqb,

> f1,f2,f3,r1,r2,r3,s1,s2,s3,pd1,pd2,nzbot,mbz)

call solve(mz,nz,mp,np,iz,u,v,r1,r2,r3,s1,s2,s3)

c

return

end

c

c Output field. ----------------------- OUTPT

c

subroutine outpt(mz,mdr,ndr,ndz,iz,nzplt,lz,ir,dir,eps,r,f3,u,tlg)
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complex ur,u(mz),ci,af(mz)

real f3(mz),tlg(mz)

c

eye=cmplx(0.0,1.0)

c

ur=(1.0-dir)*f3(ir)*u(ir)+dir*f3(ir+1)*u(ir+1)

tl=-20.0*alog10(cabs(ur)+eps)+10.0*alog10(r+eps)

write(3,*)r,tl

c write(*,*)r,tl

c

mdr=mdr+1

if(mdr.eq.ndr)then

mdr=0

c

j=0

iflag=1

c OUTPUT: first point is at surface, and always

c gets skipped unless ndz=1;

do 1 i=ndz,nzplt,ndz

ur=u(i)*f3(i)

j=j+1

tlg(j)=-20.0*alog10(cabs(ur)+eps)+10.0*alog10(r+eps)

af(j)=ur*( exp(eye*ko*r)/sqrt(r+eps) )

c

c Mark the ocean bottom.

c

if((i.gt.iz).and.(iflag.eq.1))then

tlg(j)=0.0
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iflag=0

end if

c

1 continue

write(4,*)(tlg(j),j=1,lz)

C write(5,*)(af(j),j=1,lz)

write(5,701)( real(af(j)), j=1,lz)

write(5,701)( aimag(af(j)), j=1,lz)

701 format(f14.11)

end if

c

return

end

c

c The coefficients of the rational approximation. ---- EPADE

c

subroutine epade(mp,np,ns,ip,k0,c0,dr,pd1,pd2)

c

implicit real*8 (a-h,o-z)

complex*16 ci,z1,z2,g,dg,dh1,dh2,dh3,a,b

complex*8 pd1(mp),pd2(mp)

real*8 nu

real*4 k0,c0,dr

parameter (m=40)

dimension bin(m,m),a(m,m),b(m),dg(m),dh1(m),dh2(m),dh3(m),fact(m)

pi=4.0d0*datan(1.0d0)

ci=dcmplx(0.0d0,1.0d0)

sig=k0*dr
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n=2*np

c

write(2,*)’ ’

if(ip.eq.1)then

write(2,*)’ Split-step Pade approximation.’

write(2,*)’ ’

write(2,*)’ x cp err amp’

nu=0.0d0

alp=0.0d0

else

write(2,*)’ Self-starter approximation.’

write(2,*)’ ’

write(2,*)’ x cp err amp’

nu=1.0d0

alp=-0.25d0

end if

write(2,*)’ ’

c

c The factorials.

c

fact(1)=1.0d0

do 1 i=2,n

fact(i)=dfloat(i)*fact(i-1)

1 continue

c

c The binomial coefficients.

c

do 2 i=1,n+1
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bin(i,1)=1.0d0

bin(i,i)=1.0d0

2 continue

do 4 i=3,n+1

do 3 j=2,i-1

bin(i,j)=bin(i-1,j-1)+bin(i-1,j)

3 continue

4 continue

c

do 6 i=1,n

do 5 j=1,n

a(i,j)=0.0d0

5 continue

6 continue

c

c The accuracy constraints.

c

call deriv(m,n,sig,alp,dg,dh1,dh2,dh3,bin,nu)

c

do 7 i=1,n

b(i)=dg(i+1)

7 continue

do 9 i=1,n

if(2*i-1.le.n)a(i,2*i-1)=fact(i)

do 8 j=1,i

if(2*j.le.n)a(i,2*j)=-bin(i+1,j+1)*fact(j)*dg(i-j+1)

8 continue

9 continue
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c

c The stability constraints.

c

if(ns.ge.1)then

z1=-3.0d0

b(n)=-1.0d0

do 10 j=1,np

a(n,2*j-1)=z1**j

a(n,2*j)=0.0d0

10 continue

end if

c

if(ns.ge.2)then

z1=-1.5d0

b(n-1)=-1.0d0

do 11 j=1,np

a(n-1,2*j-1)=z1**j

a(n-1,2*j)=0.0d0

11 continue

end if

c

call gauss(m,n,a,b)

c

dh1(1)=1.0d0

do 12 j=1,np

dh1(j+1)=b(2*j-1)

12 continue

call zroots(dh1,np,dh2)
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do 13 j=1,np

pd1(j)=-1.0d0/dh2(j)

13 continue

c

dh1(1)=1.0d0

do 14 j=1,np

dh1(j+1)=b(2*j)

14 continue

call zroots(dh1,np,dh2)

do 15 j=1,np

pd2(j)=-1.0d0/dh2(j)

15 continue

c

c Check accuracy and stability.

c

x=-2.0d0

delx=0.02d0

do 17 i=1,151

z1=1.0d0

z2=1.0d0

do 16 j=1,np

z1=z1*(1.0d0+pd1(j)*x)

z2=z2*(1.0d0+pd2(j)*x)

16 continue

z1=z1/z2

z2=0.0d0

cp=0.0d0

if(x.gt.-0.99d0)then
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z2=g(ci,sig,x,alp,nu)

cp=c0/dsqrt(1.0d0+x)

end if

write(2,*)sngl(x),sngl(cp),sngl(cdabs(z2-z1)),sngl(cdabs(z1))

x=x+delx

17 continue

c

return

end

c

c The operator function. --------------- FUNCTION G

c

function g(ci,sig,x,alp,nu)

complex*16 ci,g

real*8 alp,sig,x,nu

g=(1.0d0-nu*x)**2*cdexp(alp*dlog(1.0d0+x)+

> ci*sig*(-1.0d0+dsqrt(1.0d0+x)))

return

end

c

c The derivatives of the operator function at x=0. -- DERIV

c

subroutine deriv(m,n,sig,alp,dg,dh1,dh2,dh3,bin,nu)

implicit real*8 (a-h,o-z)

complex*16 ci,dg(m),dh1(m),dh2(m),dh3(m)

real*8 bin(m,m),nu

ci=dcmplx(0.0d0,1.0d0)

c
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dh1(1)=0.5d0*ci*sig

exp1=-0.5d0

dh2(1)=alp

exp2=-1.0d0

dh3(1)=-2.0d0*nu

exp3=-1.0d0

do 1 i=2,n

dh1(i)=dh1(i-1)*exp1

exp1=exp1-1.0d0

dh2(i)=dh2(i-1)*exp2

exp2=exp2-1.0d0

dh3(i)=-nu*dh3(i-1)*exp3

exp3=exp3-1.0d0

1 continue

c

dg(1)=1.0d0

dg(2)=dh1(1)+dh2(1)+dh3(1)

do 3 i=2,n

dg(i+1)=dh1(i)+dh2(i)+dh3(i)

do 2 j=1,i-1

dg(i+1)=dg(i+1)+bin(i,j)*(dh1(j)+dh2(j)+dh3(j))*dg(i-j+1)

2 continue

3 continue

c

return

end

c

c Gaussian elimination. -------------------------- GAUSS
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c

subroutine gauss(m,n,a,b)

implicit real*8 (a-h,o-z)

complex*16 a(m,m),b(m)

c

c Downward elimination.

c

do 4 i=1,n

if(i.lt.n)call pivot(m,n,i,a,b)

a(i,i)=1.0d0/a(i,i)

b(i)=b(i)*a(i,i)

if(i.lt.n)then

do 1 j=i+1,n

a(i,j)=a(i,j)*a(i,i)

1 continue

do 3 k=i+1,n

b(k)=b(k)-a(k,i)*b(i)

do 2 j=i+1,n

a(k,j)=a(k,j)-a(k,i)*a(i,j)

2 continue

3 continue

end if

4 continue

c

c Back substitution.

c

do 6 i=n-1,1,-1

do 5 j=i+1,n
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b(i)=b(i)-a(i,j)*b(j)

5 continue

6 continue

c

return

end

c

c Rows are interchanged for stability.

c

subroutine pivot(m,n,i,a,b)

implicit real*8 (a-h,o-z)

complex*16 temp,a(m,m),b(m)

c

i0=i

amp0=cdabs(a(i,i))

do 1 j=i+1,n

amp=cdabs(a(j,i))

if(amp.gt.amp0)then

i0=j

amp0=amp

end if

1 continue

if(i0.eq.i)return

c

temp=b(i)

b(i)=b(i0)

b(i0)=temp

do 2 j=i,n
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temp=a(i,j)

a(i,j)=a(i0,j)

a(i0,j)=temp

2 continue

c

return

end

c

c Subroutine zroots modified from Numerical Recipes.--- ZROOTS

c

subroutine zroots(a,m,roots)

implicit real*8 (a-h,o-z)

parameter (maxm=101)

complex*16 x,b,c,ad(maxm),a(m+1),roots(m)

eps=1.0d-14

c

do 1 j=1,m+1

ad(j)=a(j)

1 continue

c

do 3 j=m,1,-1

x=dcmplx(0.0d0,0.0d0)

call laguer(ad,j,x,its)

xre=2.0d0*dabs(dreal(x))*eps**2

xim=dabs(dimag(x))

if(xim.le.xre)x=dcmplx(dreal(x),0.d0)

roots(j)=x

b=ad(j+1)
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do 2 jj=j,1,-1

c=ad(jj)

ad(jj)=b

b=x*b+c

2 continue

3 continue

c

do 4 j=1,m

call laguer(a,m,roots(j),its)

4 continue

c

do 7 j=2,m

x=roots(j)

do 5 i=j-1,1,-1

if(dreal(roots(i)).le.dreal(x))go to 6

roots(i+1)=roots(i)

5 continue

i=0

6 roots(i+1)=x

7 continue

c

return

end

c

c Subroutine laguer modified from Numerical Recipes. --------- LAGUER

c

subroutine laguer(a,m,x,its)

implicit real*8 (a-h,o-z)
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parameter (mr=8,mt=10,maxit=mt*mr)

real*8 frac(mr)

complex*16 dx,x,x1,b,d,f,g,h,sq,gp,gm,g2,a(m+1)

save frac

data frac /0.5d0,0.25d0,0.75d0,0.13d0,0.38d0,0.62d0,0.88d0,1.0d0/

epss=2.0d-15

c

do 2 iter=1,maxit

its=iter

b=a(m+1)

err=abs(b)

d=dcmplx(0.0d0,0.0d0)

f=dcmplx(0.0d0,0.0d0)

abx=cdabs(x)

do 1 j=m,1,-1

f=x*f+d

d=x*d+b

b=x*b+a(j)

err=abs(b)+abx*err

1 continue

c

err=epss*err

if(cdabs(b).le.err) then

return

else

g=d/b

g2=g*g

h=g2-2.0d0*f/b
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sq=cdsqrt(dfloat(m-1)*(dfloat(m)*h-g2))

gp=g+sq

gm=g-sq

abp=cdabs(gp)

abm=cdabs(gm)

if(abp.lt.abm)gp=gm

if(dmax1(abp,abm).gt.0.0d0)then

dx=dfloat(m)/gp

else

dx=cdexp(dcmplx(dlog(1.0d0+abx),dfloat(iter)))

endif

endif

x1=x-dx

if(x.eq.x1)return

if(mod(iter,mt).ne.0)then

x=x1

else

x=x-dx*frac(iter/mt)

endif

2 continue

c

c pause ’ too many iterations in laguer’

c

return

end
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APPENDIX C

SUPPLEMENTAL ENERGY-VERSUS-RANGE PLOTS FROM
WAVE-EQUATION MODELING

For completeness, this appendix presents RAM wave-equation energy-versus-range results, be-

yond the results shown in the main text. Coherent and incoherent energy are plotted for a fixed

bandwidth of 4 kHz and varying depths of 50 m, 75 m, 100 m, 150 m, and 200 m, as well as at a

fixed depth of 100 m and varying bandwidths of 4 kHz to 500 Hz.

Incoherent transition range is unaffected by bandwidth, whereas coherent transition range scales

linearly with bandwidth.
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Figure C.1. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 50 m.
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Figure C.2. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 75 m.
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Figure C.3. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 100 m.
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Figure C.4. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 150 m.
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Figure C.5. Coherent and incoherent energy for a bandwidth of 4 kHz and a depths of 200 m.
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Figure C.6. Coherent and incoherent energy for a bandwidth of 2 kHz and a depths of 100 m.
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Figure C.7. Coherent and incoherent energy for a bandwidth of 1 kHz and a depths of 100 m.
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Figure C.8. Coherent and incoherent energy for a bandwidth of 500 Hz and a depths of 100 m.
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APPENDIX D

CHARACTERIZATION OF RESIDUALS FOR
ENERGY-VERSUS-RANGE EXPONENT FITS FROM KAM11

FIELD EXPERIMENT

In this appendix, we characterize the residuals from the linear least-squares estimates (LLSEs)

of the energy-loss exponents in Section 2.6.4. For quality-of-fit assessment, we assess the normality

of the residual distribution as well as the linearity and variance of the residuals as a function of

fitted value [104].

The normality of the residual distribution is assessed visually with histograms as well as a

quantile-quantile plot versus a normal distribution. The histograms give a direct visual assessment

of the distribution function. The quantile-quantile plots graph the empirical cumulative distribution

function of the residuals on the vertical axis, versus the sorted residual values on the horizontal

axis. The residuals are plotted with “+” symbols. A normal distribution with the same 25th

and 75th percentiles is overlaid in dashed lines on the plot for comparison. If the residuals have

approximately normal distributions, they will lie over the dashed lines. In general, deviations of

the residual distributions are most visible at the tails of the distributions. LLSE fits and confidence

intervals are moderately robust to non-normal errors (hence residuals), so long as there are not

large outliers [104].

Two additional assessments of the quality of fit are visualized by plotting binned residual values

as a function of fitted value. We used five bins spread equally across the range of fitted values,

and plotted boxplots with a box shown for each of the five bins. The boxplots show the median

residual value and the central fifty percentiles of residual values for each of the bins across fitted

values. Good quality fits will have approximately equal residual variances across fitted values, as

well as residual means and medians which are approximately zero, indicating that the fitted data
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is in fact consistent with a linear model. Though there are some issues with the fits assessed here,

they are generally of acceptable quality for our estimates, in particular for JD190,SYS3.

Each of the figures on the following pages, Figures D.1-D.5, shows six sets of plots. There is

one set of plots for each of the unweighted and weighted fits for the coherent (green), incoherent

(red), and noise (black) energies. Each set of characterization plots consists of is a histogram of

the residuals, a quantile-quantile plot of the residuals versus a normal distribution, and a boxplot

of residuals versus fitted value.
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Figure D.1. JD189 fit residuals for fits shown in Figure 2.24. Unweighted LLSE fits at top, and
weighted LLSE fits at bottom (showing unweighted residuals).
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Figure D.2. JD190,SYS3 fit residuals for fits shown in Figure 2.25. Unweighted LLSE fits at top,
and weighted LLSE fits at bottom (showing unweighted residuals). The residual distribution for
the weighted fit is bimodal due to the differences in coherent energy estimates for LFM and MLS
signals.
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Figure D.3. JD190,SYS4 fit residuals for fits shown in Figure 2.26. Unweighted LLSE fits at top,
and weighted LLSE fits at bottom (showing unweighted residuals). The coherent residual distribu-
tion is bimodal (or worse) due to the significant differences between coherent energy estimates for
LFM and MLS.
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Figure D.4. JD190 fit residuals for fits shown in Figure 2.27. Unweighted LLSE fits at top, and
weighted LLSE fits at bottom (showing unweighted residuals). The incoherent and noise residuals
look fine, as do the R2 value of the fits (the noise fit as a function of range should explain none of
the variance, so it should have R2 = 0, ideally). The bad fits of JD190,SYS4 are mostly obscured.
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Figure D.5. JD189 and JD190 (all data) fit residuals for fits shown in Figure 2.28. Unweighted
LLSE fits at top, and weighted LLSE fits at bottom (showing unweighted residuals).
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APPENDIX E

CALCULATION OF INTERFERENCE SCENARIO IIA
EFFECTIVENESS

Xu et al. make an approximation in calculating the area of potential interferers in Scenario IIa

in Figure 3.1b. Since Scenario IIb does not occur for radio networks with spreading exponent

k = 4 and detection threshold T < 12 dB, there is no problem in Xu et al.’s paper. Extending

their results to UANs, however, leads to a discontinuity in the RTS/CTS effectiveness ERTS/CTS

between Scenario IIa and Scenario IIb, both of which commonly occur in UANs.

To avoid discontinuities in ERTS/CTS between Scenario IIa and Scenario IIb, we need to calculate

the area of potential interferers in Scenario IIa exactly. In Scenario IIa, the RTS/CTS effectiveness

is

ERTS/CTS =
A(i ∩ RTS/CTS)

Ai
, (E.1)

introduced in Section 3.2 of this chapter. The area of the interference region is Ai = πR2
i . There

are several approaches to calculating A(i ∩ RTS/CTS).

Xu et al. [135] and Ye et al. [136] calculate the area of the interference region that is not covered

by the RTS/CTS handshake; i.e., the red region in Scenario IIa of Figure 3.1b. They approximate

this region as an angular segment of an annulus. For UANs, Scenario IIb will be common, and that

approach leads to a discontinuity in ERTS/CTS at the transition from Scenario IIa to Scenario IIb.

We calculate instead the area of the RTS/CTS handshake that is outside of the interference

region; i.e., the green crescent moon at the left side of Scenario IIa in Figure 3.1. This shape is also

illustrated in Figure E.1, and it is where Rtx < Ri < Rtx + d. For the idealized geometry in our

example, we can calculate A(i ∩ RTS/CTS) exactly.
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Figure E.1. Area Ao, shown in relation to transmitter T and receiver R. See also Figure 3.1b.

First, we calculate the area covered by the RTS/CTS handshake, ARTS/CTS. In Scenario IIa,

Ri < Rtx + d. The area of the region reached by either the RTS packet or the CTS packet is

ARTS/CTS = 2
{
πR2

tx −Achord

}
. (E.2)

Note that the area of a chordal segment of a circle of radius Rtx is

Achord = R2
tx tan

−1

⎡
⎣
√(

Rtx

a

)2

− 1

⎤
⎦− a

√
R2

tx − a2, (E.3)

where a is the apothem of the chord (see http://mathworld.wolfram.com/Chord.html). The

transmitter and receiver are separated by a distance d, and so the sagitta s of the chord is s = d/2.

Therefore, by definition and substitution,

a = Rtx − s = Rtx − d/2.
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Now, we calculate A(i ∩ RTS/CTS). Let Ao be the area of the RTS/CTS region that is not in the

interference region. Therefore, the RTS/CTS effectiveness in Scenario IIa is

ERTS/CTS =
A(i ∩ RTS/CTS)

Ai
=

ARTS/CTS −Ao

Ai
(E.4)

What remains is to derive the area Ao, shown in Figure E.1

Ao = 2

∫ θo

θ=0

∫ R(θ)

r=Ri

r dr dθ (E.5)

where, θo is the angle where R(θ) = Ri. By the law of cosines,

θo = cos−1 d2 +R2
i −R2

tx

2dRi
(E.6)

Again using the law of cosines, and solving for R(θ) with the quadratic formula,

R(θ) = d cos θ ±
√
R2

tx − d2 sin2 θ. (E.7)

At θ = 0, we can see that we need to take the plus in the ± for the case of interest. Evaluating the

integral for Ao gives

Ao =
(
R2

tx −R2
i

)
θo +

d2

2
sin 2θo

± 2d2

⎡
⎣u
2

√(
Rtx

d

)2

− u2 +
R2

tx

2d2
sin−1

(
ud

Rtx

)⎤⎦
sin θo

u=0

(E.8)

Again, the plus is taken in the ±. Now we have solved for all quantities required to express the

RTS/CTS effectiveness for Scenario IIa, following Equation E.4.
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APPENDIX F

CASTALIA CODE

We are using Castalia version 3.1. This appendix includes our modifications to the wireless

channel physical layer code, as a diff against the Castalia-v3.1 distribution. The Castalia simulator

can be downloaded from http://castalia.research.nicta.com.au.

Index: src/wirelessChannel/WirelessChannel.cc

===================================================================

--- src/wirelessChannel/WirelessChannel.cc (revision 1)

+++ src/wirelessChannel/WirelessChannel.cc (revision 101)

@@ -11,6 +11,7 @@

****************************************************************************/

#include "WirelessChannel.h"

+#include <assert.h>

Define_Module(WirelessChannel);

@@ -19,10 +20,43 @@

return 2;

}

+

+
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+

+/*******************************************************

+ * Calculate the distance, beyond which we cannot

+ * have connectivity between two nodes. This calculation is

+ * based on the maximum TXPower the signalDeliveryThreshold

+ * the pathLossExponent, the PLd0. For the random

+ * shadowing part we use 3*sigma to account for 99.7%

+ * of the cases. We use this value to considerably

+ * speed up the filling of the pathLoss array,

+ * especially for the mobile case.

+ *******************************************************/

+double WirelessChannel::distanceThreshold_m(void)

+{

+ double distanceThreshold_m;

+

+ if (underwater_acoustic_not_radio) {

+ // just set the distance threshold to max node separation for the time being

+ double dx_m = xFieldSize - 0.0;

+ double dy_m = yFieldSize - 0.0;

+ double dz_m = zFieldSize - 0.0;

+ distanceThreshold_m = sqrt(dx_m*dx_m + dy_m*dy_m + dz_m*dz_m);

+ } else {

+ distanceThreshold_m = d0 *

+ pow(10.0,(maxTxPower - signalDeliveryThreshold - PLd0 + 3 * sigma) /

+ (10.0 * pathLossExponent));

+ }

+ return distanceThreshold_m;

+}

239



+

+

void WirelessChannel::initialize(int stage)

{

if (stage == 0) {

readIniFileParameters();

+ set_noiseFloor();

return;

}

@@ -176,7 +210,7 @@

int elementSize = sizeof(PathLossElement) + 3 * sizeof(PathLossElement *);

int totalElements = 0; //keep track of pathLoss size for reporting purposes

-float x1, x2, y1, y2, z1, z2, dist;

+ float x1, x2, y1, y2, z1, z2, dist; // all in meters

float PLd; // path loss at distance dist, in dB

/*******************************************************

@@ -189,9 +223,7 @@

* speed up the filling of the pathLoss array,

* especially for the mobile case.

*******************************************************/

-float distanceThreshold = d0 *

-pow(10.0,(maxTxPower - signalDeliveryThreshold - PLd0 + 3 * sigma) /

-(10.0 * pathLossExponent));

+ double distanceThreshold = distanceThreshold_m();
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for (int i = 0; i < numOfSpaceCells; i++) {

if (onlyStaticNodes) {

@@ -230,7 +262,7 @@

if (dist > distanceThreshold)

continue;

-PLd = PLd0 + 10.0 * pathLossExponent * log10(dist / d0) + normal(0, sigma);

+ PLd = pathloss_dB(dist, false);

float bidirectionalPathLossJitter = normal(0, bidirectionalSigma) / 2;

@@ -289,6 +321,10 @@

*************************************************************************/

void WirelessChannel::handleMessage(cMessage * msg)

{

+ double x0_m, y0_m, z0_m, x1_m, y1_m, z1_m, r_m, delay_s;

+ double x2_m, y2_m, z2_m, intf_r_m;

+ double rx_power_coh_dBm, rx_power_inc_dBm, pathloss_coh_dB, pathloss_inc_dB;

+

switch (msg->getKind()) {

case WC_NODE_MOVEMENT:{

@@ -364,58 +400,92 @@

/* Find the cell that the transmitting node resides */

int cellTx = nodeLocation[srcAddr].cell;

+ x0_m = nodeLocation[srcAddr].x;

+ y0_m = nodeLocation[srcAddr].y;
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+ z0_m = nodeLocation[srcAddr].z;

/* Iterate through the list of cells that are affected

* by cellTx and check if there are nodes there.

* Update the nodesAffectedByTransmitter array

*/

-list < PathLossElement * >::iterator it1;

-for (it1 = pathLoss[cellTx].begin(); it1 != pathLoss[cellTx].end(); it1++) {

-/* If no nodes exist in this cell, move on. */

-if (cellOccupation[(*it1)->cellID].empty())

+

+ for (int dest=0; dest<numOfNodes; dest++) {

+ trace() << "signal from node[" << srcAddr << "] starting on node[" \

<< dest << "]";

+

+ if (dest == srcAddr) {

+ trace() << "signal from node[" << srcAddr << "] skipping node[" \

<< dest << "]";

continue;

+ }

+ x1_m = nodeLocation[dest].x;

+ y1_m = nodeLocation[dest].y;

+ z1_m = nodeLocation[dest].z;

+ r_m = range_m(x0_m, y0_m, z0_m, x1_m, y1_m, z1_m);

+ pathloss_coh_dB = pathloss_dB(r_m, true);

+ pathloss_inc_dB = pathloss_dB(r_m, false);

+ rx_power_coh_dBm=signalMsg->getPower_coh_dBm() - pathloss_coh_dB;

+ rx_power_inc_dBm=signalMsg->getPower_inc_dBm() - pathloss_inc_dB;
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-/* Otherwise there are some nodes in that cell.

- * Calculate the signal received by these nodes

- * It is exactly the same for all of them.

- * The signal may be variable in time.

- */

-float currentSignalReceived = signalMsg->getPower_dBm() - \

(*it1)->avgPathLoss;

+ /*

if (temporalModelDefined) {

-simtime_t timePassed_msec = (simTime() - \

(*it1)->lastObservationTime) * 1000;

+ simtime_t timePassed_msec =

+ (simTime() - (*it1)->lastObservationTime) * 1000;

simtime_t timeProcessed_msec =

-temporalModel->runTemporalModel(SIMTIME_DBL(timePassed_msec),

+ temporalModel->runTemporalModel(

+ SIMTIME_DBL(timePassed_msec),

&((*it1)->lastObservedDiffFromAvgPathLoss));

-currentSignalReceived += (*it1)->lastObservedDiffFromAvgPathLoss;

+ rx_power_coh_dBm += (*it1)->lastObservedDiffFromAvgPathLoss;

+ rx_power_inc_dBm += (*it1)->lastObservedDiffFromAvgPathLoss;

collectHistogram("Fade depth distribution",

- (*it1)->lastObservedDiffFromAvgPathLoss);

-/* Update the observation time */

+ (*it1)->lastObservedDiffFromAvgPathLoss);

+ // Update the observation time

(*it1)->lastObservationTime = simTime() -
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-(timePassed_msec - timeProcessed_msec) / 1000;

+ (timePassed_msec - timeProcessed_msec) / 1000;

}

+ */

-/* If the resulting current signal received is not strong enough,

- * to be delivered to the radio module, continue to the next cell.

+ /* If the resulting incoherent signal received is not strong enough

+ * to be delivered to the radio module, continue to the next node.

*/

-if (currentSignalReceived < signalDeliveryThreshold)

+ trace() << "signal from node[" << srcAddr << "] dropped, below \

threshold on node[" << dest << "]";

+ if (rx_power_inc_dBm < signalDeliveryThreshold) {

continue;

+ }

-/* Else go through all the nodes of that cell.

- * Iterator it2 returns node IDs.

- */

-list < int >::iterator it2;

-for (it2 = cellOccupation[(*it1)->cellID].begin();

-it2 != cellOccupation[(*it1)->cellID].end(); it2++) {

-if (*it2 == srcAddr)

-continue;

-receptioncount++;

-WirelessChannelSignalBegin *signalMsgCopy = signalMsg->dup();

-signalMsgCopy->setPower_dBm(currentSignalReceived);
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-send(signalMsgCopy, "toNode", *it2);

-nodesAffectedByTransmitter[srcAddr].push_front(*it2);

-} //for it2

-} //for it1

+ receptioncount++;

+ WirelessChannelSignalBegin *signalMsgCopy = signalMsg->dup();

+ signalMsgCopy->setPower_coh_dBm(rx_power_coh_dBm);

+ signalMsgCopy->setPower_inc_dBm(rx_power_inc_dBm);

+ signalMsgCopy->setNoiseFloor(noiseFloor);

+ signalMsgCopy->setRange_m(r_m);

+ if (numOfNodes==2) {

+ intf_r_m = -1.0;

+ } else {

+ x1_m = nodeLocation[1].x;

+ y1_m = nodeLocation[1].y;

+ z1_m = nodeLocation[1].z;

+ x2_m = nodeLocation[2].x;

+ y2_m = nodeLocation[2].y;

+ z2_m = nodeLocation[2].z;

+ intf_r_m = range_m(x1_m, y1_m, z1_m, x2_m, y2_m, z2_m);

+ }

+ signalMsgCopy->setIntf_range_m(intf_r_m);

+

+ signalMsgCopy->setInclude_noise(include_noise);

+ signalMsgCopy->setUse_mixed_exponents(use_mixed_exponents);

+ signalMsgCopy->setKo(ko);

+ signalMsgCopy->setK_inc(k_inc);
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+ signalMsgCopy->setK_coh(k_coh);

+

+ delay_s = propagation_delay_s(r_m);

+ sendDelayed(signalMsgCopy, delay_s, "toNode", dest);

+

+ trace() << "Prop.delay from node[" << srcAddr << "] to node["

+ << dest << "] is " << delay_s << " seconds ("

+ << r_m << " meters); pathloss: coh:" << pathloss_coh_dB << \

"dB, inc:" << pathloss_inc_dB << "dB";

+ nodesAffectedByTransmitter[srcAddr].push_front(dest);

+ } //for dest

+

if (receptioncount > 0)

trace() << "signal from node[" << srcAddr << "] reached " <<

receptioncount << " other nodes";

@@ -426,6 +496,9 @@

WirelessChannelSignalEnd *signalMsg =

check_and_cast <WirelessChannelSignalEnd*>(msg);

int srcAddr = signalMsg->getNodeID();

+ x0_m = nodeLocation[srcAddr].x;

+ y0_m = nodeLocation[srcAddr].y;

+ z0_m = nodeLocation[srcAddr].z;

/* Go through the list of nodes that were affected

* by this transmission. *it1 holds the node ID

@@ -434,7 +507,13 @@

for (it1 = nodesAffectedByTransmitter[srcAddr].begin();

it1 != nodesAffectedByTransmitter[srcAddr].end(); it1++) {

246



WirelessChannelSignalEnd *signalMsgCopy = signalMsg->dup();

-send(signalMsgCopy, "toNode", *it1);

+ x1_m = nodeLocation[*it1].x;

+ y1_m = nodeLocation[*it1].y;

+ z1_m = nodeLocation[*it1].z;

+ r_m = range_m(x0_m, y0_m, z0_m, x1_m, y1_m, z1_m);

+ delay_s = propagation_delay_s(r_m);

+ sendDelayed(signalMsgCopy, delay_s, "toNode", *it1);

+ trace() << "Prop.delay from node[" << srcAddr << "] to node[" \

<< *it1 << "] is " << delay_s << " seconds (" << \

r_m << " meters)";

} //for it1

/* Now that we are done processing the msg we delete the whole list

@@ -492,7 +571,24 @@

getParentModule()->par("debugInfoFileName").stringValue());

onlyStaticNodes = par("onlyStaticNodes");

-pathLossExponent = par("pathLossExponent");

+

+ underwater_acoustic_not_radio = par("underwater_acoustic_not_radio");

+ c_ms = par("c_ms");

+ fc_kHz = par("fc_kHz");

+ BW_kHz = par("BW_kHz");

+ waterdepth_m = par("waterdepth_m");

+ use_mixed_exponents = par("use_mixed_exponents");

+ ko = par("ko");

+ k_coh = par("k_coh");
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+ k_inc = par("k_inc");

+ include_noise = par("include_noise");

+ shipping_factor = par("shipping_factor");

+ wind_ms = par("wind_ms");

+ include_atten = par("include_atten");

+ use_thorp_not_marshschulkin = par("use_thorp_not_marshschulkin");

+ temperature_C = par("temperature_C");

+ salinity_psu = par("salinity_psu");

+

sigma = par("sigma");

bidirectionalSigma = par("bidirectionalSigma");

PLd0 = par("PLd0");

@@ -595,3 +691,225 @@

return 1;

return 0;

}

+

+

+/* Include code from mac_simulator/chan_physics.c

+ *

+ * Underwater acoustic channel model: channel physics.

+ *

+ * Jim Partan, Apr 2008.

+ *

+ * $Author: partan $

+ * $Date: 2010-06-20 15:23:57 -0400 (Sun, 20 Jun 2010) $

+ * $Revision: 619 $

+ * $Id: chan_physics.c 619 2010-06-20 19:23:57Z partan $
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+ *

+ */

+

+/* $Id: chan_physics.c 619 2010-06-20 19:23:57Z partan $ */

+

+

+double WirelessChannel::range_m(double x0_m, double y0_m, double z0_m,

+ double x1_m, double y1_m, double z1_m)

+{

+ double dx_m, dy_m, dz_m;

+

+ dx_m = x0_m - x1_m;

+ dy_m = y0_m - y1_m;

+ dz_m = z0_m - z1_m;

+ return sqrt( dx_m*dx_m + dy_m*dy_m + dz_m*dz_m );

+}

+

+

+double WirelessChannel::propagation_delay_s(double r_m)

+{

+ return (r_m/c_ms);

+}

+

+

+double PHYSICS_atten_marshschulkin_dBkm(double f_kHz, double T_C,\

double S_psu, double z_m)

+{

+ double f2;
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+ double A, B, fT_exp, fT, alpha_dBkm, S_ppt;

+ double P_atm, rho_kgm3, g_ms2, P_kgm2, P_kgcm2;

+ assert(f_kHz > 0.0);

+

+ S_ppt = S_psu; // Parts Per Thousand and Practical Salinity Units\

are almost the same...

+

+ f2 = f_kHz*f_kHz;

+

+ /* Marsh and Schulkin’s expression for attenuation, in dB/km */

+ A = 2.34e-6;

+ B = 3.38e-6;

+ fT_exp = 6.0 - 1520.0/(T_C + 273.0);

+ fT = 21.9*pow(10, fT_exp);

+

+ P_atm = 101.5e3; /* atmospheric pressure, Pa */

+ rho_kgm3 = 1.0e3*(1.0+S_ppt/1.0e3); /* density of seawater, kg/m3 */

+ g_ms2 = 9.8; /* gravitational acceleration, m/s2 */

+ P_kgm2 = rho_kgm3*g_ms2*z_m + P_atm; /* pressure at depth z_m */

+ P_kgcm2 = P_kgm2/(1.0e4); /* pressure in kg/cm2 */

+

+ alpha_dBkm = 8.68e3 *

+ (((S_ppt*A*fT*f2)/(fT*fT + f2)) + ((B*f2)/(fT)))*(1-P_kgcm2*6.54e-4);

+

+ return alpha_dBkm;

+

+}

+
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+

+double PHYSICS_atten_thorp_dBkm(double f_kHz)

+{

+ double f2;

+ assert(f_kHz > 0.0);

+

+ f2 = f_kHz*f_kHz;

+

+ /* Thorp’s expression for attenuation, in dB/km */

+ return (0.11*(f2/(1.0+f2)) + 44.0*(f2/(4100.0+f2)) + (0.000275)*f2 + 0.003);

+}

+

+

+// Checked against Matlab script for {3,10,20}kHz, Thorp and \

Marsh-Schulkin (T=5C, S=30psu, z=50m)

+double WirelessChannel::atten_dBkm(double f_kHz)

+{

+ double alpha_dBkm;

+

+ if (include_atten) {

+ if (use_thorp_not_marshschulkin) {

+ alpha_dBkm = PHYSICS_atten_thorp_dBkm(f_kHz);

+ trace() << "Wireless Channel attenuation (Thorp) is: " \

<< alpha_dBkm << " dB/km, for f=" << f_kHz << "kHz";

+ } else {

+ alpha_dBkm = PHYSICS_atten_marshschulkin_dBkm(f_kHz, temperature_C, \

salinity_psu, waterdepth_m/2.0);

+ trace() << "Wireless Channel attenuation (Marsh-Schulkin) is: " << \
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alpha_dBkm << " dB/km, for f=" << f_kHz << "kHz, T=" << \

temperature_C << "C, salinity " << salinity_psu << \

"PSU, depth=" << waterdepth_m/2.0 << "m";

+ }

+ } else {

+ alpha_dBkm = 0.0;

+ trace() << "Wireless Channel attenuation (none) is: " \

<< alpha_dBkm << " dB/km";

+ }

+ return alpha_dBkm;

+}

+

+

+

+double PHYSICS_spreading_loss_dB(double r_m, double waterdepth_m,

+ double k1, double k2)

+{

+ double spreading_dB, log10_arg1, log10_arg2;

+

+ /* Spreading loss: k2 to waterdepth, k1 beyond waterdepth */

+ if (r_m <= waterdepth_m + 1.0) {

+ log10_arg1 = r_m;

+ assert(log10_arg1 > 0.0);

+ spreading_dB = k2*10.0*log10(r_m);

+ } else {

+ log10_arg1 = waterdepth_m;

+ log10_arg2 = (r_m/waterdepth_m);

+ assert(log10_arg1 > 0.0);
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+ assert(log10_arg2 > 0.0);

+ spreading_dB = k2*10.0*log10(waterdepth_m)

+ + k1*10.0*log10(r_m/waterdepth_m);

+ }

+ return spreading_dB;

+}

+

+

+// Checked mixed-exponent model for k_coh=1.8, k_inc=1.2, waterdepth=100m, \

ranges r_m=141.421m, 58.2215m, 83.1998m

+// Checked single-exponent model for ko=1.5, waterdepth=100m, ranges \

r_m=141.421m, 58.2215m, 83.1998m

+double WirelessChannel::spreading_loss_dB(double r_m, \

bool coherent_not_incoherent)

+{

+ double spreading_dB;

+

+ if (use_mixed_exponents) {

+ if (coherent_not_incoherent) {

+ spreading_dB = PHYSICS_spreading_loss_dB(r_m, waterdepth_m, k_coh, k_coh);

+ trace() << "Wireless Channel spreading loss (coherent) for " << \

r_m << "m is: " << spreading_dB << " dB, for k_coh=" \

<< k_coh << ", waterdepth=" << waterdepth_m << "m";

+ } else {

+ spreading_dB = PHYSICS_spreading_loss_dB(r_m, waterdepth_m, k_inc, k_coh);

+ trace() << "Wireless Channel spreading loss (incoherent) for " << \

r_m << "m is: " << spreading_dB << " dB, for k_coh=" \

<< k_coh << ", k_inc=" << k_inc << ", waterdepth=" << \
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waterdepth_m << "m";

+ }

+ } else {

+ spreading_dB = PHYSICS_spreading_loss_dB(r_m, waterdepth_m, ko, ko);

+ trace() << "Wireless Channel spreading loss (single exponent) for " << \

r_m << "m is: " << spreading_dB << " dB, for ko=" << ko << \

", waterdepth=" << waterdepth_m << "m";

+ }

+ return spreading_dB;

+}

+

+

+double WirelessChannel::pathloss_dB(double r_m, bool coherent_not_incoherent)

+{

+ if (underwater_acoustic_not_radio) {

+ double r_km = r_m/1000.0;

+ return (r_km*atten_dBkm(fc_kHz) + spreading_loss_dB(r_m, \

coherent_not_incoherent));

+ } else {

+ double PLd_dB;

+

+ PLd_dB = PLd0 + 10.0*pathLossExponent*log10(r_m / d0)+normal(0, sigma);

+ return PLd_dB;

+ }

+}

+

+

+double WirelessChannel::noise_psd_dBre1uPa1m_Hz(double f_kHz)

254



+{

+ double Nt_dBre1uPa1m_Hz; /* turbulence */

+ double Ns_dBre1uPa1m_Hz; /* shipping */

+ double Nw_dBre1uPa1m_Hz; /* wind */

+ double Nth_dBre1uPa1m_Hz; /* thermal */

+ double log10_arg, noise_dBre1uPa1m_Hz;

+

+ assert(wind_ms >= 0.0);

+ assert(f_kHz > 0.0);

+ assert((shipping_factor >= 0.0) && (shipping_factor <= 1.0));

+

+ /* expressions from Milica’s capacity paper, in turn from Coates */

+ Nt_dBre1uPa1m_Hz = 17.0 - 30.0*log10(f_kHz);

+ Ns_dBre1uPa1m_Hz = 40.0 + 20.0*(shipping_factor-0.5) + \

26.0*log10(f_kHz) - 60.0*log10(f_kHz+0.03);

+ Nw_dBre1uPa1m_Hz = 50.0 + 7.5*sqrt(wind_ms) + 20.0*log10(f_kHz) - \

40.0*log10(f_kHz+0.4);

+ Nth_dBre1uPa1m_Hz = -15.0 + 20.0*log10(f_kHz);

+

+ log10_arg = (

+ pow(10.0,(Nt_dBre1uPa1m_Hz/10.0)) +

+ pow(10.0,(Ns_dBre1uPa1m_Hz/10.0)) +

+ pow(10.0,(Nw_dBre1uPa1m_Hz/10.0)) +

+ pow(10.0,(Nth_dBre1uPa1m_Hz/10.0)) );

+

+ assert(log10_arg > 0.0);

+ noise_dBre1uPa1m_Hz = 10.0*log10(log10_arg);

+
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+ return noise_dBre1uPa1m_Hz;

+}

+

+

+double WirelessChannel::noise_RMS_dBre1uPa1m(void)

+{

+ double f_kHz, df_kHz, f_lo_kHz, f_hi_kHz, noise_dBre1uPa1m_Hz, \

noise_RMS_uPa1m, noise_RMS_dBre1uPa1m;

+

+ f_lo_kHz = fc_kHz - BW_kHz/2.0;

+ f_hi_kHz = fc_kHz + BW_kHz/2.0;

+ df_kHz = 0.001;

+

+ noise_RMS_uPa1m = 0.0;

+ for (f_kHz=f_lo_kHz; f_kHz<f_hi_kHz; f_kHz += df_kHz) {

+ noise_dBre1uPa1m_Hz = noise_psd_dBre1uPa1m_Hz(f_kHz);

+ noise_RMS_uPa1m += (df_kHz*1000.0)*pow(10.0, (noise_dBre1uPa1m_Hz/10.0));

+ }

+

+ assert(noise_RMS_uPa1m > 0.0);

+ noise_RMS_dBre1uPa1m = 10.0*log10(noise_RMS_uPa1m);

+

+ return noise_RMS_dBre1uPa1m;

+}

+

+

+void WirelessChannel::set_noiseFloor(void)

+{
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+ if (underwater_acoustic_not_radio && include_noise) {

+ noiseFloor = noise_RMS_dBre1uPa1m();

+ trace() << "Wireless Channel ambient noise floor is: " << noiseFloor << \

" dB re: 1uPa@1m, for fc=" << fc_kHz << "kHz, BW=" \

<< BW_kHz << "kHz, shipping factor " << shipping_factor \

<< ", wind " << wind_ms << "m/s.";

+ } else {

+ noiseFloor = 0.0;

+ trace() << "Wireless Channel ambient noise floor is: " \

<< noiseFloor << " dBm";

+ }

+}

+

Index: src/wirelessChannel/WirelessChannel.h

===================================================================

--- src/wirelessChannel/WirelessChannel.h (revision 1)

+++ src/wirelessChannel/WirelessChannel.h (revision 101)

@@ -55,7 +55,25 @@

double zCellSize;

// variables corresponding to Wireless Channel module parameters

-double pathLossExponent; // the path loss exponent

+

+ bool underwater_acoustic_not_radio;

+ double c_ms;

+ double fc_kHz;

+ double BW_kHz;

+ double waterdepth_m;
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+ bool use_mixed_exponents;

+ double ko;

+ double k_coh;

+ double k_inc;

+ bool include_noise;

+ double shipping_factor;

+ double wind_ms;

+ bool include_atten;

+ bool use_thorp_not_marshschulkin;

+ double temperature_C;

+ double salinity_psu;

+

+ double pathLossExponent;

double noiseFloor; // in dBm

double PLd0; // Power loss at a reference distance d0 (in dBm)

double d0; // reference distance (in meters)

@@ -106,6 +124,16 @@

void updatePathLossElement(int, int, float);

float calculateProb(float, int);

+ double distanceThreshold_m(void);

+ double range_m(double x0_m, double y0_m, double z0_m, double x1_m, \

double y1_m, double z1_m);

+ double propagation_delay_s(double r_m);

+ double atten_dBkm(double f_kHz);

+ double spreading_loss_dB(double r_m, bool coherent_not_incoherent);

+ double pathloss_dB(double r_m, bool coherent_not_incoherent);

+ double noise_psd_dBre1uPa1m_Hz(double f_kHz);
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+ double noise_RMS_dBre1uPa1m(void);

+ void set_noiseFloor(void);
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