
Noname manuscript No.
(will be inserted by the editor)

Supporting Data Uncertainty in Array Databases

Liping Peng · Yanlei Diao

Received: date / Accepted: date

Abstract Uncertain data management has become a key is-
sue in scientific applications. Recently, array databases have
gained popularity for scientific data processing due to per-
formance benefits. In this paper, we address uncertain data
management in array databases, which may involve both
value uncertainty within individual tuples and position un-
certainty regarding where a tuple should belong in an ar-
ray given uncertain dimension attributes. In our work, we
define the formal semantics of array operations on uncer-
tain data involving both types of uncertainty. To address the
new challenge raised by position uncertainty, we propose a
suite of storage and evaluation strategies for array operators,
with a focus on a novel scheme that bounds the overhead of
querying by strategically placing a few replicas of the tuples
with large variances. Evaluation results show that our best-
performing techniques outperform baselines often by a wide
margin while incurring only small storage overhead.

1 Introduction

Uncertain data management has been studied intensively in
areas such as sensor networks, information extraction, data
cleaning, and business intelligence. Recently, it has also started
to play a key role in large-scale scientific applications such
as severe weather monitoring [18,31], computational astro-
physics [28], and asteroid threat detection [11]. In particular,
recent studies [11,27,28] show that almost all scientific data
are noisy and uncertain. Therefore, capturing uncertainty in

Liping Peng
University of Massachusetts Amherst, MA, USA
E-mail: lppeng@cs.umass.edu

Yanlei Diao
University of Massachusetts Amherst, MA, USA
E-mail: yanlei@cs.umass.edu

data processing, from data input to query output, has become
a key issue in scientific data management.

We next present two real-world applications that moti-
vated our work. In the first application, massive astrophysi-
cal surveys such as the Sloan Digital Sky Survey (SDSS) [28]
aim to generate observations of 108 stars and galaxies at
nightly data rates of 0.5TB to 20TB. They are expected to
enable real-time detection of transient events and anomalies
as well as long-term tracking of objects of interest. However,
the observations in digital sky surveys are inherently noisy
as the objects can be too dim to be recognized in the captured
images. SDSS makes repeated observations of faint objects
and derive continuous probability distributions for uncertain
attributes, e.g., the location and luminosity of objects, in the
data cooking process. For example, the Galaxy table in the
SDSS astronomy archive has 297 attributes, out of which
151 attributes are uncertain and described by (multivariate)
Gaussian distributions.

In the second domain of severe weather monitoring, sci-
entists have developed distributed radar sensor networks for
detecting hazardous weather events like tornados and severe
storms [18]. The produced radar data are noisy due to en-
vironmental noise, electronic device noise, quality issues of
the antenna, etc. As a result, recent work [12] has devel-
oped a data cooking process to produce continuous prob-
ability distributions for key meteorological measures, e.g.,
wind velocity and reflexivity, for each voxel of the air.

For supporting scientific applications, relational technol-
ogy has proven useful in some applications like SDSS [28].
However, there is a recent realization that most scientific
data naturally reside in multi-dimensional arrays rather than
relations. This is because most scientific data are produced
to characterize physical phenomena that rely heavily on the
notions of “adjacency” and “neighborhood” in a multi-dimensional
space. Hence, array databases have recently been developed
for scientific data processing [6,11,26]. Besides convenient

2 Liping Peng, Yanlei Diao

expression of array operations, array databases also offer re-
markable performance benefits over relational databases [24].
In particular, the new chunk-based storage scheme enables
better alignment of logical locality (i.e., objects close in the
logical array) and physical locality (i.e., objects close to each
other are likely to be stored in the same chunk). Since many
array operations exploit logical locality of data, e.g., finding
objects close to a location, their associated physical locality
can lead to significant I/O savings.

The increasing popularity of array databases has signif-
icant implications on uncertain data management: Recent
work on array databases [14,17,15] has considered the case
that a tuple belongs to a specific cell of an array and some of
its value attributes are uncertain, which is referred to as the
“value uncertainty”. On the other hand, a more complicated
case arises when the attributes chosen to be the dimensions
of an array are uncertain. For example, the x-y positions of
an object in SDSS naturally serve as the dimensions of the
array, but they are uncertain and characterized by a bivari-
ate Gaussian distribution. As such, the uncertain location of
an object can cause its tuple to belong to multiple cells in
the array, referred to as the “position uncertainty”. SciDB,
a leading effort on array databases, has acknowledged this
issue in real-world applications but leaves the solution to fu-
ture work [26].

In this paper, we provide a thorough treatment to un-
certain data management in array databases. We focus on
continuous uncertain data because they are a natural fit for
scientific data and harder to support than discrete uncertain
data due to the difficulty in enumerating the possible values.
We assume that tuples are loaded into an array database in a
batched, append-only fashion, which is common in scientific
applications [6,26], and each tuple has obtained a (joint) dis-
tribution for uncertain attributes through a scientific cooking
process, as described above. We then address two key ques-
tions: (i) What are the intended answers of array operations
on uncertain data that may involve both position and value
uncertainty? (ii) What are the storage and evaluation meth-
ods for efficient array operations on continuous uncertain
data?

Given position uncertainty, naive solutions would repli-
cate a tuple in every possible location in the array, or store
the tuple once in a default location but to answer a query,
search as widely as the entire array to retrieve all the tuples
that satisfy the query with a high probability. These solutions
incur both a high I/O cost to read numerous tuples, and a
high CPU cost to validate the retrieved tuples by computing
their probabilities. By addressing such challenges related to
position uncertainty, we make the following contributions:

1. We define the formal semantics of array operations on
uncertain data involving both position and value uncertainty
(§2). We show that Subarray and Structure-Join are the two
most important array operations that involve position uncer-

tainty; many other array operations can be transformed into
(one of) these two.

2. For Subarray, we provide native support for its oper-
ation on arrays with uncertain dimension attributes (§3). We
propose a number of storage and evaluation schemes to deal
with position uncertainty. In particular, we focus on a novel
scheme, called store-multiple, that bounds the overhead of
querying by strategically placing a few replicas for the tuples
with large variances, which would otherwise make the query
region grow very large. We also augment store-multiple with
a detailed cost model and use it to configure storage for best
performance under various workloads.

3. For Structure-Join on uncertain dimension attributes,
we propose two techniques (§4): The first one integrates ex-
isting indexes for relational databases [10,9,20] with the
store-multiple scheme for array databases, and minimizes
the join cost by solving a set covering problem. We also pro-
pose a new subarray-based evaluation strategy for Structure-
Join, which works without a pre-built index. This strategy
employs tight conditions for running repeated subarray queries
on the inner array of the join, as well as a detailed cost model
for configuring the storage for best performance.

4. We evaluate our techniques using both synthetic work-
loads and a case study of the Sloan Digital Sky Survey (SDSS) [28]
(§5). For Subarray, store-multiple outperforms other alter-
natives due to the bounded overhead of querying and opti-
mized storage based on the cost model. For Structure-Join,
the index-based join incurs high costs due to the index I/O
and the set covering problem, while the subarray-based join
outperforms it by using tight conditions for probing the inner
array and optimized storage based on the cost model. Our
case study shows that for real datasets, the storage overhead
of store-multiple is rather small: over 79% tuples have only
1 copy and over 92% tuples have at most 3 copies (consider-
ing that 3 is the common number for replication in big data
systems). In addition, our best techniques for Subarray and
Structure-Join are shown to outperform the baselines often
by a wide margin.

2 Array Model and Algebra

In this section, we provide background on the array model
and array algebra proposed recently [6,25]. Furthermore, we
extend the array model to accommodate uncertain data and
formally define the semantics of array algebra under the un-
certain data model.

2.1 Array Data Model

Background on the Array Model. An array database con-
tains a collection of arrays. Each array is represented as
A(Dd;Vm), where Dd denotes the d dimension attributes

Supporting Data Uncertainty in Array Databases 3

that define the array, and Vm denotes m value attributes.
We sometimes also use the shorthand, Ad, to denote a d-
dimensional array. Consider an example in the Digital Sky
Survey domain: A2(x loc, y loc; luminosity, color, . . .) de-
fines a two-dimensional array using the dimension attributes
(x loc, y loc). If a dimension attribute is discrete-valued, the
model requires a linear ordering of its values. If a dimension
attribute is continuous-valued instead, a user-defined func-
tion, e.g., bx locc, is assumed to be available for discretizing
the domain of the dimension attribute into an ordered set of
values. These ordered values are used as the index values in
a given dimension.

In an array Ad, a unique combination of the index values
of the d dimensions defines a cell, which can contain mul-
tiple tuples. Array cells are addressed by the index values
of dimensions, e.g., a single cell addressed by A[bx locc=1,
by locc=2], abbreviated as A[1, 2], or multiple cells by A[1 :

∞, 2 : 4]. By default, tuples in a cell include both dimen-
sion attributes and value attributes. If a dimension attribute
is discrete-valued, its values in the tuples can be omitted be-
cause they are the same as the index values of the cell (which
is not true for continuous attributes). Note that this model is
an extension of the SciDB array model [6,25] as it allows
continuous attributes to be dimension attributes.

An Array Model for Uncertain Data. We next extend
the array model to accommodate uncertain data. When ar-
ray data are uncertain, the dimension attributes can be un-
certain (e.g., the x-y locations of a galaxy follow a bivariate
Gaussian distribution); the value attributes can be uncertain
(e.g., the luminosity of a galaxy follows a Gaussian); or both
groups of attributes can be uncertain.

Uncertainty of value attributes, referred to as value un-
certainty, is easy to support: we store a (joint) probability
distribution of the uncertain value attributes, instead of fixed
values, in each tuple. If there is uncertainty regarding the ex-
istence of a tuple, called existence uncertainty, we store the
existence probability as a special value attribute in the tuple.
Then we model value and existence uncertainties jointly us-
ing a mixed-type distribution [30], which states that the tu-
ple exists with a certain probability, and if the tuple exists,
its uncertain value attributes follow a joint distribution.

Uncertainty of dimension attributes is harder to support
because a dimension attribute with multiple possible val-
ues can cause a tuple to belong to multiple cells in an ar-
ray, referred to as position uncertainty. If we take the tuple’s
marginal distribution of each uncertain dimension attribute,
we can estimate the possible range along that dimension
where the tuple may belong. Suppose that a marginal distri-
bution has mean µ and standard deviation σ, we can define
the possible range to be [µ− kσ, µ+ kσ] with a sufficiently
large k chosen based on Chebyshev’s inequality or Gaussian
properties, e.g., when x∼N(µ, σ), Pr (x∈ [µ−3σ, µ+3σ])>

0.99.

t0

t2

0 1 2 3 4 5 6

0

1

2

3

floor(x_loc)

t1

4

floor(y_loc)
A

N(32,2)
t1 N(21,3)
t2 N(17,3)

luminosity
1

N(1.8,1.1) N(2,0.6)
N(5,1.0) N(4.5,1)

y_locx-loc
2.5t0

t1: possible range A[0..5,0..4]

t2: possible range A[2..6,1..4]

Fig. 1 Array A with dimension attributes, x loc and y loc, and the
value attribute luminosity, all of which can be uncertain.

In this work, we associate each tuple to a default position
in the array, which is the cell indexed by the mean values of
uncertain dimension attributes. (In implementation we may
consider other options, which we discuss later.) Fig. 1 il-
lustrates an array, A(x loc, y loc; luminosity), where con-
tinuous uncertain attributes, x loc and y loc, are dimension
attributes, and the floor function discretizes their values
as index values. Tuple t0 has fixed values for x loc and
y loc and hence belongs to a single cell. Tuple t1, how-
ever, has a bivariate Gaussian distribution. Therefore, al-
though it is marked in its default cell, A[1, 2], with a signifi-
cant probability it can reside in any cell in a possible range,
A[0 : 5, 0 : 3], marked by the red box in the figure. Sim-
ilarly, t2 also has a possible range, A[2 : 6, 1 : 4], due to
uncertain x loc and y loc.

To draw an analogy with the relational model, we can
translate an array to a relation R(D1, . . . , Dd, V1, . . . , Vm).
That is, we treat dimension attributes as value attributes in
tuples and store all the tuples in a table with no particular or-
der. The top-right corner in Fig. 1 shows the corresponding
relation of array A in the relational model.

2.2 Array Algebra

We next survey operators in array algebra and define their
formal semantics under the uncertain data model. These op-
erators were originally proposed in the Array Functional
language (AFL) [22] where all attributes have determinis-
tic values and dimension attributes must be discrete valued.
In this work, we extend the semantics of these operators to
continuous-valued dimension attributes as well as uncertain
data in both dimension and value attributes.

Value-based: The operators in the first category operate
only on the value attributes of tuples. An example is Fil-
ter, which applies predicates to the value attributes of tuples
stored in the array. Another example is Apply, which applies
arithmetic operations to the values of tuples. A third exam-
ple is Project, which projects out some value attributes from
existing tuples. Since the above operators operate only on
the value attributes of tuples, their semantics of uncertain
data processing under the array model is the same as the
semantics under the relational model; the semantics of the
latter is already defined in previous work [30].

4 Liping Peng, Yanlei Diao

Structure-based: The operators in the second category
operate on dimension attributes and optionally on value at-
tributes as well. We examine several common operators:

(1) Subarray takes an array A and a condition θ on the di-
mension attributes, and returns a new array with the tuples
that satisfy the condition θ. Revisit our example array.
Subarray(A, 1.5 ≤ x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8))

will first retrieve tuples from the array block A[1 : 3, 2 : 4],
and then filter those tuples based on the precise condition,
1.5 ≤ x loc ≤ 3.3 and 2.1 ≤ y loc ≤ 4.8. The output ar-
ray always has the same dimensions as the input, but usually
fewer cells and tuples. Subarray can be translated into selec-
tion in relational algebra, i.e., Subarray(A, θ) ≡ σθ(RA),
where RA is the relational representation of the array.

When the dimension attributes addressed in the condi-
tion θ are uncertain, Subarray is semantically equivalent to
selection on the uncertain dimension attributes in the rela-
tional setting. Hence, we have the following definition:

Definition 1 (Probabilistic Subarray) Given an array Ad,
condition θ on uncertain dimension attributes, and a user-
specified probability threshold λ ∈ (0, 1), Subarray(A, θ, λ)
returns an array Bd where the cell B[i1, . . . , id] contains
each tuple t from A[i1, . . . , id] that satisfies the condition
θ with a probability at least λ, i.e.,

∫
θ
ft(x)dx ≥ λ, where

ft(x) is the tuple’s probability density function on the the
uncertain dimension attributes.

Revisiting the above example, Subarray(A, 1.5 ≤ x loc
≤ 3.3 and 2.1 ≤ y loc ≤ 4.8). When x loc and y loc are
uncertain, we can no longer restrict the search to only the
block A[1 : 3, 2 : 4]. It is because tuples that belong to other
cells, e.g., A[1, 5], may satisfy the Subarray condition with
a probability larger than λ. Based on the formal semantics,
the entire array needs to be searched.

(2) Structure-Join (SJoin) in the array model takes as input
an array Ad, a second array Bd of the same dimensional-
ity, and a join condition θ. SJoin(A,B, θ) returns an array
C2d, where the cell C[i1, · · · , id, id+1, · · · , i2d] contains the
result of θ-join between the tuples in A[i1, · · · , id] and the
tuples in B[id+1, · · · , i2d]. The equivalent expression in re-
lational algebra is, RA onθ RB, where RA and RB are the
relational representations of A and B.

The join condition, θ, has a few common forms: (1) If
the dimension attributes are discrete-valued, θ usually spec-
ifies equality comparison on the dimension attributes, as in
the AFL proposal [22].1 (2) If the dimension attributes are
continuous-valued, equi-join is seldom used. Instead, θ takes

1 In this case, the output array, C = SJoin(A,B, θ), can be sim-
plified to have the same dimensionality as A and B, where each cell
C[i1, . . . , id] contains the result of A[i1, . . . , id] onθ B[i1, . . . , id].
This definition is consistent with equi-join in relational algebra where
only one copy of the common join attributes is retained.

a form of proximity join. A common form is linear proxim-
ity join, |A.di − B.di| < δ for each dimension attribute di.
The join condition essentially defines a band region for each
pair of join attributes. Another common form of proximity
join uses Euclidean distance,

∑
i(A.di − B.di)2 < δ2. As

noted earlier, we focus on continuous uncertain data in this
paper and hence proximity join in later technical sections.

Next we consider the case that the continuous dimension
attributes of arrays A and B are uncertain. While the tuples
have default positions in the array based on their mean val-
ues, they may belong to multiple cells with non-zero proba-
bilities. In the face of position uncertainty, the join between
A and B must return all pairs of tuples that satisfy the join
condition θ with a significant probability. To do so, we lever-
age the semantics of cross-product in the above SJoin defi-
nition, which involves pairing each cell in A with each cell in
B and then pairing the tuples within those cells. More specif-
ically, we define probabilistic structure-join as follows:

Definition 2 (Probabilistic Structure-Join) Given arrays
Ad and Bd, a join condition θ, and a probability threshold λ,
SJoin(A,B, θ, λ) returns an array C2d where C[i1, · · · , id,
id+1, · · · , i2d] contains the result of probabilistic θ-join,
A[i1, · · ·, id]onθ,λB[id+1, · · ·, i2d] = {(t1, t2)|t1∈A[i1, · · ·, id],
t2 ∈ B[id+1, · · ·, i2d],

∫∫
θ
ft1(x) ·ft2(y)dxdy ≥ λ}, where

ft1(x) and ft2(y) are the probability density functions for
t1 and t2, respectively.

(3) Regrid-Aggregation partitions an input array into non-
overlapping blocks, and for each block, applies an aggre-
gate function to all the tuples in the block. The output array
has one cell for each block which contains the aggregate
value computed. Regrid can be viewed as repeated applica-
tion of the Subarray operation to extract each block and then
to compute the aggregate within each block.

When the dimension attributes are uncertain, one can use
the Probabilistic Subarray operator to extract the tuples that
belong to each block with non-zero probabilities (usually
more than those that physically exist in the block). Note that
even if a tuple belongs to a block with a small probability,
if its aggregate attribute has a large value, it can still con-
tribute a modest value, which is the product of its attribute
value and existence probability, to the aggregate. Hence, the
probability threshold for tuple existence in Subarray should
be set to 0 in theory, or a small value in practice.

(4) GroupBy-Aggregation takes three arguments including
an input array Ad, a list of grouping dimensions Gd1 , where
d1 ≤ d, and an aggregate function. Again, it can be viewed
as repeated application of Subarray to construct array blocks
corresponding to the groups and then computing the aggre-
gate within each block.

As shown in the above discussion, Subarray and Structure-
Join are the two most important primitives in array algebra.

Supporting Data Uncertainty in Array Databases 5

Hence, we focus on efficient implementation of them under
data uncertainty in subsequent sections.

We finally show two example queries written for the
Sloan Digital Sky Survey (SDSS) [28], where the attributes,
rowc and colc, define a two dimensional array called Galaxy.
These queries are written by following the convention of
the AFL language, but with syntactic differences due to rea-
sons such as the support of continuous dimension attributes.
Query Q1 computes the average brightness in a subarray re-
gion. Query Q2 finds the regions in the sky space with the
observation density greater than a threshold τ , where the ob-
servation density for a region is defined to be the sum of
the number of observations within δ distance in either di-
rection of each point in the region. To do so, the query first
performs a self join of the Galaxy array based on the array
structure, then groups the join output into 100 by 100 blocks
of G1.rowc and G1.colc, and finally counts the number of
observations per block for density filtering.

Q1:AVG(SUBARRAY(Galaxy,x1<rowc<x2 and
y1<colc<y2), brightness)

Q2:GROUPBY(SJOIN(Galaxy G1, Galaxy G2,
|G1.rowc−G2.rowc| < δ and
|G1.colc−G2.colc| < δ),

bG1.rowc/100c and bG1.colc/100c, COUNT cnt)

3 Native Support for Subarray

In this section, we focus on the structural operation, Sub-
array. Since Subarray is equivalent to selection in rela-
tional algebra, there are two options for implementation:
The first option is to translate Subarray to selection in the
relational setting. When the dimension attributes are uncer-
tain, to avoid scanning all tuples in the database, existing
work has built various indexes based on statistical quanti-
ties such as quantiles [7,8,29] and moments [20] of tuple
distributions. However, these indexes may not be effective
when the filtering power is low and can trigger many index
I/O’s, as we will shown in § 5. The second option is to build
native support of Subarray in array databases where logical
and physical localities are better-aligned. For instance, Sub-
array that exploits logical locality of data, e.g., looking for
adjacent array cells from a point, may need to retrieve only
a few relevant physical storage units called chunks. This ef-
fect of exploiting physical locality is similar to using a clus-
tered primary index on the tuples in a relational database,
but without having to build the index.

Hence, in this work we focus on native support of array
operations on uncertain data. The task is challenging due to
position uncertainty. We aim to reduce both the number of
chunks loaded (I/O cost), often way beyond the query re-
gion, and the number of costly integrations to compute tuple
probabilities (CPU cost), incurred for both relevant and ir-
relevant tuples in the loaded chunks.

3.1 Storage and Evaluation Schemes

Given a tuple and a probability distribution on its dimension
attributes, the array cells that have non-zero probabilities to
contain the tuple form the “possible range” of the tuple, as
defined in Section 2.1. We next propose a number of stor-
age schemes with the property that we can observe the tuple
when any cell of its possible range is covered in a query re-
gion.

Store-All: One solution is to store a copy of the tuple
in each cell of the tuple’s possible range. Fig. 2(a) depicts
the storage of two tuples, t1 and t2, where t1 is replicated
in its possible range A[0:5, 0:3] (including the red and yel-
low cells), and t2 is replicated in A[2:6, 1:4] (the green and
yellow cells), with the overlap region marked in yellow. A
query region, A[2:2, 3:3], is marked by a solid blue box in
Fig. 2(d). A major advantage of this scheme is that we can
execute the query region directly on the array, without any
missed results. The disadvantages include possibly exces-
sive storage overheads and high I/O costs in querying be-
cause each logical cell may need many physical chunks to
store the replicated tuples.

A similar storage scheme is store-all with pointers: store
a tuple in its default cell defined by the mean values of its di-
mension attributes, and add a pointer to this tuple in all other
cells in the tuple’s possible range. Thus we avoid repeated
storage of all attributes of a tuple. However, the numerous
pointers can still incur high storage overheads, as well as
frequent random I/O’s at query time as a result of chasing
pointers from a given query region to fetch relevant tuples
stored outside the region.

Store-Mean: To reduce storage overheads, we next con-
sider storing a tuple only once based on the mean values of
its dimension attributes. However, directly running Subar-
ray on such storage will lead to missed results: tuples whose
mean values are outside the query region but whose possible
ranges overlap with the region will be missed. To avoid the
problem, the query region must be expanded. In this work
, we augment each cell with upper and lower bounds for
each dimension, indicating the distance to travel along each
dimension in order to find all tuples that could belong to
that cell—we call these bounds the upper and lower fences
for expanding the query region from this cell. This way, the
storage overhead is limited to two integers per dimension
per cell.

Fig. 2(b) shows the storage layout for tuples t1 and t2.
Fig. 2(e) shows the cell A[2, 3] covered in a query region
marked by a solid blue box. The fences for the x dimension,
(−1, 3), means that at query time, from this cell we need to
walk one step to the left and three steps to the right, while the
fences for the y dimension, (−1, 1), indicates walking one
step up and one step down. After walking on both dimen-
sions, the expanded query region, marked by a dashed blue

6 Liping Peng, Yanlei Diao

t1 t1 t1 t1 t1

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2 t2 t2 t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t1
t2t1 t1 t1

t2
t1
t2

t1
t2

t1

t1
t2

t1
t2

(a) Store-All: store tuple t1 in its possible
range [0 :5, 0:3], t2 in [2 :6, 1:4].

x:0,1
y:0,2

x:0,0
y:0,2

x:-1,0
y:0,2

x:-3,0
y:0,2

x:-4,0
y:0,2

x:0,1
y:0,1

x:0,0
y:0,1

x:-1,3
y:0,3

x:-3,1
y:0,3

x:-4,0
y:0,3

x:-1,0
y:0,3

x:-1,0
y:0,2

x:0,1
y:-1,0

x:0,0
y:-1,0

x:-1,3
y:-1,1

x:-3,1
y:-1,1

x:-4,0
y:-1,1

x:-1,0
y:0,1

x:0,3
y:0,0

x:0,2
y:0,0

x:0,1
y:0,0

t2:
x:0,0
y:0,0

x:-1,0
y:0,0

0 1 2 3 4 5 6

0

1

2

3

4

y
x

x:-2,2
y:0,2

x:0,1
y:0,0

t1:
x:0,0
y:0,0

x:-1,3
y:0,2

x:-3,1
y:0,2

x:-4,0
y:0,2

x:-2,0
y:0,2
x:-2,2
y:0,3

x:-2,2
y:-1,1

(b) Store-One: store a tuple in a single cell
using its mean and store fences in other cells.

t1 t1

t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t2t1 t1 t2

(c) Store-Multiple: store a tuple in multiple
cells and guarantee distance k from one copy.

t1 t1 t1 t1 t1

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2

t1 t1 t1
t2

t1
t2

t1
t2 t2

t2 t2 t2 t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t1
t2t1 t1 t1

t2
t1
t2

t1
t2

t1

t1
t2

t1
t2

(d) Store-All: execute a query region Q (bold
blue box) on the array.

x:0,1
y:0,2

x:0,0
y:0,2

x:-1,0
y:0,2

x:-3,0
y:0,2

x:-4,0
y:0,2

x:0,1
y:0,1

x:0,0
y:0,1

x:-1,3
y:0,3

x:-3,1
y:0,3

x:-4,0
y:0,3

x:-1,0
y:0,3

x:-1,0
y:0,2

x:0,1
y:-1,0

x:0,0
y:-1,0

x:-1,3
y:-1,1

x:-3,1
y:-1,1

x:-4,0
y:-1,1

x:-1,0
y:0,1

x:0,3
y:0,0

x:0,2
y:0,0

x:0,1
y:0,0

t2:
x:0,0
y:0,0

x:-1,0
y:0,0

0 1 2 3 4 5 6

0

1

2

3

4

y
x

x:-2,2
y:0,2

x:0,1
y:0,0

t1:
x:0,0
y:0,0

x:-1,3
y:0,2

x:-3,1
y:0,2

x:-4,0
y:0,2

x:-2,0
y:0,2
x:-2,2
y:0,3

x:-2,2
y:-1,1

(e) Store-One: expand Q (bold blue box) us-
ing fences to a larger region (dashed box).

t1 t1

t2 t2

0 1 2 3 4 5 6

0

1

2

3

4

y
x

t2t1 t1 t2

(f) Store-Multiple: expandQ (bold blue box)
by k = 1 to a larger region (dashed blue box).

Fig. 2 Alternative storage and evaluation strategies for tuples with uncertain dimension attributes.

box, covers cell A[1, 2] to retrieve tuple t1 and cell A[5, 4]
to retrieve t2.

To generate fences, whenever a new tuple is inserted into
a cell C in the array based on its mean value, we identify ev-
ery cell in the tuple’s possible range, compute its distance
from the cell C, then expand its fences if they do not cover
the computed distance. At query time, for each cell con-
tained in the query region, we expand it using the upper
and lower fences, and take the union of all these expansions
to produce a complete expanded query region. We perform
such expansion using every cell that falls in the query region.
Fig. 2(e) depicts the user-specified query region in a solid
blue box and the expanded query region using a dashed blue
box.

The advantage of this strategy is small storage overhead
in each cell, i.e., only two fences for each dimension, in con-
trast to store-all and store-all with pointers. However, the is-
sue is that the expanded query region can grow very large,
containing both relevant and irrelevant tuples, which will in-
cur both high I/O cost for fetching all the tuples and high
CPU cost for validating them using costly integration based
on the precise Subarray condition.

Store-Multiple: Finally, we propose a scheme that em-
ploys limited replication of tuples and guarantees that from
any cell in a tuple’s possible range, the query needs to be
expanded by at most k cells (steps) along each dimension to
find a copy of the tuple. We call k the step size, and use it
to control both query expansion, by k in each direction on a
dimension, and the degree of replication in storage, roughly
inversely proportional to k. Most importantly, store-multiple
overcomes the shortcomings of the previous two schemes:

First, its controlled expansion of the query region, by k cells,
is particularly helpful when some tuples have large variances
and hence large possible ranges. In other schemes, tuples of
large variances will cause them to be replicated in numerous
cells (store-all) or cause the query region to be expanded
based on the largest tuple variance in a wide neighborhood
(store-mean). Second, store-multiple offers the flexibility to
configure the parameter k for different workloads to achieve
best performance, as we shall show shortly. It is also worth
noting that store-multiple subsumes both store-all and store-
mean: it becomes store-all when k = 0, and approximates
store-mean (without fences) when k is big enough to cover
the largest possible range among all tuples.

Fig. 2(c) shows such storage with k=1, where tuple t1 is
stored in four cells and t2 in another four cells. We can verify
that for each cell in t1’s possible region (the red rectangle),
we need to walk only one step in both dimensions to find a
copy of t1. The same guarantee holds for t2. Fig. 2(f) shows
a query region matching the cell A[2, 3], marked by the solid
blue box, and the expanded region A[1 : 3, 2 : 4] using
k = 1, marked by the dashed blue box.

The evaluation of Subarray under store-multiple includes
two steps: (1) I/O step: The original query region is ex-
panded by k cells along both directions on each dimension;
all tuples in the expanded query region are read from disk.
(2) CPU step: The exact existence probability in the query
region is computed for each retrieved tuple based on its dis-
tribution and compared with the probability threshold. Since
computing the exact existence probability for continuous ran-
dom variables requires expensive integration, we optimize
it by first running fast filters [20] with negligible costs to

Supporting Data Uncertainty in Array Databases 7

prune tuples of low existence probabilities, and building an
in-memory hash table to avoid doing integration for differ-
ent copies of the same tuple.

Two questions remain for store-multiple: First, the way
to store tuples while guaranteeing the step size k in query
expansion is not unique, leading to different degrees of repli-
cation of a tuple. How do we find the best layout of tu-
ples under the step size k configuration? Second, given a
dataset and typical query workloads, how do we choose the
best configuration of k for optimal performance? We address
these two issues in §3.2 and §3.3, respectively.

3.2 Tuple Layout under Store-Multiple

Consider the tuple layout in a d-dimensional array Ad stored
using store-multiple with a step size configuration 〈k1, k2,
· · ·, kd〉. This means that from any cell in the tuple’s pos-
sible range, walking ki cells in both directions on the i-th
dimension, for 1 ≤ i ≤ d, guarantees to find a copy of the
tuple. Finding the best way to store tuple copies amounts to
a coverage problem, as we define below.

Definition 3 (Covering Cell) Given a d-dimensional array
Ad under store-multiple with a step size configuration 〈k1, k2,
· · ·, kd〉, the covering range of the walk from a cell A[x1, x2,
· · ·, xd] is A[x1 − k1 : x1 + k1, · · · , xd − kd : xd + kd]. We
also say each cell in A[x1−k1 : x1 + k1, · · · , xd − kd :

xd + kd] is “covered” by the cell A[x1, x2, · · ·, xd].

Definition 4 (Covering Set) A given set of cells S is cov-
ered by a (discrete) set of cells C if and only if each cell in S

is covered by at least one cell in C; C is called the covering
set of S.

Definition 5 (Problem of Tuple Copy Layout) Given a tu-
ple t, find the minimum covering set C of its possible range
S = A[l1 : u1, l2 : u2, · · · , ld : ud] so that placing one copy
of the tuple in each cell of C guarantees the correctness of
query expansion using the step size 〈k1, k2, · · · , kd〉.

We address the problem by first showing the lower bound
of the size of a covering set, as shown in the following propo-
sition.

Proposition 1 Given an array Ad under store-multiple with
a step size configuration 〈k1, k2, · · · , kd〉, if a tuple’s possi-
ble range is S = A[l1 : u1, l2 : u2, · · · , ld : ud], at least∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1) cells are needed to cover

S.

Proof We can pick a subset of cells from the region S =

A[l1 : u1, l2 : u2, · · · , ld : ud] as follows: S′ = {A[x1, x2,
· · · , xd]| ∀i∈{1, 2, . . . , d}, xi = li + pi(2ki + 1) and li ≤
xi ≤ ui, where pi ∈ {0} ∪ N}. Obviously, the size of the

l1
l2

u1

u2

(a) Two ways to distribute 9
tuple copies (the step size is
2).

A tuple's
possible
range

Validation
region

Expanded
query
region Q̃

V
(b) An example validation region (in
green) for a given query region (in
blue).

Fig. 3 Tuple copy distribution and validation under store-multiple.

set of picked cells |S′| is∏d
i=1 (b(ui − li)/(2ki + 1)c+ 1).

Based on Definition 4, if we can prove that at least |S′| cells
are already needed just to cover S′, then at least |S′| cells
are needed to cover the superset S.

Let us assume a cell A[x1, x2, · · · , xd] ∈ S′ is cov-
ered by (the walk from) a cell A[y1, y2, · · · , yd]. This means
yi− ki ≤ xi ≤ yi+ ki on any dimension i. For any cell
A[x′1, x′2, · · · , x′d] ∈ S′ − {A[x1, x2, · · · , xd]}, there ex-
ists a dimension j such that xj 6= x′j . Without loss of gen-
erality, assume x′j = xj + pj(2kj + 1) where pj ∈ N.
Then x′j ≥ yj − kj + pj(2kj + 1) > yj + kj , which
means A[x′1, x′2, · · · , x′d] does not fall in the covering range
of A[y1, y2, · · · , yd]. Therefore, no two cells in S′ can be
covered by the same cell. In other words, at least |S′| cells
are needed in order to cover S′. Then to cover S, a super-
set of S′, at least |S′| = ∏d

i=1 (b(ui − li)/(2ki + 1)c+ 1)

cells are needed as well.

Given the lower bound on the size, we next consider how
to distribute the covering set, i.e., the cells with tuple copies,
to achieve this lower bound. To maximize the union of the
covering ranges of those tuple copies, we can store them in
evenly-spaced cells: on the i-th dimension where the pos-
sible range is li, ui, the first copy is stored at li + ki and
the other copies are stored 2ki cells away from each other.
Fig. 3(a) shows such distribution of tuple copies in a two-
dimensional array when k1 = k2 = 2. The tuple’s possible
range consists of all the cells within the solid boundary and
requires at least 9 copies to be placed. The layout of 9 copies
is shown by the shaded cells (ignore the red color for now).
However, three copies are stored outside the tuple’s possible
range, which will increase the chance of reading irrelevant
copies when a query region falls outside the tuple’s possible
range. It is thus desirable to store all copies of a tuple in-
side its possible range. In our work, when a tuple needs only
one copy on the i-th dimension, we store it at the center of its
possible range, i.e., b(li+ui)/2c; when it needs more copies,
we store the first copy at li+ki, the last copy at ui−ki, and
the others (if any) are evenly spaced in between, as shown

8 Liping Peng, Yanlei Diao

symbol description
T number of tuples
b number of bytes per tuple
pri length of a tuple’s possible range on the i-th dimension
d dimensionality of an array
c chunk size (the I/O unit) in bytes
si length of each cell on the i-th dimension
ni number of cells on the i-th dimension
qi query region size on the i-th dimension
ki step size on the i-th dimension

Table 1 Notation in modeling and analysis.

by the red cells in the figure. Thus we still use the minimum
number of copies to cover the tuple’s possible range.

3.3 Cost Model of Subarray under Store-Multiple

We next propose a cost model for Subarray under the store-
multiple scheme and use the model to find the optimal step
size configuration. The symbols used in the model are sum-
marized in Table 1. Like in SciDB [6], a cell is a logical
unit in an array while a chunk is a physical storage unit as
well as the I/O unit; tuples in a logical cell can be stored
in one or multiple chunks. For Subarray evaluation under
store-multiple, as explained in §3.1, the I/O cost consists of
the seek and transfer time of chunks in the expanded query
region, while the CPU cost is the product of the number
of tuples to be validated and the validation cost per tuple.
For simplicity, we assume that the centers of tuples’ possi-
ble ranges are evenly spread over the whole array. We also
begin by assuming that all tuples’ possible ranges have the
same size, pri, on the i-th dimension. Our model can be ex-
tended to support possible ranges of variable sizes, as we
explain at the end of the section.

I/O Cost: To capture I/O cost, we focus on a key factor,
the number of chunks in the expanded query region.

Let us first compute the number of cells with which a
tuple’s possible range overlaps on the i-th dimension. Ob-
viously this depends on the alignment of the possible range
and the cells along this dimension, as shown in Fig. 4. We
can chop the possible range into dpri/sie segments, where
the first dpri/sie − 1 segments have length si and the last
segment has length r = pri − (dpri/sie − 1) si. Depend-
ing on the starting position of the possible range in the first
cell, it can overlap with different numbers of cells: when the
starting position is in [0, si − r], it overlaps with dpri/sie
cells; when the starting position is in (si − r, si), it overlaps
with dpri/sie + 1 cells. Then the expected number of cells
the possible range overlaps with is

si − r
si

⌈
pri
si

⌉
+
r

si

(⌈
pri
si

⌉
+ 1

)
=
pri
si

+ 1 (1)

si si

si si si sisi si si

r si si r
pri pri

{cell

possible
range

Fig. 4 Illustration of the number of cells that a possible range overlaps
with

Calculated in a similar way, the number of cells that overlap
with the query region Q on the i-th dimension is qi/si + 1,
and the number for the expanded query region Q̃ is qi/si +
1 + 2ki.

We next model the number of chunks in the expanded
query region Q̃. It is the product of the number of cells in
Q̃ and the average number of chunks per cell. To compute
the latter, we first write ui − li + 1 = pri/si + 1 based on
Eq.(1), and plug it into Proposition 1 to derive the number
of copies per tuple:

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+ 1

)
. (2)

Then the average number of chunks per cell is the total num-
ber of tuple copies in the array divided by the number of
cells in the array and then by the number of tuples a chunk
can hold, i.e., bc/bc:

T

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+ 1

)/ d∏
i=1

ni

/
bc/bc . (3)

Multiplying this with the number of cells in Q̃,
∏d
i=1(qi/si+

1 + 2ki), we get the number of chunks in Q̃:

T

d∏
i=1

(⌊
pri/si
2ki + 1

⌋
+1

)/ d∏
i=1

ni

/
bc/bc ·

d∏
i=1

(
qi
si
+1+2ki

)
(4)

CPU Cost: To capture CPU cost, we model the number
of tuples to be validated. Given an expanded query region
Q̃, a tuple is retrieved for validation as long as it has one
copy stored in Q̃. Fig. 3(b) shows an example tuple whose
possible range is the red box. The tuple has a copy in Q̃ but
its center of the possible range, marked by a black dot, lies
outside Q̃. To handle such tuples, let us define the validation
region, V , to be the set of cells where the centers of the pos-
sible ranges of to-be-validated tuples reside, and model the
size of V first. Now consider the i-th dimension of the ar-
ray: (1) When ki is large enough that every tuple only needs
one copy to cover its possible range, V is simply the ex-
panded query region Q̃, of size qi/si+1+2ki. (2) When ki
is smaller so that all tuples have more than one copy, tuples
that have at least one copy stored in Q̃ need to be validated.
It can be derived that in this case V on the i-th dimension is
of size qi/si+1+pri/si. Summarizing the above two cases

Supporting Data Uncertainty in Array Databases 9

and multiplying the size of V with the number of tuples per
cell, we have the number of tuples to be validated as:

T
/ d∏
i=1

ni ·
d∏
i=1

(
qi
si
+1+ zi

)
, (5)

where zi=2ki when pri/si<2ki+1 and zi=pri/si other-
wise.

Finally we combine the I/O and CPU costs by plugging
in unit cost measurements, including the seek and transfer
time per chunk and per tuple validation time using integra-
tion.

A Generalized Model. We next relax two assumptions
made previously in our model: (1) When tuples have dif-
ferent possible range sizes, we can group tuples based on
the possible range size. The runtime of a query will be a
weighted sum of runtime over each group of tuples, where
the number of tuples per group serves as the weight; (2)
When tuples are not evenly distributed in the domain, we can
feed statistics of tuples’ mean positions and the query posi-
tion into our model to get a more accurate estimate: instead
of using T/Πd

i=1ni, which is the average number of tuples
per cell, we can use the number of tuples in each cell of the
query. In practice, we can collect above-mentioned statistics
when a batch of tuples comes in. For instance, SDSS [28]
updates the scanned image of the sky on a nightly basis and
can build the statistics as a nightly observation is being pro-
duced. If domain knowledge shows that the statistics do not
change drastically from day to day, we can also re-use statis-
tics collected in the past.

Implementation. Given the cost model and basic statis-
tics of tuples’ possible range sizes and query sizes, at data
loading time we estimate the costs of representative queries
by running our model for a wide range of step size configu-
rations (which runs fast), and choose the configuration that
offers the best performance.

We evaluate the effectiveness of our model for doing so
in §5. In addition, our implementation of store-multiple sup-
ports store-all and store-mean with only modest changes. In
particular, it allows evaluation algorithms that use only the
mean copy of each tuple, ignoring other copies.

4 Support for Structure Join

In this section, we focus on the Structure-Join operator un-
der position uncertainty. The default evaluation strategy, as
stated in Definition 2, creates all pairs of tuples from the
two input arrays and evaluates an integral for each pair of
tuples, which is prohibitively expensive. To improve per-
formance, we propose to integrate existing indexes for re-
lational databases [10,9,20] with the store-multiple scheme
for array databases and derive an index-based technique (in
§4.1). We further propose a new subarray-based evaluation

{tA} {tB} {CB}

A B

Index lookup and run solver

Pair tuples Validate & DupElim

1. Read A cells

2.

3. Select B
cells to read

4. 5.

Fig. 5 Illustration of index-based join.

strategy, which does not require an index, and model-based
optimization to achieve its best performance (in §4.2).

In our discussion below, we focus on linear proximity
join, that is, SJoin(Ad,Bd, θ, λ) where θ =

∧d
i=1|A.di−

B.di| < δ, which is the most common in scientific appli-
cations. Non-linear proximity join based on Euclidean dis-
tance, e.g.,

∑
i(A.di − B.di)2 < δ2, can be first relaxed to

linear proximity join, and then followed by additional filter-
ing using exact integration based on θ. Moreover, we define
the selectivity of a probabilistic SJoin to be |C|

|A|·|B| , where
|A|, |B|, |C| are tuple counts of inputs A and B, and the out-
put C.

4.1 Index-based Join

Recent work has proposed new indexes on continuous un-
certain data in relational databases to improve query perfor-
mance [10,9,20]. A natural way to use indexes in Structure-
Join is to perform index nested loops join (INLJ): the outer
relation is scanned once; for each tuple in the outer relation,
the index on the inner relation is probed to find the can-
didates. Integrating INLJ with the store-multiple scheme,
which we proposed for handling uncertain data, raises a new
question: Since tuples may have multiple copies stored in the
array database, how can we minimize the chance of produc-
ing duplicate results from multiple copies of the same tuple
and hence the associated I/O and CPU costs?

We propose an algorithm named index-based joins (IBJ)
and present it as Algorithm 1. Our main idea is as follows:
Consider SJoin(Ad,Bd, θ, λ) where both A (the outer) and
B (the inner) are stored using store-multiple. Assume that
there is a pre-built index on the continuous uncertain join
attribute(s) in B, and the leaf nodes in the index store the
possible range of each tuple. As shown in Fig. 5, the array
A is scanned once, by reading one block at a time (the “for”
loop in Line 1) where each block can contain one or multiple
cells. Each tuple, tA, in the current block of A triggers an in-
dex lookup to find its candidate tuples from B (Line 7), {tB},
as depicted by the left mapping structure in Fig. 5. Each can-
didate tuple tB may be stored in multiple cells, {CB}, as de-

10 Liping Peng, Yanlei Diao

Algorithm 1 Index-based Joins (IBJ)
1: for each read block RA in A do
2: tmap.clear();
3: subsets.clear();
4: for each cell CA in RA do
5: loadToMemory(CA);
6: for each tuple tA in CA do
7: candidates←findCandidates(tA);
8: for each tuple tB in candidates do
9: tmap.get(tB).add(tA);

10: cells←findCells(tB);
11: for each cell C in cells do
12: subsets.get(C).add(tB);
13: toRead←setCover(subsets);
14: for each cell CB in toRead do
15: loadToMemory(CB);
16: for each tuple tB in CB do
17: for each tuple tA in tmap.get(tB) do
18: validate(tA, tB);
19: tmap.remove(tB);
20: removeDuplicates();

picted by the right mapping structure; these CB cells can be
computed from tB’s possible range stored in the index (Line
10). After processing all tuples in the current block of A,
two mapping structures are complete (maintained in Line 9
and Line 12). We want to read a subset of the B cells to min-
imize I/O while guaranteeing coverage: every candidate B
tuple resides in at least one of those cells. Then the A tu-
ples and their candidates B tuples are paired and validated
(Line 18) if the index returns a superset of true matches [10,
9] (otherwise not needed if the index returns only the true
matches [20]). Duplicate matches due to existence of tuple
copies can be removed using an in-memory hash table (Line
20).

Given the two mapping structures, deciding which B cells
to read to minimize I/O while guaranteeing coverage amounts
to a set covering problem (SCP). Denote the union of candi-
dates for all probing tuples in the current block as U . Each
cell CB from B stores a subset of U . Using the number of
chunks as the weight of CB, denoted by ω(CB), our problem
is a variant of the classic SCP:

minimize
∑
CB∈B

ω (CB) · ICB

subject to
∑

CB:tB∈CB

ICB ≥ 1 for all tB ∈ U

ICB ∈ {0, 1} for all CB ∈ B

This is an NP-hard problem but can be solved efficiently by
many techniques, e.g., the integer linear program and greedy
algorithm (Line 13).

The above algorithm for Structure-Join, called index-
based join (IBJ), has several configuration choices. (1) Stor-
age schemes: Although IBJ generally works for input arrays
with any step size configuration, its performance is better

shown when the outer array uses a large step size so that
each tuple has fewer copies and thus the chance of dupli-
cate index lookups for the same tuple is reduced. It turns out
IBJ also prefers a large step size for the inner to minimize
I/O cost. We provide a detailed explanation in evaluation
in §5. (2) Memory allocation: In this algorithm, the mem-
ory is shared among the read block of A, the two mapping
structures, the index, and the cache of B cells (or chunks).
Since the sizes of both mappings increase with the size of the
A block, these three data structures share a memory quota
and then the block size can be automatically determined
by keeping adding new A cells until reaching the memory
quota. The index and the cache of B have their own mem-
ory quotas. These three parts compete for memory: if more
memory is given to the A block and the mappings, fewer
blocks are needed and SCP is more effective in reducing the
I/O of reading B; the more memory is given to the index,
the lower I/O cost in index lookups; and the more is given
to cache B cells, the lower I/O cost in reading B cells. We
evaluate different memory allocation schemes in §5.

4.2 Subarray-based Join

The index-based join requires pre-built indexes, which may
not always be available, and can consume excessive memory
due to the use of the tuple-level mapping. We next present
a new evaluation strategy of Structure-Join, called subarray-
based join (SBJ).

Similar to block nested loops joins, Structure-Join can
be transformed into iterative Subarray operations on the in-
ner array, for each block of the outer array. Assume that the
smaller array, A, is the outer. For each cell CA, we do the
following: (1) Load it into memory, form a subarray condi-
tion θCA on the inner array B, and run the Subarray query
on B. (2) Pair tuples in CA with those tuples retrieved by
Subarray on B. (3) The final validation phase computes the
exact probability for each tuple pair (tA, tB) to satisfy the
join condition and compares it with the threshold λ. We de-
scribe the subarray condition θCA and the full algorithm in
§4.2.1 and present a cost model for optimization in §4.2.2.

4.2.1 Subarray Conditions and the SBJ Algorithm

The subarray condition θCA for each outer cell CA must
produce all join results while being as tight as possible to
maximize performance. Below we propose several neces-
sary conditions for linear proximity join that guarantee the
retrieval of all join results.

Given a tuple tA, let (ltA.di , utA.di) denote the lower and
upper bounds of its possible range on the i-th dimension.
Similarly, we have (ltB.di , utB.di) for tuple tB. Then we have:

Supporting Data Uncertainty in Array Databases 11

yi =xi+�

yi =xi ��

xi

yi

ltA.di
+�

ltA.di
��

ltA.di

p̃2

p̃1,1

p̃1,2

Fig. 6 Illurstraion of p̃ = p̃1,1 + p̃1,2 + p̃2.

Proposition 2 For any tuple pair (tA, tB) returned by SJoin(
Ad, Bd,

∧d
i=1|A.di−B.di| < δ, λ), the intervals (ltA.di−δ,

utA.di+δ) and (ltB.di , utB.di) overlap on any dimension i

(i = 1, . . . , d).

Proof We prove by contradiction. Consider a tuple pair (tA, tB)
returned by SJoin. Assume that there exists a dimension di
where (ltA.di−δ, utA.di+δ) and (ltB.di , utB.di) do not over-
lap, i.e., ltA.di−δ > utB.di or utA.di+δ < ltB.di . Without loss
of generality, let us assume ltA.di− δ > utB.di . Below we
focus on computing probability p =

∫∫
θ
ftA(x)ftB(y)dxdy

where the integration domain θ is {(x,y)|∧di=1 |xi − yi|<
δ}. We start with finding an upper bound of p. Relaxing the
join condition by only considering dimension di, we have

p<

∫∫
|xi−yi|<δ

ftA(x)ftB(y)dxdy =

∫∫
|xi−yi|<δ

ftA.di(xi)ftB.di(yi)dxidyi.

It means the probability for (tA, tB) to satisfy the join pred-
icate is upper bounded by the probability for their values on
dimension di to satisfy the join predicate on dimension di,
denoted as p̃. The integration domain is colored in Fig. 6
and partitioned into three parts. Denote the probability mass
of each partition as p̃1,1, p̃1,2 and p̃2 respectively. Below we
derive the upper bound for each of them by applying the as-
sumption.

p̃1,1 =

∫ ltA.di−δ

−∞
ftB.di(yi)

(∫ yi+δ

yi−δ
ftA.di(xi)dxi

)
dyi

<

∫ ltA.di−δ

−∞
ftB.di(yi)

(∫ ltA.di

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ ltA.di−δ

−∞
ftB.di(yi)dyi <

ε

2

p̃1,2 =

∫ ltA.di+δ

ltA.di−δ
ftB.di(yi)

(∫ ltA.di

yi−δ
ftA.di(xi)dxi

)
dyi

<

∫ +∞

utB.di

ftB.di(yi)

(∫ ltA.di

−∞
ftA.di(xi)dxi

)
dyi

=
ε

2

∫ +∞

utB.di

ftB.di(yi)dyi =
ε

2
· ε
2
=
ε2

4

p̃2 =

∫ +∞

ltA.di

ftA.di(xi)

(∫ xi+δ

xi−δ
ftB.di(yi)

)
dxi

<

∫ +∞

ltA.di

ftA.di(xi)

(∫ +∞

utB.di

ftB.di(yi)

)
dxi

=
ε

2

∫ +∞

ltA.di

ftA.di(xi)dxi <
ε

2

Finally we have p < p̃ = p̃1,1+ p̃1,2+ p̃2 < ε+ ε2/4�
λ, which means (tA, tB) can never be in the join result. Then
we reach a contradiction and thus the assumption is wrong.

The proposition states a way to find a superset of the join
answers: for each tuple tA from A, expand its possible range
by δ on each dimension, denoted by ItA , then pair tA with
all tuples tB from B whose possible ranges overlap with ItA .

When A is stored using store-mean, we use the above re-
sult to form a subarray condition on B, for each cellCA ∈ A.
The next proposition shows how to do so, i.e., by relaxing
the condition using the minimum lower bound and maxi-
mum upper bound of possible ranges of all tuples in CA.

Proposition 3 (Subarray for Store-mean) Consider SJoin(
Ad, Bd,

∧d
i=1|A.di−B.di| < δ, λ) when A is under store-

mean. For a cell CA, a subarray condition θCA that returns
all join results is:

d∧
i=1

min
tA∈CA

ltA.di−δ<B.di< max
tA∈CA

utA.di+δ.

When A is stored using store-multiple, we do not need
to relax the join condition as aggressively, e.g., to accom-
modate the large possible ranges of some tuples. Instead,
we can bound the relaxation using the step size of A and δ.
Given the step size 〈k1, k2, · · · , kd〉 of array A, we define
some notation:

– Denote the value range of cell CA on dimension di as
(lCA.di , uCA.di).

– For any cell CA=A[x1, . . . , xd], two cells bound the ex-
pansion from CA by the step size of A, denoted as C−A =

A[x1− k1, . . . , xd− kd] and C+
A =A[x1 + k1, . . . , xd+

kd].

Proposition 4 (Subarray for Store-multiple) Consider
SJoin(Ad, Bd,

∧d
i=1|A.di−B.di|< δ, λ) when A is under

12 Liping Peng, Yanlei Diao

A B{CA} {CB}

Pair tuples

Validate & DupElim

a red block, then
a green block

cells in the
green block candidate

cells

subarray on B

2.1.

3.

4.

5.

Fig. 7 Illustration of subarray-based joins

store-multiple. For cell CA, a subarray condition θCA that
returns all join results is:

d∧
i=1

lC−
A .di
− δ < B.di < uC+

A .di
+ δ.

Proof Let StA denote the set of cells that store a copy of
tA, i.e., StA = {CA|tA ∈ CA}. Below we first prove that
(ltA.di , utA.di)⊆

⋃
CA∈StA

(
lC−

A .di
, uC+

A .di

)
: When tA only needs

one copy to cover its possible range on dimension di, as-
sume the copy is stored atCA, then (ltA.di , utA.di)⊆

(
lC−

A .di
,

uC+
A .di

)
because otherwise it needs at least two copies; When

tA has more than one copies on dimension di, according to
§3.2, the first copy and the last copy are stored ki cells away
from the lower and upper bounds of tA’s possible range re-
spectively, depicted by Fig. 3(b). So ltA.di = min

CA∈StA
lC−

A .di

and utA.di = max
CA∈StA

uC+
A .di

, which means (ltA.di , utA.di) =⋃
CA∈StA

(
lC−

A .di
, uC+

A .di

)
. Combining the two cases, we have

(ltA.di , utA.di)⊆
⋃

CA∈StA

(
lC−

A .di
, uC+

A .di

)
. Then for any tuple tB,

if its possible range (ltB.di , utB.di) overlaps with (ltA.di−δ,
utA.di+δ), which is a necessary condition for tB being a true
match of tA according to Proposition 2, it must also overlap
with

⋃
CA∈StA

(
lC−

A .di
−δ, uC+

A .di
+δ
)

. This means that tB will be

returned by at least one of the subarray queries formed for
all cells in StA , say Subarray(B, θCA0 , λ). In this way, we
guarantee that no result is missing.

This proposition states that for each cell CA, the subarray
condition on the inner array B can be formed by expanding
CA first by the step size of A and then by δ.

We present subarray-based join (SBJ) as Algorithm 2
and illustrate it with Fig. 7. It processes one block of the
outer at a time (Line 1 in Algorithm 2; marked as Step 1 in
Fig. 7, with a red block followed by a green block of A).

Algorithm 2 Subarray-based Join (SBJ)
1: for each read block RA in A do
2: toRead.clear(); map.clear();
3: for each cell CA in RA do
4: loadToMemory(CA);
5: Q← formQueryRegion(CA);
6: S ← Subarray(B, Q);
7: for each cell CB in S do
8: toRead.add(CB);
9: map.get(CB).add(CA);

10: for each cell CB in toRead do
11: loadToMemory(CB);
12: for each cell CA in map.get(CB) do
13: for each tuple tA in CA do
14: for each tuple tB in CB do
15: validate(tA, tB);
16: removeDuplicates();

For each cell CA in the current block, the algorithm forms
a Subarray query and runs it on the inner array B (Line 6;
Step 2). We call the B cells returned by the Subarray query
for each CA the candidate cells of CA. Since the candidate
cells of different outer cells may overlap, as an optimization
to save I/O, the algorithm maintains the union of the candi-
date cells of all outer cells in the current block (Line 8), in
{CB} in Fig. 7. To avoid nonviable pairs of tuples, the algo-
rithm maintains a hash map that maps a cellCB to only those
A cells whose candidate cells include CB, i.e., the mapping
structure in Fig. 7 (Line 9; Step 3). Then the algorithm reads
relevant cells of B and pairs tuples accordingly (Line 10-14;
Step 4). It is optional to apply quick filters to the paired tu-
ples to reduce later CPU cost. It finally does validation using
the join condition and removes duplicates (Line 15-16; Step
5).

As shown in Fig. 7, the memory is shared by (1) the
read block of A, (2) the cell-level mapping structure, which
is much more compact than the tuple-level mapping in the
index-based join, and (3) the cache of B cells (or chunks).
Since first two items grow together, they share a memory
quota. Then the block size is determined by loading more
cells from A until the memory quota is used up. The rest of
the memory is given to the cache of B. Intuitively, the more
memory is given to data structures (1) and (2), the fewer
batches and fewer duplicate reads of the same B cell due to
the overlapping subarray regions on B.

4.2.2 A Cost Model for Optimization

Next we build a cost model for SBJ under the store-multiple
scheme which can be used to find the optimal step size dur-
ing data loading given basic data statistics. We use the sym-
bols in Table 1 with subscripts to distinguish inner and outer
arrays.

I/O cost: We model the numbers of A and B chunks read
in I/O and later translate them to seek and transfer times.

Supporting Data Uncertainty in Array Databases 13

First consider the outer array A. Its number of chunks, de-
noted by ||A||, is the total number of tuple copies, denoted
by |A|, divided by the number of tuple copies per chunk.
Based on Eq. (2) in §3.3, we have:

|A| = TA

d∏
i=1

(⌊
prA,i/sA,i
2kA,i + 1

⌋
+ 1

)
, ||A|| = |A|/ bc/bAc .

Now consider the inner array B. Each cell in B may be
read multiple times as it can exist in the results of Subarray
queries formed from different A blocks. Hence, the I/O cost
for reading B is the product of (1) the number of A blocks,
αRA , (2) the number of B cells to read per A block, denoted
by βRA , and (3) the number of chunks per B cell, ||CB||.
Below we model each of them in order.

We first model αRA . Assume that a memory quota of
K chunks is given to the A block and its mapping. Then
the number of cells in each A block, nRA , is K/(||CA|| +
||MCA ||), where ||CA|| is the number of chunks per A cell
and ||MCA || is the number of chunks for the mapping entries
per A cell. It is easy to see that

||CA|| = ||A||
/ d∏
i=1

nA,i.

According to Proposition 4, the subarray condition formed
for cell CA expands CA by A’s step size and then by δ, so
the length of the Subarray query on dimension di is (1 +

2kA,i)sA,i+2δ. It amounts to ((1 + 2kA,i)sA,i + 2δ) /sB,i+
1 cells in the B array according to Eq. (1). When running this
query on B, the number of candidate cells of CA is:

βCA =

d∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
(6)

Assuming that each mapping entry has bmap bytes, we have:

||MCA || = βCA ·
bmap
c

.

We then get the number of A blocks as the total number
of cells divided by the number of cells in each RA block:

αRA =

∏d
i=1 nA,i
nRA

=
(||CA||+ ||MCA ||)

∏d
i=1 nA,i

K

We next model the second factor, βRA . For the current
read block RA, we take the union of B cells returned by
the Subarray query formed for each A cell. This union is
equivalent to the set of B cells returned by a single Subarray
query formed for the entire read blockRA. Hence, similar to
Eq. (6), we can get βRA as follows:

βRA =

d∏
i=1

 (n
1
d

RA + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

 .

We can get the last factor ||CB|| in the same way as
||CA||.

CPU cost: The CPU cost is the product of the number
of tuple pairs to be validated, which we will model below,
and the validation cost per tuple pair. According to our al-
gorithm, tuples in each cell CA are paired with the tuples in
CA’s candidate cells and all such tuple pairs need to be vali-
dated. Therefore, the number of tuple pairs is the product of
(1) the number of tuple copies in A, (2) the number of can-
didate cells per A cell, and (3) the number of tuple copies
per B cell. Using Eq. (6), we compute the product as:

|A| ·
d∏
i=1

(
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

)
· |B|∏d

i=1 nB,i

Finally, the combined IO and CPU model allows us to
find the optimal step sizes for inner and outer arrays if SJoin
is the key workload. Statistics needed are the distribution of
tuples’ possible ranges and common distance values in joins.
Collecting such statistics is a common task of the query opti-
mizer and we can leverage a large body of work on relational
DBMSs in our work.

5 Experiments

We evaluate our techniques for Subarray and Structure-Join
using both a wide range of synthetic workloads with con-
trolled properties and real datasets from the Sloan Digital
Sky Survey (SDSS) [28].

5.1 Evaluation of Subarray

Experimental Setup on Synthetic Datasets. We generate
synthetic workloads based on the statistics of dimension at-
tributes (rowc, colc) in SDSS. The value of each dimension
attribute in SDSS can be described by a Gaussian distribu-
tion, (µ, σ). Here, µ is specified by the value of attribute
rowc (or colc) and determines where the center of a tu-
ple’s possible range is located along dimension rowc (or
colc); σ is specified by the value of attribute rowcErr (or
colcErr) and determines how wide a tuple’s possible range
is along dimension rowc (or colc); without loss of general-
ity, we consider a tuple’s possible range per dimension to be
µ±3σ. Putting the SDSS dataset into an array with each cell
addressed by (browcc, bcolcc), i.e., each cell is a square of
side 1, a tuple’s possible range takes 2.5×2.5 (=6.25) cells
on average.

Our synthetic datasets are in both 2D and 3D spaces,
each of which contains 2,000,000 tuples and is loaded into
a 2D array with 250×250 (=62500) cells or a 3D array with
40×40×40 (=64000) cells. The CPU cost per integration in
the 3D space is much higher than that in the 2D space. We

14 Liping Peng, Yanlei Diao

��

�������

�������

�������

�������

�������

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(a) Workload (2D,U , 1; 1%, 0.9)

��

�������

�������

�������

�������

�������

�������

�������

�������

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(b) Workload (2D,U , 100; 1%, 0.9)

��

�������

�������

�������

�������

�������

�������

�������

�������

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(c) Workload (2D,U , 100; 1%, 0.01)

�����

�����

�����

�����

� � � � � �� �� �� ���

�
��
��
�
�
�
��
��
��
��
��
�
��
��
��
�
�

���������

�����������

��������������

�������������

�������������

�������������

(d) Tuple counts after filtering for different
threshold λ values (2D,U , 1; 1%, λ)

��

�������

������

��������

������

��������

������

��������

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(e) Workload (2D,U , 100; 10%, 0.9)

��

�������

�������

�������

�������

������

��������

��������

� � � � � �� ��

�
��

��
��

��

���������

��

���

(f) Workload (3D,U , 1; 1%, 0.9)

Fig. 8 Cost breakdown of Subarray with varied step sizes for various workloads.

generate µ values using the distribution, Dµ, which is set to
a uniform distribution over the domain or a Gaussian dis-
tribution with more tuples clustered at the center; we col-
lect the top 10 frequent σ values from the SDSS dataset and
rescale the σ values by a factor Sσ to obtain various average
possible range sizes: 6.25 (i.e., the average possible range
size in SDSS), 100 and 625 cells (to simulate the scenarios
when cells have finer granularities), where Sσ= 1, 16 and
100 correspondingly. We generate a dataset for each combi-
nation ofDµ and Sσ configurations. To generate queries, we
vary the query size, q, between 0.01% and 10% of the do-
main. The threshold, λ, prunes tuples based on the existence
probability in the query region. Usually the user wants only
the tuples with high existence probabilities; we use λ=0.9 to
represent this workload. We also tested λ=0.01 (e.g., needed
if we have an aggregate after subarray). Table 2 shows a
summary of all parameter settings. Recall that the evalua-
tion of Subarray includes an I/O step and a CPU step. We
optimize the CPU step by first running fast filters [20] with
negligible costs before computing the expensive integral for
the exact existence probability of each retrieved tuple.

Expt 1: Cost Breakdown. Our store-multiple scheme has a
parameter, step size k, which determines both the degree of
replication and query expansion. We start by showing how
the Subarray processing cost changes as k varies. Fig. 8(a)
shows results for the default workload, (2D, Dµ=U , Sσ=1;
q=1%, λ=0.9), whose average possible range size is 2.5×
2.5 = 6.25 cells, while Fig. 8(b) shows results for Sσ=100,

Parameter Default Other
Value Values

Data dimensionality 2 3
Dµ, distribution of µ uniform (U) normal (N)
Sσ , scale factor of σ 1 16, 100

Query q, query range / domain 1% 0.01%, 0.1%, 10%
λ, probability threshold 0.9 0.01

Table 2 Parameters in Subarray experiments using synthetic
datasets.

with average possible range size being 25×25 = 625 cells
and magnified trends. To further study the effect of λ and q,
we tune their values for Fig. 8(b) one at a time: we change λ
from 0.9 to 0.01 and show the cost breakdown in Fig. 8(c);
we also vary q from 1% to 10% and show the cost break-
down in Fig. 8(e). Finally Fig. 8(f) shows the cost break-
down for a 3D workload. The overall trends are:

(1) The I/O cost first decreases and then increases with
the step size. I/O is determined by both the number of cells
in the expanded query region and the number of chunks per
cell. When k is small, which means more aggressive repli-
cation of tuples, the expanded query region is small, but the
number of chunks per cell is large and has a stronger impact
on I/O. As k grows larger, fewer tuples are replicated, so
each cell is smaller. But the expanded query region becomes
very wide and affects I/O cost more. So the optimal I/O cost
appears in the middle of the spectrum of k.

(2) The CPU cost does not change with the step size
when the probability threshold λ is high. The CPU cost de-

Supporting Data Uncertainty in Array Databases 15

������

������

������

������

������

������

����� ���� �� ���

�
��

�
��
�
��

���������

����������

���������

(a) Compare store-all, store-mean, and
store-multiple for (2D,U , 1; q%, 0.9)

������

������

������

������

������

����� ����� �� ���

�
��

�
��
�
��

���������

����������

���������

(b) Compare store-all, store-mean, and
store-multiple for (2D,U , 100; q%, 0.9)

������

������

������

������

������

����� ���� �� ���

�
��

�
��
�
��

���������

����������

���������

(c) Compare store-all, store-mean, and
store-multiple for (2D,U , 100; q%, 0.01)

������

������

������

������

������

������

������

����� ���� �� ���

�
��

�
��
�
��

���������
����������

�������������������
����������������

�������
�������

(d) SDSS Case Study when λ=0.9

������

������

������

������

������

����� ����� �� ���

�
��

�
��
�
��

���������

����������

���������

(e) Compare store-all, store-mean, and
store-multiple for (2D,U , 100; q%, 0.9)

Fig. 9 Evaluation results of Subarray on synthetic and SDSS datasets.

pends on the number of tuples that passed the quick filter and
need to be validated using expensive integration. Fig. 8(d)
shows the number of tuples that pass the filter. When λ is
sufficiently high,≥ 0.1 in this figure, the filter can drop most
irrelevant tuples, so the number of tuples after filtering does
not change with the step size, or the number of tuples re-
trieved from storage. We examined the filter’s effect using
multiple datasets and our observation is consistent.

It can be seen from the above cost breakdown plots that,
between CPU cost and I/O cost, which one is dominating de-
pends on many factors including λ (by comparing Fig. 8(b)
and Fig. 8(c)), the system constants like the per integration
cost (by comparing Fig. 8(a) and Fig. 8(f)), and the step size
configuration (by comparing bars within each plot). To show
the challenge of finding the optimal step size, we compare
Fig. 8(a) and 8(b) and note that the optimal step size shifts
right when the average possible range increases. We also
examined other workloads and observed that the optimal
step size shifts left when λ is very small and increases with
the query region size.

Expt 2: Model Accuracy. We now use the cost model in
§3.3 to determine the step size to be used when loading data
into an array. We assume that the user can provide basic
statistics including the σ distribution in the data and com-
mon Subarray sizes. We denote the optimal step size k∗, and
the step size returned by our model k̃. We measure the per-

formance loss of our model,
Cost(k̃)− Cost(k∗)

Cost(k∗)
. When

tuples’ mean values, µ, are normally distributed around the
center of the array, the center of the query region matters as
the data density varies. For such datasets, we pick around
10 query centers (3×3 for 2D datasets and 2×2×2 for 3D
datasets) that evenly scattered over the array, and report on
the average.

Table 2 shows 96 combinations of parameters. Our model
returns the optimal step size (i.e., has no performance loss)
in 43 out of 48 workloads when the tuples’ µ values are uni-
formly distributed and in 40 out of 48 workloads when the
tuples’ µ values are normally distributed. In the cases when
our model selects a suboptimal step size, the average per-
formance loss is 2.72% which shows that our model is very
effective in configuring the store-mul scheme.

Expt 3: Comparing Schemes. We now use the step size re-
turned by the model to configure store-multiple and compare
it to store-all and store-mean with fences for Subarray eval-
uation. The results are shown in a log scale in Fig. 9(a)-9(c)
for different workloads. Each plot shows four queries with
different query region sizes.

In all cases, store-multiple works the best. In compari-
son, when all tuples have small possible ranges, the three
storage schemes do not differ much because store-all incurs
only a small storage overhead and the expanded query re-
gion for store-mean is also very constrained, as shown for

16 Liping Peng, Yanlei Diao

the dataset in Fig. 9(a). However, for datasets when Sσ =

100, store-all often incurs tremendous storage overheads and
I/O costs in querying, as shown in Fig. 9(e) and 9(c). More-
over, store-multiple outperforms store-mean considerably when
the query region q is small, e.g., q <1%, which is the com-
mon case, due to a more constrained expanded query region.
When q grows larger, e.g., q=10%, their difference is re-
duced because the optimal step size of store-multiple tends
to be larger. This means that infrequent replication of tuples
works fine if q is large, and most tuples have only one copy
under store-multiple, similar to store-mean.

5.1.1 A Case Study using SDSS datasets.

We finally evaluate Subarray using three SDSS [28] datasets
on two dimension attributes rowc and colc, each containing
1.89, 10.3 and 30.2 million tuples.

5.2 Evaluation of Structure-Join

Experimental Setup. We generate synthetic workloads for
Structure-Join as before with a few changes: For efficiency,
we first consider 1D arrays of 1000 cells and datasets of
100,000 tuples. We will show results on two-dimensional
arrays and larger datasets in the case study. We consider
SJoin (A1,A2, |A1.x− A2.x| < δ, λ), where A1 and A2 are
loaded from the same dataset, and we fix δ to 1% of the
domain for proximity join. The memory size is about 176
chunks, i.e., 30% of the data size. We use a state-of-the-art
index on continuous uncertain data [20] whenever possible,
e.g., in the Index-based Join and as an in-memory filter in
Subarray-based Join (detailed later). This index returns only
true matches on 1D arrays, so validation is not needed.

Expt 4: Index-Based Join (IBJ). We first study the Index-
based Join, which is sensitive to: (1) the selectivity, which
we control using the probability threshold λ, (2) the storage
scheme, and (3) the memory allocation scheme. We first use
λ=0.9 or 0.01 to represent high or low selectivity. IBJ failed
on all datasets when λ=0.01 regardless of memory alloca-
tion and storage schemes, because a single tuple can have so
many matches that its mapping entries do not fit in memory.
Hence, we consider only λ=0.9 below.

We next consider the effect of the storage scheme. As
stated in §3.3, when array A is under store-multiple, it can
still be processed as store-mean. Our question is whether IBJ
works better by considering multiple tuple copies or only
the copy at mean (ignoring other copies). We observe that
for the outer array, it is always better to use only the copy at
mean because it avoids duplicate index lookups for the same
outer tuple. For the inner array, Fig. 10(a) shows the perfor-
mance of store-multiple with different k values and that of
store-mean on the Sσ=10 dataset, where each line denotes a

different memory allocation scheme (discussed shortly). As
is seen, IBJ has the best performance when the inner array
uses store-mean under all memory allocation schemes. The
reason is that after the index lookups return all candidate tu-
ples, fetching all of them from the inner array requires more
I/O when nonviable tuples have a copy stored in the to-read
cells (chunks), which is less likely to happen with a lower
degree of replication. The observation also holds for other
datasets. Hence, for better performance, IBJ should consider
only the tuple copy at the mean in the underlying storage.

Next we examine memory allocation among: (i) the outer
block and associated mappings; (ii) the cache of index nodes;
and (iii) the cache of inner cells (or chunks). Like caching
inner tuples in an index-based join in relational databases,
the third factor is least effective, so we fix it to 1 chunk to
focus on others. Fig. 5 shows the result with one line per
memory allocation scheme in the form of cache size of fac-
tor (i, ii, iii). When the size of factor (i) is small (e.g., 50), a
small inner step size (e.g., 1) may not be able to run because
each candidate tuple is mapped to more cells and the map-
ping entries may not fit in memory. Overall, the more mem-
ory is given to factor (i), the more tuples per read block and
thus IBJ is more likely to benefit from solving the set cover-
ing problem.

Expt 5: Subarray-Based Join (SBJ). The performance of
SBJ is affected by the I/O cost for running repeated Subar-
ray queries on the inner array, and the CPU cost for vali-
dating paired tuples. To reduce CPU cost, as we pair tuples
from an outer cell and its candidate cell, we implement a fil-
ter [20] to prune nonviable pairs quickly. SBJ enjoys a mem-
ory allocation scheme of giving most memory to the outer
block and its mapping, which is used below.

We first demonstrate that SBJ’s performance is sensitive
to the storage scheme. Fig. 10(b) shows various combina-
tions of the outer step size, kout, and inner step size, kin,
with λ = 0.9. Each line represents a fixed value of kout,
and the x-axis varies values of kin, with the optimal in-
ner step size circled. There are two main trends: (1) For a
fixed kout, the optimal inner step size k∗in is in the middle
of its spectrum. As explained in Expt 1, the inner I/O first
decreases and then increases with its step size. (2) Once kin
is fixed, the optimal k∗out also occurs in the middle (e.g.,
k∗out=16), because it achieves the best tradeoff between (a)
pairing and filtering costs for the same outer tuple, which
decreases with larger kout, and (b) the number of candidate
cells to consider, which increases with kout due to the en-
larged expanded subarray region.

Next we show that the cost model in §4.2.2 can predicate
the performance of SBJ so that given basic statistics, we can
use it to choose the optimal step size configuration during
data loading (if SJoin is known to the key workload). We
again use the performance loss to evaluate the model accu-
racy. The results are shown in Table 3, where 〈kout〉; 〈kin〉

Supporting Data Uncertainty in Array Databases 17

��������

��������

��������

��������

�������

��������

��������

��������

��������

� � � � �� �� �� �������������

�
��

��
��

��

���������������

����������
����������
����������

(a) IBJ cost w.r.t. step size of the inner array
for (U , 10; 1%, 0.9)

�����

�����

�����

� � � � �� �� �� ��� ��� ���

�
��

��
��

��

���������������

�����������������
�����������������

������������������
�������������������

(b) SBJ cost w.r.t. step size of the inner array
for (U , 10; 1%, 0.9)

������

������

������

������

������

������

�������

� � �� ��

�
��

�
��
�
��

����

���

���

(c) Compare BNLJ, IBJ and SBJ for workloads
(U , Sσ = (1, 4, 10, 40); 1%, 0.9)

������

������

������

������

������

� � �� ��

�
��

�
��
�
��

����

���

(d) Compare BNLJ, IBJ and SBJ for workloads
(U , Sσ = (1, 4, 10, 40); 1%, 0.01)

������

������

������

������

������

������

������

�� �� ��� ���

�
��

�
��
�
��

���������
����������

�������������������
����������������

(e) SDSS Case study: store-all v.s. store-mean
v.s. store-multiple for Subarray when λ=0.9

������

������

������

������

������

������

������

������

��� ���� ����

�
��

�
��
�
��

����
��������
��������

(f) SDSS Case study: BNLJ v.s. SBJ for
Structure-Join when δ = 1%

Fig. 10 Performance results of the Structure-Join evaluation and the Case Study using SDSS.

denotes the outer and inner step sizes. The model returns the
optimal step sizes in most cases and the overall performance
loss is within 6% (if any).

Expt 6: Comparison of Join Algorithms. We now use the
step size returned by the model to configure SBJ, and com-
pare it to IBJ and block nested loops joins (BNLJ) where
both inner and outer arrays are stored using store-mean. The
results are shown in Fig. 10(c) and Fig. 10(d) with one group
of bars per dataset. As is mentioned in Expt 4, IBJ failed
when λ = 0.01 due to the huge tuple-level mapping used.
When λ = 0.9, IBJ still works poorly due to the tremendous
index I/Os. For all datasets tested, SBJ outperforms BNLJ,
e.g., 25% better when λ=0.9 in average and 85.8% better
when λ=0.01. This is because SBJ does not incur much stor-
age overhead and can effectively limit the number of inner
cells to be loaded and the number of tuples to be filtered to
save the CPU cost.

5.3 A Case Study using SDSS

We finally evaluate our techniques using the SDSS [28] dataset,
which uses two dimension attributes rowc and colc and in-
cludes 1,893,685 tuples. Most tuples have small possible
ranges; the average possible range size is 2.5 for both rowc
and colc. The subarray model in §3.3 suggests 〈0, 0〉 as the
step size configuration when q=1% of the domain size per

Dµ Sσ λ
optimal model perf.
step size step size loss

U(0, 1000)

1 0.9 〈2〉;〈4〉 〈4〉;〈4〉 5.3%
0.01 〈2〉;〈2〉 〈2〉;〈2〉 0%

4 0.9 〈8〉;〈8〉 〈8〉;〈16〉 3.6%
0.01 〈8〉;〈8〉 〈8〉;〈8〉 0%

10 0.9 〈16〉;〈32〉 〈16〉;〈32〉 0%
0.01 〈8〉;〈8〉 〈16〉;〈16〉 0%

40 0.9 〈32〉;〈32〉 〈32〉;〈32〉 0%
0.01 〈32〉;〈32〉 〈32〉;〈32〉 0%

Table 3 SBJ Model Accuracy when δ = 1%

dimension and 〈1, 1〉 for other query sizes, while the SBJ
model in §4.2.2 suggests 〈2, 2〉 when δ = 1% of the do-
main size is taken as a common workload for proximity join.
When the two models do not return the same step size, the
user should choose the right model by considering the im-
portance (e.g., frequency and cost) of each type of query.

Regarding storage overheads, for the step size configura-
tion 〈1, 1〉, 79.28% of tuples have only one copy and 92.36%
of tuples have at most three copies, and the numbers for
〈2, 2〉 are 90.84% and 98.82%. As such, store-multiple in-
curs only a very modest storage overhead when most tuples
have concentrated distributions.

The Subarray performance is shown in Fig. 10(e) which
is similar to Fig. 9(a) except that the performance of store-
mean with fences is orders of magnitude slower than other

18 Liping Peng, Yanlei Diao

schemes when q=1%, 3% or 10%, and loses to store-multiple
by 73% when q =30%. This is because its expanded query
region almost covers the entire array due to the existence of
very large variance tuples (e.g., 2039.782), and such tuples
are not in the top 10 frequent values we used to generate
our synthetic datasets. Although our subarray and join mod-
els return different step sizes, when q=10% and 30%, they
both improve store-all by over 17% and 21%, respectively.

The next query finds neighbors (distance within 1% of
domain size) for 0.01% of the Galaxy tuples using Structure-
Join. We compare SBJ only to the baseline BNLJ, since IBJ
is shown to work poorly in §5.2. For multi-dimensional join,
the filter [20] returns a superset of true matches. Thus, un-
like the experiments in §5.2, the validation involves an ex-
pensive integral per tuple pair and contributes to the CPU
cost. The results are shown in Fig. 10(f). When the input ar-
ray is configured by the SBJ model, SBJ achieves 15.8%,
19.4% and 20.2% improvement over BNLJ when λ =0.9,
0.95 and 0.99. When the array is configured by the subarray
model, the performance gains are 8.6%, 12.7% and 17.2%,
respectively. Overall, SBJ’s performance increases fast with
higher threshold λ.

6 Related Work

Most relevant techniques have been discussed in earlier sec-
tions. Below, we survey several broader areas.
Probabilistic processing under the array model. Recent
work [15] observes that correlations in array data are mostly
restricted to local areas and proposes a unified model for
modeling both correlated data and physical storage. Monte
Carlo processing has also been studied for join and sampling
for uncertain array data [14]. As stated earlier, this line of
work focuses on only value uncertainty in array data but not
position uncertainty, i.e., it does consider the fact that uncer-
tain attributes can be used as dimension attributes.
Indexing and storing multi-dimensional uncertain data.
Recent work has addressed indexing uncertain data. Some
existing indexes in relational probabilistic databases [10,9,
7,8,29,13,20] can be used in our index-based join or serve
as filters to reduce validation (CPU) cost in the evaluation
of subarray and subarray-based join. These indexes may not
be effective when the filtering power is low (e.g., when there
is an aggregate after the subarray or structure-join, the prob-
ability threshold needs to be a small number like 0.01 be-
cause a tuple with low existence probability may contribute
a modest value to the aggregate) and can trigger many ran-
dom I/O’s since they are often secondary indexes. In con-
trast, we aim to provide native support in the array model,
where logical and physical localities are better-aligned and
the effect of exploiting physical locality is similar to us-
ing a clustered primary index on the tuples in a relational
database, but without having to build the index.

Other indexes [5,1,21,3,2] are designed for similarity
and nearest-neighbor queries, not directly applicable to our
work. Probabilistic databases use secondary storage to record
query lineage and efficiently compute tuple existence prob-
abilities [19], but their focus is on discrete random variables
in the relational model, not on continuous random variables
in the array model.
Redundant storage for efficient query processing. Also
related is the work on using redundant storage for answer-
ing point enclosure and range queries in an I/O efficient
way [23,16,4]. To map to that work, we can translate our
subarray query in two steps: First, find all tuples whose pos-
sible ranges (bounding boxes of tuples’ distributions) inter-
sect the query rectangle, which however cannot be simply
solved by point enclosure and range queries [4]. Second,
compute the existence probabilities of candidate tuples and
validate them against a probability threshold, which is CPU-
intensive and not considered in prior work (while our work
does).

7 Conclusions

In this paper, we addressed uncertain data management in
array databases, which may involve both value uncertainty
and position uncertainty. To support array operations under
position uncertainty, we proposed a number of storage and
evaluation schemes for Subarray, in particular, the store-
multiple scheme, and building on that, the index-based join
and subarray-based join for Structure-Join. Evaluation re-
sults show that for Subarray, store-multiple outperforms other
alternatives by using a cost model to configure the storage
and bounding the overhead of querying. For Structure-Join,
the subarray-based join outperforms the index-based join by
configuring the storage for the workload and avoiding many
overheads in processing. Our case study using SDSS shows
that for real datasets, the storage overhead of the store-multiple
scheme is small and our best techniques for Subarray and
Structure-Join outperform the baselines often by a wide mar-
gin.

We plan to further extend our work by (1) considering
statistics-driven storage and approximate query processing
to further improve performance, and (2) integrating our tech-
niques, which are fundamentally based on tuple-level repli-
cation, in big data systems that inherently maintain replicas
for fault tolerance reasons.

References

1. Uncertain spatial data handling: Modeling, indexing and query.
Computers & Geosciences, 33(1):42 – 61, 2007.

2. P. K. Agarwal, B. Aronov, S. Har-Peled, J. M. Phillips, K. Yi, and
W. Zhang. Nearest-neighbor searching under uncertainty ii. In
PODS, 2013.

Supporting Data Uncertainty in Array Databases 19

3. P. K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-
neighbor searching under uncertainty. In PODS, 2012.

4. L. Arge, V. Samoladas, and K. Yi. Optimal external memory pla-
nar point enclosure. Algorithmica, 54(3):337–352, May 2009.

5. C. Bohm, A. Pryakhin, and M. Schubert. The gauss-tree: Efficient
object identification in databases of probabilistic feature vectors.
In Data Engineering, 2006. ICDE ’06. Proceedings of the 22nd
International Conference on, pages 9–9, April 2006.

6. P. G. Brown. Overview of SciDB: large scale array storage, pro-
cessing and analysis. In SIGMOD Conference, pages 963–968,
2010.

7. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating prob-
abilistic queries over imprecise data. In SIGMOD Conference,
pages 551–562, 2003.

8. R. Cheng, S. Singh, and S. Prabhakar. U-dbms: a database system
for managing constantly-evolving data. In VLDB ’05: Proceed-
ings of the 31st international conference on Very large data bases,
pages 1271–1274. VLDB Endowment, 2005.

9. R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter, and Y. Xia.
Efficient join processing over uncertain data. In CIKM, pages 738–
747, 2006.

10. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient
indexing methods for probabilistic threshold queries over uncer-
tain data. In VLDB, pages 876–887, 2004.

11. P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,
E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. J.
DeWitt, B. Heath, D. Maier, S. Madden, J. M. Patel, M. Stone-
braker, and S. B. Zdonik. A demonstration of scidb: A science-
oriented dbms. PVLDB, 2(2):1534–1537, 2009.

12. Y. Diao, B. Li, A. Liu, L. Peng, C. Sutton, T. Tran, and M. Zink.
Capturing data uncertainty in high-volume stream processing. In
CIDR, 2009.

13. T. Ge. Join queries on uncertain data: Semantics and efficient
processing. In ICDE, 2011.

14. T. Ge, D. Grabiner, and S. B. Zdonik. Monte carlo query pro-
cessing of uncertain multidimensional array data. In ICDE, pages
936–947, 2011.

15. T. Ge and S. B. Zdonik. A*-tree: A structure for storage and mod-
eling of uncertain multidimensional arrays. PVLDB, 3(1):964–
974, 2010.

16. J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadim-
itriou, and V. Samoladas. On a model of indexability and its
bounds for range queries. J. ACM, 49(1):35–55, Jan. 2002.

17. H. Kimura, S. Madden, and S. B. Zdonik. Upi: A primary index
for uncertain databases. PVLDB, 3(1):630–637, 2010.

18. J. F. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips,
D. Westbrook, and M. Zink. An end-user-responsive sensor net-
work architecture for hazardous weather detection, prediction and
response. In AINTEC, pages 1–15, 2006.

19. D. Olteanu and J. Huang. Secondary-storage confidence compu-
tation for conjunctive queries with inequalities. In Proceedings
of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’09, pages 389–402, New York, NY,
USA, 2009. ACM.

20. L. Peng, Y. Diao, and A. Liu. Optimizing probabilistic query pro-
cessing on continuous uncertain data. PVLDB, 4, 2011.

21. B. E. Ruttenberg and A. K. Singh. Indexing the earth movers
distance using normal distributions. In Proceedings of the VLDB
Endowment, Vol. 5, No. 3, pages 205–216, 2012.

22. SciDB. Scidb array functional language 11.06. http:
//trac.scidb.org/wiki/Docs/Release_11.06/
ArrayFunctionalLanguage_11.06.

23. T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. In Proceedings
of the 13th International Conference on Very Large Data Bases,
VLDB ’87, pages 507–518, San Francisco, CA, USA, 1987. Mor-
gan Kaufmann Publishers Inc.

24. M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge,
N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. B. Zdonik.
One size fits all? part 2: Benchmarking studies. In CIDR, pages
173–184, 2007.

25. M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,
O. Ratzesberger, and S. B. Zdonik. Requirements for science data
bases and scidb. In CIDR, 2009.

26. M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The archi-
tecture of scidb. In SSDBM, pages 1–16, 2011.

27. D. Suciu, A. Connolly, and B. Howe. Embracing uncertainty
in large-scale computational astrophysics. In Proceedings of the
3rd International Workshop on Management of Uncertain Data
(MUD), 2009.

28. A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. R. Slutz, and
R. J. Brunner. Designing and mining multi-terabyte astronomy
archives: The sloan digital sky survey. In SIGMOD Conference,
pages 451–462, 2000.

29. Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional
uncertain data. ACM Trans. Database Syst., 32(3), Aug. 2007.

30. T. T. L. Tran, L. Peng, Y. Diao, A. McGregor, and A. Liu.
Claro: modeling and processing uncertain data streams. VLDB
J., 21(5):651–676, 2012.

31. T. T. L. Tran, L. Peng, B. Li, Y. Diao, and A. Liu. Pods: a new
model and processing algorithms for uncertain data streams. In
SIGMOD Conference, pages 159–170, 2010.

