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Abstract—This paper presents a method for scheduling resources in complex systems that integrate humans with diverse hardware and software
components, and to study the impact of resource schedules on system characteristics. The method uses discrete-event simulation and integer linear
programming, and relies on detailed models of the system's processes, specifications of the capabilities of the system's resources, and constraints on
the operations of the system and its resources. As a case study, we examined processes involved in the operation of a hospital emergency department,
studying the impact staffing policies have on such key quality measures as patient length of stay, numbers of handoffs, staff utilization levels, and
cost. Our results suggest that physician and nurse utilization levels for clinical tasks of 70% result in a good balance between length of stay and cost.
Allowing shift lengths to vary and shifts to overlap increases scheduling flexibility. Clinical experts provided face validation of our results. Our approach
improves on the state of the art by enabling using detailed resource and constraint specifications effectively to support analysis and decision-making
about complex processes in domains that currently rely largely on trial and error and other ad hoc methods.
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1 INTRODUCTION

UR society has become increasingly dependent on complex

human-intensive systems that integrate human resources
with diverse hardware and software components. As a result,
correctness of system performance, safety, and efficiency have
become correspondingly important. For example, such systems
are responsible for keeping airplanes safely separated from each
other, oversee the delivery of healthcare to patients in clinical
settings, and support electric power grids. The incorrect or
unsatisfactory performance of these systems can lead to waste,
damage to critical infrastructure, and even loss of life. Providing
desired assurances about the speed, correctness, reliability, and
efficiency of these systems has become a critical societal need.
But the size and complexity of these systems greatly complicates
our ability to provide these kinds of assurances.

The behavior of these systems is complicated considerably by
reliance on many different kinds of human and other resources,
diverse goals and optimization objectives, and a combinatorial
explosion of contingencies and exceptional conditions that may
arise during execution. Because these systems integrate the con-
tributions of humans, they are sensitive to differences in the skill
levels and various idiosyncrasies of those humans, including
the possibility that different humans may perform differently
under identical conditions. The performance characteristics of
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these systems are likely to vary considerably depending on the
conditions under which they operate. Thus, a system that is heav-
ily loaded may behave quite differently from the same system
operating under a light load. Further, all of these dimensions of
complexity are often interdependent, increasing the challenge of
understanding and optimizing such systems. For example, some
systems’ performance may degrade when under heavy load, but
that degradation may be mitigated by substituting highly skilled
humans into key roles, or by eliminating certain exceptional
conditions.

This complexity poses significant challenges to efforts to rea-
son definitively about key system characteristics, such as safety,
correctness, speed, and efficiency. For example, the throughput
of a system cannot be determined without taking into account the
characteristics of human performers, the scheduling of the hu-
man and other resources’ availabilities, and the possible system
execution sequences, including those taken in response to excep-
tions and contingencies. The safety of such systems cannot be
assured without being able to reason about all execution possibil-
ities, but also all possible actions that might be taken by human
participants, under all possible load conditions. Because of the
interrelatedness of all of these factors, straightforward analytic
approaches must all too often make simplifying assumptions
that limit the value of their conclusions.

In this paper, we propose using a combination of discrete-
event simulation, and integer linear programming to develop
resource schedules and to accurately estimate key system proper-
ties, while optimizing desired constraints. Our approach allows
enforcing complex constraints on the resources, including varia-
tions in human skills and interactions between humans.

Discrete-event simulation research has been one of the most
promising approaches to studying the behavior of such complex
systems. But here too oversimplification due to overly conserva-
tive assumptions can raise serious questions about the validity of
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simulation results that have been obtained, thereby limiting their
value. Prior work on resource scheduling has not accounted for
the detailed models of resources, and constraints on those re-
sources necessary to model complex, human-intensive systems.
Queuing models, for example, have only partially addressed
variations in resource load [13], [16], [19], [20], [21], and can-
not apply to the flow of complex systems [6], [9], [14]. In view
of these concerns, our work has focused on the development
and application of discrete-event simulations that account for
(1) detailed process models that include specifications of how to
deal with such complications as concurrency and responding to
exceptional conditions, (2) detailed specifications of the charac-
teristics of resources (including human resources) and the ways
in which their efforts are applied to process performance, and
(3) specifications of how system load can be expected to vary
over time.

Specifically, this paper presents a novel approach for creat-
ing precise and detailed discrete-event simulations of complex,
human-intensive systems and their performance in resource-
constrained environments. Our approach consists of three steps.
First, the approach uses discrete-event simulation to compute
resource requirements, such as how many of each resource are
necessary to be present at each time in the discrete-event simu-
lation to meet user-specified resource utilization requirements.
Second, our approach uses deterministic integer linear program-
ming (ILP) to produce a resource schedule that satisfies those
resource requirements and user-specified constraints on resource
utilization. Third, our approach again uses the discrete-event
simulation to compute how the resource schedule affects statisti-
cal estimates of the system’s runtime properties. Our approach
combines the rigor of mathematical programming with the com-
plex detail and realism of a discrete-event simulation. While
previous projects have developed and applied discrete-event sim-
ulation based on detailed models of processes and resources, our
work is unique in the breadth and depth of detail in the models,
and the incorporation of resource constraints. As a result, our
approach more accurately models human-intensive systems, par-
ticularly under resource-constrained conditions, and allows for
precise measurements of system properties and developing re-
source requirements and schedules that optimize a wide variety
of objectives.

The main contributions of our work are a novel approach for
using discrete-event simulation and integer programming to ana-
lyze complex, human-intensive systems and develop resource
schedules in resource-constrained environments, and an evalu-
ation of this approach in the healthcare domain. Our approach
is mathematically rigorous and precise. Unlike prior work, our
approach:

« incorporates constraints on the resources, and their capabil-

ities, use, and allocation policies;

« handles the complex realism of real-world, resource-
constrained systems, including multiplicity of resources,
time-varying events that trigger resource requirements, de-
tailed processes of resource use, and empirically derived,
stochastic time distributions of durations of process steps;

« accounts for a desired, target resource utilization ranges
and constraints on resources scheduling, such as “resources
of a given type may only be utilized between 60% and 75%

of the time, for no more than 8 hours per day;”

« accurately models resource interactions, and the resource
scheduling interplay in simultaneously scheduling all re-
sources, accounting for all relevant constraints; and

« allows flexibility in which system properties are optimized,
including often conflicting measures.

While our technique is general and applies broadly to resource-
dependent systems, for exposition and evaluation, we focus in
this paper on healthcare systems, and, in particular, on hospi-
tal emergency departments (EDs). EDs, like many resource-
dependent systems have significant constraints on their resource
use, and variability in system requirements. For example,
EDs commonly have five-fold variation in patient arrival rates
throughout a 24-hour period, and staffing and resource schedul-
ing decisions need to be responsive to such variation while
simultaneously considering the impact on conflicting objectives,
such as patient waiting time, utilization of the doctors and nurses,
delays in care, and staffing costs.

We evaluate our scheduling approach by applying it to de-
tailed models of EDs. The approach identifies several interesting
findings. First, staffing composed of variable-length shifts that
are allowed to overlap requires less staff salaries, and enables
greater staff utilization. Second, staffing composed of long,
single-length shifts that do not overlap (i.e., start at the same
time), results in fewer patient handoffs (the transitioning of a
patient’s care to a new nurse or doctor) but incurs significant de-
viations from desired utilization ranges. Allowing flexible shift
start times significantly reduces this problem. Further, while the
increase in handoffs incurred by overlapping shifts increases the
patient length of stay, that increase is only marginal.

Our approach enables not only computing resource sched-
ules, but also exploring how constraints, requirements on the
resources, and allocation policies impact critical system prop-
erties. In the ED domain, the approach enables exploring, in a
principled manner, the effects of doctor and nurse assignment
policies, patient admittance policies, shift scheduling policies,
requirements on a single doctor and nurse handling all of a pa-
tient’s procedures, on the length of stay of the patient, patient
handoffs, hospital financial efficiency, etc.

The rest of the paper is organized as follows. Section 2
provides a detailed review of the relevant research. Section 3
presents the methodological details of our simulation optimiza-
tion approach, first overviewing the discrete-event simulation en-
gine, then describing the integer linear programming formulation
and the scheduling algorithm, and finally, using the simulation
optimization framework. Section 4 evaluates our approach by
applying it to the ED scenario and (1) computing the hourly staff
utilization, and (2) the interplay between utilization, staffing
costs, length of stay, and handoffs. Finally, Section 5 summa-
rizes our contributions and future research directions.

2 RELATED WORK

The problem of scheduling resources in complex environments
has been extensively studied, with a considerable focus on hos-
pital emergency department operations. This section describes
this prior work, and its limitations. Overall, despite the large
number of these prior studies, in our view, none of them has
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attempted to model all of the relevant aspects of the scheduling
problem simultaneously, and in sufficient detail.

Bergh et al. [10] provide a comprehensive literature survey
of personnel scheduling problems. They examined 291 relevant
articles published from 2004 to 2012, and found that 93 of these
papers are related to healthcare. Their work indicates that the
staffing problem in healthcare has been widely studied, but that
many issues remain to be addressed adequately. These issues
include: (1) Lack of integration of the dynamic complexity
of the staffing, such as demand forecasting, hiring and firing,
machine scheduling, and multiple hospital locations. (2) Lack of
integration of the details of the staff, such as differences in skills,
flexibility in contracts, and breaks. (3) Lack of consideration
for the staffing and equipment constraints. (4) Not handling
uncertainty sources, such as nondeterminism in decision making,
in scheduling, and in the demand. (5) Insufficient testing of the
robustness of solutions to noise, uncertainty, schedule flexibility,
etc. (6) Consistent lack of implementation and empirical study
of effects of the proposed algorithms. (7) Lack of scientific
comparison between the approaches.

Analytical approaches are widely used in studying ED staffing,
since closed form expressions are relatively easy to calculate and
require less data than simulation approaches. Green et al. [14]
show how queuing models work effectively to create staffing for
various patient arrival rates in an ED. Their work focuses on the
time lag between a patient’s arrival and their actual treatment.
While a useful rough-cut approach, this work simplifies the ED
care process considerably, and only calculates the physician
schedules. By contrast, our approach accounts for the fact that
patients with different acuities have different care needs, that the
patient care process consist of multiple steps, and that nurse and
other resources’ schedules also affect lag times.

Cochran et al. [6] introduce a multi-class queuing network
analysis for the capacity planning of both beds and staff. Their
approach incorporates five types of patients characterized by
resource utilization and priority, non-exponential service time
distributions, and nine patient care areas. Based on their queuing
network, they can determine staff level for each area to satisfy
a quality measurement, such as the number of patient walk-
outs. This work does not take into account the need to schedule
physicians, nurses, and equipment simultaneously, and instead
uses statistical service time distributions, which we believe is a
less accurate scheduling method than our approach.

Li et al. [18] propose an analytical framework that models
the complexity of an ED by incorporating a variety of flow
controls, such as split, re-entrant, closed, and parallel queueing.
The paper presents a method for redistributing limited resources
and mitigating bottlenecks. However, the approach proposed
by Li et al. does not go as far as our approach in modeling the
complexities of the ED. For example, their approach does not
model constraints that patients need to be cared for by the same
physician and nurse — at least until the end of that physician’s
and nurse’s shifts.

Many researchers have noted the need to model multiple,
complex constraints to schedule ED resources accurately. Some
have even stressed the need to model variations in numbers of
working hours per week, days-off regulations, and staff salaries.
Carter et al. [5], for example, address the problem of scheduling

ED physicians in the presence of real-world constraints from six
hospitals in the greater Montreal, Canada area. They attempt
to create schedules that improve the quality of patient care,
while satisfying physicians’ vacation schedule requirements and
assuring that there is a minimum of 16 hours between any pair
of a physician’s shifts. However, this work neither considers the
simultaneous scheduling of other resources, such as nurses and
clerical assistants, nor more complicated sets of constraints, and
it is unclear if it can be extended to handle those two common
features of EDs.

As with our approach, Brunner et al. [3], [4] study the possibil-
ity of scheduling flexible shifts for physicians. Their work allows
full flexibility of shift starting times and shifts lengths, and in-
cludes the assignment of breaks and the use of planned overtime,
while conforming to constraints defined as part of general labor
agreements. Ferrand et al. [12] provide a method to build cyclic
physician schedules that can be repeated throughout the year.
Their schedules can incorporate holidays, work assignments,
and vacation requests. Stolletz et al. [27] introduce an optimiza-
tion technique to schedule physicians with flexible shifts. Their
approach supports balancing the work times and the number of
on-call service assignments over all physicians. Kazemian et
al. [17] introduce a deterministic integer-programming-based
healthcare provider shift design to minimize patient handoffs.
While considering complex shift constraints, unlike our work,
all of these approaches rely on relatively coarse approximations
of ED processes, and ignore the scheduling of nurses and cleri-
cal workers. These factors can greatly affect key ED measures,
such as patient waiting time and staff utilization, which puts into
question the applicability of these approaches in the real world.

Understandably, it is difficult to incorporate the full range
of the complex issues arising in ED resource scheduling into
analytical models. Hence, discrete-event simulation has been
widely used in studying ED resource allocation [1], [7], [11],
[22], [23], [25], [26]. Wang et al. [29] use a simulation model
to identify potential changes in operational policies to reduce
patients’ length of stay. They suggest reassignment of nurse
jobs, combining registration with triage, adding float nurses,
mandatory requirement of physician’s visit within 30 min, and
the simultaneous improvement of durations of the most sensitive
procedures to decrease the length of stay. Zeng et al. [31] use
a simulation model to study the ED of a community hospital.
Based on their sensitivity analysis, they suggest that adding
nurses and CT scanners can reduce patient waiting times and
length of stay. They also suggest that a team nursing policy
(creating pooled capacities) can significantly improve ED effi-
ciency. Brenner et al. [2] use simulation to identify bottlenecks
and investigate the optimal numbers of human and equipment
resources.

In contrast to our work, these discrete-event simulations do
not model time-varying arrival rates, which are particularly im-
portant to the accuracy of staffing models. We use a combination
of integer linear programming and discrete-event simulation to
support resource scheduling in the presence of time-varying
arrival rates. Sinreich et al. [8] also propose the combination
of discrete-event simulation and integer programming to study
staff scheduling, using simulation to first identify the bottleneck
resource and the required number of units of this resource, and



then reschedule the start times of the bottleneck resource’s shifts
to better fit the resource requirements. Iterating the steps of
identifying a bottleneck resource and optimizing the resource’s
shift start times can approximate the optimal staffing of the re-
sources. This paper also presents an algorithm for transferring
shifts between similar resources, such as fast-track physicians
and surgical physicians, to improve staffing of the bottleneck
resource. However, in scheduling one resource at a time, this
approach does not, for example, take into consideration complex
interactions between resources. By contrast, our work sched-
ules multiple resources simultaneously, accounting for interac-
tions between resources, and procedures that require multiple,
constrained resources. Additionally, unlike Sinreich et al.’s ap-
proach, our work allows more flexibility in shifts than fixed,
8-hour shifts.

Izady et al. [15] propose a heuristic iterative approach to deter-
mining the minimal hour-by-hour staff levels needed in an ED.
Their approach combines a queueing model of non-stationary
infinite server networks, the square root staffing law, and simula-
tion to achieve the UK government target that 98% of patients
should be discharged, transferred, or admitted within 4 hours of
their arrivals. Their technique first calculates required staffing
levels using an offered load analysis [21] and the square root
staffing law [16] with non-stationary infinite server networks.
Then, the technique uses simulation to test if the derived staffing
satisfies the government target. If it does not, the technique
reruns the algorithm by adjusting the target delay probability of
a resource. While this approach incorporates multiple types of
resources, interactions between resources, and different patient
routing based on the patient types, it takes into consideration
only a limited number of constraints that typically characterize
ED operations. For example, their model does not allow con-
sideration of ED operations for which a patient must be cared
for by the same doctor and nurse that were assigned when the
patient was first placed in a bed. In addition, this technique
does not support analysis of staff utilization under time varying
arrival rates. By contrast, our approach handles both detailed
constraints and varying arrival rates.

Zeltyn et al. [30] use a simulation model of an ED to propose
staffing levels over several different time horizons ranging from
several hours to several months. This work presents the modified
offered-load approximation staffing algorithm. The approach
first simulates ED models hypothesizing the availability of infi-
nite resources to estimate the workloads of busy resources, and
then uses these estimates to calculate staffing demands through
offered load analysis, finally evaluating the through simulation.
The simulation-based offered load analyses show significant im-
provements over a commonly used, rough cut capacity-planning
technique [28], as measured by waiting time to be first seen by a
physician. However, by contrast to our approach, this work only
on finding staffing demand levels, and has not used to study the
influence of variability in shift starting times and shift lengths.
In addition, this work does not provide insight into resource
utilization levels.

In summary, previous work has made various simplifying
and restrictive assumptions in studying how resource utilization
approaches affect such key quality measures as patient waiting
time and resource utilization levels. Some of these techniques

have not considered variable arrival rates. Some support minimal
(or no) resource utilization constraints. Some have failed to
consider the effects of one resource type on another. Some rely
on coarse process models that poorly describe the patient care
process, or simplistic resource models that poorly describe the
complexity of the involved resources. Our work builds on these
earlier efforts by addressing these shortcomings. In our work, we
combine unusually detailed models of processes and resources,
a highly flexible approach to specifying constraints, variable
arrival rates, and flexibility in human resource shift policies.

3 APPROACH

As indicated above, our work centers on using a powerful capa-
bility for simulating the operations of a hospital ED. We begin
this section with a detailed explanation of this simulation capabil-
ity, focusing first on our approaches to specifying the ED process
and the ED resources, and then focusing on incorporating into
our simulations various constraints and context conditions.

3.1

Our approach falls broadly under the heading of model-based
simulation, centering on the use of a detailed model of the pro-
cess by which patients are treated in an example ED. We used
the Little-JIL language to create this model. Little-JIL process
definitions are based upon the notion of functional decomposi-
tion of a high level process into a hierarchy of steps. Little-JIL
has well-defined semantics based upon finite state machine defi-
nitions, and is supported by a tool suite that includes a graphical
editor that renders process definitions as visualizations such as
is shown in Figure 1

The central semantic element of a Little-JIL definition is the
step. Steps are connected by edges to parents (above) and chil-
dren (below), with edges also specifying the flow of arguments
between parents and children. Parent steps both define scopes,
and also specify the flow of control between children. The leg-
end in Figure 1 indicates three different control flow possibilities:
sequential (children performed in left-to-right order), parallel
(children performed in any order, possibly concurrently), and
choice (only one of the children selected for performance). Each
step also incorporates a specification of needed resources (e.g.
doctor, nurse, x-ray machine) to be allocated at run time (see
Figure 3). It is useful to note that these specifications can set
up contentions that can further constrain execution order, for
example by making concurrent performance either possible or
impossible.

Our ED process model was developed based on the advice
of a domain expert with extensive experience as an emergency
physician and ED manager at the Baystate Medical Center, in
Springfield, MA, USA. Figure 1 illustrates one small part of
this very detailed process definition, namely the patient testing
process for an acuity-level-four patient. Thus, Figure 1 specifies
that ALATest is a parallel step, which means that a lab test
process, AL4LabProc, can be performed in parallel with the
other tests, although contention for needed resources (in this
case the patient) may make concurrency impossible. As noted in
the legend of Figure 1, steps may have prerequisites that may be
used by our simulations to specify the relative frequency with

ED Process Modeling
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Fig. 1. The Little-JIL definition of the patient testing process,
which is part of the care an acuity-level-four patient undergoes in
an ED

which exceptions should be thrown, or which of the alternatives
specified as the children of a choice steps is the one that should
be selected. Thus, the pre-requisite on AL4LabProc means that
92% of acuity-level-four patients require the lab test. For the
other tests, a nurse checks a patient’s ECG first, RNECG, and then
a doctor checks the ECG result, MDCkECG, because AL4ECGProc
controls its child steps sequentially. After the ECG test, a nurse
gives a medication to the patient, RNMedHi, and then the patient
will be transferred to either the CT or the x-ray room. This
behavior is represented by the AL4XrayOrCTOrNothing choice
step which means only one of its child steps will be executed,
with the choice being made by the agent who performs the parent
step.

The use of Little-JIL to define the Baystate ED process has
made it quite easy to define and represent visually some chal-
lenging, yet key, features of the process. Thus, for example:

Allowing For Process Variation: The Little-JIL choice step
makes it easy to show that patients can arrive in either of two
ways: (1) critical patients always arrive by ambulance and are
immediately placed in a bed, while (2) other patients arrive using
their own transportation and are assigned a bed-placement acuity
level. After patients are placed in beds, they are classified into
one of six treatment acuity levels. The process each patient goes
through varies based on this treatment acuity level. This is easily
represented, again using the Little-JIL choice step, where the
acuity level artifact is input to the choice step, and is used to
select which of its six substeps (each representing the treatment
of a patient having the corresponding treatment acuity level) is
to be performed.

Supporting Human Decision Making: The choice step kind

also makes it easy to represent places where agents (especially
human agents) are able to use their judgment to make choices,
and what these choices are. As just noted, Figure 3 shows the
representation of the doctor‘s ability to choose either a CT or an
X-Ray for the patient. In addition the choice step was useful in
concisely and precisely defining the way in which patients are
triaged by a triage nurse (TrRN). In this case, the TrRN assigns
each patient a bed-placement triage level (an integer between
1 and 5), which is an output from the step performed by the
TrRN. This assigned triage level is then used as an input to a bed
allocation step, which uses the TrRN ‘s judgment to determine
whether a bed is to be allocated now, or whether the allocation
is to be deferred.

Concurrency: Some steps in some of the treatment processes
can be performed in parallel, and, indeed, further concurrency
arises because the entire treatment process is performed once for
each patient in the ED. This creates the potential for contention
for resources such as MDs, RNs, and X-Ray machines, and
makes the clear and precise specification of the exact nature of
the concurrency particularly important. The Little-JIL parallel
step makes it quite easy to specify this concurrency, and supports
a very clear visual depiction of the concurrency that seems
readily accessible to our ED domain experts.

Exception Management: Emergency Department operations
rarely follow a straight path through predefined sequences of
steps. Instead exceptional and non-nominal situations arise con-
tinually. Thus, for example, the lack of needed resources (e.g.
beds, nurses) may necessitate changes in treatment sequences or
substitution of resources, and treatment procedures that prove
ineffective may necessitate new diagnostic procedures and diag-
noses. The Little-JIL exception management facilities, featuring
scoped handling of typed exceptions has proven to be partic-
ularly effective in defining clearly and precisely even difficult
exception management scenarios.

Our full detailed process definition contains 164 steps (of
which Figure 3 depicts only a small part). While this seems to be
a large number of steps, our view is that it is a relatively modest
number in view of the size and complexity of the ED process
that is defined.

3.2 ED Resource Modeling

While the clear and precise representation of ED process steps
and artifact flows is clearly a key challenge in this work, our
view is that the clear and precise representation of resources is
at least equally important and equally challenging. In Little-JIL
resource specification is orthogonal to process activity specifica-
tion, meaning that the resource specification is separate from the
activity specification. On the other hand, the two are precisely
linked to each other, with each Little-JIL step incorporating a
precise specification of the resources and agent needed to per-
form the step, and each resource specification incorporating an
enumeration of the steps whose execution it is able to support.
In order to simulate the performance of a Little-JIL step, a speci-
fication of the resources and agent needed is passed to a resource
manager, which then assigns appropriate resources to the step,
if such resources are currently available. The allocation deci-
sion is guided strongly by inspection of the allocation status of



each resource, as well as by specified allocation policies and
constraints.

3.2.1 Resource Specification in Little-JIL

A Little-JIL resource is modeled as the composition of a set
of attributes and a set of capabilities. A resource‘s attributes
describe its inherent nature, and its capability set is the set of the
steps for which the resource can participate in performing. Some
examples of attributes include the resource‘s age, experience,
job title, and place in the ED staff reporting structure. As will
be seen these attributes may be used in deciding which resource
is most likely to be most suitable for assignment to a given step
at a given time.

One particularly important item of information to be used
in deciding which resources to allocate is the resource‘s work
shift. In our work this is specified by an attribute pair, namely
shiftStart and shiftEnd. A resource will not be allocated
to a task unless the allocation is taking place at a time that is
between the values of these two attributes.

Two other attributes that are particularly important are the re-
source‘s reservation_capacity and assignment_capacity
attributes, whose values are used to determine the resource ‘s abil-
ity to take on new tasks. The assignment_capacity attribute is
fixed during each simulation, quantifying the maximum amount
of effort that a resource can provide at any given time. This
is used to ensure that the resource manager does not overload
any resource by assigning it to more steps than the resource can
handle. Overloading is prevented by maintaining an accumu-
lated effort attribute as a running total of the amount of effort
that the resource is expending in performing all of the tasks to
which it is currently assigned. In considering assigning an addi-
tional task to a resource, the resource manager determines when
the effort required by the new task will exceed the resource‘s
assignment_capacity. Note, however, that our model follows
the common practice of allowing some resources (e.g. MDs and
RNs) to take responsibility for more patients than they can be
actively engaged in treating at the same time. Thus, for example,
an MD might have a assignment_capacity of 1 (meaning that
the MD can be doing only one task at a time), but may still be
allowed to be handling more than one patient. On the other hand
in most clinical settings there is a limit to the number of patients
that the MD can be allowed to handle. This limit is quantified
as the value of the reservationt_capacity attribute . This
attribute is used to limit the amount of effort that the resource
can take responsibility for. In most cases, reservation capacity is
greater than assignment capacity because a resource should be
able to handle a larger number of activities over a period of time
than it can handle at any one time.

A resource specification also incorporates a specification of
capabilities, namely the steps that the resource is able to par-
ticipate in performing, and the circumstances under which this
is possible. Thus, for example, an MDs capability list would
presumably include capabilities for prescribing medications and
ordering tests, while a Triage Nurse‘s capabilities list would
include steps for assigning bed-placement priorities. On the
other hand, recognizing that exceptional situations may neces-
sitate exceptional behaviors, each capability also includes the
specification of a guard, a Boolean expression defined over the

values of the dynamically-changing values generated by the sim-
ulation, that is used to specify the circumstances under which
the resource can be assigned to participate in the performance of
the step for which resources are being requested. For example,
a guard may specify (although not shown in this example) that
a doctor may give injections, but only if no nurse is available,
or that an RN may prescribe medications, but only if no doctor
is available and only if the patient‘s condition is particularly
serious.

Resource allocations must also take into account various kinds
of specified constraints. Our simulations allow for the spec-
ification of constraints that govern the resolution of resource
contention (e.g. when the same resource instance can satisfy
multiple resource requests) and activity contention (e.g. when
there are multiple resource instances that are capable of pro-
viding the capability requested by a given step). First-come
first-serve (FIFO) is an example of a built-in policy that can
be specified for resolving resource contention. A custom-built
policy that specifies the use of the least utilized resource first
(LeastUtilizedFirst) (see Figure 2) is an example of an activ-
ity contention policy that is used in our simulation. Our resource
manager incorporates built-in policies that specify assignment
based on the priority of a request (Priority), which resource
was least-recently-used (LRU), and which resource was most-
recently-used (MRU). In addition to these, we created custom
policies that are based upon various functions over the dynamic
variables of the process. Thus, Figure 2 specifies two custom
allocation policies, SickestFirst and LeastUtilizedFirst.

Figure 2 shows an example of specification of how an MD re-
source is specified. MD resource attributes include shiftStart
and shiftEnd as integer variables. Those attributes are used
in guard (time >= shiftStart && time < shiftEnd) of
reservation and assignment to specify when the listed capabil-
ities (MDCKECG, MDCkCT, MDCkXray, MDCkLab) are available
for reservation and assignment requests. By allowing reser-
vation guard and assignment guard to be specified differently,
it enables to speicify the New patient constraint, which
specify that MDs stop accepting new patients 1 hour before
their shifts end. Forcing this constraint only requires a mod-
est change to the reservation guard (time >= shiftStart &&
time < shiftEnd-3600) for the MD resource.

Two capacity attributes, reservation_capacity and
assignment_capacity, in Figure 2 are 1 as their default val-
ues. In this example, effort_needed of the reservation is 0, so
MDs can see multiple patients; however, MDs are allowed to
perform only one step of patient care since effort_needed of
the assignment is 1. If an ED constraints that MDs see at most 4
patients, it requires to change of reservation_capacity to 4
and effort_needed of the reservation to 1.

3.2.2 Resource Request Specification in Little-JIL

The final piece of the resource model is the way in which re-
sources are requested. Consistent with our previously explained
need for the separation of resource allocation into reservation
and assignment, Similarly, we separate resource requests from
process activities into two types, a reservation request and an
assignment request. If an activity requests a resource, and that
resource’s allocation constraints (guard and capacity) cannot be



SHIN et al.: DISCRETE-EVENT SIMULATION AND INTEGER LINEAR PROGRAMMING FOR CONSTRAINT-AWARE RESOURCE SCHEDULING 7

Attribute Declaration

<declare-attribute

name="shiftStart" type="integer" />
<declare-attribute

name="shiftEnd" type="integer" />

Resource Model

<resource type="MD">

<attribute name="shiftStart" value="" />
<attribute name="shiftEnd" value="" />
<capacity

reservation_capacity="1"
assignment_capacity="1"/>
<capability name="TreatByMD, MDCkECG, MDCkCT,
MDCkXray, MDCkLab">
<reservation
guard="time >= shiftStart && time < shiftEnd"
contention_policy=

"SickestFirst ProblemSpecific"
selection_policy=

"LeastUtilizedFirst ProblemSpecific"
effort_needed="0" />

<assignment
guard="time >= shiftStart && time < shiftEnd"
contention_policy=

"SickestFirst ProblemSpecific"
selection_policy=
"LeastUtilizedFirst ProblemSpecific"
effort_needed="1" />
</capability>
</resource>

Fig. 2. The MD resource model, specifying attributes, capabilities,
and allocation policies.

satisfied, the activity will not be able to proceed until a suitable
resource becomes available. The activity generates a resource
request for each resource it needs. The resource requests are
specified as follows (Figure 3 shows several examples of re-
source requests):

Reservation Request:
reserved-resource: capability, count, [replaceable,]
blocking | nonblocking

Assignment Request:
resource: capability, blocking | nonblocking [, reserved-
resource]

Both reservation and assignment requests for resources ask
for an available resource that performs a particular capability.
Which resource is returned depends on the dynamic state of the
process. For example, a doctor may be assigned to drawing a
patient’s blood, but only when all nurses are fully allocated, and
only when the blood draw task is considered to require a small
amount of effort and a low skill level. In cases with high skill
and effort level requirements, it would be unwise to allocate a
doctor, and our request model supports the use of blocking the
request (see the blocking and nonblocking keywords in the

Step Resource request specification

Treat reserved_nurse: TreatByRN, 1, replaceable, blocking
Treat reserved_doctor: TreatByMD, 1, replaceable, blocking
RNECG nurse: RNECG, blocking, reserved_nurse

RNMedHi nurse: RNMedHi, blocking, reserved_nurse

RNReassHi  nurse: RNReassHi, blocking, reserved_nurse
MDCKECG  doctor: MDCKECG, blocking, reserved_doctor
MDCKCT doctor: MDCKCT, blocking, reserved_doctor
MDCkXray doctor: MDCkXray, blocking, reserved_doctor
MDCkLab doctor: MDCKLab, blocking, reserved_doctor

CT ct_room: CT, blocking
XrayHi x-ray_room: XrayHi, blocking

Fig. 3. Resource request specifications. Each step in Figure 1
has a resource request specification associated with it. Treat
step is not appeared in Figure 1. This scoping step reserves a
doctor and nurse resources when a patient arrives in an ED.

request definitions) to ensure that only fully qualified resources
are allocated to the activity.

Finally, the replaceable keyword in the reservation request
means that a resource may be replaced by another, under cer-
tain situations. (See reserved_nurse and reserved_doctor
in Figure 3) For example, a doctor may need to be replaced when
leaving for dinner, while other resource reservation requests may
accept no substitutions. This feature of the request enables this
language to be used to model very complicated resource man-
agement policies and constraints, such as quarantining an entire
emergency department, and issuing handoffs among doctors.

Our simulations also incorporate more complicated con-
straints that are necessary to support the accurate simulation
of the actual workings of a real hospital ED. Examples are
the Same MD-RN constraints, which specify that a patient as-
signed to a specific bed is to be cared for by the same MD and
RN throughout the patient’s stay, unless shift changes necessi-
tate the assignment of a different MD or RN. This constraint
is specified by restricting assignment of a resource from re-
served resources. (e.g., nurse resource requests are restricted
by reserved_nurse in Figure 3.)

3.3 Specification of a Simulation

As the goal of our research is to evaluate different approaches to
staffing and resource allocation in a hospital ED, it was neces-
sary to set up and perform ED simulations that assumed different
distributions of resources, having different characteristics, and
constrained by different policies and constraints. Thus, a simula-
tion run consisted of a specifications of the process activity and
artifact flow (specified as described in 3.1, specifications of the
resources, requests and resource allocation policies ) specified
as described in 3.2), and specifications of actual patient care
scenarios. The key components of a patient care scenario are:
(1) a specification of the flow of patients into the ED, including
the rate of arrival of patients of different acuity levels over a
24-hour time period, (2) a specification of the resources that are
available for assignment over the 24-hour time period, and (3) a
specification of the characteristics of the performance (e.g. the
amount of time taken, and the probability of the throwing of an
exception) of each resource instance in carrying out each of the



<poisson-messages type="ed.PatientArrivalMessage"
start="1" end="3600" mean="529"/>

<poisson-messages type="ed.PatientArrivalMessage"

start="3601" end="7200" mean="657"/>
<poisson-messages type="ed.PatientArrivalMessage"
start="7201" end="10800" mean="772"/>

Fig. 4. Specification of the arrival distributions of the patients from
0 to 3 hours (simulation time unit is second). Patient arrival rates
over the 24-hour period are specified by the Poisson distribution,
based on actual arrival rates at the Baystate Medical Center, in
Springfield, MA, USA. The ED handles, on average, 270 patients
per day.

steps in the process. We use Little-JIL/JSim discrete-event simu-
lator [24] with extending the resource specification described in
3.2.

Figure 4 shows a specification of patient arrival rates at the ED.
Patient arrival rates over the 24-hour are specified by the Pois-
son distribution. It specifies mean time between patient arrivals
from start to end times. Simulation time unit is interpreted
as a second in our simulation. Patient arrival is represented as
a discrete-event named ed.PatientArrivalMessage, so the
event will be generated based on the specified Poisson distribu-
tions. Note that arrival rates vary over the 24-hour period. The
specifications used in our simulations were based upon observa-
tions taken at the Baystate Medical Center, in Springfield, MA,
USA.

Among the arrived patients (ed.PatientArrivalMessage
events), critical patients are the sickest (acuity level six), while
the others are categorized into the remaining five acuity lev-
els. Figure 5 specifies how to decide critical or non-critical
patients among the arrived patients. Because Treat step is the
first step to handle an arrived patient in our ED process model,
it has the linear probability distribution to specify 2% of the
arrived patients are critical patients. The specification means
when Treat step is posted to be started by a simulation agent,
the agent starts the step immediately since it requires no time
consumption to start by fixed value="0". Then, the agent
sets an artifact value of isCriticalPatient as true with 2%
of linear-probability.

Figure 2 shows an example of the specification of an MD type
of resource. Given the type specification, Figure 6 specifies three
examples of MD instances. The numbers of available MD and RN
resources vary over 24 hours, and these numbers are achieved by
having the MD and RN resources work in shifts. Typically, an
MD or an RN will work one of three different 8-hour shifts each
starting at a fixed time, although our simulations have suggested
that greater flexibility in the start times and durations of shifts
could lead to improved staff utilization. As noted above, the
attribute specification feature of Little-JIL resource specification
makes this straightforward. The full model (omitted for exposi-
tion), also defines the RN, TrRN, clerk, bed, x-ray room, and
CT room resources.

Estimates of the amounts of effort required to perform each
step for each acuity level are specified by triangular distributions.
Figure 7 shows an example specifying the time distributions of

<step name="Treat"> <posted> <group>
<start> <fixed value="0" /> </start>
<linear-probability>
<case chance="2">
<set-field parameter="patientInfo">
<field name="isCriticalPatient">
<boolean value="true" /></field></set-field>
</case>
<case chance="98">
<set-field parameter="patientInfo">
<field name="isCriticalPatient">
<boolean value="false" /></field></set-field>
</case>
</linear-probability>
</group> </posted> </step>

Fig. 5. Specification of critical and non-critical patient distribu-
tions. Among the arrived patients, 2% of them are considered as
critical patients.

<instantiate type="MD" number="3" />

<!-- Shift: 0AM-8AM -->

<instance type="MD" id="1"
set_attribute="shiftStart" value="0" />

<instance type="MD" id="1"
set_attribute="shiftEnd" value="28800" />

<!-- Shift: 8AM-4PM -->

<instance type="MD" id="2"
set_attribute="shiftStart" value="28800" />

<instance type="MD" id="2"
set_attribute="shiftEnd" value="57600" />

<!-- Shift: 4PM-0AM -->

<instance type="MD" id="3"
set_attribute="shiftStart" value="57600" />

<instance type="MD" id="3"
set_attribute="shiftEnd" value="0" />

Fig. 6. Specification to instantiate three MD resources. Three
8-hour shifts are specified for the MD resource instances. Time
unit of the specification is second.

three leaf steps, RNECG, MDCkECG and RNMedH1, of the process
shown in Figure 1. For instance, when RNECG step is started,
it takes simulation time (second) based on the triangular dis-
tribution of (min=233, mode=313, max=472) to complete its
execution. The time distributions of all steps in our ED process
model are determined based on data of Baystate Medical Center,
in Springfield, MA, USA.

3.4 Simulation-based Staffing Optimization

The core of our model-based approach to ED simulation was to
use the JSim [25] system, which automatically creates simula-
tions from process specifications such as those described in the
previous subsection. These various specifications provide data
this is necessary to support our simulations, but is not sufficient.
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<step name="RNECG"> <started>

<complete><triangular-range min="233" mode="313"
max="472" /></complete>

</started> </step>

<step name="MDCKECG"> <started>

<complete><triangular-range min="11" mode="36"
max="88" /></complete>

</started> </step>

<step name="RNMedHi"> <started>

<complete><triangular-range min="181" mode="448"
max="856" /></complete>

</started> </step>

Fig. 7. These time distributions of steps are modeled from data
of Baystate Medical Center, in Springfield, MA, USA. Second
time unit is used in triangular distribution.

Because the goal of our work was to determine how various
characteristics of ED operation varied depending upon different
levels of staff utilization, it was also necessary to determine what
staffing levels could be expected to result in specified staff uti-
lization levels. This was somewhat complicated by the variation
in demand for the services of an ED over a 24-hour period of
operation. Accordingly we devised a three-stage approach to
creating and running our simulations.

In the first stage, we used JSim to generate an ED simulation,
but we assumed that there was an infinite supply of all neces-
sary resources. As this ED simulation executed, we added and
removed resources as required in order to sustain our utilization
targets are for each hour in the simulated 24-hour day. We call
this the Staffing Demands Algorithm. These computations were
made during execution of the simulation, while considering all
other specifications such as time varying patient arrivals, ED
processes for each acuity, resource interactions and other pa-
tient flow constraints. At the end of this simulation, we had
obtained the number of resources d’,; required in time interval
b to maintain the utilization target. For our case-study b is the
index for hour of the day, and k refers type of staff — in our case,
either MDs or RNs. The exact details of how dl]j is computed is
provided in Section 3.4.1.

In the second stage, we use d~, b= (0,1),(1,2),...,(23,0),
as input to a deterministic integer linear program (ILP) whose
purpose was to obtain the minimum cost staffing schedule. The
decision variables of the ILP determine The number of type k
resources to be scheduled in hour b of a 24-hour day. The number
scheduled must be greater than or equal to d’,j. Additionally,
hospitals may have their own restrictions such shift lengths and
starting times. For example, it is possible that in some EDs
doctors can work only 8 hour shifts that start at 8§ am, 4 pm and
midnight (i.e. no overlapping shifts); in other cases, overlaps
in shifts may be allowed, and shift lengths might also be 6, 8
or 12 hours in length. The output of this second stage was x,’j,
the number of resources of type k that need to be scheduled in
hour b to minimize the total cost of salaries while meeting the

required constraints. The details of the integer linear program
are provided in Section 3.4.2.

In the third stage, the staff schedule computed from the second
stage ILP was used to specify the exact numbers of MD and RN
resources that are to be available for each hour in the 24-hour
day simulation. We then ran simulations using these staffing
levels, and the other modeling information as described in the
previous subsection in order to determine operational informa-
tion such as patients‘ length of stay, waiting times, contribution
margin, and the actual utilization levels of the resources (which,
depending on the staffing constraints, may be different from
original targets), the number of patient handoffs etc.

For our studies we ran batteries of simulations that were based
upon many different hypotheses about staff utilization, shift
length variation, shift overlapping, etc. Each of these different
hypotheses required carrying out all three of the stages just de-
scribed. Each produced operational information that could then
be used as the basis for comparing and evaluating the effects of
these different choices of staff utilization levels and scheduling
approaches. The results are presented in Section 4.

We now provide details of how we carried out each of these
three stages in our simulation approach.

3.4.1 Staffing Demands Algorithm

As the number of patient arrivals varies by the hour, the num-
ber of resources required will also need to be varied so that
the utilization of the resource remains within the pre-specified
utilization limits. The goal of the staffing demands algorithm is
to dynamically compute this distribution of required numbers
of resources. Before we describe the algorithm, we distinguish
between resource sets as follows. We assume that there are some
resources that are available for use during the entire duration
of the bth hour. In addition, there may also be other resources
that may be used for some portion of the hour, because they
continue to be used in order to finish a task that was begun
during the previous hour. For instance, if a doctor‘s shift ends
before completing an x-ray check for a patient, the doctor will
complete the x-ray check task thereby providing some amount
of MD resource during an hour that is beyond the MD ‘s original
shift. Thus these additional incremental amounts of resource
availability must be added to the resource levels provided by
scheduled resources in order to accurately determine the levels
of resources required for each hour in the 24-hour day. The
notations in the algorithm for staffing demands are:
i time interval between resource adjustment
[ lower utilization limit to trigger incrementation of the num-
ber of resources required for this time interval
u upper utilization limit to trigger decrementation of the num-
ber of resources required for this time interval
b time block tuple (f,¢) from time f to r where |t — f| =i
k resource type
rp sum of busy periods for resource r during time block b
d’g staffing demand, the number of required staff, for resource
r of type k during time block b
R¥ the set of resources of type k for which we want to deter-
mine required staffing levels
R’; the set of resources of type k that are used during time block
b, R C RF



A’lj the set of resources of type k that are available to be as-
signed during time block b, Aﬁ - Rl}j, A'(‘O H= R* where
(0,i) is the first time block 7

Figure 8 describes the staffing demands algorithm. R’lj is the
set of used resources of type k during time block b. A’lj is the set
of available resources of type k during time block » which means
that only resource r € Aﬁ is available to be assigned during time
block b. Further, AX C R%.

For example, Figure 9 shows the execution of the algorithm
for a single instance. As per lines 1-12 of the algorithm, the
resource utilization during time block b = (¢t —i,¢) is calculated.
Here, R’lj = {ry,r2,r3} since resources rj, r, and r3 are used
from time ¢ — i to t. However, A’lj = rp,r3 because resource rq
left at time ¢ (some amount of resource utilization in this time
period was attributable to the overflow into this time period
of some work begun during the previous period). Therefore,
ry p = ¢ —t —i. After the algorithm calculates util at line 12,
it determines how many resources are required to satisfy the
desired range of utilization levels [ and u (lines 14-20). If the
calculated util is between [ and u, it means that resources in Al}ﬁ
are utilized as expected. However, if util is outside the limits
[ and u, the algorithm calculates staffing demands d’g based on
the mid-point of the utilization range mid = (I +u)/2 and actual
assigned sub-periods num during time ¢ —i to t.

In addition to calculating staffing demands d¥, the algorithm
adjusts the numbers of resources Aﬁb for next time block, i.e.
from ¢ to r +i. The adjustment assumes that there are no dramatic
changes in patient arrivals in this next period. Therefore, we use
d to decide the size of A%,

3.4.2 Staffing via Integer Linear Programming (ILP)

In this section, we present our ILP-based staffing approach,
which minimizes total staff salaries, while meeting (a) hourly
constraints on staff numbers calculated by the previously-
described staffing demands algorithm, and (b) constraints on
allowed shift lengths and shift start times. The ILP-based staffing
approach divides a day into several discrete time blocks (each
an hour in length in our case-study). The ILP parameters are
listed below.

B a set of time blocks in a day

L¥ aset of shift lengths for resource type k

S’;_ ; aset of time blocks in a shift for resource type k where shift

* starting time block b € B, shift length [ € L¥

d’b‘ staffing demands, the number of required staff, for resource

type k during each time block b € B
a staffing pattern for resource type k of a hospital
1 if a shift begins a time block b € B and its shift length is
leL;

0 otherwise
ck staffing cost per hour for resource type k

For instance, Figure 10 shows the ILP parameter values
needed to determine MD staffing levels. Parameter B divides
a day into twenty four time blocks. Parameter pg’{lD establishes
three eight-hour, non-overlapping shifts a day for MDs. Doctor
staffing demand dg”D is assumed to have been derived using our
previously-described simulation-based algorithm.

Alternatively, if an ED administration desires more flexibility
to meet hourly variation in demands, they may allow nurses to

/** Staffing Demands Algorithm

* {@dparam upper: upper utilization limit

* @param lower: lower utilization limit

* @param t: current time

* @param i: time block length

* @param k: resource type

* @return StaffingDemands: the number of
required staff for time block (t-i,t)

a set of available

(t,t+1i)

* @return AvailableResources:
resources for time block

*/
StaffingDemands,AvailableResources
calculateSaffingDemands (

double upper, double lower,

Time t, Time i,

ResourceType k) {

// calculate resource utilization

TimeBlock b = (t-i,t);

double denominator = 0;

double numerator = 0;

for
denominator += (r € Aé) 21 o
numerator += rp;

}

double utilization =

(V Resource r :

numerator / denominator;

// calculate staffing demands

StaffingDemands d’lj = 0;

if (utilization > lower &&
utilization < upper) {

dg = count(Aﬁ);

} else {
double middle = (uppertlower)/2;
dﬁ = round (numerator/ (middle*i));

}

// select available resources

TimeBlock nb = (t,t+i);

AvailableResources Aﬁb =

while (count (Aﬁb) 1= d]b‘) {
Resource r : r € Rk;
Afy = Ay U (1)

}

{1

k Ak
return d,A},

Fig. 8. Given the upper and lower utilization limits, the algorithm
calculates how many resources of type k are required during time
block b = (¢ — i,¢) and adjusts the number of available resources
of type k to be assigned for next time block nb = (¢,7 + ).
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Fig. 9. An instance of the algorithm execution for staffing
demands: Rf = {ri,r,r3}, Ak = {r,r}, d¥ =3, R, =
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Fig. 10. Parameter values for doctor staffing. B: twenty four time
blocks. LMP: 8-hour shift length. S)P: time blocks in [ length
shift b. d}P: staffing demands per each time blocks driven by
70%—80% utilization target. pg{,D : non-overlapped three, 8-hour
shifts. ¢MP: salary per hour.

work a six, eight or twelve hour shift; further, they may also
allow shifts to start at any time. To accommodate this additional
flexibility, the ILP parameters can be set as in Figure 11.

The decision variable in the ILP is x’g’ Lo which determines the
number of a particular staff type (MD or RN) needed in each
hour of a shift.

x’,j_ ;; the number of staff k in time block i in a shift
" the shift starts at a time block b and its length is [ € LF
The ILP-based staffing fulfills staffing demands ¥, the mini-
mum number of required staff during each time block b. There-

fore, the constraint equations (1), (2), (3) always hold true for a
staffing solution.

Z Z p]l;,l 'x];,l,,' > d,k,Vi €B (1)

beB |k

xlzi,z.,i = xZ;,j,Vi €BVjEeB 2)
x;u = O,Vl ¢ S]l;l (3)

B: {(0,1), (1,2), (2,3), (3,4), (4,5), ..., (18,19), (19,20),

(20,21), (21,22), (22,23), (23,0)}

LRN: {6,8,12}

Syt Stone = 1(0:1),(1,2),...,(4,5),(5,6)}...,855 gy =
{(23,0),(0,1),...,(3,4),(4,5)},
Sty = 10.1),(1,2),..,(6,7),(7.8)},... .5 s =
{(23,0),(0,1),...,(5,6),(6,7)},
SR(;YI>712 ={(0,1), (1,2) , ..., (10,11), (11,12)}, ...,
S230),12 = {(23,0), (0,1), ..., (9,10), (10, 11)}

d[fN: 15 A

\\\\\\\\\\\\\\\\\\\\\\\\

Py YbeBNleL,pf) =1
c®N. USD55/hour

Fig. 11. Parameter values for nurse staffing. B: twenty four time
blocks. LRV: 6,8,12-hour shift lengths. SK)': time blocks in [
length shift b. dl’fN: staffing demands per each time blocks driven
by 60%—70% utilization target. p{): three different shift lengths,
and the staffing pattern allows a shift to start at any time. ¢&V:
salary per hour.
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Fig. 12. Doctor staffing solution of Figure 10. Three separate
shifts, 7-14, 15-22 and 23-6. Each shift has 9, 8 or 8 doctors.

Equation (4) is the objective function of the ILP-based staffing
problem. The ILP objective function aims to minimize total
staffing costs per day.

minZ Z ch-xlg“

beEB|c[kiEB

“4)

To illustrate how the ILP works, a doctor staffing solution for
Figure 10 is calculated in Figure 12. There are three separate
shifts, 7—14, 15-22 and 23-6. Each shift has 9, 8, or 8 doctors,
respectively.

However, the nurse staffing solution in Figure 13 looks very
different from the doctor staffing in Figure 12. This is because
the ILP parameters for nurse staffing in Figure 11 allow three
different shift lengths, and a shift can start at any time (i.e. over-
lap in shifts are allowed). Therefore, nurse staffing in Figure 13
very closely approximates actual nurse staffing demands dl’fN
in Figure 11. We return to this key point while discussing the
results of actual simulations carried out as the third stage of our
simulation study.
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Fig. 13. Nurse staffing solution of Figure 11. Sixteen overlapped
shifts. Shifts have different lengths and start times. Total number
of nurses 46 and nurses working hours 392.

4 EXPERIMENTS

This section describes how we used our three-stage simulation
approach to study the effects of basing the staffing levels used
to operate an example Emergency Department upon different
choices of staff utilization levels. For these simulation studies
we used the process model presented in Section 3.1. We also
used the resource type specifications presented in Section 3.2,
instantiating from these types 2 triage nurses, 5 clerks, 48 beds, 2
x-ray rooms and 4 CT rooms. This ED resource distributions was
based on data from Baystate Medical Center, in Springfield, MA,
USA. The number of simulation replications that we executed
for these studies was determined so as to obtain 95% confidence
intervals and a half-width that is within 2% of the mean of staff
utilizations. For each replication, we simulated 72 hours of
operations of the ED, using only the output of the middle 24-
hours in our analysis to ensure that each replication had adequate
amounts of warm-up and wind-down times, but that these times
did not influence our mean estimates.

In addition to measuring the actual utilization levels for the
MDs and RNs in our simulations, we also measured the av-
erage Length of Stay (LOS) for patients and the contribution
margin (the total revenue derived from treating all patients in
the simulated 24-hour period minus staffing and fixed costs).
The minimum possible LOS is measured as 116 minutes when
there are no resource contentions to perform steps in our ED
processes. We also quantified the impact of staff shift schedul-
ing on an important secondary measure, the number of patient
handoffs.

We begin by presenting results of the staffing demands algo-
rithm. Recall that the staffing demands algorithm was designed
to yield the number of MDs and RN to be staffed in each hour
of the 24-hour day, while ensuring that utilization falls in a pre-
specified range. We tested the staffing demands algorithm for
various combinations of MD and RN utilization limits such as
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Fig. 15. Simulation results of patient’s LoS, contribution margin
according to each utilization boundary. LoS Requirements is
the LoS objective, so that four staffing, MD(50-60) RN(70-80),
MD(60-70) RN(70-80), MD(70-80) RN(50-60) and MD(70-80)
RN(60-70) satisfy it.

50%-60%, 60%-70%, and 70%-80% (lower utilization limit - up-
per utilization limit). We selected these utilization ranges based
on our domain expert’s advice, expecting that lower ranges
would waste personnel time and reduce contribution margin,
while higher ranges would increase LOS to an unacceptable
level.

The results of the combinations tested are shown in Figure 14.
Note that we have assumed here that the ED is able to change
the MD and RN staffing levels every hour as needed. This is
equivalent to allowing shifts to be as short as only one hour.
Therefore the number of MDs and RNs available for each hour
is equal exactly the output of the staffing demands algorithm.

Further, Figure 15 shows the average LOS and contribution
margin for each of these combinations. Figure 15 compares
LOS for a number of different combinations of staffing utiliza-
tion levels. The figure uses a gray band to indicate average
LOS that lies between 130%-140% of the minimum possible
value (116 minutes). This Figure shows that our simulation
results indicate that four staffing solutions, MD(50%—-60%)
RN(70%-80%), MD(60%—70%) RN(70%—-80%), MD(70%—
80%) RN(50%—-60%), and MD(70%—-80%) RN(60%—70%), sat-
isfy that LOS objective. Among them, MD(70%-80%) RN(60%-—
70%) staffing maximizes the contribution margin at 55,113 US-
D/day. This suggests how our approach could be used by an
administrator to evaluate the impact of staffing by adjusting
input parameters such as utilization limits and shift lengths.

41

To consider the impact of shift length and overlap in shift sched-
ules, we ran simulations in which the allowed shift lengths for
RNs could be 6, 8 or 12 hours long in a 24-hour period. We also
compared the case where shifts are not allowed to overlap (i.e.
the case where shifts are not required to all start and stop at the
same time, but are allowed to start an stop at any time) versus
the case where they are allowed to overlap. Figure 16 shows RN
staffing solutions — output of the ILP-based staffing algorithm
in Section 3.4.2. For comparison we also present curves gener-
ated by the staffing demands algorithm. Notice that the staffing

Impact of Shift Length and Overlap
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Fig. 14. MD and RN staffing demands curves using the staffing demands algorithm in Figure 8. For example, (a) is MD and RN
staffing demands curves when MD’s and RN’s lower and upper utilization limits are set as 50% and 60%, respectively.

result produced by the ILP for a given shift length and overlap
constraint is always equal to or higher than the staffing demands
curve.

Figure 16(g) and Figure 16(c) show that a 12-hour shift length
cannot cover the staffing demands as closely as 6-hour or 8-hour
shift lengths. When we compare the staffing curves of over-
lapped shifts, Figure 16(a), 16(b) and 16(c) with non-overlapped
shifts, Figure 16(e), 16(f), and 16(g), the staffing with overlapped
shifts covers the staffing demands curves more closely than the
staffing with non-overlapped shifts. Figure 16(d) shows the
staffing that allows overlapped shifts of 6, 8 or 12-hour lengths.
We call this staffing flexible staffing since it allows an ED
administrator the greatest flexibility. Notice that such staffing is
almost indistinguishable from the staffing demands curve.

In Figure 17, we see the average LOS of the different shift
length and overlap combinations. Notice that the LOS differs
somewhat across the different staffing options but not signifi-
cantly. Figure 17 shows staffing that is based upon 12-hour shift
lengths, with or without overlapped shifts, creates shorter LOS
than 6-hour and 8-hour staffing. This seems to make intuitive
sense because 12-hour shift lengths implies that more RNs will
be scheduled in more hours (see Figure 16(g) and Figure 16(c)),
reducing contention for the RN resource and thus reducing pa-

tient waiting time. In general, staffing without overlap creates
lower LOS than staffing with overlap.

Figure 17 also compares 1-hour shift length with the flexible
staffing discussed above. The 1-hour shift length constraint
means that the hourly staffing numbers produced by the staffing
demands algorithm can be exactly matched. The fully flexible
staffing (with 6, 8 and 12 hour shifts all allowed as well as
overlaps) also matches the demand curve. However LOS in
the latter is higher because a patient, to the extent possible, is
attended to by the same MD and RN that were assigned when
the patient was initially placed in the bed. As long as the shift
of that initially-assigned MD or RN resource has not ended,
the resource will continue to attend that patient. But this may
cause increased patient waiting time. If, however, the shift of
the MD or RN resource has ended, the patient is assigned a new
MD or RN, creating a handoff. Our simulations also measured
numbers of handoffs because our domain expert has indicated
that handoffs should be minimized, as seem to correlate with
increased numbers of errors.

Shifts end very quickly when 1-hour shift lengths are allowed.
This in turn reduces patient waiting time because it is more
likely that patients will have to be assigned to a new MD or RN,
instead of waiting for the availability of the initially-assigned
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MD or RN. On the other hand, allowing 1-hour shift lengths thus
also increases the number of patient handoffs. Figure 18 shows
that 1-hour staffing produces a large number of RN handoffs
compared to all other staffing options. Further, longer shifts
result in fewer handoffs.

Finally, Figure 19 shows mean RN utilization for all the
staffing options. We found that overlapped staffing shows higher
utilization than non-overlapped staffing. This difference caused
by overlapped staffing is closer to the staffing demands curve
than staffing without overlap. In addition, 6-hour and 8-hour
staffing show subtle difference in utilizations; however, 12-hour
staffing shows lower utilization values in both non-overlapped
and overlapped staffing.

4.2 Comparison with Baystate Staffing Schedule

We now compare the results of our RN staffing simulations
to RN staffing data made available by the Baystate Medi-
cal Center, in Springfield, MA, USA. Figure 20 represents
the RN staffing based on data from Baystate Medical Center
(RN (BMC) ). RN (50-60), RN (60-70) and RN (70-80) represent
the RN staffing results obtained from our simulation studies.
Figure 20 compares LoS and contribution margin. As can be
seen, when we set the upper utilization limit to 80% and the
lower utilization limit to 70%, RN (70-80), the simulation re-
sults obtained are similar to RN (BMC) staffing. Notice also that
the simulations designed to assure lower staff utilization levels
provide interesting contrasts. For example LOS is 20 minutes
lower in RN (50-60) but so is the contribution margin.

Figure 21 compares the average RN utilizations for a 24-hour
day, and their standard deviations. We notice that the variation
in RN utilization levels is much lower in staffing results gener-
ated by our algorithm. This is also true for the RN (70--80) case
which has approximately the same average as RN (BMC). Fig-
ure 22 provides insight into why RN (BMC) has higher utilization
variation compared to RN (70-80) . Notice that in the less busy
hours of the night, nurses are underutilized while they are overuti-
lized in busy hours of the afternoon. Higher utilization in these
busy hours implies greater waiting time, while low utilization
during less busy hours implies that personnel costs are being
wasted.

We provide these comparisons to illustrate that an ED ad-
ministrator can use our simulation capability to test a variety
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of different utilization and staffing combinations, and evaluate
their impact upon multiple measures such as LoS, contribution
margin and handoffs. To keep this paper concise, we have not
presented detailed results on other measures in this case-study.
For example, we have presented LoS measures that are averaged
over patients of all acuity levels. But our simulations studies
determined, acuity specific LoS and waiting times which are not
reported here in the interests of saving space.

5 CONTRIBUTIONS AND FUTURE WORK
5.1

The studies described in this paper suggest a disciplined ap-
proach to ED staff scheduling. Staff scheduling is an important
problem for EDs, as staffing impacts the quality of patient care,
efficiency of resource use, ability to treat a diverse set of patients
in a timely manner, and hospital revenue. Our discrete-event
simulation is executed first assuming the availability of unlim-
ited quantities of resources to derive a staffing demand curve that
specifies the number of staff required hour-by-hour to achieve
a pre-specified resource utilization level. The staffing demand
curve is then used as an input, along with other parameters such
as shift lengths and staffing constraints, to an ILP-based staffing
algorithm. The staffing solution provided by the ILP is then
evaluated by rerunning our discrete-event simulation to quantify
such key ED operational characteristics such as patient LoS,

Contributions
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actual staff utilization, cost and quantities of patient handoffs.
Among the many results of our simulation studies, we found
that (1) staffing policies that allow shifts of different lengths
and overlapped shifts can reduce costs which still achieving
staff utilization levels, because these policies enabled fewer staff
to match the staffing demand curve more closely; (2) staffing
policies that allow for longer shift length result in fewer hand-
offs. (3) staffing without overlap creates lower LoS than staffing
with overlap. (4) overlapped staffing shows higher utilization
than non-overlapped staffing. These studies suggest that our
discrete-event simulation approach can be a useful aid to hospi-
tal administrators in evaluating their current scheduling policies
and in understanding the tradeoffs offered by prospective new
policies.

Our methodological contributions can be summarized as fol-
lows. Most papers focus either on (1) complex stochastic simula-
tions to answer a limited set of “what-if” questions; or (2) deter-
ministic staff scheduling problems that ignore details that play an
important role in practice. This is understandable since combin-
ing the rigor of mathematical programming with a complex sim-
ulation is typically difficult. In this paper we demonstrate that a
combination of the two is possible. Our simulation-optimization
approach considers time-varying arrival rates, multiple resources,
patients with different acuities, different sequences of care steps
for each patient acuity, stochastic time distributions for the per-
formance of each step, flexible shift starting times and shift
lengths, and constraints on resource utilization and assignment
(e.g. a given patient is always seen by the same doctor until
the end of the doctor*s shift). Further, in the staffing demands
algorithm, staffing levels for nurses and doctors are set simul-
taneously as the simulation executes, so our model considers
the interaction/interference between doctors and nurses in pa-
tient care. The staffing demands algorithm is unique in that it
creates doctor and nurse requirements for each hour based on
pre-specified target utilization ranges.

Viewed more broadly, this approach seems applicable to the
analysis of other processes and systems in other domains where
complexity due to the intricacy of interactions among various
kinds of humans, hardware, and software currently complicates
effective analysis. Activity specification approaches such as
the hierarchical decomposition approach of Little-JIL facilitates
the specification of important process details such as exception
management. And resource specification approaches such as
described in this paper likewise facilitate the specification of
important details about the performers, both human and non-
human, of the activities of the process. Once these specifications
have been modeled, the approach described in this paper seems
capable of supporting the derivation of broad classes of process
and system characteristics.

5.2 Future Work

We next plan to continue this work in a number of different direc-
tions. Most immediately we will continue our exploration of ED
staffing approaches in a number of ways. We will explore (1) the
impact of ED crowding caused by increased patient arrivals and
lack of other resources such as beds, (2) the complexities and
opportunities created by considering weekly or monthly staff
scheduling, (3) further validation of our approach by making
closer and more detailed comparisons between the results pro-
duced by our approach to observations and measurements of
actual EDs.

We will also explore the application of our approach to pro-
cesses and systems in other domains. We are particularly inter-
ested in applying the approach to the processes used in elections,
where our simulations could be used to facilitate and expedite
such processes as tabulation and recounts. We will also apply
this approach to study the effects upon software productivity
and quality that might result from various staffing profiles and
constraints in software development processes such as Scrum.
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