
COZ: Causal Profiling

Charlie Curtsinger Emery D. Berger
School of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{charlie,emery}@cs.umass.edu

Abstract
This paper introduces causal profiling. Unlike past profil-
ing approaches, causal profiling indicates exactly where
programmers should focus their optimization efforts, and
quantifies their potential impact. Causal profiling performs
a series of performance experiments during program exe-
cution. Each experiment calculates the impact of any po-
tential optimization by virtually speeding up code: inserting
pauses that slow down all other code running concurrently.
Causal profiling can profile both throughput and latency
via programmer-supplied progress points like transaction
boundaries. We present COZ, a prototype causal profiler,
and empirically demonstrate its efficiency (mean slowdown:
17%) and its effectiveness. As a case study, we use COZ to
guide the optimization of two applications from the PAR-
SEC suite, achieving speedups of 8% and 20%.

1. Introduction
With the end of Dennard scaling, performance is once again
a first-class concern for software developers. While compiler
optimizations are of some assistance, they often do not make
enough of an impact on performance to meet programmers’
demands [16]. The result is that programmers seeking to in-
crease the throughput or responsiveness of their applications
generally must resort to manual performance tuning.

Manually inspecting an entire program to identify op-
timization opportunities is impractical. Instead, developers
use profilers to focus their tuning efforts on code responsi-
ble for a significant fraction of execution time. Prominent
examples include oprofile, perf, and gprof [2, 25, 34].

Unfortunately, even when a profiler accurately reports
where a program is spending the bulk of its time [41], this
information can lead programmers astray. Where programs
spend their time is not necessarily correlated with where
programmers should focus their optimization effort. This
phenomenon is especially notable in interactive applications
and servers, which spend much of their time waiting for I/O,
and for multithreaded code running on multicore systems.

Figure 1 illustrates the shortcomings of existing profilers
with an example program. It spawns two threads that respec-
tively invoke functions a and b. Most profilers will report

that these functions each comprise roughly half of overall
execution time; some profilers will additionally report that a
is on the critical path [51].

This information is accurate but potentially misleading.
On a multicore system, optimizing a entirely away—thus
eliminating the critical path entirely—would only speed the
program up by 4.5%, as b would become the critical path.

The heart of the problem is a mismatch between the ques-
tion that current profilers answer—where does the program
spend its time?—and the question programmers want the an-
swer to: where should I focus my optimization efforts?

This paper introduces causal profiling, an approach
that accurately and precisely indicates where programmers
should focus their optimization efforts, and quantifies their
potential impact. Figure 2 shows the results of running our
prototype causal profiler. This profile plots the hypothetical
speedup of a line of code (x-axis) versus its impact on exe-

1 // A multithreaded C++ program that illustrates
2 // the shortcomings of standard profilers.
3 volatile size_t x, y;
4

5 void a() { // ~6.7 seconds
6 for(x=0; x <2000000000; x++) {}
7 }
8

9 void b() { // ~6.4 seconds
10 for(y=0; y <1900000000; y++) {}
11 }
12 int main() {
13 // Spawn both threads and wait for them.
14 thread a_thread(a), b_thread(b);
15 a_thread.join (); b_thread.join ();
16 }

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
55.20 7.20 7.20 a()
45.19 13.09 5.89 b()
0.00 13.09 0.00 2 0.00 0.00

Figure 1. An example multithreaded program and its represen-
tative profile (from gprof). Standard profilers report and attribute
execution time, but these do not necessarily correlate with where
programmers should focus their optimization effort. On a multicore
system, independently optimizing either a or b would have little to
no impact on performance.

●

●
●

●

●

● ●
●

● ●
●

●
●

● ●
●

●
● ●

●

●

0%

2%

4%

6%

0% 25% 50% 75% 100%
Line Speedup

P
ro

gr
am

 S
pe

ed
up

Line ● example.cpp:6 example.cpp:10

Causal Profile: example

Figure 2. A causal profile for the program in Figure 1 generated
by COZ. The x-axis shows the percentage of speedup in the pro-
gram that would be achieved by speeding up the given line of code
by the percentage given in the y-axis (the gray area corresponds
to standard error). Unlike past profilers, causal profiling accurately
predicts the impact of optimizations on performance.

cution time (y-axis). The graph shows that optimizing a or b
in isolation would have little impact on execution time.

A causal profiler conducts a series of performance ex-
periments to empirically observe the impact of a potential
optimization. Of course, it is not possible to automatically
speedup any line of code by an arbitrary amount. Instead,
during a performance experiment, the causal profiler uses
the novel technique of virtual speedups to mimic the effect
of optimizing a specific line of code by a specific amount.

Virtual speedup works by inserting pauses that slow down
all code running at the same time as the line under exami-
nation. The key insight is that this slowdown has the same
relative effect as running that line faster, thus “virtually”
speeding it up. Figure 3 illustrates the relative equivalence
between actual and virtual speedups: after accounting for de-
lays, both have the same impact.

Each performance experiment measures the impact of
some amount of virtual speedup to a single line. By sam-
pling over the range of virtual speedup from between 0%
(no change) and 100% (the line is completely eliminated),
causal profiling can calculate the impact of any potential op-
timization on overall performance.

Causal profiling further departs from traditional profiling
by making it possible to view the effect of optimizations on
throughput and latency.

To profile throughput, developers specify a progress
point, indicating a line in the code that corresponds to the
end of a unit of work. For example, a progress point could be
the point at which a transaction concludes, when a web page
finishes rendering, or when a query completes. A causal pro-
filer then measures the rate of visits to each progress point to
determine any potential optimization’s effect on throughput.

(a)$original(execu-on(

f" f" g"

f" g"g"

f" g"f"

g" f" g"

."f"f" f." g"delay(

f" g"g"delay(delay(

(b)$actual(speedup(

(c)(virtual(speedup(

t1$

t2$

t1$

t2$

t1$

t2$

total$delay$

/me$

Figure 3. An illustration of virtual speedup: (a) shows the origi-
nal execution of two threads, running functions f and g; (b) shows
the effect of actually halving the runtime of f; (c) shows the ef-
fect of virtual speedup, inserting delays in other threads whenever
f runs (denoted by the arrows). Both actual and virtual speedups
cause the threads to end at the same time; by subtracting delays,
the elapsed times also match.

To profile latency, programmers place two progress points
that correspond to the start and end of an event of interest,
such as when a transaction begins and completes. A causal
profiler then reports the effect of potential optimizations on
the average latency between those two progress points.

We demonstrate causal profiling with COZ, a prototype
causal profiler that works with Linux x86-64 binaries. We
show that COZ imposes low execution time overhead (mean:
17%, min: 0.1%, max: 65%), making it substantially faster
than gprof (up to 6× overhead). More importantly, we
demonstrate that causal profiling accurately predicts opti-
mization opportunities, and that it is effective at guiding op-
timization efforts. We perform a case study using COZ to op-
timize two applications from the PARSEC benchmark suite:
dedup and ferret. Using traditional profilers provides little
direction, but with COZ’s guidance, over the course of three
hours we were able to increase the performance of these ap-
plications by 8% and 20%, respectively.

Contributions
The contributions of this paper are the following:

1. It presents causal profiling, which departs from past pro-
filers by conducting on-line experiments. Using virtual
speedups and progress points, causal profiling quantifies

the impact of potential optimizations on both throughput
and latency (§2).

2. It presents COZ, a prototype implementation of causal
profiling. It describes its implementation (§3), and demon-
strates its efficiency and effectiveness at locating and
quantifying optimization opportunities (§4).

2. Causal Profiling Overview
This section provides an overview of how causal profiling
works in the context of COZ, our prototype causal profiler.

Progress Points
With COZ, developers use progress points to guide profil-
ing: these let them measure the impact of any proposed
optimization on either throughput or latency, rather than
just end-to-end execution time. Progress points are source
locations whose rate of progress developers want to opti-
mize. A single progress point indicates throughput, while
two progress points indicates the latency between events.
Programmers can specify progress points at the command
line (with ––progress followed by the source file and line
number) or directly in the source code via macros (§ 3.4).

The developer invokes COZ using the following com-
mand: coz ––scope program.c ––– program <args> (indi-
cating progress points as desired). Arguments before the sep-
arator are passed to the profiler. The optional ––scope flag
and arguments tell COZ to only evaluate potential optimiza-
tions in a file or files, rather than across all libraries.

Performance Experiments and Virtual Speedup
After a brief initialization phase (§ 3.1), COZ continuously
performs a number of performance experiments during pro-
gram execution (§ 3.2). During each experiment, COZ ran-
domly selects a line of code to virtually speed up. Once a
line has been selected for speedup, COZ decides how much
speedup to evaluate in the current performance experiment.
The amount of virtual speedup applied to the selected line
is chosen randomly between 0% (no change) and 100% (the
line is completely eliminated).

Virtual speedup creates the effect of optimizing the se-
lected line by the selected degree. The key insight is that
it is possible to virtually speedup a line by pausing all other
threads whenever that line is executed in one thread. Threads
that execute that line then run faster relative to threads that
do not. (While this approach appears simple, there are nu-
merous intricacies involved: see §3.3.)

COZ then logs the state of all progress points and starts
the performance experiment. It applies the selected virtual
speedup for the duration of the experiment, after which it
again logs the progress point state. The performance ef-
fect of each virtual speedup is computed later in an offline
pass. Once an experiment ends, COZ selects a new line and
speedup to conduct another performance experiment.

Ranking Optimization Opportunities
After all causal profiles have been collected (either from
one or many runs), the developer invokes coz-process to
do required post-processing, which generates a .csv file.
This file consists of measured program speedups (that is,
the speedup of the progress points) for varying line speedup
amounts across many lines in the program. Developers can
use the program coz-plot to plot the line speedup vs.
program speedup on a speedup curve.

These curves show two important properties for each line
of code. First, the slope of the speedup curve shows the
payback rate for optimizing this line: the steeper the line, the
greater impact a small optimization will have. Second, the
maximum value on the speedup curve shows the maximum
impact: the largest possible performance improvement from
optimizing this line of code. Lines with high values for
both payback rate and maximum impact offer the greatest
optimization opportunity, and should be ranked accordingly.

COZ performs a linear regression to obtain a measure
of a line’s overall optimization potential. Lines of code are
ranked by the slope of this linear regression line. Lines
with both a high payback rate and maximum impact will
have a steeper regression line. Developers may also wish to
bias their search toward payback rate or maximum impact.
Weighting points with low line speedup values (toward the
left of the plot) biases the regression toward payback rate,
while weighting points with large line speedups emphasizes
maximum impact.

3. Implementation
The current implementation of COZ profiles Linux x86-64
executable binaries. To map program addresses to source
lines, COZ uses DWARF debugging information. As long
as debug information is available in a separate file, COZ
can profile optimized and stripped executables. Sampling is
implemented using the perf_event API, which supports a
wide range of hardware performance counters and sample
types.

3.1 COZ Initialization
A user invokes COZ using a command of the form coz
<profiler args> ––– <program> <args>. coz imme-
diately runs the specified program with exec, passing in
all arguments (including profiler options), and sets the
LD_PRELOAD environment variable to load the main pro-
filer runtime. This approach lets COZ interpose on library
calls from the program, including the libc_start_main
function, which runs before main.

Locating Binaries and Sources. COZ intercepts the call to
libc_start_main at startup. Before running the program’s
main function, COZ walks the list of loaded executables
and shared libraries using the dl_iterate_phdr function.
Users can specify a profiling scope in the profiler arguments.
By default, the scope includes all source files from the main

executable, but alternate source locations and libraries can be
specified. COZ records the loaded address and path to each
in-scope executable for later processing.

Building the Source Map. COZ uses DWARF debug-
ging information to map program addresses to source loca-
tions [19]. Each in-scope executable is opened and checked
for debugging information. If the loaded executable has been
stripped of debugging information, COZ uses the same pro-
cedure as gdb to search standard system paths for separate
debugging information [22]. Note that most Linux distribu-
tions offer packages that include debug symbols for common
libraries. COZ uses the collected debug information to con-
struct a map from address ranges to source locations.

The DWARF format includes both caller and callee infor-
mation for inlined procedures. Special handling is required
when an in-scope callsite is replaced by an inlined function
that is not in scope. The inlined function’s address range is
assigned to the caller’s source location in the source map.
This mirrors the process by which COZ attributes out-of-
scope samples to callsites during execution (see the discus-
sion of sample attribution, below).

Enabling Sampling. Just before calling the program’s real
main function, COZ opens a perf_event file to begin sam-
pling in the main thread. The perf_event_open system
call takes in a configuration that specifies which hardware
or software event to count (such as CPU cycles, page faults,
or cache misses), the number of events between samples,
and options for sample collection. The perf_event_open
system call returns a file descriptor that can be read to ac-
cess event counts, or a memory-mapped file to access sam-
ples directly from a ring buffer. COZ samples each thread
individually using the high precision timer event, and col-
lects instruction pointers and the user-space callchain in each
sample.

Sample Attribution. Samples are attributed to source lines
using the source map constructed at startup. When a sample
does not fall in any in-scope source line, the profiler walks
the sampled callchain to find the first in-scope address. This
process has the effect of attributing all out-of-scope execu-
tion to the last in-scope callsite responsible. For example, a
program may call printf, which calls vfprintf, which in
turn calls strlen. Any samples collected during this chain
of calls will be attributed to the source line that issues the
original printf call.

3.2 Performance Experiments
Initiating Performance Experiments. A single profiler
thread created at startup manages all performance experi-
ments. Each performance experiment starts with the selec-
tion of a source line for virtual speedup. The profiler thread
spins until the next_line atomic pointer is set to a valid
line. Whenever this pointer is null, threads will attempt to
set it to the line containing their most recent sample.

Once the profiler receives a valid line from one of the
program’s threads, it chooses a random speedup amount
and logs the start of the experiment (including the current
time, chosen line, the running count of samples in the se-
lected line, and all progress point counter values). Speedup
amounts are drawn uniformly between zero and 100%. The
null virtual speedup measurement serves as a baseline for
comparison with non-zero speedups—these experiments in-
clude the cost of inserting a virtual speedup without the ef-
fect of any actual speedup.

Running Performance Experiments. Once a performance
experiment has started, each of the program’s threads pro-
cesses samples and inserts delays to perform virtual speedups.
The profiler thread periodically checks if progress counters
have changed, and if enough delays have been inserted. By
default, an experiment cannot end until 100ms have elapsed,
all progress points have been visited at least five times, and
at least five delays have been inserted for virtual speedups.
If the experiment has not finished after 500ms, the minimum
delay condition is dropped. This cutoff ensures that an ex-
periment will not run indefinitely if a rarely executed line is
selected.

Finally, the profiler thread logs the end of the experiment,
including the current time, the number and size of delays
inserted for virtual speedup, the running count of samples
in the selected line, and the values for all progress point
counters. After a performance experiment has finished, COZ
waits at least 10ms before starting another experiment. This
pause ensures that delays and samples processed by threads
around the end of the experiment are not accidentally at-
tributed to the next experiment, which would bias results.

3.3 Virtual Speedups
COZ uses delays to create the effect of optimizing the se-
lected line. Every time one thread executes this line, all other
threads must pause. The length of the pause determines the
amount of virtual speedup; pausing other threads for half the
selected line’s runtime has the effect of optimizing the line
by 50%.

Implementing Virtual Speedup. Tracking every visit to
the selected line would incur significant performance over-
head, distorting the program’s execution. Instead, COZ uses
sampling to implement virtual speedups accurately and ef-
ficiently. Delays are in proportion to the time spent in the
selected line. This allows COZ to virtually speed up the line
by a specific percent, even though the number of visits to the
line is unknown.

COZ periodically samples the program counter in each
thread and maps each sample to a source line using DWARF
debug information. When one thread receives a sample in
the selected line, all other threads must pause. COZ triggers
these pauses using two counters: a shared global delay count,
and a local delay count that is private to each thread. When a
thread’s local count is less than the global count, the thread

must pause. To force other threads to pause, a thread simply
increments both the global counter and its own local count.
COZ checks the counters and adds any required delays im-
mediately after processing samples.

The expected number of samples in the selected line, s, is

E[s] =
n · t
P

(1)

where P is the period of time between samples, t is the time
required to run the selected line once, and n is the number
of times the selected line is executed.

In our original model of virtual speedups, delaying other
threads by time d each time the selected line is executed
has the effect of shortening this line’s runtime by d. With
sampling, only some executions of the selected line will
result in delays. The effective runtime of the selected line
when sampled is t − d, while executions of the selected
line that are not sampled simply take time t. The average
effective time to run the selected line is

t′ =
(n− s) · t+ s · (t− d)

n
.

Using (1), this reduces to

t′ =
n · t · (1− t

P) + n·t
P · (t− d)

n
= t · (1− d

P
) (2)

The percent difference between t and t′, the amount of
virtual speedup, is simply

∆t = 1− t′

t
=

d

P
.

This result lets COZ virtually speed up selected lines by
a specific amount without instrumentation. Inserting a delay
that is half the sampling period will virtually speed up the
selected line by 50%.

Ensuring Accurate Timing. COZ uses the nanosleep
POSIX function to insert delays. This function only guaran-
tees that the thread will pause for at least the requested time,
but the pause may be longer than requested. COZ tracks any
excess pause time, which is subtracted from future pauses.

Thread Creation. COZ interposes on the pthread_create
function to start sampling and adjust delays. COZ first initi-
ates perf_event sampling in the new thread. It then copies
the parent thread’s local delay count, propagating any de-
lays: any previously inserted delays to the parent thread also
delayed the creation of the new thread.

Thread Sampling and Delay Accounting. COZ only in-
terrupts a thread to process samples if the thread is running.
If the thread is blocked on I/O, sample processing and de-
lays will be performed after the blocking call returns. For
blocking I/O, this is the desired behavior—inserting pauses
during a file read would have no effect on the time it takes to

Potentially unblocking calls
pthread_mutex_unlock unlock a mutex
pthread_cond_signal wake one waiter on condition var.
pthread_cond_broadcast wake all waiters on condition var.
pthread_barrier_wait wait at a barrier
pthread_kill send signal to a thread
pthread_exit terminate this thread

Table 1. COZ intercepts POSIX functions that could wake
a blocked thread. To ensure correctness of virtual speedups,
COZ forces threads to execute any unconsumed delays be-
fore invoking any of these functions and potentially waking
another thread.

Potentially blocking calls
pthread_mutex_lock lock a mutex
pthread_cond_wait await signal on condition variable
pthread_barrier_wait wait at a barrier
pthread_join wait for a thread to complete
sigwait wait for a signal
sigwaitinfo ibid
sigtimedwait ibid
sigsuspend ibid

Table 2. COZ intercepts POSIX functions that could block
waiting for a thread, instrumenting them to update delay
counts before and after blocking.

complete the read. However, threads can also block on other
threads, which complicates delay insertion.

Consider a program with two threads: thread A is cur-
rently holding a mutex, and thread B is waiting to acquire
the mutex. If thread B is spinning on the mutex, delaying
that thread will not necessarily have any effect on how long
it waits. Unlike with blocking I/O, this is actually the desired
behavior: thread A will have inserted these delays, which de-
lays the time that thread A unlocks the mutex and B can pro-
ceed. But, if thread B is suspended while waiting for the mu-
tex, these delays would be inserted when the thread wakes.
Any delays required while the thread is blocked could be in-
serted twice: once by thread A before unlocking the mutex,
and then again in thread B after acquiring the mutex.

To correct this behavior, blocked threads must inherit
the delay count from the thread that unblocks them. This
causal propagation ensures that any delays inserted before
unblocking the thread would not be inserted again in the
waking thread. For simplicity, COZ forces threads to execute
all required delays before performing an operation that could
wake a blocked thread. These operations include the POSIX
calls given in Table 1.

When a thread is unblocked by one of the listed functions,
COZ guarantees that all required delays have been inserted.
The thread can simply skip any delays that were incurred
while it was blocked. Before executing a function that may
block on thread communication, a thread saves both the local
and global delay counts. When the thread wakes, it sets its

local delay count to the saved delay count, plus any global
delays incurred since the call. This accounting is correct
whether the thread was suspended or simply spun on the
synchronization primitive. Table 2 lists the functions that
require this additional handling.

Optimization: Minimizing Delays
If every thread executes the selected line, forcing each thread
to delay num_threads − 1 times unnecessarily slows execu-
tion. If all but one thread executes the selected line, only that
thread needs to pause. The invariant that must be preserved
is the following: for each thread, the number of pauses plus
the number of samples in the selected line must equal the
global delay count. When a sample falls in the selected line,
COZ increments only the local delay count. If the local delay
count is still less than the global delay count after processing
all available samples, COZ inserts pauses. If the local delay
count is larger than global delay count, the thread increases
the global delay count.

3.4 Progress Points
COZ supports three different mechanisms for progress points:
source-level, breakpoint, and sampled.

Source-Level Progress Points. Source-level progress points
are the only progress points that require program modifi-
cation. To indicate a source-level progress point, a devel-
oper simply inserts the CAUSAL_PROGRESS macro in the
program’s source code at the appropriate location.

Breakpoint Progress Points. Breakpoint progress points
are specified at the command line. COZ uses the perf_event
API to set a breakpoint at the first instruction in a line speci-
fied in the profiler arguments.

Sampled Progress Points. Like breakpoint progress points,
sampled progress points are specified at the command
line. However, unlike source-level and breakpoint progress
points, sampled progress points do not keep a count of
the number of visits to the progress point. Instead, sam-
pled progress points count the number of samples that fall
within the specified line. As with virtual speedups, the per-
cent change in visits to a sampled progress point can be
computed even when the raw counts are unknown.

Measuring Latency. Source-level and breakpoint progress
points can also be used to measure the impact of an optimiza-
tion on latency rather than throughput. To measure latency, a
developer must specify two progress points: one at the start
of some operation, and the other at the end. The rate of vis-
its to the starting progress point measures the arrival rate,
and the difference between the counts at the start and end
points tells us how many requests are currently in progress.
By denoting L as the number of requests in progress and λ
as the arrival rate, we can solve for the average latency W
via Little’s Law, which holds for nearly any queuing system:

L = λW [35]. Rewriting Little’s Law, we then compute the
average latency as L/λ.

Little’s Law holds under a wide variety of circumstances,
and is independent of the distributions of the arrival rate
and service time. The key requirement is that Little’s Law
only holds when the system is stable: the arrival rate cannot
exceed the service rate. Note that all usable systems are
stable: if a system is unstable, its latency will grow without
bound since the system will not be able to keep up with
arrivals.

3.5 Adjusting for Phases
COZ randomly selects a recently executed line of code at
the start of each performance experiment. This increases the
likelihood that experiments will yield useful information—
a virtual speedup would have no effect if the line does not
run—but could bias results for programs with phases. This
section derives a correction for this bias that enables COZ to
accurately profile programs with phases.

If a program runs in phases, optimizing a line will not
have any effect on progress rate during periods when the line
is not being run. However, COZ will not run performance
experiments for the line during these periods because only
currently-executing lines are selected. If left uncorrected,
this bias would lead COZ to overstate the effect of optimizing
lines that run in phases.

To eliminate this bias, we break the program’s execution
into two logical phases: phase A, during which the selected
line runs, and phase B, when it does not. These phases need
not be contiguous. The total runtime T = tA + tB is the sum
of the durations of the two phases. The average progress rate
during the entire execution is

P =
T

N
=
tA + tB
N

. (3)

COZ collects samples during the entire execution, record-
ing the number of samples in each line. We define s to be the
number of samples in the selected line, of which sobs occur
during a performance experiment with duration tobs. The ex-
pected number of samples during the experiment is:

E[sobs] = s · tobs
tA

, therefore tA ≈ s ·
tobs
sobs

. (4)

COZ measures the effect of a virtual speedup during
phase A,

∆pA =
pA − pA′

pA

where pA′ and pA are the average progress periods with and
without a virtual speedup.

This can be rewritten as

∆pA =
tA
nA
− tA

′

nA

tA
nA

=
tA − tA′

tA
(5)

0%

20%

40%

60%

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim
fe

rre
t

flu
ida

nim
at

e

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns

vip
s

x2
64

m
ea

n

Benchmark

P
er

ce
nt

 O
ve

rh
ea

d

Source of Overhead

Delays
Sampling
Startup
Total

Overhead of COZ

Figure 4. Percent overhead for each of COZ’s possible sources of overhead. Delays are the overhead due to adding delays for virtual
speedups, Sampling is the cost of collecting and processing samples, and Startup is the initial cost of processing debugging information.

where nA is the number of progress point visits during phase
A. Using (3), the new value for P with the virtual speedup is

P ′ =
tA
′ + tB
N

and the percent change in P is

∆P =
P − P ′

P
=

tA+tB
N − tA

′+tB
N

T
N

=
tA − tA′

T
.

Finally, using (4) and (5),

∆P = ∆pA
tA
T
≈ ∆pA ·

tobs
sobs
· s
T
. (6)

COZ multiplies all measured speedups, ∆pA, by the cor-
rection factor tobs

sobs
· s
T in its final report.

4. Evaluation
Our evaluation answers the following questions:

• Is COZ’s overhead low enough to be practical?
• Does causal profiling enable effective performance tun-

ing?

4.1 Methodology
We perform all experiments on a 64 core, four socket AMD
Opteron machine with 60GB of memory, running Linux 3.13
with no modifications. All benchmarks are compiled using
GCC version 4.8.2 at the -O3 optimization level, with debug
output enabled. We disable frame pointer elimination with
the -fno-omit-frame-pointer so that perf can collect
accurate call stacks with each sample.

4.2 Efficiency
We measure COZ’s profiling overhead on the PARSEC
benchmarks running with the native inputs. The sole ex-
ception is streamcluster, where we use the test inputs,
because execution time was excessive with the native inputs.

Figure 4 breaks down the total overhead of running COZ
on each of the PARSEC benchmarks by category. The aver-
age overall overhead is 17%.

The primary contributor to COZ’s overhead is the intro-
duction of delays for virtual speedup. This source of over-
head can be reduced by performing fewer performance ex-
periments during a program’s run, in exchange for increasing
the execution time required to collect useful causal profiles.

The second greatest contributor to COZ’s overhead is
sampling overhead: the cost of collecting samples, process-
ing those samples, and producing profile output. The pri-
mary cost is due to initiating sampling with the perf API
for every new thread. In addition, sampling is disabled dur-
ing introduced delays, which requires two system calls (one
before the delay, and one after).

Finally, startup overhead is due to COZ’s initial pro-
cessing of debugging information for the profiled applica-
tion. Because the benchmarks are sufficiently long running
(mean: 103s) to amortize startup time, this source of over-
head is minimal.

4.2.1 Efficiency Summary
COZ’s profiling overhead is on average 17% (minimum:
0.1%, maximum: 65%). For all but three of the benchmarks,
its overhead was under 30%. Given that the widely used
gprof profiler can impose much higher overhead (e.g., 6×
for ferret, versus 6% with COZ), these results confirm that
COZ has sufficiently low overhead to be used in practice.

4.3 Effectiveness
We perform two case studies to evaluate the effectiveness of
using COZ to guide optimizations. We use two applications
from the PARSEC benchmark suite for this task: ferret and
dedup. Our initial choice of ferret was arbitrary; we next
chose dedup because of its superficial similarity to ferret
(both use pipeline-based parallelism).

IMAGE&
SEGMENTATION&

FEATURE&
EXTRACTION& INDEXING& RANKING&

INPUT& OUTPUT&

Figure 5. ferret’s pipeline. The middle four stages each have an
associated thread pool; the input and output stages each consist of
one thread. The colors represent the impact on throughput of each
stage, as identified by COZ: green is low impact, orange is medium
impact, and red is high impact.

4.3.1 Case Study: ferret
[The Ferret benchmark] is based on the Ferret toolkit
which is used for content-based similarity search
of feature-rich data. Ferret is parallelized using the
pipeline model with six stages. The first and the last
stage are for input and output. The middle four stages
are for query image segmentation, feature extrac-
tion, indexing . . . and ranking. Each stage has its own
thread pool and the basic work unit of the pipeline is
a query image. [11]

ferret takes two arguments: an input file and a desired
number of threads, which are divided equally across the four
middle stages. On a 64-core AMD Opteron system, running
the unmodified ferret application with 16 threads per stage
takes 34.5 seconds on the largest available input.

Profiling
We first inserted a call to the CAUSAL_PROGRESS macro
in the final stage of the image search pipeline to measure
throughput. We then ran COZ with the ––scope argument
to limit our attention to the ferret-parallel.c file, rather
than across the entire Ferret toolkit and associated libraries.

Figure 6 shows the top three lines identified by COZ,
using its default ranking metric. Lines 320 and 358 are
calls to the cass_table_query function from the indexing
and ranking stages. Line 255 is a call to image_segment
in the segmentation stage of the pipeline. Figure 5 depicts
ferret’s pipeline with the associated thread pools (colors
indicate COZ’s computed impact on throughput of optimiz-
ing these stages).

Iterative Optimization
The fact that ferret uses pipeline parallelism leads to the
following optimization strategy: First, use COZ to identify
optimization opportunities. For each of these, check to see
what stage they belong to. Finally, optimize any stage by
allocating more threads to it. We modified ferret to let us
specify the number of threads allocated per stage (changing
4 lines of code).

●
● ● ● ●

●
● ●

● ● ●
● ●

●
●

● ●
●

● ●

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

line 320
line 358

line 255

0% 25% 50% 75% 100%
Line Speedup

P
ro

gr
am

 S
pe

ed
up

Line ● line 320 line 358 line 255

Causal Profile: ferret

Figure 6. COZ output for the unmodified ferret application.
The x-axis shows the amount of virtual speedup applied to each
line, versus the resulting change in throughput on the y-axis. The
top two lines are executed by the indexing and ranking stages; the
third line is executed during image segmentation.

Round 1. With this modification in hand, we were able to
increase the throughput of the three identified lines simply
by allocating additional threads to these stages. Since COZ
did not find any optimization opportunities in the feature
extraction stage, we took nine threads from that stage and
evenly divided them across the other three stages (for each
stage: 19, 7, 19, 19). With this reallocation, ferret ran in
just 30 seconds, a 13% speedup.

Round 2. We re-ran COZ to see if there were any further
optimization opportunities. Lines 320 and 358 remained as
good targets for optimization, so we moved an additional
two threads from the feature extraction stage (for each stage:
19, 5, 20, 20). This reassignment resulted in a runtime of
28.7 seconds, 17% faster than the original configuration.

Round 3. Finally, we performed one last round of causal
profiling. This profile revealed that the segmentation stage
continued to have a potential optimization impact. This
fact suggested that the now-optimized indexing and rank-
ing stages occasionally were blocked waiting for inputs to
arrive from the segmentation stage. To balance the pipeline,
we took all but one of the five remaining feature extraction
threads and added two to indexing, and one each to segmen-
tation and ranking (for each stage: 20, 1, 22, 21).

The resulting final runtime was 27.5 seconds, a 20% im-
provement over the default configuration using the same
number of threads. The entire tuning process described
above took approximately one hour from start to finish. It
was performed by a single graduate student with no previ-
ous familiarity with the application itself.

Original Version After Optimization

0

50

100

150

0 250 500 750 1000 0 250 500 750 1000
Bucket Index

C
ol

lis
io

ns

Hash Bucket Collisions in dedup

Figure 7. The number of insertions into the first 1000 hash buckets before and after using COZ to tune the dedup benchmark. COZ

identified hash bucket traversal as a bottleneck. Fixing dedup’s hash function and reducing the number of buckets yielded an 8% performance
improvement.

Comparison with gprof

As a point of comparison, we also ran ferret with gprof in
both the initial and final configurations. Optimization oppor-
tunities are not immediately obvious from that profile. For
example, in the flat profile, the function cass_table_query
appears near the bottom of the ranking, tied with 56 other
functions for most cumulative time. gprof also offers little
guidance in iteratively optimizing a program: its output was
virtually unchanged before and after optimizing ferret,
despite a 20% change in performance.

4.3.2 Case Study: dedup
Our second case study is on dedup, an application that
performs parallel file compression with deduplication. Like
ferret, dedup uses pipeline parallelism. The pipeline is
divided into three main stages: fine-grained fragmentation,
hash computation, and compression. As with ferret, we
placed a progress point in dedup’s final output stage. Unlike
ferret, dedup’s work queue structure makes it nontrivial
to adjust the allocation of threads to stages:

In order to avoid lock contention, the number of
queues is scaled with the number of threads, with a
small group of threads sharing an input and output
queue at a time. [11]

While dedup assigns threads to separate work queues to
reduce contention, all threads compete for access to a shared
hash table. COZ’s output for dedup identified three lines of
interest, all within dedup’s hash computation stage. These
lines all fall within a single critical section that searches a
hash bucket’s elements (by calling hashtable_search) in
the hash computation stage.

Increasing the hash table size had no effect on perfor-
mance, which suggested that the bucket contention identified
by COZ was not caused by the number of buckets. We dis-
covered that dedup’s hash function is degenerate, mapping
keys to only a tiny fraction of available buckets (only 2.3%).
The peak number of items in a single bucket was 397.

The original hash function adds characters of the key,
which leads to virtually no high order bits being set. We re-
placed this hash function with one that computes the bitwise
XOR of 32 bit chunks of the key, which spreads the keys
more evenly. We then halved the size of the hash table to
reduce cache footprint. Figure 7 shows the distribution of
bucket insertions before and after our fix, which increases
utilization to 82% (peak items in a bucket: 11).

We ran COZ again, which produced a negative speedup
curve for one line of the compression stage. A negative
speedup curve means that optimizing the identified line
would slow the program down, which is a sign of contention.
We could address this by shifting threads away from this
stage, but as our goal was to quickly identify performance
opportunities, we decided that the restructuring required to
support this change would be too intrusive.

After the changes to the hash function described above,
end-to-end runtime increased by 6.5%; halving the number
of buckets further improved performance, yielding an overall
speedup of 8.0%. As with ferret, this result was achieved
by one graduate student who was initially unfamiliar with
the code; the total tuning effort took two hours.

Comparison with gprof

Again, we ran both the original and final versions of dedup
with gprof. As with ferret, the optimization opportunities
identified by coz were not obvious in gprof’s output. Over-
all, hashtable_search had the largest share of highest ex-
ecution time at 14.38%, but calls to hashtable_search
from the hash computation stage accounted for just 0.48%
of execution time. In the final profile, hashtable_search’s
share of execution time reduced to 1.1%.

4.3.3 Effectiveness Summary
Our case studies confirm that COZ is effective at pointing out
optimization opportunities and guiding performance tuning.
In both cases, the information that COZ provided was pre-
cise, pointing to specific lines, and accurate: optimizing the
lines, either by adding more threads to the corresponding

stages or by resolving a problem with a hash function, sig-
nificantly sped up programs (by 8% and 20%). By contrast,
the information provided by a standard profiler proved to be
of little assistance.

5. Related Work
Profilers have been an active area of research since the intro-
duction of the prof tool [49].

5.1 General-Purpose Profilers
General-purpose profilers are typically implemented using
instrumentation, sampling, or both. Instrumentation is either
inserted at compile-time or through binary rewriting, and
can be used to track execution counts for regions of code.
Sampling profilers sample the program counter periodically
to determine the fraction of time spent in each region of
code. One key benefit of sampling is improved accuracy
through the reduction of probe effect, the distortion of a
program’s execution due to profiler overhead. Systems based
on sampling (including COZ) can arbitrarily reduce probe
effect, although care must be taken to ensure that sampling
is unbiased [41].

The UNIX prof tool and oprofile both use sampling
exclusively [34, 49]. oprofile can sample using a variety of
hardware performance counters, which can be used to iden-
tify cache-hostile code, poorly predicted branches, and other
hardware bottlenecks. Binary instrumentation toolkits en-
able detailed performance measurement of unmodified bina-
ries. Valgrind includes two performance measurement tools,
Cachegrind and Massif, that respectively measure cache and
heap performance [42]. Pin is used as the basis for the Intel
Parallel Amplifier, which identifies contended locks, bottle-
necks, and hotspots [9, 36].

gprof combines instrumentation and sampling to mea-
sure execution time [25]. gprof produces a call graph pro-
file, which counts invocations of functions segregated by
caller. Cho et al. reduce the overhead of gprof’s call-graph
profiling by interleaving instrumented and un-instrumented
execution [14]. Path profilers add further detail, counting ex-
ecutions of each path through a procedure, or across pro-
cedures [5, 10]. Unlike COZ, these profilers do not identify
code that will impact performance. As shown in §1 and §4.3,
Optimizing functions or paths that make up a large fraction
of a program’s runtime is not guaranteed to improve perfor-
mance.

5.2 Parallel Profilers
Parallel profilers offer specific support to aid in performance
tuning parallel programs.

Time Attribution Profilers. Time attribution profilers as-
sign “blame” to concurrently executing code based on what
other threads are doing. Quartz introduces the notion of “nor-
malized processor time,” which assigns high cost to code that
runs while a large fraction of other threads are blocked [7].

CPPROFJ extends this approach to Java programs with as-
pects [26]. CPPROFJ uses finer categories for time: running,
blocked for a higher-priority thread, waiting on a monitor,
and blocked on other events. Tallent et al. extend this ap-
proach further to support Cilk programs, with an added cat-
egory for time spent managing parallelism [48]. The WAIT
tool adds fine-grained categorization for enterprise Java li-
braries to identify bottlenecks in large-scale production Java
systems [4].

Time attribution profilers use the state of other threads as
a heuristic for dependence. Code that executes while other
threads are blocked does not necessarily fall on the pro-
gram’s critical path. These profilers may thus overstate the
importance of code, leading to wasted developer time. Un-
like COZ, these profilers do not capture interference between
threads that does not affect threads’ scheduler state, such as
cache coherence overhead.

Tracing Profilers. Tracing profilers intercept interactions
between threads or nodes in a distributed system to con-
struct a model of parallel performance. Monit and the Berke-
ley UNIX Distributed Programs Monitor collect traces of
system-level events (e.g., process creation), inter-process
communication, and system variables for later analysis [32,
39]. Aguilera et al. use network-level tracing to identify
probable “causal paths” in distributed systems of black
boxes, and identify paths that may be responsible for high
latency [3]. AppInsight uses a similar technique to identify
sources of latency in mobile application event handlers [44].

Unlike COZ, tracing tools must be tailored to each mecha-
nism for thread interaction. This approach is only possible in
domains where thread interaction is limited. Programs writ-
ten with pthreads may communicate with synchronization
operations, but interaction can also arise due to cache coher-
ence protocols, race conditions, scheduling dependencies, or
lock-free algorithms. In general, it is not possible for a trace
to capture all instances of thread interaction without impos-
ing prohibitively high overhead.

Critical Path Profiling. Detailed program traces can be
used to construct a program activity graph, which can be
used to identify the critical path. Yang and Miller devel-
oped IPS, which uses traces from message-passing programs
to identify the critical path [40, 52]. They then report time
spent in each procedure on the critical path. IPS-2 extends
this approach with limited support for shared memory paral-
lelism [38, 53]. Other critical path profilers rely on languages
with first-class threads and synchronization to identify the
critical path [28, 43, 46]. Critical path profiling relies on
an accurate trace of thread interactions to construct the pro-
gram activity graph. COZ measures peak and marginal im-
pact, which correspond to measurements of the critical path,
without interposing on thread interactions.

Using the program activity graph, Hollingsworth and
Miller introduce two new metrics for optimization poten-
tial: slack, how much a procedure can be improved before

the critical path changes; and logical zeroing, the reduction
in critical path length when a procedure is completely re-
moved [29, 30]. These metrics are similar to peak impact
measured by COZ, but can only be computed with a com-
plete program activity graph. Collection of a program ac-
tivity graph is costly, and would likely introduce significant
probe effect.

Critical path profiling is not limited to software. Fields
et al. apply critical path analysis to profiling microarchitec-
tural designs, and X-Trace applies critical path analysis to
networked systems [20, 21]. These domains are well suited
to critical path analysis because interactions can be moni-
tored with relatively little overhead.

Bottleneck Identification. PerfExpert, Paradyn, and work
by Diamond et al. use hardware performance counters to
identify hardware-level performance bottlenecks [13, 17,
37]. Bottlenecks, a profile analysis tool, uses heuristics to
identify bottlenecks using call-tree profiles [6]. Given call-
tree profiles for different executions, Bottlenecks can pin-
point which procedures are responsible for the difference
in performance. Unlike COZ, these tools do not predict the
effect of removing bottlenecks, which may not impact the
critical path.

Visual Studio’s contention profiler identifies locks that
are responsible for significant thread blocking time [24]. BIS
uses similar techniques to identify highly-contended critical
sections on asymmetric multiprocessors, and automatically
migrates performance-critical code to faster cores [31]. Bot-
tle graphs present thread execution time and parallelism in a
visual format that highlights program bottlenecks [18]. All
three systems can only identify bottlenecks that arise from
explicit thread communication, while COZ can measure par-
allel performance problems from any source.

Profiling for Parallelization and Scalability. Several sys-
tems have been developed to measure potential parallelism
in serial programs [23, 50, 55]. Like COZ, these systems
identify code that will benefit from developer time. Unlike
COZ, these tools are not aimed at diagnosing performance
issues in code that has already been parallelized.

Kulkarni et al. present general metrics for architecture-
independent available parallelism and scalability [33]. The
Cilkview scalability analyzer uses performance models for
Cilk’s constrained parallelism to estimate the performance
effect of adding additional threads [27]. Fixing scalability
issues identified by these approaches will not necessarily im-
prove performance. COZ will detect performance problems
that result from poor scaling, but only at the current level of
hardware parallelism.

Other systems measure the effect of load and input size
on performance [15, 47, 54]. Developers must generate a va-
riety of input sizes for these tools, whereas COZ automati-
cally generates diversity when conducting performance ex-
periments.

Performance Experimentation. Snelick et al. introduce
delays, which they call synthetic perturbations, to profile
parallel programs [45]. This approach, similar to COZ’s
slowdown experiments, measures only what we call pay-
back rate. Synthetic perturbation measures the impact of
slowdowns in combination: this technique requires a com-
plete execution of the program for each of an exponential
number of configurations, making it impractical. Active De-
pendence Discovery (ADD) introduces performance pertur-
bations to distributed systems and measures the impact on
response time [12]. ADD requires a complete enumeration
of system components, and requires developers to insert per-
formance perturbations manually. Neither approach consid-
ers bounds on optimizations’ impact due to sub-critical path
length, which COZ measures during its performance experi-
ments.

X-Ray is a tool for “differential performance evaluation.”
Given two inputs—one typical and a second that results in
poor performance—X-Ray will find where executions on
these inputs diverge and quantifies the cost of the diver-
gence [8]. Unlike COZ, X-Ray does not evaluate individual
changes in isolation, and can only report that an operation
may be correlated with poor performance.

Mytkowicz et al. also use inserted delays to validate the
output of profilers on single-threaded Java programs [41].
They identify hot methods using a profiler, and add delays
to these methods. If the profiler output is accurate, added
delays should increase the significance of the hot methods.

6. Conclusion
Profilers are the primary tool in the programmer’s toolbox
for identifying performance tuning opportunities. Previous
profilers only observe actual executions and correlate lines
of code or functions with execution time or performance
counters. This information can be of limited use for con-
current applications because the amount of time spent does
not necessarily correlate with where programmers should
focus their optimization efforts. Past profilers are also lim-
ited to reporting end-to-end execution time, an unimportant
quantity for servers and interactive applications whose key
metrics of interest are throughput and latency. Causal profil-
ing represents a new, experiment-based approach that estab-
lishes causal relationships between hypothetical optimiza-
tions and their effects. By virtually speeding up lines of code,
causal profiling identifies and quantifies the impact on either
throughput or latency of any degree of optimization to any
line of code. Our prototype causal profiler, COZ, is efficient,
accurate, and effective at guiding programmers in their opti-
mization efforts.

COZ will be available for download at coz-tool.org.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grants No. CCF-1012195

coz-tool.org

and CCF-1439008. Charlie Curtsinger was supported by a
Google PhD Research Fellowship. The authors thank Dan
Barowy, Emma Tosch, and John Vilk for their feedback and
helpful comments.

References
[1] ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’12, Beijing, China - June 11
- 16, 2012. ACM, 2012.

[2] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org, July 2014.

[3] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Performance
debugging for distributed systems of black boxes. In SOSP,
pages 74–89. ACM, 2003.

[4] Erik R. Altman, Matthew Arnold, Stephen Fink, and Nick
Mitchell. Performance analysis of idle programs. In OOPSLA,
pages 739–753. ACM, 2010.

[5] Glenn Ammons, Thomas Ball, and James R. Larus. Exploit-
ing hardware performance counters with flow and context sen-
sitive profiling. In PLDI, pages 85–96. ACM, 1997.

[6] Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil
Swamy. Finding and removing performance bottlenecks in
large systems. In ECOOP, volume 3086 of Lecture Notes in
Computer Science, pages 170–194. Springer, 2004.

[7] Thomas E. Anderson and Edward D. Lazowska. Quartz: A
tool for tuning parallel program performance. In SIGMET-
RICS, pages 115–125, 1990.

[8] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray:
Automating root-cause diagnosis of performance anomalies in
production software. In Chandu Thekkath and Amin Vahdat,
editors, OSDI, pages 307–320. USENIX Association, 2012.

[9] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena
Demikhovsky, Tevi Devor, Kim Hazelwood, Aamer Jaleel,
Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady Tal. An-
alyzing parallel programs with Pin. Computer, 43(3):34–41,
March 2010.

[10] Thomas Ball and James R. Larus. Efficient path profiling. In
MICRO, pages 46–57, 1996.

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The PARSEC benchmark suite: characterization
and architectural implications. In Andreas Moshovos, David
Tarditi, and Kunle Olukotun, editors, PACT, pages 72–81.
ACM, 2008.

[12] Aaron B. Brown, Gautam Kar, and Alexander Keller. An
active approach to characterizing dynamic dependencies for
problem determination in a distributed environment. In Inte-
grated Network Management, pages 377–390. IEEE, 2001.

[13] Martin Burtscher, Byoung-Do Kim, Jeffrey R. Diamond,
John D. McCalpin, Lars Koesterke, and James C. Browne.
PerfExpert: An easy-to-use performance diagnosis tool for
hpc applications. In SC, pages 1–11. IEEE, 2010.

[14] Hyoun Kyu Cho, Tipp Moseley, Richard E. Hank, Derek Bru-
ening, and Scott A. Mahlke. Instant profiling: Instrumentation

sampling for profiling datacenter applications. In CGO, pages
1–10. IEEE Computer Society, 2013.

[15] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-
sensitive profiling. In PLDI [1], pages 89–98.

[16] Charlie Curtsinger and Emery D. Berger. STABILIZER: Sta-
tistically sound performance evaluation. In Proceedings of the
seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems, ASP-
LOS ’13, New York, NY, USA, 2013. ACM.

[17] Jeffrey R. Diamond, Martin Burtscher, John D. McCalpin,
Byoung-Do Kim, Stephen W. Keckler, and James C. Browne.
Evaluation and optimization of multicore performance bottle-
necks in supercomputing applications. In ISPASS, pages 32–
43. IEEE Computer Society, 2011.

[18] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven
Eeckhout. Bottle graphs: Visualizing scalability bottlenecks in
multi-threaded applications. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA
’13, pages 355–372, New York, NY, USA, 2013. ACM.

[19] DWARF Debugging Information Format Committee. DWARF
Debugging Information Format, Version 4, 2010.

[20] Brian A. Fields, Rastislav Bodík, Mark D. Hill, and Chris J.
Newburn. Using interaction costs for microarchitectural bot-
tleneck analysis. In MICRO, pages 228–242. ACM/IEEE,
2003.

[21] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica. X-Trace: A pervasive network trac-
ing framework. In NSDI. USENIX, 2007.

[22] Free Software Foundation. Debugging with GDB, tenth edi-
tion.

[23] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and
Michael Bedford Taylor. Kremlin: rethinking and rebooting
gprof for the multicore age. In PLDI, pages 458–469. ACM,
2011.

[24] Maxim Goldin. Thread performance: Resource contention
concurrency profiling in visual studio 2010. MSDN magazine,
page 38, 2010.

[25] Susan L. Graham, Peter B. Kessler, and Marshall K. McKu-
sick. gprof: a call graph execution profiler. In SIGPLAN
Symposium on Compiler Construction, pages 120–126. ACM,
1982.

[26] Robert J. Hall. CPPROFJ: Aspect-Capable Call Path Profiling
of Multi-Threaded Java Applications. In ASE, pages 107–116.
IEEE Computer Society, 2002.

[27] Yuxiong He, Charles E. Leiserson, and William M. Leiserson.
The Cilkview scalability analyzer. In SPAA, pages 145–156.
ACM, 2010.

[28] Jonathan M. D. Hill, Stephen A. Jarvis, Constantinos J. Sinio-
lakis, and Vasil P. Vasilev. Portable and architecture indepen-
dent parallel performance tuning using a call-graph profiling
tool. In PDP, pages 286–294, 1998.

[29] Jeffrey K. Hollingsworth and Barton P. Miller. Parallel pro-
gram performance metrics: A comparison and validation. In
SC, pages 4–13. IEEE Computer Society / ACM, 1992.

[30] Jeffrey K Hollingsworth and Barton P Miller. Slack: a new
performance metric for parallel programs. University of Mary-
land and University of Wisconsin-Madison, Tech. Rep, 1994.

[31] José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N.
Patt. Bottleneck identification and scheduling in multi-
threaded applications. In ASPLOS, pages 223–234. ACM,
2012.

[32] Teemu Kerola and Herbert D. Schwetman. Monit: A perfor-
mance monitoring tool for parallel and pseudo-parallel pro-
grams. In SIGMETRICS, pages 163–174, 1987.

[33] Milind Kulkarni, Vijay S. Pai, and Derek L. Schuff. To-
wards architecture independent metrics for multicore perfor-
mance analysis. SIGMETRICS Performance Evaluation Re-
view, 38(3):10–14, 2010.

[34] John Levon and Philippe Elie. Oprofile: A system profiler for
Linux, 2004.

[35] John DC Little. OR FORUM: Little’s Law as Viewed on
Its 50th Anniversary. Operations Research, 59(3):536–549,
2011.

[36] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil,
Artur Klauser, P. Geoffrey Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim M. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumenta-
tion. In Vivek Sarkar and Mary W. Hall, editors, PLDI, pages
190–200. ACM, 2005.

[37] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille,
Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic,
Krishna Kunchithapadam, and Tia Newhall. The paradyn
parallel performance measurement tool. IEEE Computer,
28(11):37–46, 1995.

[38] Barton P. Miller, Morgan Clark, Jeffrey K. Hollingsworth,
Steven Kierstead, Sek-See Lim, and Timothy Torzewski. IPS-
2: The second generation of a parallel program measurement
system. IEEE Trans. Parallel Distrib. Syst., 1(2):206–217,
1990.

[39] Barton P. Miller, Cathryn Macrander, and Stuart Sechrest. A
distributed programs monitor for berkeley UNIX. In ICDCS,
pages 43–54, 1985.

[40] Barton P. Miller and Cui-Qing Yang. IPS: An interactive
and automatic performance measurement tool for parallel and
distributed programs. In ICDCS, pages 482–489, 1987.

[41] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Pe-
ter F. Sweeney. Evaluating the accuracy of Java profilers. In
PLDI, pages 187–197. ACM, 2010.

[42] Nicholas Nethercote and Julian Seward. Valgrind: a frame-
work for heavyweight dynamic binary instrumentation. In
PLDI, pages 89–100. ACM, 2007.

[43] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. On-
line computation of critical paths for multithreaded languages.
In IPDPS Workshops, volume 1800 of Lecture Notes in Com-
puter Science, pages 301–313. Springer, 2000.

[44] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul
Mahajan, Ian Obermiller, and Shahin Shayandeh. Appinsight:
mobile app performance monitoring in the wild. In OSDI,
pages 107–120. USENIX Association, 2012.

[45] Robert Snelick, Joseph JáJá, Raghu Kacker, and Gor-
don Lyon. Synthetic-perturbation techniques for screening
shared memory programs. Software Practice & Experience,
24(8):679–701, 1994.

[46] Zoltán Szebenyi, Felix Wolf, and Brian J. N. Wylie. Space-
efficient time-series call-path profiling of parallel applica-
tions. In SC. ACM, 2009.

[47] Sarah AM Talbot, Andrew J Bennett, and Paul HJ Kelly. Cau-
tious, machine-independent performance tuning for shared-
memory multiprocessors. In Euro-Par’96 Parallel Process-
ing, pages 106–113. Springer, 1996.

[48] Nathan R. Tallent and John M. Mellor-Crummey. Effective
performance measurement and analysis of multithreaded ap-
plications. In PPOPP, pages 229–240. ACM, 2009.

[49] Ken Thompson and Dennis M Ritchie. UNIX Programmer’s
Manual. Bell Telephone Laboratories, 1975.

[50] Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval.
Modeling optimistic concurrency using quantitative depen-
dence analysis. In PPOPP, pages 185–196. ACM, 2008.

[51] Wikipedia. Intel parallel studio — wikipedia, the free ency-
clopedia, 2014. [Online; accessed 30-July-2014].

[52] Cui-Qing Yang and Barton P. Miller. Critical path analysis for
the execution of parallel and distributed programs. In ICDCS,
pages 366–373, 1988.

[53] Cui-Qing Yang and Barton P. Miller. Performance mea-
surement for parallel and distributed programs: A struc-
tured and automatic approach. IEEE Trans. Software Eng.,
15(12):1615–1629, 1989.

[54] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic
profiling. In PLDI [1], pages 67–76.

[55] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan.
Alchemist: A transparent dependence distance profiling in-
frastructure. In CGO, pages 47–58. IEEE Computer Society,
2009.

	Introduction
	Causal Profiling Overview
	Implementation
	Coz Initialization
	Performance Experiments
	Virtual Speedups
	Progress Points
	Adjusting for Phases

	Evaluation
	Methodology
	Efficiency
	Efficiency Summary

	Effectiveness
	Case Study: ferret
	Case Study: dedup
	Effectiveness Summary

	Related Work
	General-Purpose Profilers
	Parallel Profilers

	Conclusion

