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Abstract. Preventable adverse events related to surgery account for
two thirds of hospital complications. Adherence to recommended pro-
cesses of care has been suggested as a strategy to improve patient safety
in surgery. This paper presents preliminary work that is exploring the
use of a semantically rich process-modelling notation to describe and in-
form critical phases of common procedures in cardiac surgery. This work
focuses on reducing stokes, a catastrophic and often preventable adverse
event. The well-defined semantics of the process-modelling notation allow
rigorous analysis techniques to be applied. In our work, model checking
is applied to determine if the process as defined by the process model
always adheres to event sequence requirements and fault-tree analysis
is applied to determine where the process is vulnerable to performance
failures. The results from these analyses lead to validated and improved
process models that are then used to generate context-sensitive, dynamic
“smart” checklists. Future work will evaluate whether the introduction
of dynamic checklists based on these models will reduce the number and
severity of errors in cardiac surgery.

1 Introduction

Preventable adverse events related to surgery account for two thirds of hospital
complications, with 75% of errors leading to injury occurring inside the operat-
ing room (OR) [14, 29, 34]. There is now widespread recognition in the literature
that many errors (latent or active) committed by the process performers within
a given system can be attributed to inadequate attention to human factors [28];
there is also recognition that errors can be minimized by introducing cogni-
tive artifacts or devices (e.g. procedural protocols) that help performers avoid
errors [5, 34].

Standard checklists are examples of cognitive artifacts that were first intro-
duced to improve safety in aviation in the 1930s. Accident rates, however, began
to significantly drop only after the Naval Air Training and Operating Proce-
dures Standardized (NATOPS), a procedural standardization program, was in-
troduced [10]. Such procedure standardization seems particularly important for



improving coordination and communication in teams, by providing clear speci-
fication of who must do what, and when, especially in cases where non-nominal
situations arise. The power of standardized procedural protocols has been clearly
demonstrated in Critical Care Medicine by Pronovost, who showed, in a land-
mark study, that the prevalence of catheter-associated bloodstream infections
could be eliminated using a standardized, evidence-based procedure for catheter
insertion, compared to a rate of 11.5 per 1,000 central line days with usual prac-
tice [12, 20, 26]. In recent years, significant efforts have been made to introduce
intraoperative checklists to standardize surgical procedures and team communi-
cation [19], but substantial resistance has been encountered from surgeons [17], a
group of healthcare professionals with a culture deeply rooted in high standards
of autonomous performance and a tradition of individualism.

On the other hand, because surgery is a technology-driven field in continuous
evolution, the field of surgical process modelling has recently emerged to improve
understanding and to support computer assistance in health care systems [16].
The introduction of minimally invasive and robotic surgery in the 1990s spurred
standardization of complex procedures through their definitions as sequences of
tasks [21, 24]. Specifically, a surgical process was defined as a “set of linked proce-
dures or activities that collaboratively realize a surgical objective” and a surgical
process model as a “simplified pattern of a surgical process that reflects a pre-
defined subset of interest of the surgical process in a formal or semi-formal rep-
resentation” [25]. Most surgical process modelling studies in the literature have
been performed in the context of neurosurgery or endoscopy/laparoscopy [11, 16].
To the best of our knowledge, no surgical process models have been described in
cardiac surgery.

In this paper, we describe a new research program in which we have begun
to develop rich process models for key phases of common cardiac surgical pro-
cesses (e.g. aortic valve replacement AVR and coronary artery bypass grafting
CABG), with a focus on aspects of those surgeries known to be related to an
increased risk of stroke [31]. A key aspect of our work is that we use a modelling
language specifically designed to support concurrency, responses to unusual or
non-nominal conditions, contention for resources, and dependencies on the flow
of information and artifacts. These models have precisely defined semantics and
are therefore suitable for formal, automated analyses to detect problems and
vulnerabilities to human or device failures. Based on these validated models, we
automatically generate context-aware, dynamic, smart checklists that provide
surgical teams with guidance that is automatically tailored and adjusted as con-
tingencies arise and contexts change. The next section provides background on
the modelling language and associated analysis tools. Section 3, describes our
preliminary work on modelling key phases of cardiac surgery.

2 Approach

As noted above, we need process models that are expressive enough to capture
complex medical processes that involve such features as concurrency, responses



to a variety of unusual or non-nominal conditions, contention for resources, and
dependencies on the flow of information and artifacts. We also need the pro-
cess models to be represented in a notation that has well-defined semantics so
that the models can be rigorously analyzed for potential safety violations and
can be executed to provide information about the dynamic process state that is
then reflected in the smart checklists. Most commonly used methods for describ-
ing processes (e.g. flow charts, decision diagrams, or even more sophisticated
programming notations like Unified Modelling Language or Business Process
Modelling Notation) are usually either not expressive enough to capture these
features or not rigorous enough to be analyzed and then executed. Thus, we
build upon the Little-JIL Process Improvement Environment [3], including the
process modelling language [6], the static analyzers [7, 27, 35], and the execution
engine [6]. The process modelling language was designed to capture the language
features listed above. The static analyses allow us to identify potential problems
that can arise even when the processes are executed as defined (such as when
effective communication sequences are not properly embedded in the process), as
well as when failures (such as human failure to correctly direct communications)
are made. These analyses can also be used to evaluate the effect of proposed pro-
cess modifications prior to their adoption, thereby reducing risks during actual
surgical processes. After being favorably evaluated, these models can then be
used to provide context-aware, dynamic guidance to process performers, helping
them do the right thing and avoid doing the wrong thing (or failing to do right
things) even when non-nominal situations arise. Static checklists cannot provide
such context-sensitive feedback [17], and flow graph representations would be
too large and complex to be helpful.

Constructing and validating such precise and expressive process models is
labor-intensive, involving domain experts (e.g., surgeons, anesthesiologists, etc.)
as well as experts in process modelling and analysis. But the investment in con-
structing such models is leveraged by their ability to support analyses that can
provide feedback about possible errors, vulnerabilities, and inefficiencies in the
process, guidance for process performers, and evaluation of process modifica-
tions.

Little-JIL: Space limitations prevent a detailed description of Little-JIL, but we
illustrate some of its features by presenting a brief example here. Figure 1 shows
part of a Little-JIL process model for the arterial cannulation phase of surgery. A
Little-JIL step represents a task or activity and is shown as a central black bar,
and steps are connected to each other by edges that represent both hierarchical
decomposition and artifact flow. Decomposition edges emanate from the left
side of the step bar, which also contains an iconic representation of the order
in which the step’s substeps are to be executed. There are four step execution
sequencing specifications: sequential (indicated by a right facing arrow), where
substeps execute sequentially from left to right; parallel (indicated by an = sign),
which specifies fork-and-join for its substeps; choice (indicated by a circle slashed
through the middle), where any of the substeps can be chosen to be performed
until one succeeds, and try (indicated by a right facing arrow with an X on its



perform alternate cannulation site assessment and selection

perform cannulation assessment and selection

perform aortic cannulation site assessment and selection

assess aortic cannulation site choose aortic cannulation site

confirm and choose aortic cannulation using standard aortic cannula

confirm both EAS and TEE are 0 or 1 decide to cannulate aorta with standard aortic cannula

confirm and choose aortic cannulation using long aortic cannula

confirm EAS is 0 or 1 and TEE is 4 or 5 decide to cannulate aorta with long aortic cannula

Continue after CannotCannulateAorta

Continue after CannotCannulateAlternate

throws CannotCannulateAlternate

throws CannotCannulateAortathrows CannotUseStandardAorticCannula

Continue after CannotUseStandardAorticCannula

Fig. 1. Part of a Little-JIL process model

tail), where the substeps execute in left-to-right order until one of them succeeds.
Lines emanating from the right of the step bar connect to exception handlers,
steps that specify how to deal with specified exceptional conditions that may
arise in the performance of any of the steps descendants. Each step contains an
argument specification stating the artifacts used and created by the step, and
a resource specification of the types of resources needed to perform the step.
(The yellow notes in the figure show some of this additional information that
would ordinarily not be visible in this view of the process model.) One resource
is designated as the step’s agent, namely the human or non-human resource
responsible for the performance of the step.

The process in Figure 1 starts with a try step, specifying that its substeps
be executed in order from left to right until one succeeds. The first substep
is perform aortic cannulation site assessment and selection. That step is a se-
quential step, and its substep assess aortic cannulation site would be executed
first. That substep, whose elaboration is not shown here, involves the use of
epiaortic ultrasound scanning (EAS) of the ascending aorta and trans-esophageal
echocardiography (TEE) of the aortic arch, carried out by the surgeon and the
anesthesiologist, respectively. The second substep, following the assessment by
EAS and TEE, is choose aortic cannulation site. This is also a try step, so
the left-most substep is executed next. That substep, confirm and choose aor-
tic cannulation using standard cannula, is a sequential step, whose substeps are
executed from left to right. The first substep checks whether the Katz scores
from EAS and TEE are both 0 or 1. (This substep involves communication be-
tween the surgical and anesthesiology teams that is not shown in this figure.) If
they are, the second substep, decide to cannulate aorta with standard cannula, is
executed. If not, a non-nominal situation has been detected, and the exception
CannotUseStandardCannula is thrown, meaning that execution of the current
step terminates and control passes up the step hierarchy until a matching excep-
tion handler step is found. In this case, the handler simply continues execution



with the next substep of choose aortic cannulation site, and the step confirm and
choose aortic cannulation with long cannula is executed. If the EAS and TEE
Katz scores do not satisfy the criteria for aortic cannulation with a long cannula,
the exception CannotCannulateAorta is thrown. Since the matching handler is
attached to the perform cannulation assessment and selection step, this leads
to termination of choose aortic cannulation site and execution of perform alter-
nate cannulation site assessment and selection. (The elaboration of that step is
not shown here.) In general, an exception handler is itself a step and, thus can
be decomposed to an arbitrary level of detail and can throw exceptions itself.
Little-JIL supports a variety of semantics for the return to nominal execution
after the exception handler completes. Such extensive support for exception han-
dling [18] seems important and relevant since non-nominal situations appear to
be extremely common in medical processes, but usually cannot be represented
clearly and precisely in commonly-used process modelling languages.

Analyzing the Models: Given a Little-JIL process model, we use model
checking [8] to determine whether any possible execution of the process can
violate any of a number of specified properties. These properties are typically
requirements for the correct sequencing of process steps, such as “In the part of
the execution following the first occurrence of event S and before the next occur-
rence of event E, each occurrence of event B must be preceded by an occurrence
of event A,” and are typically expressed as finite-state automata or formulas in
a suitable temporal logic. The properties serve as formal statements of the re-
quirements that the process is designed to meet, and are intended to assure that,
if each step in the process is executed correctly, none of these sequence require-
ments can be violated. Previous work with analyzing medical processes (e.g., [3,
23]) has shown that model checking can identify real problems in medical pro-
cesses, including sequencing problems, where events could sometimes occur in an
unintended order, and deadlocks, where different agents could each be waiting
for the other to complete a task. In some cases, clinicians were aware that these
problems sometimes arose but had not been able to identify their causes; in oth-
ers, such as when a deadlock occurred, they had simply broken the deadlock by
deviating from the prescribed steps, which caused a required safety check to be
skipped. In this previous work, clinicians proposed modifications to the processes
to avoid the problems, but, as when a proposed fix to a bug in a piece of soft-
ware introduces new bugs, some of these clinician-proposed fixes introduced new
problems that could, in at least some circumstances, lead to violations of other
properties. The proposed changes can be evaluated by rechecking the properties
on a modified model, without having to actually adopt untested, and possibly
defective, versions of potentially life-critical processes.

Although model checking can evaluate whether the process model adheres
to important safety requirements, it does not evaluate whether the process is
robust against human or device failures. For example, model checking can assure
that the recommended process always requires that the ventilator be started
after weaning from CPB, but model checking does not provide any information
about what happens if the ventilator is not correctly restarted when the process



model says it should be. Fault Tree Analysis (FTA) [33] and Failure Mode and
Effects Analysis (FMEA) [32] are well-known safety analysis approaches that
provide feedback about how resilient the process is to such failures. For a user-
specified hazard, such as blood of the incorrect type being delivered from the
blood bank, an FTA tool [7] can automatically derive a fault tree from the
Little-JIL process model and then determine minimal cut sets, the minimal
combinations of events (usually incorrectly performed steps) that could cause
the hazard to occur. Conversely an FMEA tool can use the model [35] to show
how the results of an incorrectly performed step can propagate to other steps,
providing insight about possible hazards to be considered for FTA analysis [9].
Typically, the creation of fault trees and FMEA tables is done by humans and
is, thus, labor-intensive and error prone. The use of automated tools leverages
the effort already taken to create a verified process model to create fault trees
and FMEA tables for a large number of potential hazards and faults.

These sorts of process models and analyses seem to have the potential to
reduce process errors and improve safety. Mertens et al. [23] demonstrated a
roughly 70% reduction in chemotherapy errors reaching the patient after the
application of these process modelling and analysis methods.

Process Guidance: The analyzed process models are used to drive smart
checklists to guide process performers [4]. A preliminary version of a generated
smart checklist for part of the aortic cannulation assessment process (a necessary
step common to all procedures in cardiac surgery using the heart-lung machine),
is shown in Figure 2. This checklist is a view of the steps that the surgeon has
performed, is performing, and is about to be asked to perform next.

The top of the figure shows patient-relevant information. The

Fig. 2. Example of a generated smart
checklist for part of the aortic cannulation
assessment process

rows of text describe the steps in the
process, where a green-shaded row in-
dicates a step that is currently in
progress and a gray-shaded row indi-
cates a step that has completed (no
future steps are shown in this figure).
In this example, the “perform aortic
annulation assessment and selection”
step is in progress. Its first substep,
assess aortic cannulation site, has
been successfully completed, as shown
by the gray background and green
checkmarks on the lowest level sub-
steps, and the second substep, choose
aortic cannulation site is being exe-
cuted. The first of its substeps did not
complete successfully, as shown by the red X, and the step “confirm and choose
aortic cannulation using long cannula” can now be started. (This step would
not have been shown on the checklist unless confirm and choose aortic cannula-
tion using standard cannula failed to be completed successfully.) If the substep



confirm EAS 0 or 1 and TEE is 4 or 5 completes successfully, the surgeon (or
an assistant) would click the “completed successfully” button (the green button
with the white checkmark). If the step cannot be completed successfully, the
“failed to complete successfully” button (the red button with a white X) would
be clicked. When either button is clicked, the completion status and time will
be recorded and the checklist will update with steps that are now to be exe-
cuted. As can be seen from this example, the amount of detail that is presented
in a context-aware checklist depends on the structure (e.g. the step hierarchy)
and the details captured in the process model. Annotations can be added to the
process model to direct what information is actually displayed.

3 Modelling Cardiac Surgery

The incidence of perioperative stroke in cardiac surgery in the last 20 years
has not decreased even in the face of improved surgical techniques and medi-
cal management [22]. The mortality associated with stroke ranges from 19%–
32.8% versus 2.6%–4.9% for patients without a stroke, representing a 6-7 fold
increase [2]. Morbidity associated with a perioperative stroke is responsible for
a doubling of the length of stay in the intensive care unit and hospital as well
as doubling of the cost of care [22]. The type of perioperative stroke associ-
ated with cardiac surgery is predominantly embolic [31]. Aortic manipulation
can lead to thrombosis and embolism particularly with cannulation and clamp-
ing of the aorta during on-pump CABG or AVR. Disruption of significant aor-
tic atherosclerotic plaques leads to perioperative stroke [15] and intraoperative
measures during CABG or AVR to identify and avoid plaques, such as epiaor-
tic ultrasound [30], reduce atheroembolic stroke risk during cross-clamping and
cannulation. The ACCF/AHA 2011 guidelines recommend routine epiaortic ul-
trasound scanning prior to aortic manipulation during CABG to mitigate the
risk of embolic stroke (class IIa, level of evidence B) [13]. Unfortunately, this
evidence-based safe practice recommendation is not routinely implemented. A
recent meta-analysis demonstrated that off-pump CABG was associated with
a significant 30% reduction in the incidence of perioperative stroke (1.4 versus
2.1%) compared to on-pump CABG [1]. Off-pump CABG is recommended in
place of traditional CABG in the setting of significant aortic atherosclerosis.

The surgical process model we have implemented in the Little-JIL language
acts as a high-level decision framework for determining the appropriateness of
central aortic cannulation for both CABG and AVR procedures. While surgeons
have traditionally relied on finger palpation to ascertain the location and extent
of calcification in the ascending aorta, our model eschews such inferior practice
[30]. Instead we propose that the evidence dictating the choice of aortic can-
nulation site be derived from complementary use of epiaortic ultrasound in the
ascending aorta and transesophogeal echocardiography in the aortic arch [13].

We have used model checking to verify a small number of properties of our
preliminary models, including that EAS always be used before aortic cannulation
and that the long cannula only be used when Katz scores support that use. We



have also constructed a fault tree for the hazard “wrong cannula selected for
aortic cannulation” to understand how errors in acquiring, communicating, and
making use of information about the EAS and TEE cause that hazard. In doing
so we assure that checklists generated from this process will provide surgery
teams with guidance that conforms to evidence-driven best practices aimed at
reducing the incidence of stroke and increasing patient safety.

In future work we will go further, incorporating specifications of how infor-
mation is to be transferred among teams via verbal communication to assure
that these exchanges provide a correct basis for belief formation and activity.
For example, we will develop models and use the model checker to assure that
the acquisition and successful communication to all essential parties of two val-
ues – Katz score is 0 or 1 in ascending aorta (via EAS) and Katz score is 4 or 5 in
aortic arch (via TEE) always precedes the decision to implement a long cannula
technique for aortic cannulation. We will also explore the integration of events
from sensors and other medical devices into the checklist as well as approaches
for presenting information about the steps of other team members to provide pro-
cess performers with a more complete overview of the state of the process. We
will also consider different ways of presenting information about past and even
future steps that might be more useful to process performers. Further, we will
use FTA and discrete event simulation to study the etiologies of communication
breakdowns, use fault injection to identify risks incurred by faulty communica-
tion, and mitigate risks by incorporating additional checks that assure correct
communication. Eventually, we hope to carry out experimental evaluations in
a mock operating room. This work is intended to ensure that the dynamically-
generated checklists provide useful guidance in assuring effective communication
in the surgical suite, and to determine whether such checklists can help reduce
the risk of stroke and improve patient safety.

4 Conclusions

In this preliminary work, we have described the use of a semantically-rich process
modelling language (Little-JIL) to support the surgical team in the performance
of a critical step (aortic cannulation) in cardiac surgery, a complex, error-prone
sociotechnical system. Human factors experts have recognized the potential for
human fallibility in complex systems where cardiac surgeons make an average
of 3.5 errors per hour with many of these errors leading to injury to patients.
Procedural standardization and routine implementation of evidence-based safe
practices have been recommended to improve patient safety in surgery. We pro-
pose to explore a novel approach to optimize team performance using smart
checklists.
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