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Abstract—OneSwarm is a p2p system for anonymous file sharing.
We quantify the system’s vulnerability to three attacks that identify the
sources of files. First, we detail and prove that a timing attack allows a
single attacker to investigate all its neighbors for possession of specific
files. We prove the attack is possible due to OneSwarm’s design and
is unthwarted by changes made to OneSwarm since we released our
attack. Second, we show that OneSwarm is much more vulnerable to a
collusion attack than previously reported, and we quantify the attack’s
success given a file’s popularity, a factor not evaluated earlier. Third, we
present a novel application of a known TCP-based attack. It allows a
single attacker to identify whether a neighbor is the source of data or a
proxy for it. Each of these attacks can be repeated as attackers quit and
rejoin the network. We present these attacks in the context of forensics
and the investigation of child pornography. We show that our attacks
meet the higher standards required of law enforcement for criminal
investigations.

Index terms: privacy, digital forensics, legal aspects of security, child
sexual exploitation, p2p networks

1 INTRODUCTION

OneSwarm [6] is p2p system for anonymous file sharing
designed to resist traffic analysis attacks, while providing
file transfer performance comparable to BitTorrent. One-
Swarm thwarts attribution of both queries for content
and the sources of downloadable files.

Our law enforcement partners were able to download
images of child sexual exploitation from OneSwarm by
sending out search queries with keywords typical of child
pornography (CP). Identifying sources of CP is of great
interest to law enforcement for several reasons. First,
such investigations are the primary proactive method of
discovering persons physically abusing children. Victims
come forward to authorities uncommonly, and it is an
impossible task for infants and toddlers. Past studies have
found that 16% of persons sharing and possessing CP are
contact offenders [23]. Second, possession and distribution
of CP is illegal and worthy of investigative resources to
protect the privacy of the victims. Finally, CP is used to
“groom” new victims by normalizing the acts perpetrated
against them.

Given OneSwarm’s protections against traffic analysis,
we ask, Can forensically valid evidence be acquired from
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peers that share CP on OneSwarm? We show that it
can, while adhering to the higher standards required of
criminal investigations. Civil investigations of copyright
infringement, for example, have a much lower standard,
and those who seek to invade the privacy of OneSwarm
users might be satisfied with less. We present three attacks
on OneSwarm that identify sources of files of interest.
In each case, we attempt to generalize our assumptions
beyond the specifics OneSwarm to ensure the broadest
application of the results.

Peers find content in OneSwarm by sending to all
neighbors search messages with query terms. If a peer
receiving the query has the requested file, it replies after
a purposeful delay. Otherwise, with a probability p it
forwards the query to its neighbors, again after a delay.
Replies are routed back to the querier along the reverse of
the search message’s path. Search messages do not have
a hop-count field. Instead, search cancel messages avoid
unnecessary flooding after sufficient replies are received.
Peers can name neighbors as trusted friends. Queries from
trusted friends are answered without delays.

Contributions. We quantify the efficacy of three attacks
on OneSwarm, which can be carried out independently.

Our analysis of a first attack shows that OneSwarm’s
delays do not effectively hide the identity of content
sources. An attacker can connect to a peer and verify
whether the peer is a source (or a trusted friend of the
source) of files of interest by merely comparing the
response delay against a pre-measured upper bound.
When attackers comprise 6% of OneSwarm peers, we
expect over 90% of remaining peers will be attached to
at least one attacker and therefore vulnerable. With a
smaller fraction of attackers, the entire network can still
be investigated: the attackers must quit and rejoin the
network with a new identity, which is easy to do. Trusted
relationships are purported to defeat this timing attack.
In contrast, we show that the attack succeeds in that
it finds peers that are trusted friends of CP sources. In
that case, conspiracy statutes are generally additionally
applicable; trusting peers is a significant criminal liability.
In our analysis, we derive corrected parameter settings
that defeat the attack but degrade performance.

As discussed by Isdal et al. [6], OneSwarm is vulnerable
to a collusion attack. A set of k attackers that are neighbors



of the same peer can infer if it is a source of a query
response by comparing the probabilistically forwarded
responses. We show that the architecture is much more
vulnerable than previously reported, and that it also
depends on content popularity, a factor not considered
earlier. For example, when attackers comprise just 10% of
available peers, 50% of the network can be investigated
with 95% precision to find sources of content that is
available from 1 in 1,000 peers. As content popularity
increases, the attack’s success also increases. In compari-
son, should attackers comprise 25% of an Onion Routing
network [13], about 9% of the circuits are vulnerable to
an analogous attack.

Finally, we show that OneSwarm is also vulnerable to a
novel application of a known TCP-based attack [17]. The
attack attempts to determine if a neighbor is the source of
a file transfer or merely proxying data from the source. By
optimistically ACKing data, the send-rate is increased as
much as possible. If the neighboring peer is the source, the
send rate will increase with the ACKSs; if not, the transfer
will be rate-limited by the true source. This attack requires
only one attacker and can successfully distinguish sources
and proxies with TPR=89% and FPR=4%. Only users that
turn off the default rate-limit setting are susceptible to
this attack. Onion Routing, on the other hand, is not at
all vulnerable to this attack.

While our attacks are based on OneSwarm’s design,
our results are applicable to broad design principles for
anonymous file sharing systems. For example, our TCP-
based attack works on anonymous systems that do not
use onion-based encrypted layers when streaming data,
and several such open-source systems exist, including
MUTE [15] and RShare [16]. We also develop a different
attacker model, one based on a conservative set of legal
restrictions.

This paper extends a preliminary version [12] of the
above results in several ways. We revised the timing
attack, so that it requires only one attacker instead of
two, and we have updated our proof accordingly. And
we show that the version of OneSwarm released after
our initial publication is still vulnerable to the timing
attack. We have newly included measurements of the
attack on the real network, demonstrating its success.
Based on these network traces, we also evaluate how
variation in network roundtrip delays affects the timing
attack, achieving a 0.01% false positive rate. We have
revised our evaluation of the collusion attack, showing
that it is significantly more successful than we and the
original OneSwarm publication each reported. Finally,
our evaluation of the TCP-based attack’s TPR and FPR
is new.

2 OVERVIEW OF ONESWARM

Below, we include details of only the OneSwarm mech-
anisms that are relevant to our analysis. Our results
are based on examination of the source code avail-
able from http:/ /www.cs.washington.edu/homes/isdal/

OneSwarm-20110115.tar.bz2, which is version 0.7, and
we also tested our attacks on version 0.7.1. We note
any relevant differences between the technical paper and
source code.

OneSwarm is based on a dense topology of peers
that discover each other through a community server.
Neighboring peers can be trusted or untrusted. Trust is
assigned by the user, and trusted peers see none of the
delays or other mechanisms that OneSwarm introduces,
as if they were standard BitTorrent peers. The content
shared by trusted friends is displayed in the OneSwarm
GUL CP files are typically explicitly named (for example,
with the age of the child as “1yo” or “2yo”), which is an
important aspect of our legal analysis.

OneSwarm is a previously popular p2p system,
with strong communities in North American (http://
oneswarm.cs.washington.edu), French (https://forum.
oneswarm-fr.net), and Russian (http://oneswarm.ru)
communities each with many thousands of users. More
recently, the community collapsed — we are unsure if our
initial publication [12] was a factor — but our analysis
remains useful for future designers of privacy preserving
protocols.

2.1 OneSwarm’s Design

Topology Construction. Each peer has 26 neighbors.
They can be added from out-of-band methods, including
email or social networking sites, as trusted or untrusted
friends. Peers assigned by the community server are
untrusted. The simplest method of investigation is to be
randomly assigned to peers by the community server,
and that is the case we focus on here. When a target does
have a trusted friend, all privacy controls are turned off,
and therefore becoming an undercover trusted friend is
an appealing method of investigation; we don’t evaluate
such investigations in this paper. But we do quantify the
affect of trusted friends on our attacks, and we summarize
the legal implications, which favor law enforcement, in
Section 4.2.2.

Neighboring peers communicate via SSL over TCP.
Key exchange is based on an underlying DHT. The
public/private keypair used by each peer does not
change and is stored on the local computer. The public
keys of neighbors are also stored on the user’s local
computer. The user’s keys and neighbors’ keys are never
deleted (until the application is uninstalled) and are
useful corroborating evidence.

Searching for Content. OneSwarm is strongly linked to
BitTorrent, and peers can search for content by flooding
a query containing a text string or by a unique BitTorrent
infohash, which is a standard method of uniquely identify-
ing a torrent. When content is found, peers indicate they
have a path to the content, without disclosing whether
they are the source of the content or just a proxy to it.
Pieces of the torrent are then swarmed from all remote
peers that provide a path.



When a OneSwarm peer possesses queried content,
it will return a search reply message after some delay
but not forward the query any further. The delay is
selected uniformly at random from 150-300ms. The choice
is consistent (random but deterministic) for the matching
content (by info hash). Two neighbors that query a source
for the same file will see the same delays. A peer that
queries for two different files from the source will see
different delays, but when a query is repeated it will see
a consistent delay. When intermediaries receive a search
reply, they forward the message along the reverse path
back to the original querier.

If the peer does not possess the queried content,
it forwards the query to each of its neighbors with
probability p; the choice to forward a specific query to a
specific neighbor is random but deterministic. Forwarding
of queries is delayed again by 150-300ms, a value chosen
at random but again consistent for the specific query and
the neighboring peer.

Content Transfer. Once the querier receives a reply, the
content is requested and relayed through the path of
OneSwarm peers using the BitTorrent protocol. There
are no direct downloads between peers unless they are
neighbors, but peers cannot naively identify these direct
connections.

OneSwarm messages have no time-to-live (TTL) fields,
as they would allow attackers to determine if a neighbor
is a source of a file by falsely setting the TTL of
an outgoing query to 1. Without TTLs, queries might
cause congestion collapse from unlimited traffic, and so
OneSwarm uses another mechanism. As search replies
are returned along the reverse path to the querier, search
cancel messages are sent to any neighbor that received the
original query. These cancel messages are sent without
delay and are designed to catch up to and stop the
propagating query.

Like BitTorrent, OneSwarm allows a form of parallel
downloading (called swarming) that Onion Routing im-
plementations, like Tor, do not support well. Our analysis
of OneSwarm’s privacy is so that users can evaluate if the
performance benefits are worth the decline in security in
comparison. The reason Onion Routing does not support
swarming well is that a separate multi-proxy tunnel is
needed to each peer offering part of a torrent .

Other details of OneSwarm’s operation do not intro-
duce vulnerabilities that we’ve discovered, and we do
not describe them further here.

2.2 OneSwarm Implementation

The OneSwarm implementation has some important
differences from the OneSwarm paper. The source code
assigns peers between 22 and 39 neighbors, and as peers
quit, the community server can assign more peers to
clients. In the source code, query replies are returned
with a longer of delay of 170-340ms. In the case of
infohash searches, the delay is chosen on the basis of
the infohash; for text searches, the delay is selected

based on the content that matches the query. Query reply
messages are forwarded by intermediaries without delay
in the source code, though the paper specifies that all
OneSwarm protocol messages are delayed.

In the paper, p = 0.5 is a suggested value, but it is stated
that “privacy-conscious users are free to decrease their
forwarding probability”. However, the software follows
a different design. p is set to a much higher value of 0.95
and there is not yet a user-visible method to change the
value of p; users must edit and recompile the source. As
we show, this setting greatly reduces the privacy of the
system.

We provided the details of our attacks and results to
the OneSwarm developers in May 2011. In August 2011,
they reported that the following changes to OneSwarm
were made in response: the default value of p is set to 0.5,
an unintended forwarding latency we found (described
in Section 4.4) has been decreased from about 100ms to
less than 10ms, and the discrepancy between text search
and hash search delays have been fixed. Additionally, all
PlanetLab, UMass, and Tor IP addresses were blocked
(see http:/ /forum.oneswarm.org/topic/1927).

3 PROBLEM STATEMENT & MODEL

In this section, we provide a problem statement, attacker
model, and our assumptions, as well as related work.

3.1

OneSwarm was designed to thwart third parties from
logging the public activities peers on its p2p network.
For years, p2p networks have been measured by aca-
demics [2], [14] and by companies such as DtecNet,
Peer Media Technologies, and Media Defender that assist
copyright holders in filing civil copyright infringement
lawsuits.

For more than a decade [21], p2p networks have been
an enormous venue for the distribution of child sexual
abuse imagery, according to the US Dept. of Justice [20],
past work by ourselves [8], [9] (showing 2.4 million
unique peers in one year on Gnutella and eMule), and
others [4], [7]. Law enforcement have verified to us that
there is child pornography (CP) shared on OneSwarm.

Problem Statement

Investigator Goals. The investigator is essentially an
attacker, attempting to violate OneSwarm’s privacy
promises, though more limited in ability than is typically
assumed [22]. Their goal is to identify a subset of all
OneSwarm peers that are each sharing (or conspiring
to share) child pornography, and it represents a small
fraction of files shared on the network. The overriding
goal of the attacker is to gather evidence sufficient for a
search warrant; i.e., probable cause.

Probable cause is a lower standard than the beyond a
reasonable doubt standard needed for conviction. There
is no quantitative standard for probable cause, and
courts have defined it only qualitatively. Accordingly,
for the purposes of our study, we say a peer has been



identified if the investigator’s statistical confidence is
above a sufficient level. While Isdal et al. analyzes
attacks requiring 95% precision, we believe lower values
are worth evaluating. We evaluate different scenarios
throughout this paper.

Previous work [11] has investigated related issues in
the civil context where the smallest success would likely
be sufficient for subpoena — precision of 95% confidence
is extraordinarily high in that context. OneSwarm users
committing copyright infringement are at much greater
risk for successful investigations than CP traffickers.

In this paper, we say that evidence is forensically valid
if gathered using techniques that are based on testable
hypotheses, have a known error rate, are based on
accepted scientific methods, and are peer reviewed.

Model and Assumptions. The general approach adopted
by law enforcement for investigating CP trafficking is
based on a series of legal restrictions depending on the
country of jurisdiction. We assume our attacker is an
investigator following common restrictions. Specifically,
we assume that the investigation can gather only infor-
mation available publicly, which includes all traffic sent
to other peers (since anyone in the public can be a peer).
We do not allow attackers to seize or compromise peers
through privilege escalation.

4 TIMING ATTACKS

This section describes a timing attack that is fundamental
to any peer-to-peer network with the following properties,
and OneSwarm in particular:

1. File search queries require message flooding.
2. Query propagation is stopped by a flooded cancelation
message.

Property 1 is imposed by most networks when the
content hosted by any given peer is not known by other
peers a priori. The primary downside to flooding is that
the number of contacted peers can grow exponentially
with every hop. Property 2 is an alternative to adding a
TTL — which can itself expose a privacy vulnerability
— to query messages. In order to ensure that cancelation
messages can overtake the original query message, it’s
necessary to impose a query forwarding delay.

As we will see, together the query flooding and
forwarding delay have a profound impact on commu-
nication cost in the network. Specifically, from these
properties alone it is possible to derive lower bounds
on query response round trip time (RTT). We also use
our theoretical bounds to uncover a weakness in the
OneSwarm privacy model. This theoretical weakness is
corroborated by experimental results.
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The purpose of a timing attack is for a single attacking
peer A to establish that a file of interest f is hosted by
an immediate neighbor 7" as opposed to another peer
S multiple hops away (see Fig. 1). The attack itself is

Types of Timing Attacks

noninvasive in that the attacker uses only ICMP requests
and application-level query requests.

Naive Timing Attack. Here attacker A compares the
application-level response time to the network-based
roundtrip time; if they are similar, then the attacker
concludes that 7" is the source. A’s reasoning is that a
query that takes no longer than the network-level round
trip time to 7', could not have been forwarded. And since
T forwards all requests that it cannot fulfill itself, 7" must
be a source for file f.

To defeat the attack, T" introduces a randomly chosen
(but consistent for a given file) response delay. The delay
should be long enough that the application and network
level round trip times appear to vary significantly. Thus
the attacker cannot easily determine if the difference
is due to network jitter or if the query is actually
being forwarded to other peers. OneSwarm employs this
defense by introducing a response delay between of 150-
300ms before answering queries, as described in Section 2.

Simple Timing Attack. While it’s relatively easy to defeat
the naive timing attack described above, we define a
slightly more sophisticated attack that can be carried out
in the event that the maximum response delay rpyax is
not chosen carefully. The attack refers of the following
quantities. Each is in units of milliseconds.

o 7: query response delay between i, and mmax

o ¢: query forwarding delay between g¢min and g¢max

o [: one-way network-layer latency between two peers

o 0§ application-layer roundtrip query response latency
The simple timing attack consists of the observation that
if T' did in fact forward A’s query on to S, then the total
query response latency, J, must be larger than the sum
of network- and application-level delays associated with
that path. The observation below follows directly from
this reasoning, and from Fig. 1 (right).

OBSERVATION 1: T is the source of file f if its query
response time to A is such that
d< Gmin + Tmin + 4l ms. (1)

Algorithm 4.1 uses this equation to define a procedure
for A to identify files hosted by T

Algorithm 4.1: SIMPLETIMINGATTACK(T)

1) A estimates .
2) A queries T for f and notes response time 4.
3) If 6 < gmin + Tmin + 4{, then T is the source.

4.2 Simple Timing Attack Defense

Observation 1 establishes a test that A can use to decide
if T hosts file f. Naturally, 7" would like to disguise the
fact that it hosts f by delaying its query response in
order to confuse A. But T is constrained by 7max, which
is the maximum amount of time it can wait to respond



Fig. 1. The attacker attempts to distinguish two scenarios.
(Left) Case A where peer T is the source of queried file.
(Right) Case B, where peer S, one hop from T, is the
source.

to a query request. SO .y should be chosen so that
it’s possible that the query request was forwarded to S.
Specifically, the value of r chosen by 7" must exceed the
minimum application-level query response time from 7'
to S, which is equivalent to the bound in Equation 1 less
the network delay from A to 7. Based on this reasoning
and Fig. 1 (left), we have the following constraint.

OBSERVATION 2: In order for T to disguise the fact
that it hosts f it must be the case that,

()

r Z Gmin + Tmin + 2] ms.

4.2.1 Attacking OneSwarm

Based on its technical description and Observation 2, the
OneSwarm network is susceptible to the Simple Timing
Attack. Recall from Section 2, that query response delay
r and query forwarding delay ¢ are bounded as follows.
e 150 ms < ¢ < 300 ms
e 150 ms < r < 300 ms

This means that
r < 300 ms < 300 ms + 2] = ¢uin + Tmin + 20,

which violates the constraint in Equation 2.

4.2.2 Trusted Neighbors

Trusted relationships are an important aspect of One-
Swarm’s design. When a neighbor is trusted, there are no
delays for OneSwarm messaging. Accordingly, the Simple
Timing Attack will not always distinguish between a
target and its trusted friends as sources of a specific
file!. However, there is no need to distinguish the two
scenarios: both involve peers committing illegal acts.
When peers act as a proxy for a trusted friend sharing
child pornography, it is also a serious crime, and the
attack’s result is sufficient evidence of such criminal
distribution. Filenames shared by trusted peers are
shown in the target’s GUI, and therefore a target of the
Timing Attack is distributing CP with knowing intent.
Copyrighted materials are named for what they contain,
e.g., the song name or movie name. Similarly, CP files
are often named with words that will be successfully
found during a search. The names typically contain the
age of the child, terms describing the sexual assault,
and slang for CP. Though not a source of the content,
a target proxying for a trusted friend might be charged

1. See http:/ /forum.oneswarm.org/topic/2004.

two hops
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Fig. 2. Query Request Propagation.

with conspiracy to distribute. Furthermore, by setting
a trusted relationship, the target gains a non-pecuniary
benefit of better performance, which can incur a greater
punishment in some jurisdictions. In short, trusting a
neighbor can raise significant criminal liability.

4.2.3 Query Propagation
4.3 Best-Case Query Response Latency

In any peer-to-peer network with properties listed at the
start of this section, it’s necessary to introduce some query
forwarding delay ¢ to ensure that cancelation messages
can catch up to query requests once a response has been
received. Moreover, the delay ¢ should be chosen so as to
minimize the total number of hops the query propagates,
h. But according to Observation 2, a requirement on
the minimum value for ¢ imposes a larger maximum
value for r. So it’s natural to ask how the overall query
response latency 4 is affected by the addition of this delay.
In this subsection, we use the bounds developed in earlier
sections to bound the minimum response latency min
from below that thwarts the simple timing attack.

Suppose that a query is initiated from peer A and
consider its movement through the network as depicted
in Fig. 2. The query travels n hops before reaching the
nearest source S. Once S receives the request, it waits
for a maximum of 7, ms and then sends a response
back to A along the reverse path. Meanwhile, because
the network floods query requests, the same query has
also been propagated recursively to all neighboring peers
beginning with the neighbors of A. We call this movement
through the network at large the query propagation
frontier.

DEFINITION 1: The diameter h of the query propagation
frontier is the total number of hops from A that the query
propagates through the network before being overtaken
by a cancelation message.



Since the query carries no TTL, the frontier continues
to expand until it’s overtaken by a cancelation message.
Naturally a cancelation must travel faster than the query
in order to achieve this. In fact, the cancelation should
be fast enough that it catches the expanding frontier just
a constant number of additional hops t after the query
reaches the nearest source S. This ensures that the frontier
does not grow exponentially if not necessary.

DEFINITION 2: The cancelation penalty, given by an
integer t, is the number of additional hops the frontier
continues to expand after the nearest source S receives
the query request.

Taken together, the source distance n and cancelation
penalty ¢ are related to the diameter by A = n +¢.

4.3.1

Our goal is to use the quantities defined in the previous
section to prove the following bound on the minimum
query response latency dmin.

Characterizing Response Latency

THEOREM 1: For a query file n hops away, to ensure a
cancelation penalty no greater than ¢, we must have

5min Z w (3)

PROOF: We return to the example of a query traveling
from the requester A to the nearest source S. In n hops
the query will reach S. By the time A receives a response
from S, the frontier has simultaneously saturated all the
peers in the network up to f; hops away.

At this point a cancelation request is flooded from
A recursively to all neighbors. The cancelation request
has no delay and therefore moves faster than the query
request; nevertheless, the frontier continues to propagate
f2 additional hops before being overtaken. Note that =
f1+ fo

We begin by establishing some fundamental relation-
ships between query latency, forwarding delay, and
response delay. Note that d,,;, can be expressed from
two different perspectives. First from the perspective of
the querier A who receives the response we have

5min =7+ (’Il - ]-)qmin + 2In. (4)
Second, from the perspective of the expanding frontier
51nin = fl (Qmin + Z) (5)

The frontier’s diameter can also be expressed from these
two different perspectives, which yields the following
relationship.

A+t fo=n+t. (6)

We can also derive a relationship between r and gmin
from Equation 2 by recognizing that in order to make
dmin as small as possible, we will also want r to be as
small as possible. Therefore,

" = Gmin + 21. (7)

Finally, the cancelation penalty can be related to frontier
diameter as follows.

(n + t)l = fQ(Qmin + l) (8)

In words, this expression dictates that a cancelation
message can propagate n + ¢ hops in the same time it
takes a query request to propagate f, hops.

The result in Equation 3 can be derived algebraically
from Equations 4-8. O

4.3.2 Query Response Latency in OneSwarm

Fully decentralized peer-to-peer networks like OneSwarm
rely on a high degree of connectivity between individual
peers in order to ensure robust end-to-end communi-
cation. This feature inadvertently imposes a practical
constraint on the size the cancelation penalty ¢. Specif-
ically, if each peer has many neighbors, then a query
request message can quickly saturate the entire network
even if a response is ultimately received from just one
hop away.

The technical description of OneSwarm specifies that
each peer has 26 untrusted neighbors. However, the
source code allocates between 22 and 39 untrusted
neighbors. In any case, the query propagation frontier
will encompass at least 22" peers before cancelation. Even
if the source S is just one hop away (n = 1), a cancelation
penalty of ¢ > 2 is unacceptable since this would mean
that the query reaches more than 225,000 peers. So we fix
t = 2 and use Equation 3 to show how query response
latency 0 scales with the source distance n under practical
conditions.

Source Distance (n) Response Latency (4)

1 6!
2 121
3 20!

In comparison, when Onion Routing consists of a chain
of 3 proxies, the delay in receiving data from a Torrent
search engine is E[t] = 6l. Therefore, for any query,
OneSwarm is never faster than OR to a search engine in
terms of roundtrip delay; and for most queries OneSwarm
is considerably slower than OR. Moreover, the number
of nodes that receive query traffic (in the thousands) is
inefficient compared to contacting a single web server
over an Onion Routing circuit.

4.4 Simple Timing Attack in Practice

Above, we described and proved correct a theoretical
timing attack against the OneSwarm system. Here we
ask, Can this simple timing attack we identified be used
in practice? In short: yes. With a small and empirically
quantifiable error rate, we can differentiate peers acting
as a source of a file from peers that are not a source
of a file, solely on the basis of measured network- and
application-layer delays.

We cannot simply apply the test derived in Theorem 1
for two reasons. First, several details of the OneSwarm



implementation differ from its specification. For example,
the value of r is ranges from 170-340ms for keyword
queries. Queries for specific infohashes follow a series
of additional steps for determining the random delay.
Second, there are other undocumented and sometimes
non-deterministic delays present in the implementation.
For example, we discovered an presumably unintentional
delay of 100ms being added to nearly all messages. It
was later removed after we reported it to the OneSwarm
developers. The multi-threaded nature of the code and
garbage collection by the Java implementation running
OneSwarm can also introduce non-deterministic delays
to the system.

Despite these limitations, the insight of the simple
timing attack still stands: independent of network RTT, if
a peer responds with less than a certain delay, it (or
its trusted friend) almost certainly possesses the file
described in the response. We performed measurements
on running OneSwarm peers that we controlled, querying
for content that we knew the peers to either possess or
not. Our results indicate that the two cases are clearly
separable.

Methodology. We set up two OneSwarm peers on a
LAN in the configuration shown in Fig. 1(right), with A
functioning as the attacker, and 7" as the target. Using a
LAN presents the most difficult situation for the attacker.
Each peer ran a modified version of OneSwarm 0.7.1
(which includes changes made as a result of our initial
publication [12]) that we modified to take measurements
described shortly?. A was connected to 7" as an untrusted
friend, and had no other peers. T' was configured to
contact several of the OneSwarm community servers. T
bootstrapped connections to other peers as untrusted
friends, and was allowed to maintain these connections
(typically around 30) during the measurements; these
untrusted peers of T" provided the responses to queries
from A for files that were not present on 7. T" was
configured to share 30 unique files, each with a unique
name and consisting of random data. The filenames were
long random strings, unlikely to exist on the OneSwarm
network.

Each measurement run proceeded as follows. First, A
sent five ICMP pings to T" and recorded the results. Then,
A sent a keyword query to 7', and logged the observed
application-layer roundtrip time (RTT). Finally, A sent five
more ICMP pings and recorded the results. We recorded
the application-layer RTT less the mean network RIT (as
determined by the pings) as the OneSwarm delay ~. This
delay ~y corresponds to the value § — RTT defined in the
simple timing attack.

Recall our goal is to show 7 in the case where T
possesses a file is differentiable from v when T does
not. To this end, we performed measurement runs in two
scenarios.

o In the first, A performed keyword queries 7" for each

2. We will release our measurements and the source code for these
modifications.
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Fig. 3. The measured distribution of OneSwarm-imposed
delay (v) to nodes known to be sources and proxies, and
to nodes of unknown status. The two known distributions
are highly separable, implying the same holds for nodes
of unknown status.

of the unique filenames known to be on 7', with the
goal of determining the distribution of v for files
possessed by a target.

o In the second scenario, A queried T for keywords
drawn from popular music and film titles, with the
goal of determining the distribution of + for files not
possessed (that is, proxied) by 7.

As a final point of comparison, we configured A to query
the community servers for untrusted peers and connected
to them. We then repeated the queries for popular media,
with the goal of determining the distribution of v for a
mixture of possessed and proxied files.

Results. The results of our measurements are shown
in Fig. 3. The upper graph depicts the first scenario,
where A queried T, and T is known to be the source of
the responses to keyword queries (203 data points). The
middle graph reflects the scenario where A queried 7', and
T did not possess a file corresponding to a keyword query
(249 data points). In that case 1" proxied the response
from another untrusted OneSwarm source. The bottom
graph shows delays for A generated by querying a set of
untrusted OneSwarm peers, which includes a presumed
mixture of both source and proxied replies (9,206 data
points).

The results are shown as a distribution of the observed
v in each scenario. We show both estimated empirical
density functions (using kernel density estimation with
normal kernels), and histograms showing the observed
values for v. The vertical dot-dash line is at the minimum
value observed in the known-proxy case.

Discussion. The empirical distribution of v in the case
where T is known to be the source of a file is clearly
differentiable from that where it is known to be a proxy.
To distinguish the two, we can use the minimum value
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Fig. 4. Extraordinary variance in RTTs does not substan-
tively affect the timing attack’s efficacy.

of v observed for the known proxy case (here, 858ms) as
a cutoff: searches resulting in observed values of v less
than the cutoff can be considered sources of a file, and
otherwise proxies. Here, this leads to a false positive rate
of zero, and a false negative rate of 2.2%.

4.4.1 Effect of RTT Variance

If RTT delays vary in a significant fashion, then the
attack is more difficult to carry out. We conducted a
trace-based simulation of the effect that RTT variance
has on the attack success. Our simulation performed
the timing attack, drawing RTTs from the distribution
observed in the traces but also adding additional delay.
This additional RTT delay was drawn from a normal
distribution with a mean of 150ms and a varying standard
deviation. The attack was performed multiple times (that
is, there were multiple trials per attack) with vote to
determine whether the target was a source or proxy. Our
goal was to find the number of trials required to have a
false positive rate less than 0.0001.

Fig 4 shows the number of trials required versus the
standard deviation in RTT in order to have a false positive
rate less than fpr for values of fpr € {0.0001, 0.001, 0.01}.
Note that even when the additional delay has an extreme
standard deviation of 3000ms, only 25 trials were required
to achieve a false positive rate less than 0.0001. In practice,
each trial consists simply of pinging the remote host to
determine the RTT, and making a single application-layer
request; repeating this sequence 25 times is not difficult
or time-consuming. A more stealthy RTT measurement
than using ICMP is desirable if the attacker fears being
noticed.

5 COLLUSION ATTACK REVISITED

Protocols that rely on the network itself to service queries
generally have a high-degree topology. which is true for
OneSwarm as well as Gnutella and Freenet. The high
degree is necessary to quickly propagate search queries
throughout the network. By inserting herself as different
identifies in the p2p network (i.e., the Sybil attack [5]), an
investigator can be assured that some subset of its nodes

Non-attacker(s)

Q

Fig. 5. Setting for collusion attack. One attacker queries for
content and the remaining attacker each have a probability
p of receiving the query if 7' does not respond as a source
for the content.

will neighbor one or more targets. If there are sufficient
neighboring Sybils, then they are capable of inferring
properties of the target peer by means of statistical traffic
analysis.

OneSwarm aims to thwart traffic analysis of a peer
by its neighbor with a particular defense: queries are
forwarded to its many neighbors only with probability p
when the peer doesn’t have requested content. Attacks
can defeat this defense as follows: one Sybil sends a
request for content and one or more colluding Sybils
listen to see if the request is forwarded. This collusion
attack gains precision as more colluders are involved. If
all other attacks we present in this paper are patched,
the collusion attack remains.

In this section, we demonstrate that Isdal et al. underes-
timates the probability of collusion attack success. Further,
we quantify the attack’s success given file popularity,
which we show is a critical factor.

5.1 Attack Definition

Searches are recursively flooded to neighbors until the
requested file is found some number of hops away.
Consider the scenario in Fig. 5, which has k colluding
Sybils Ci,...,C) connected directly to target peer T.
A search implementation that doesn’t consider privacy
would have peer T forward a query to all its neighbors
whenever T itself does not posses the search file piece f.
In this case, it’s trivial for any two colluding neighbors
Cy and O of peer T to determine if T possesses piece f.
The defense against this attack is to have 7" propagate
the query probabilistically. In this case, if 7" receives the
query but does not possess f, then 7" forwards the query
to only a subset of its neighbors. This subset is chosen
based upon a forwarding probability® p. The decision to
forward is made independently for each piece of unique
content and each neighbor and remains consistent.
Suppose that after C'; sends an initial query message
for f to T that none of the Sybils Cs,...,C} receive a
query message from 7. The probability that 7" possesses
f can now be bounded by observing that each Sybil has
independent probability p of receiving a query when

3. Here p = 1 — py, where py is Isdal et al.’s notation for the
probability of not forwarding a query.
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Fig. 6. A comparison between values for P{A > k}
calculated from binomial model (Eqg. 10 below as proposed
by [6]) and a Monte Carlo simulation for N = 1000 and
U = 39. Error is difference divided by the value from the
simulation.

T does not possess f. Therefore, the chance that 7" will
forward the query to at least one of the £ — 1 colluders
when it does not have f (i.e., the attack precision) is

1—(1—-p)* )

5.1.1 Measuring Attack Precision

It’s natural to seek to measure the attack precision given
a certain number of Sybils. Isdal et al. [6] calculated that
with p = 0.5, achieving 95% precision requires at least
k = 6 attackers (a querier and 5 colluders) to be directly
connected to target 7'. But what is the probability that a
peer will have 6 colluding neighbors? Let N be the total
number of peers in the network and C' the total number
of Sybils. Suppose that each peer is assigned exactly
U neighbors uniformly at random by a process similar
to drawing balls from an urn. Isdal et al. argued that
the probability follows a binomial CDF, and that when
C =30,U =39, and N = 1000 we have P{A > 6} =
0.01. Specifically, a binomial assignment model has the
following form, where A is a random variable denoting
the number of Sybils neighboring T

U o\ 7o\ o\VU
£ () (9

The binomial model in Equation 10 is not appropriate
in this context, however, because i) neighbors are actually
drawn without replacement and ii) the probability that
peer T sees k colluders is dependent on the probability
that peer T3 sees k colluders.

The lack of independence between peer outcomes
increases the difficulty of modeling this scenario; however,
deriving a closed form expression for P{A > k} is not nec-
essary for understanding how the attack efficacy relates
to colluder presence. We implemented a simulation* that

4. We will release the short Java program and statistical analysis code
with the paper.

provides Monte Carlo estimates for P{A > k} for fixed
values of N and U, and varying numbers of colluding
Sybils C'. For each value of k and C, we ran 1,000 trials.
For example, for C = 30,U = 39, and N = 1000, the
average probability calculated by the simulation is much
higher at P{A > 6} = 0.07.

Fig. 8 plots the results of the simulation; and Fig. 6
plots a comparison of the binomial model against the
averages from our simulation, in order to demonstrate
the practical disagreement between the two models.
For most configurations, the binomial is a fraction of
the value calculated by simulation. The figure plots
the error as difference of the simulation and binomial
means, normalized by the simulation mean; e.g., for 10%
attackers, the binomial model predicts P{A > 4} = 0.35
whereas the simulation’s mean is 0.56; an error of (0.56-
0.35)/0.56=38%.

As a statistical comparison, we compared the sample
mean to a hypothesis based on the binomial mean, based
on beta prior and two-sided 95% confidence interval
from a beta posterior. For attacks where k > 2 attackers
are present, the means of the binomial and simulation
are significantly different for all fractions of attackers
where C'/N > 0; for k > 4, the models don’t agree past
C/N > 0.017; for k > 6, there is no agreement past
C/N > 0.042 attackers; and so on.

5.2 Accounting for File Popularity

Thus far we have assumed that for a given peer 7" all
file pieces appear in T"s collection with equal probability.
In fact, because some files are more popular than others,
any given piece f will tend to appear with varying
frequency. It turns out that as f’s popularity increases,
fewer colluders are actually necessary to achieve the same
attack precision. We next derive the relationship between
attack precision and file popularity, and go on to show
how it influences the efficacy of attack.

Let 7" denote the event that the target 7" has content
that was searched for, and let ' denote the event that
one of the k — 1 colluders were forwarded the search
query issued by C;. From Bayes Theorem, we can define
the precision of the collusion attack as

P(=F|T+)P(T)
(F[T*)P(T) + P(~F|-T*)P(-T)

P(TY|-F) = 11
(T*]-F) = - ()
The likelihood P(—F|T") must always be 1 because T
never forwards a query when f is in its possession.
Quantity P(T™") gives the prior probability that a peer
possesses file piece f, which we interpret as the popu-
larity of f. Finally, from Eq. 9, it follows that the false
positive rate P(—F|=T") is equivalent to (1—p)*~!. Given
the last expression, we can solve Equation 11 for &, which
yields the following result.
PFITH)P(TT)(1-P(T*|-F))

PIT|-F)P(=TT)

log (1 —p)

log

k=1+ (12)
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Fig. 7. (Top) For a fixed probability of forwarding p = 0.5
(the value suggested in the paper), the plot shows the
required attackers k given the the popularity of content
P(T+) from Eq. 12. Each line is a different precision
P(T*|-F); (Bottom) The same plot for fixed probability of
forwarding p = 0.95 (the value hardcoded in software).

Fig. 7(top) plots Eq. 12 for p = 0.5 (the value sug-
gested by Isdal et al.) showing the minimum & value
required for different precision levels with prior P(T™)
as the independent variable. (Because it can be only an
integer, we plot the ceiling of k.) Fig. 7(bottom) shows
the same equation for p = 0.95 (the value that was
actually hardcoded in the OneSwarm software). Each
plot shows three lines corresponding to precision values
P(TT|=F) = 95%,80%, and 60%. The first is the value
used in Isdal et al., the second is conservative for probable
cause, and the last is weaker evidence for probable cause.
(Note that the value of & is independent of U.)

For example, when p = 0.5,P(T") = 0.1, and
P(T*|—F) = 0.95, then the attack requires k = 8 attackers
(rather than 6); however, the more important point is that
the value of k varies considerably with file popularity.
Roughly, as content is an order of magnitude more
popular, k typically halves in size. Comparison of the two
plots makes the obvious point that p also has a strong
influence on k. Releasing the software with a higher value
for p than documented in the paper reduced the required
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number of attackers by 60-75% in all cases. Finally, when
p = 0.95, the plots demonstrate that values of k > 4 are
sufficient for probable cause for content that is sourced
at only one in a thousand peers.

Forwarding Probability and the False Positive Rate. We
argued above that P(—F|-T*) = (1 — p)*~! is the false
positive rate (FPR) for the collusion attack, because it
gives the probability that the target does not forward the
query to any of the colluding attackers given that T is
not the source of the file. This quantity is less than 0.0025
when k£ > 3 and p = 0.95. Thus investigators are at a very
low risk of misplaced suspicion when the forwarding
probability is high. On the other hand, when p = 0.5 the
false positive rate is less than 1.6% only when k > 7; note
that for less popular files (i.e. P(T") < 0.06), the same
bound of k£ > 7 holds for precision values of 95% (see
Fig. 7(top)). Regardless of the difference, the requirement
of a low FPR is not a significant issue for the investigator.
However, querying for multiple files of interest will affect
the FPR, as we discuss in Section 5.3.

Comparison Against Onion-style Routing. Isdal et al.’s
paper does not quantitatively compare OneSwarm di-
rectly against any other privacy mechanism. As a basic
comparison we analyze the following simple OR attack.
Peers hiding behind an OR circuit can be deanonymized
if attackers are selected at random to be in the first and
last positions. Selection of these nodes occurs without
replacement. Once in these positions, attackers can use
a well-known attack of sending a specific sequence of
duplicate packets to determine if they are on the same
path [19], essentially with a precision of 1 and FPR of 0.
Therefore, the chances of a circuit being compromised in
a OR network of N peers where C are attackers is

P{A =2} = ({)(F=D).

NI (13)

Mechanisms such as guard nodes [24] can make this attack
on OR more difficult. In general the simplicity of the
model in Eq. 13 prevents us from comparing OneSwarm
to Tor directly.

We use this passive attack because it’s a tractable,
conceptually simple presentation of the collusion attack
on the OR architecture, allowing a straightforward com-
parison with OneSwarm’s architecture. A more accurate
model would consider the active attacks that are available
against Tor, which are more effective than Eq. 13. This
would require updating Bauer et al. [1] with the latest
Tor path selection algorithm and measurements of Tor,
to model weighted path selection. It wouldn’t change
our analysis of OneSwarm, and we expect it wouldn’t
change the relative comparison, barring a gross bias in
the Tor route selection algorithm.

Fig. 8 compares effectiveness of these attacks against
OneSwarm and OR. The plot is independent of a chosen
value for p; to determine the required value of k, we first
choose a value of p and consult Fig. 7(top or bottom).
There are a number of implications to note. First, there
is a non-linear, sharp increase in attacker success as
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Fig. 8. Collusion attack success (from simulation where
U=39) on OneSwarm given a required minimum value of
k, and first-and-last attack success against OR (Eq. 13).

investigators increase their proportion of the OneSwarm
network. When the attack requires only that k£ > 4, the
chances of success are 98% as attackers comprise 25% of
peers in the network. Note that k& > 4 is sufficient for
even unpopular content when p = 0.95, which was the
hard coded value in the released software. However, even
if p = 0.5, requiring larger values of k, the effectiveness
of the attack on OneSwarm grows far more quickly than
the simple attack on OR.

The previous analysis is very conservative in that it
assumes that the attackers join the network once. As
such, they can only investigate peers to whom they’ve
attached sufficient colluders. But attackers can repeatedly
quit and rejoin the system with new identities, thereby
investigating more and more peers over time. When
investigators comprise 5% of the network, the attack’s

success for content that requires k& > 4 attackers is 4%.

By the geometric distribution, the expected number of
times investigators must rejoin the network until success
is 25 times. OneSwarm offers no Sybil attack protections
and rejoining is quick and trivial to execute. Churn in the
OneSwarm population will force the community server
to assign and re-assign new untrusted relationships.

Trusted Neighbors. Our attacks are worst case in that
we assume the peer has 39 neighbors. To give a point of
comparison, if the node has only U = 20 neighbors from
the community server (and 19 trusted friends) then the
investigator’s job is harder. For example, the k£ > 4 line
in Fig. 8 shifts roughly to almost where k£ > 8 is in the
figure. Again, attackers can execute this attack as many
times as necessary.

5.3 Practical Considerations

The Multiple Comparison Problem. A naive version of
the collusion attack would see investigators joining the
network as described above. The investigator would then
test each connected peer for possession of all known
files of interest, and claim probable cause for each peer
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Attacker Source

Attacker

Target and Source

Fig. 9. The TCP-based attack increases the rate of
transfer, ¢, from the target so that it is greater than source’s
rate, s. The buffer at the proxy should empty before the
transfer is completed. In the case where the target is the
source, for any value of ¢, the transfer should complete.

which was determined to have at least one file. This
naive version is susceptible to the well-known multiple
comparison problem of testing sets of hypothesis at once.
We elide the analysis here, but we note the false positive
rate quickly grows unusably high as the number of files
tested per peer increases.

There are several ways to limit the effect of this
problem, each of which centers around limiting the
number of different files investigators check a peer for
possession of. One such method is as follows. First,
investigators survey the network for CP files by searching
for well-known keywords. In other p2p networks such
as Gnutella and eDonkey2000, these files are typically
named with explicit and descriptive names; our law
enforcement partners confirm the same appears to be
true of OneSwarm. The files are rank ordered by their
apparent popularity in the system. Investigators then
sweep through the network by performing the collusion
attack for the top n files, where n is chosen to keep
the FPR acceptably low. Only once these peers have
been fully investigated, including offline searches and
the subsequent legal process, do investigators repeat
their survey to determine the next rank-ordered list to
investigate.

Post-Warrant Confirmation. OneSwarm peers connect to
one another using SSL bootstrapped by their RSA key
pairs. A OneSwarm peer stores keys of neighbors and its
own key on the local file system. Once a search warrant
is executed and a machine seized, the investigator can
tie that machine to specific network traffic based on the
recovered key file. Even if the content has been deleted
locally, the mechanism can confirm with cryptographic
precision if this machine is the machine that transferred
it. BitTorrent clients are subject to forensic tagging [9], in
which investigators offer remote machines nonces to store.
These nonces can later be recovered to confirm that the
correct machine was seized. However, OneSwarm makes
this task redundant since all outgoing traffic is signed
and the keys are stored persistently. All OneSwarm peers
cryptographically sign a large amount of evidence that
can be used against them.



6 TCP-BASED ATTACKS

In this section, we demonstrate a novel adaptation of a
known TCP-based attack [17] that can identify whether
a OneSwarm peer is the source of data or a proxy. Peers
that do not rate limit outgoing traffic are vulnerable. One-
Swarm happens to turn on rate limiting by default to 80%
of a test transfer to a central server, but nothing prevents
eager users from turning off the rate limiting. A more
robust defense without rate limiting is to probabilistically
drop outgoing packets and audit incoming acks. In this
section, we detail the attack and its limitations, show
experimental results for an implementation of the attack
executed on a simple non-OneSwarm transfer, and we
discuss defenses to the attack.

The attack leverages optimistic acking [17], where a
receiver sends TCP acknowledgements for data before it
is received, increasing throughput. Sherwood et al. [18]
leverage the same mechanism to perform denial-of-
service attacks against a server. Our contribution is in
showing that the same mechanisms can be used to distin-
guish proxies from sources. The attack is not specific to
OneSwarm; all anonymous file-sharing protocol designers
should be aware of the attack.

Fig. 9 illustrates our TCP attack scenario. An attacker
requests a file from a target. The attacker induces a higher-
bandwidth connection between itself and target than
between the target and a potential source of data. If ¢ can
be made greater than any potential s and the target is
not the source, it will stall out. The stall occurs because
the target’s application level buffers will run out before
the actual source can fill them.

In our evaluations, we show that the attack can succeed
in practice with a TPR of 89% and FPR of 4%. In
sum, OneSwarm is vulnerable (when rate-limiting is
off) because it defends against only application-level
timing and traffic attacks, and does not defend against
an attacker breaking the underlying network abstraction.

Trusted Peers. When a peer has trusted peers (that are
not undercover investigators), they reduce the chances
that an investigator has an opportunity to execute the
TCP attack, but do not affect the success of the attack
itself. Vulnerable peers are those that have at least one
untrusted relationship to an investigator; i.e., set k =1
in Fig. 8.

6.1 Attack Details

To conduct the attack, the investigator incorrectly acks
packets that were lost and optimistically acks packets
that have not yet been received. The investigator also
always advertises a large TCP flow control window so as
not to inhibit the sender. The attack uses unsupervised
clustering (there is no training) to classify downloads as
from a proxy or from an original source. The specific
steps of the attack are as follows:
1) The investigators starts with m files to download
from the p2p network and queries for their availabil-
ity from its neighbors. From the m files, a neighbor

12

A responds that it can used to download n > 1 of
the files. A is now the subject of the attack.

2) The investigator downloads each of the n files
(or portions of each) 5 times, each a separate
TCP connection. The download takes place with
normal TCP or our aggressive TCP tool. The mean
bandwidth of the 5 downloads is recorded. (Hence,
5n downloads total, » means total.)

3) The investigator calculates a threshold as the mean
of the n means. A is classified as the source of a
file when the mean download speed is above the
threshold, and a proxy otherwise.

This attack is not unsuccessful when normal TCP is
used. However, as we show, the attacks success is much
greater when our aggressive TCP tool is used.

Aggressive TCP tool. Our tool does not attempt to
download the data correctly. Instead, whenever a packet
is received, the attacker sends an ack for the highest
sequence number ever received from the sender, regard-
less of whether earlier bytes in the TCP flow were lost.
Because acks are cumulative in TCP, the skipped over byte
sequences are not a concern of the sender. Additionally,
the receiver optimistically acks extra segments it has yet
to receive but are likely on the way. The value of extra
starts at 0 and the receiver increases it by rate bytes
(and rounded to segment sizes) for each packet received,
regardless of loss or duplication, until a given maxExtra
value is reached.

The reason to grow this optimistic acking slowly
is that the sender will silently drop acks for packets
beyond what it has sent. If a sender receives overly
optimistic acks, it will not close the connection, as
TCP was designed to manage the occasional odd error.
Accordingly, thoughtless optimistic acking by the attacker
will have no effect, and the attacker must grow the
window commensurately with the sender’s values. As
the window grows, heavy packet loss will occur.

If attacker grows the sender’s window too aggressively,
the RTT calculation at the sender can become mis-
estimated as a very small duration, making a timeout
exceedingly easy. When a timeout occurs, the sender will
back off, cutting the rate drastically, and will resend old
data, which is very bad for the attack. Therefore, if the
receiver doesn’t receive data by some timeout (250ms in
our implementation), an ack packet is sent to the sender
for the latest packet received, rather than the highest
received. In our tests, this quickly re-initiates the data
flow, and the attacker can return to acking the highest
byte sent.

The file downloaded must be large enough to get out
of slow start. Fortunately, even for small torrent pieces in
OneSwarm, BitTorrent-style pipelining [3] prevents the
attack from stalling.

6.2 Attack Experimentation

We implemented the attack in about 700 lines of C++
to test its feasibility. The attack implementation and
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Fig. 10. A visualization of both traces from our aggressive
TCP program and the attack results. The points represent
the mean of 5 downloads. The dotted line is the thresh-
old, attempting to place sources above the line, proxies
below. TPR=24/27=89%; FPR=1/27=4%. With normal
TCP, TPR=17/27=63% and FPR=10/27=37%. The pairs of
TPRs and FPRs are statistically different, respectively.

details of our measurement experiments (including packet
header logs) are available from http://traces.cs.umass.
edu. Our prototype implementation attacks the HTTP
protocol rather than the BitTorrent protocol, as HTTP has
fewer implementation details to manage. In principle, the
same attack will work on pipelined BitTorrent requests.
Further, our implementation does not implement the SSL
handshake between peers that OneSwarm requires.

Methodology. We configured a network as shown in
Fig. 9. We could not use PlanetLab for this experiment
since it enforces a bandwidth cap, which it splits among
all virtual hosts on each node [10]. The attacking machines
were located at UMass, Wesleyan (CT), and UT Arlington
(TX); the targets were a superset of the attacking machines
and also included UCSB (CA); and the proxied sources at
Central Michigan University, Harvey Mudd College (CA)
and Mojohost, Inc. (FL). We chose these proxies to model
relatively close (UCSB and HMC are both in CA) and
distant (UCSB to Mojohost crosses the country) peers. We
served the file directly through an httpd daemon from the
targets, and we used netcat to act as an application-level
proxy to the other sources. Our target file was a 10MB
ISO image.

We ran trials with both our aggressive TCP imple-
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Fig. 11. Fig. 10 assumes a balance of sources and proxies
in each test. This plot shows the FPR and TPR for a
series of experiments: 3 files downloaded via proxies and
1 directly from a source; 3 proxied and 2 direct; 3 proxied
and 3 direct. In all cases, using our aggressive TCP tool is
highly accurate and better than using normal TCP for the
same attack. (Some points are over-plotted.)

mentation and wget. We fixed the parameters of our
attack implementation at relatively conservative values.
We set the maxExtra value to 50 TCP segments for all
connections, though in our experience this value should
vary per bandwidth of the connection to the target. We
ran measurement experiments across 9 combinations of
attacker, target, and 3 proxies; for each we recorded
measurements without the proxy. Each measurement was
repeated five times with each tool. Hence, we recorded
9*3*2*5*2 = 540 traces total. For our aggressive TCP
tool, we recorded the max bandwidth achieved since
its behavior can cause stalling. For wget we recorded the
mean bandwidth of the download.

Results. Fig. 10 shows the results of using our aggressive
TCP tool to carry out the attack. The figure shows both
the means of 5 downloads and the chosen threshold.
These 54 experiments are comprised of 27 positives and
27 negatives. The TPR is 24/27=89%. The FPR is 1/27=4%.
When the same test is be performed with normal TCP,
then TPR=17/27=63% and FPR=10/27=37%. The two
TPRs and FPRs are significantly different according to a
one-sided permutation test of proportions (TPR compari-
son p-value: 0.018; FPR comparison p-value:0.002).

We also tested the attack by limiting the number of
sources. Figure 11 shows the FPR and TPR for a series
of experiments: 3 files downloaded via proxies and 1
directly from a source; 3 proxied and 2 direct; 3 proxied
and 3 direct. In all cases, using our aggressive TCP tool
is highly accurate and better than using normal TCP for
the same attack.

Limitations. We note that the attack depends upon the
attacker being able to force the target to serve files faster
than they can be retrieved from potential sources when
proxied. This assumption does not always hold. The



attacker could have poor connectivity to the target; this
is easily detected in advance, and attackers can acquire
high-bandwidth connections. Less avoidably, there could
be rate limiting or traffic shaping in place, or the target,
acting as a proxy, may have an extremely high bandwidth
connection to the true source. In the latter case, the
machines may be co-located, which is acceptable for a
search warrant, or the owner of the machine may choose
to cooperate with law enforcement in investigation of
a crime. This type of cooperation is typical in practice,
such as when investigations of non-anonymous systems
lead to an innocent owner of an open Wi-Fi base station
whose neighbor is using the connection illicitly.

Defenses. To detect this attack, nodes can purposefully
drop outgoing packets from their TCP stream and de-
termine if the remote peer requests the missing data
or acknowledges receiving it. There is a patch (https:
/ /www.kb.cert.org/vuls/id /102014) to an old version of
the Linux kernel that addresses this vulnerability, but any
such fix results in a non-standard TCP implementation
and is unlikely to be deployed on a wide scale. To defend
against the attack without detecting it, OneSwarm can
force a bandwidth cap on peers that can’t be turned off,
which isn’t done currently. Since OneSwarm is an open
source project, investigators will know if and when such
defenses are deployed.

7 CONCLUSIONS

We showed that publicly available data can be gathered
supporting at least a probable cause standard against
OneSwarm peers that share child abuse materials. Each
of the attacks we presented adhere to the restrictions of a
constrained generally applicable criminal procedure. We
quantified the effectiveness of three independent attacks:
one using timing information; one using information
about query forwarding; and a third comparing TCP
throughput. We also introduced a new threat model,
based on digital forensics and computer crime law.
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