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Abstract
While traditional profilers reveal where a program spends its
time, they do not indicate where developers should spend their
time. This paper introduces causal profiling, a novel profiling
approach that not only indicates exactly where programmers
should focus their optimization efforts, but also quantifies
their potential impact. Causal profiling works by performing
a series of performance experiments at runtime. These exper-
iments quantify the impact of any potential optimization via
virtual speedups, which emulate the effect of real speedups
by slowing down concurrently-executing tasks. Causal profil-
ing further departs from traditional profilers by identifying
optimization opportunities that increase throughput or reduce
latency. We present COZ, a prototype causal profiler, and
empirically demonstrate its efficiency and effectiveness at
guiding optimization efforts.

1. Introduction
With the end of Dennard scaling, performance is once again
a first-class concern for software developers. While compiler
optimizations are of some assistance, they often do not make
enough of an impact on performance to meet programmers’
demands [Curtsinger and Berger 2013]. The result is that
programmers seeking to increase the throughput or respon-
siveness of their applications generally must resort to manual
performance tuning.

Manually inspecting an entire program to identify opti-
mization opportunities is impractical. Instead, developers use
profilers to focus their tuning efforts on code responsible for
a significant fraction of execution time. Prominent examples
include oprofile, perf, and gprof [Levon and Elie 2004;
kernel.org 2014; Graham et al. 1982].

Unfortunately, even when a profiler accurately reports
where a program is spending the bulk of its time [Mytkowicz
et al. 2010], this information can lead programmers astray.
Where programs spend their time is not necessarily where
programmers should focus their optimization efforts: correla-
tion does not imply causation. This phenomenon is especially
notable in interactive applications and servers, which spend
much of their time waiting for I/O, and for multithreaded code
running on multicore systems.

Figure 1 illustrates the shortcomings of existing profilers
with an example program. It spawns two threads that respec-

tively invoke functions a and b. Most profilers will report
that these functions each comprise roughly half of overall
execution time; some profilers will additionally report that
the a function is on the critical path [Intel 2014].

This information is accurate but potentially misleading.
On a multicore system, optimizing a entirely away—thus
eliminating the critical path entirely—would only speed the
program up by 4.5%, as b would become the critical path.

The heart of the problem is a mismatch between the ques-
tion that current profilers answer—where does the program
spend its time?—and the question programmers want the
answer to: where should I focus my optimization efforts?

This paper introduces causal profiling, an approach that
accurately and precisely indicates where programmers should
focus their optimization efforts, and quantifies their potential
impact. Figure 2 shows the results of running our prototype
causal profiler. This profile plots the hypothetical speedup of
a line of code (x-axis) versus its impact on execution time
(y-axis). The graph shows that optimizing a or b in isolation
would have little impact on execution time.

1 // A multithreaded C++ program that illustrates
2 // the shortcomings of standard profilers.
3 volatile size_t x, y;
4

5 void a() { // ~6.7 seconds
6 for(x=0; x <2000000000; x++) {}
7 }
8

9 void b() { // ~6.4 seconds
10 for(y=0; y <1900000000; y++) {}
11 }
12 int main() {
13 // Spawn both threads and wait for them.
14 thread a_thread(a), b_thread(b);
15 a_thread.join (); b_thread.join ();
16 }

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
55.20 7.20 7.20 a()
45.19 13.09 5.89 b()
0.00 13.09 0.00 2 0.00 0.00

Figure 1: An example multithreaded program and its representa-
tive profile (from gprof). Standard profilers report and attribute
execution time, but these do not necessarily correlate with where
programmers should focus their optimization effort. On a multicore
system, independently optimizing either a or b would have little to
no impact on performance.
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Figure 2: A causal profile for the program in Figure 1 generated
by COZ. The y-axis shows the program speedup that would be
achieved by speeding up the given line of code by the percentage
given in the x-axis (the gray area shows standard error). Unlike past
profilers, causal profiling accurately predicts the impact optimizing
each function.

A causal profiler conducts a series of performance ex-
periments to empirically observe the impact of a potential
optimization. Of course, it is not possible to automatically
speedup any line of code by an arbitrary amount. Instead,
during a performance experiment, the causal profiler uses the
novel technique of virtual speedups to mimic the effect of
optimizing a specific line of code by a specific amount.

Virtual speedup works by inserting pauses that slow down
all code running at the same time as the line under examina-
tion. The key insight is that this slowdown has the same rela-
tive effect as running that line faster, thus “virtually” speeding
it up. Figure 3 illustrates the relative equivalence between
actual and virtual speedups: after accounting for delays, both
have the same impact.

Each performance experiment measures the impact of
some amount of virtual speedup to a single line. By sam-
pling over the range of virtual speedup from between 0% (no
change) and 100% (the line is completely eliminated), causal
profiling can calculate the impact of any potential optimiza-
tion on overall performance.

Causal profiling further departs from traditional profiling
by making it possible to view the effect of optimizations on
throughput and latency. To profile throughput, developers
specify a progress point, indicating a line in the code that
corresponds to the end of a unit of work. For example, a
progress point could be the point at which a transaction
concludes, when a web page finishes rendering, or when a
query completes. A causal profiler then measures the rate
of visits to each progress point to determine any potential
optimization’s effect on throughput.

To profile latency, programmers place two progress points
that correspond to the start and end of an event of interest,
such as when a transaction begins and completes. A causal
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Figure 3: An illustration of virtual speedup: (a) shows the original
execution of two threads, running functions f and g; (b) shows the
effect of actually halving the runtime of f; (c) shows the effect of
virtual speedup, inserting delays in other threads whenever f runs
(denoted by the arrows). Both actual and virtual speedups cause the
threads to end at the same time; by subtracting delays, the elapsed
times also match.

profiler then reports the effect of potential optimizations on
the average latency between those two progress points.

We demonstrate causal profiling with COZ, a prototype
causal profiler that works with Linux x86-64 binaries. We
show that COZ imposes low execution time overhead (mean:
17%, min: 0.1%, max: 65%), making it substantially faster
than gprof (up to 6× overhead).

We show that causal profiling accurately predicts optimiza-
tion opportunities, and that it is effective at guiding optimiza-
tion efforts. We apply COZ to the the extensively studied
PARSEC benchmark suite, and identify the best optimiza-
tion opportunities in each benchmark. With COZ’s guidance,
we were in short order able to increase the performance of
two benchmarks by 8% and 20%. These performance gains
closely match COZ’s predictions of 9% and 21%.

Contributions
The contributions of this paper are the following:

1. It presents causal profiling, which departs from past
profilers by conducting on-line experiments. Using virtual
speedups and progress points, causal profiling quantifies
the impact of potential optimizations on both throughput
and latency (§3).

2. It presents COZ, a prototype implementation of causal
profiling. It describes its implementation (§4), and demon-
strates its efficiency and effectiveness at locating and quan-
tifying optimization opportunities (§5).
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2. Related Work
Causal profiling identifies and quantifies optimization oppor-
tunities, while most past work on profilers has focused on
collecting detailed (though not necessarily actionable) infor-
mation with low overhead.

2.1 General-Purpose Profilers
General-purpose profilers are typically implemented using
instrumentation, sampling, or both. Systems based on sam-
pling (including causal profiling) can arbitrarily reduce probe
effect, although care must be taken to ensure that sampling is
unbiased [Mytkowicz et al. 2010].

The UNIX prof tool and oprofile both use sampling
exclusively [Thompson and Ritchie 1975; Levon and Elie
2004]. oprofile can sample using a variety of hardware
performance counters, which can be used to identify cache-
hostile code, poorly predicted branches, and other hardware
bottlenecks. gprof combines instrumentation and sampling
to measure execution time [Graham et al. 1982]. gprof
produces a call graph profile, which counts invocations of
functions segregated by caller. Cho et al. [2013] reduce
the overhead of gprof’s call-graph profiling by interleaving
instrumented and un-instrumented execution. Path profilers
add further detail, counting executions of each path through
a procedure, or across procedures [Ball and Larus 1996;
Ammons et al. 1997].

Binary instrumentation enables detailed performance mea-
surement of unmodified binaries, sometimes at high cost. Val-
grind includes two performance measurement tools that mea-
sure cache and heap performance [Nethercote and Seward
2007]. Pin is the basis for the Intel Parallel Amplifier, which
identifies contended locks, bottlenecks, and hotspots [Bach
et al. 2010; Luk et al. 2005].

2.2 Parallel Profilers
Past work on parallel profiling has focused on identifying
the critical path or bottlenecks, although optimizing the crit-
ical path or removing the bottleneck may not significantly
improve program performance.

Critical Path Profiling. Miller and Yang [1987] describe
IPS, which uses traces from message-passing programs to
identify the critical path. They then report time spent in each
procedure on the critical path. IPS-2 extends this approach
with limited support for shared memory parallelism [Yang and
Miller 1989; Miller et al. 1990]. Other critical path profilers
rely on languages with first-class threads and synchronization
to identify the critical path [Hill et al. 1998; Oyama et al.
2000; Szebenyi et al. 2009]. Using the program activity graph,
Hollingsworth and Miller [1994] introduce two new metrics
for optimization potential: slack, how much a procedure can
be improved before the critical path changes; and logical
zeroing, the reduction in critical path length when a procedure
is completely removed. These metrics are similar to the
peak impact measured by causal profiling, but can only be

computed with a complete program activity graph. Collection
of a program activity graph is costly, and could introduce
significant probe effect.

Bottleneck Identification. PerfExpert, Paradyn, and Dia-
mond et al. [2011] use hardware performance counters to
identify hardware-level performance bottlenecks [Miller et al.
1995; Burtscher et al. 2010]. Bottlenecks, a profile analysis
tool, uses heuristics to identify bottlenecks using call-tree
profiles [Ammons et al. 2004]. Given call-tree profiles for dif-
ferent executions, Bottlenecks can pinpoint which procedures
are responsible for the difference in performance. Unlike
causal profiling, these tools do not predict the performance
impact of removing bottlenecks.

Visual Studio’s contention profiler identifies locks that
are responsible for significant thread blocking time [Goldin
2010]. BIS uses similar techniques to identify highly con-
tended critical sections on asymmetric multiprocessors, and
automatically migrates performance-critical code to faster
cores [Joao et al. 2012]. Bottle graphs present thread execu-
tion time and parallelism in a visual format that highlights
program bottlenecks [Du Bois et al. 2013]. All three systems
can only identify bottlenecks that arise from explicit thread
communication, while causal profiling can measure paral-
lel performance problems from any source, including cache
coherence protocols, scheduling dependencies, and I/O.

Profiling for Parallelization and Scalability. Several sys-
tems have been developed to measure potential parallelism
in serial programs [von Praun et al. 2008; Zhang et al. 2009;
Garcia et al. 2011]. Like causal profiling, these systems iden-
tify code that will benefit from developer time. Unlike causal
profiling, these tools are not aimed at diagnosing performance
issues in code that has already been parallelized.

Kulkarni et al. [2010] present general metrics for available
parallelism and scalability. The Cilkview scalability analyzer
uses performance models for Cilk’s constrained parallelism
to estimate the performance effect of adding additional hard-
ware threads [He et al. 2010]. Causal profiling can detect
performance problems that result from poor scaling on the
current hardware platform.

Time Attribution Profilers. Time attribution profilers as-
sign “blame” to concurrently executing code based on what
other threads are doing. Quartz introduces the notion of “nor-
malized processor time,” which assigns high cost to code that
runs while a large fraction of other threads are blocked [An-
derson and Lazowska 1990]. CPPROFJ extends this ap-
proach to Java programs with aspects [Hall 2002]. CPPROFJ
uses finer categories for time: running, blocked for a higher-
priority thread, waiting on a monitor, and blocked on other
events. Tallent and Mellor-Crummey [2009] extend this ap-
proach further to support Cilk programs, with an added cat-
egory for time spent managing parallelism. The WAIT tool
adds fine-grained categorization for enterprise Java libraries
to identify bottlenecks in large-scale production Java sys-
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Figure 4: COZ’s profiling workflow. At startup, COZ builds a map of source information for the main executable and libraries. To begin an
experiment, COZ selects a random source line and speedup amount. Using virtual speedups, COZ creates the effect of optimizing the selected
line. After all progress points have been visited and a minimum experiment duration has elapsed, COZ stops the experiment and records the
results. After a cooloff period, COZ selects a new random line and speedup, and begins the next experiment.

tems [Altman et al. 2010]. Unlike causal profiling, these
profilers can only capture interference between threads that
directly affects their scheduler state.

2.3 Performance Experimentation
Several systems have employed delays to extract information
about program execution times. Mytkowicz et al. [2010] use
inserted delays to validate the output of profilers on single-
threaded Java programs. Snelick et al. [1994] use delays to
profile parallel programs. This approach measures the impact
of slowdowns in combination, which is impractical because
it requires a complete execution of the program for each of
an exponential number of configurations. Active Dependence
Discovery (ADD) introduces performance perturbations to
distributed systems and measures their impact on response
time [Brown et al. 2001]. ADD requires a complete enumera-
tion of system components, and requires developers to insert
performance perturbations manually. Neither approach can
quantify the effect of optimizations, which causal profiling
measures via its virtual speedup experiments.

3. Causal Profiling Overview
Causal profiling relies on several key ideas to provide de-
velopers with actionable profiles. Virtual speedups allow a
causal profiler to automatically create the effect of optimiz-
ing any fragment of code. Progress points allow the profiler
to measure a program’s performance repeatedly during one
run. Performance experiments apply a virtual speedup and
measure the resulting effect on performance. Repeated per-
formance experiments enable a causal profiler to identify
fragments of code where optimizations will have the great-
est impact. This section provides a detailed description of
these key concepts, and describes the workflow of COZ, our
prototype causal profiler.

Virtual speedups. A virtual speedup uses delays to create
the effect of optimizing a fragment of code. Each time a
selected fragment is executed, all other threads are briefly
paused. The longer the pause, the larger the relative speedup.
At the end of an execution, a causal profiler subtracts the total
pause time from runtime to determine the effective execution
time. This technique is illustrated in Figure 3.

Progress points. A causal profiler uses progress points to
measure program performance during execution. Developers
must place place progress points at a source location where
some useful work has been completed. These points allow
a causal profiler to conduct many performance experiments
during a single run. Additionally, progress points enable mea-
surement of both latency and throughput, and enable profiling
of long-running applications where end-to-end execution time
is meaningless.

Performance experiments. A causal profiler runs many per-
formance experiments during a program’s execution. For each
experiment, the profiler randomly selects a fragment of code
to virtually speed up for the duration of the experiment. Mean-
while, the profiler measures the rate of visits to one or more
progress points. Each performance experiment establishes
the impact of optimizing a particular code fragment by a spe-
cific amount. Given a sufficient number of experiments, the
profiler can identify which fragments will yield the largest
performance gains if optimized.

3.1 Causal Profiling Workflow
To demonstrate the effectiveness of causal profiling, we have
implemented COZ, a prototype causal profiler. COZ imple-
ments all of the key components of a causal profiler: vir-
tual speedups, progress points, and performance experiments.
COZ identifies optimization opportunities at the granularity
of source lines, but our technique can easily support any type
of code fragment. Figure 4 shows COZ’s profiling workflow,
which we describe in detail below.

Profiler startup. A user invokes COZ using a command of
the form coz run ––– <program> <args>. At the begin-
ning of the program’s execution, COZ collects debug infor-
mation for the executable and all loaded libraries. Users may
specify file and binary scope, which restricts COZ’s experi-
ments to speedups in the specified files. By default, COZ will
consider speedups in any source file from the main executable.
COZ builds a map from instructions to source lines using the
program’s debug information and the specified scope. Once
the source map is constructed, COZ creates a profiler thread
and resumes normal execution.

Experiment initialization. COZ’s profiler thread begins an
experiment by selecting a line to virtually speed up, and a
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randomly-chosen percent speedup. Both parameters must be
selected randomly; any systematic method of exploring lines
or speedups could lead to systematic bias in profile results.
Once a line and speedup have been selected, the profiler
thread saves the number of visits to each progress point and
begins the experiment.

Applying a virtual speedup. Every time the profiled pro-
gram creates a thread, COZ begins sampling the instruction
pointer from this thread. COZ processes samples within each
thread to implement a sampling version of virtual speedups.
In Section 4.4, we show the equivalence between the virtual
speedup mechanism described above and the sampling ap-
proach implemented in COZ. Every time a sample is available,
a thread checks whether the sample falls in the line of code
selected for virtual speedup. If so, it forces other threads to
pause. This process continues until the profiler thread indi-
cates that the experiment has completed.

Ending an experiment. COZ will only end a performance
experiment once sufficient time has elapsed, and all progress
points have been visited. The profiler thread periodically
checks the count of visits to progress points. Once the
experiment has completed, the profiler thread logs the results
of the experiment, including the effective duration of the
experiment (runtime minus the total inserted delay), the
selected line and speedup, and the number of visits to all
progress points. Before beginning the next experiment, COZ
will wait for a cooloff period to allow any remaining samples
to be processed.

4. Implementation
The current implementation of COZ profiles Linux x86-64
executable binaries. To map program addresses to source
lines, COZ uses DWARF debugging information. As long
as debug information is available in a separate file, COZ
can profile optimized and stripped executables. Sampling is
implemented using the perf_event API.

4.1 Profiler Startup
The COZ profiling code is inserted into a process using
the LD_PRELOAD environment variable. This allows COZ
to intercept library calls from the program, including the
libc_start_main function, which runs before main and all
global constructors. Before the program’s normal execution
begins, COZ collects the names and locations of all loaded
executables by reading /proc/self/maps. COZ records the
loaded address and path to each in-scope executable for later
processing.

For all in-scope executables and libraries, COZ locates
DWARF debug information for the program’s main exe-
cutable and libraries [DWARF Debugging Information For-
mat Committee 2010]. By default, the scope includes all
source files from the main executable, but alternate source
locations and libraries can be specified on the command line.

If any debug information has been stripped, COZ uses the
same procedure as gdb to search standard system paths for
separate debugging information [Free Software Foundation
Free Software Foundation]. Note that debug information is
available even for optimized code, and most Linux distribu-
tions offer packages that include this information for common
libraries.

COZ uses DWARF line tables to build a map from instruc-
tion pointer ranges to source lines. The DWARF format also
includes both caller and callee information for inlined proce-
dures. Special handling is required when an in-scope callsite
is replaced by an inlined function that is not in scope. The
inlined function’s address range is assigned to the caller’s
source location in the source map. This approach mirrors
the process by which COZ attributes out-of-scope samples
to callsites during execution (see the discussion of sample
attribution, below).

Enabling Sampling. Just before calling the program’s real
main function, COZ opens a perf_event file to begin sam-
pling in the main thread. The perf_event_open system call
takes a configuration that specifies which hardware or soft-
ware event to count (e.g., CPU cycles, page faults, or cache
misses), the number of events between samples, and options
for sample collection. The perf_event_open system call
returns a file descriptor that can be read to access event counts,
or a memory-mapped file to access samples directly from a
ring buffer. COZ samples each thread individually using the
high precision timer event, and collects instruction pointers
and the user-space callchain in each sample.

Sample Attribution. Samples are attributed to source lines
using the source map constructed at startup. When a sample
does not fall in any in-scope source line, the profiler walks
the sampled callchain to find the first in-scope address. This
process has the effect of attributing all out-of-scope execu-
tion to the last in-scope callsite responsible. For example, a
program may call printf, which calls vfprintf, which in
turn calls strlen. Any samples collected during this chain
of calls will be attributed to the source line that issues the
original printf call.

4.2 Experiment Initialization
A single profiler thread, created during program initialization,
coordinates performance experiments. Before a performance
experiment can begin, a line must be selected for virtual
speedup. When an experiment is not running, each program
thread will set the next_line atomic variable to its most
recent sample. The profiler thread spins until this variable
contains a non-null value.

Once the profiler receives a valid line from one of the
program’s threads, it chooses a random virtual speedup be-
tween zero and 100%, in increments of 5%. For any given
virtual speedup, the effect on program performance is 1− ps

p0
,

where p0 is the period between progress point visits with zero
virtual speedup, and ps is the same period measured with
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some virtual speedup s. Because p0 is required to compute
program speedup for every ps, a virtual speedup of 0 is se-
lected with 50% probability. The remaining 50% is distributed
evenly over the other virtual speedup amounts between 5%
and 100%.

Virtual speedups must be selected randomly to prevent
bias in the results of performance experiments. A seemingly
reasonably (but invalid) approach would be to begin conduct-
ing performance experiments with small virtual speedups,
gradually increasing the speedup until it no longer has an
effect on program performance. However, this approach may
both over- and under-state the impact of optimizing a particu-
lar line if its impact varies over time.

For example, a line that has no performance impact during
a program’s initialization would not be measured later in exe-
cution, when optimizing it could have significant performance
benefit. Conversely, a line that only affects performance dur-
ing initialization would have exaggerated performance impact
unless future experiments re-evaluate virtual speedup values
for this line during normal execution. Any systematic ap-
proach to exploring the space of virtual speedup values could
potentially lead to systematic bias in the profile output.

Once a line and virtual speedup have been selected, COZ
saves the current values of all progress point counters and
begins the performance experiment.

4.3 Running a Performance Experiment
Once a performance experiment has started, each of the
program’s threads processes samples and inserts delays to
perform virtual speedups. Once a 100ms have elapsed, the
profiler thread periodically checks if progress points have
been reached at least five times. After the experiment ends, a
cooloff period of 10ms.

Finally, the profiler thread logs the end of the experiment,
including the current time, the number and size of delays
inserted for virtual speedup, the running count of samples in
the selected line, and the values for all progress point counters.
After a performance experiment has finished, COZ waits at
least 10ms before starting another experiment. This pause
ensures that delays and samples processed by threads around
the end of the experiment are not accidentally attributed to
the next experiment, which would bias results.

4.4 Virtual Speedups
COZ uses delays to create the effect of optimizing the selected
line. Every time one thread executes this line, all other threads
must pause. The length of the pause determines the amount
of virtual speedup; pausing other threads for half the selected
line’s runtime has the effect of optimizing the line by 50%.

Implementing Virtual Speedup. Tracking every visit to the
selected line would incur significant performance overhead,
distorting the program’s execution. Instead, COZ uses sam-
pling to implement virtual speedups accurately and efficiently.
Delays are in proportion to the time spent in the selected line.

This allows COZ to virtually speed up the line by a specific
percent, even though the number of visits to the line is un-
known.

COZ periodically samples the program counter in each
thread and maps each sample to a source line using DWARF
debug information. When one thread receives a sample in
the selected line, all other threads must pause. COZ triggers
these pauses using two counters: a shared global delay count,
and a local delay count that is private to each thread. When
a thread’s local count is less than the global count, the
thread must pause. To force other threads to pause, a thread
simply increments both the global counter and its own local
count. COZ checks the counters and adds any required delays
immediately after processing samples.

The expected number of samples in the selected line, s, is

E[s] =
n · t
P

(1)

where P is the period of time between samples, t is the time
required to run the selected line once, and n is the number of
times the selected line is executed.

In our original model of virtual speedups, delaying other
threads by time d each time the selected line is executed
has the effect of shortening this line’s runtime by d. With
sampling, only some executions of the selected line will result
in delays. The effective runtime of the selected line when
sampled is t−d, while executions of the selected line that are
not sampled simply take time t. The average effective time to
run the selected line is

t′ =
(n− s) · t+ s · (t− d)

n
.

Using (1), this reduces to

t′ =
n · t · (1− t

P ) + n·t
P · (t− d)

n
= t · (1− d

P
) (2)

The percent difference between t and t′, the amount of
virtual speedup, is simply

∆t = 1− t′

t
=

d

P
.

This result lets COZ virtually speed up selected lines by
a specific amount without instrumentation. Inserting a delay
that is half the sampling period will virtually speed up the
selected line by 50%.

Ensuring Accurate Timing. COZ uses the nanosleep
POSIX function to insert delays. This function only guaran-
tees that the thread will pause for at least the requested time,
but the pause may be longer than requested. COZ tracks any
excess pause time, which is subtracted from future pauses.

Thread Creation. COZ interposes on the pthread_create
function to start sampling and adjust delays. COZ first initi-
ates perf_event sampling in the new thread. It then copies
the parent thread’s local delay count, propagating any de-
lays: any previously inserted delays to the parent thread also
delayed the creation of the new thread.
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Potentially unblocking calls
pthread_mutex_unlock unlock a mutex
pthread_cond_signal wake one waiter on condition var.
pthread_cond_broadcast wake all waiters on condition var.
pthread_barrier_wait wait at a barrier
pthread_kill send signal to a thread
pthread_exit terminate this thread

Table 1: COZ intercepts POSIX functions that could wake a blocked
thread. To ensure correctness of virtual speedups, COZ forces threads
to execute any unconsumed delays before invoking any of these
functions and potentially waking another thread.

Thread Sampling and Delay Accounting. COZ only inter-
rupts a thread to process samples if the thread is running. If
the thread is blocked on I/O, sample processing and delays
will be performed after the blocking call returns. For blocking
I/O, this is the desired behavior—inserting pauses during a
file read would have no effect on the time it takes to complete
the read. However, threads can also block on other threads,
which complicates delay insertion.

Consider a program with two threads: thread A is currently
holding a mutex, and thread B is waiting to acquire the mutex.
If thread B is spinning on the mutex, delaying that thread
will not necessarily have any effect on how long it waits.
Unlike with blocking I/O, this is actually the desired behavior:
thread A will have inserted these delays, which delays the
time that thread A unlocks the mutex and B can proceed. But,
if thread B is suspended while waiting for the mutex, these
delays would be inserted when the thread wakes. Any delays
required while the thread is blocked could be inserted twice:
once by thread A before unlocking the mutex, and then again
in thread B after acquiring the mutex.

To correct this behavior, blocked threads must inherit
the delay count from the thread that unblocks them. This
causal propagation ensures that any delays inserted before
unblocking the thread would not be inserted again in the
waking thread. For simplicity, COZ forces threads to execute
all required delays before performing an operation that could
wake a blocked thread. These operations include the POSIX
calls given in Table 1.

When a thread is unblocked by one of the listed functions,
COZ guarantees that all required delays have been inserted.
The thread can simply skip any delays that were incurred
while it was blocked. Before executing a function that may
block on thread communication, a thread saves both the local
and global delay counts. When the thread wakes, it sets its
local delay count to the saved delay count, plus any global
delays incurred since the call. This accounting is correct
whether the thread was suspended or simply spun on the
synchronization primitive. Table 2 lists the functions that
require this additional handling.

Optimization: Minimizing Delays
If every thread executes the selected line, forcing each thread
to delay num_threads−1 times unnecessarily slows execution.

Potentially blocking calls
pthread_mutex_lock lock a mutex
pthread_cond_wait await signal on condition variable
pthread_barrier_wait wait at a barrier
pthread_join wait for a thread to complete
sigwait wait for a signal
sigwaitinfo ibid
sigtimedwait ibid
sigsuspend ibid

Table 2: COZ intercepts POSIX functions that could block waiting
for a thread, instrumenting them to update delay counts before and
after blocking.

If all but one thread executes the selected line, only that thread
needs to pause. The invariant that must be preserved is the
following: for each thread, the number of pauses plus the
number of samples in the selected line must equal the global
delay count. When a sample falls in the selected line, COZ
increments only the local delay count. If the local delay count
is still less than the global delay count after processing all
available samples, COZ inserts pauses. If the local delay count
is larger than global delay count, the thread increases the
global delay count.

4.5 Progress Points
COZ supports three different mechanisms for progress points:
source-level, breakpoint, and sampled.

Source-Level Progress Points. Source-level progress points
are the only progress points that require program modification.
To indicate a source-level progress point, a developer sim-
ply inserts the CAUSAL_PROGRESS macro in the program’s
source code at the appropriate location.

Breakpoint Progress Points. Breakpoint progress points
are specified at the command line. COZ uses the perf_event
API to set a breakpoint at the first instruction in a line
specified in the profiler arguments.

Sampled Progress Points. Like breakpoint progress points,
sampled progress points are specified at the command line.
However, unlike source-level and breakpoint progress points,
sampled progress points do not keep a count of the number of
visits to the progress point. Instead, sampled progress points
count the number of samples that fall within the specified
line. As with virtual speedups, the percent change in visits
to a sampled progress point can be computed even when the
raw counts are unknown.

Measuring Latency. Source-level and breakpoint progress
points can also be used to measure the impact of an optimiza-
tion on latency rather than throughput. To measure latency, a
developer must specify two progress points: one at the start of
some operation, and the other at the end. The rate of visits to
the starting progress point measures the arrival rate, and the
difference between the counts at the start and end points tells
us how many requests are currently in progress. By denoting
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Progress Points and Optimization Opportunities for PARSEC Benchmarks

Benchmark Progress Point Top Optimization

b.scholes blackscholes.c:259 blackscholes.m4.cpp:183

bodytrack TicketDispenser.h:106 ParticleFilter.h:262

canneal annealer_thread.cpp:87 netlist_elem.cpp:82

dedup encoder.c:189 hashtable.c:217

facesim taskQDistCommon.c:109 MATRIX_3X3.h:136

ferret ferret-parallel.c:398 ferret-parallel.c:320

Benchmark Progress Point Top Optimization

f.animate all barrier_wait calls pthreads.cpp:849

freqmine fp_tree.cpp:383 fp_tree.cpp:301

s.cluster all barrier_wait calls streamcluster.cpp:1763

swaptions HJM_Securities.cpp:99 HJM_SimPath. . . .cpp:154

vips threadgroup.c:360 im_Lab2LabQ.c:98

x264 encoder.c:1165 common.c:687

Table 3: The locations of inserted progress points for each of the PARSEC benchmarks, and the top optimization opportunities that COZ

identifies (the full line for swaptions is HJM_SimPath_Forward_Blocking.cpp:154). To demonstrate COZ’s effectiveness, we used COZ’s
output to manually optimize two benchmarks: ferret and dedup. We exclude the raytrace program due to time constraints.

L as the number of requests in progress and λ as the arrival
rate, we can solve for the average latency W via Little’s Law,
which holds for nearly any queuing system: L = λW [Little
2011]. Rewriting Little’s Law, we then compute the average
latency as L/λ.

Little’s Law holds under a wide variety of circumstances,
and is independent of the distributions of the arrival rate and
service time. The key requirement is that Little’s Law only
holds when the system is stable: the arrival rate cannot exceed
the service rate. Note that all usable systems are stable: if a
system is unstable, its latency will grow without bound since
the system will not be able to keep up with arrivals.

4.6 Adjusting for Phases
COZ randomly selects a recently-executed line of code at
the start of each performance experiment. This increases the
likelihood that experiments will yield useful information—
a virtual speedup would have no effect on lines that never
run—but could bias results for programs with phases.

If a program runs in phases, optimizing a line will not
have any effect on progress rate during periods when the line
is not being run. However, COZ will not run performance
experiments for the line during these periods because only
currently-executing lines are selected. If left uncorrected, this
bias would lead COZ to overstate the effect of optimizing
lines that run in phases.

To eliminate this bias, we break the program’s execution
into two logical phases: phase A, during which the selected
line runs, and phase B, when it does not. These phases need
not be contiguous. The total runtime T = tA + tB is the sum
of the durations of the two phases. The average progress rate
during the entire execution is:

P =
T

N
=
tA + tB
N

. (3)

COZ collects samples during the entire execution, record-
ing the number of samples in each line. We define s to be
the number of samples in the selected line, of which sobs
occur during a performance experiment with duration tobs.
The expected number of samples during the experiment is:

E[sobs] = s · tobs
tA

, therefore tA ≈ s ·
tobs
sobs

. (4)

COZ measures the effect of a virtual speedup during phase
A,

∆pA =
pA − pA′

pA

where pA′ and pA are the average progress periods with and
without a virtual speedup; this can be rewritten as:

∆pA =
tA
nA
− tA

′

nA

tA
nA

=
tA − tA′

tA
(5)

where nA is the number of progress point visits during phase
A. Using (3), the new value for P with the virtual speedup is

P ′ =
tA
′ + tB
N

and the percent change in P is

∆P =
P − P ′

P
=

tA+tB
N − tA

′+tB
N

T
N

=
tA − tA′

T
.

Finally, using (4) and (5),

∆P = ∆pA
tA
T
≈ ∆pA ·

tobs
sobs
· s
T
. (6)

COZ multiplies all measured speedups, ∆pA, by the cor-
rection factor tobs

sobs
· s
T in its final report.

5. Evaluation
Our evaluation answers the following questions: (1) Does
causal profiling enable effective performance tuning? (2)
Are COZ’s performance predictions accurate? (3) Is COZ’s
overhead low enough to be practical?

5.1 Methodology
We perform all experiments on a 64 core, four socket AMD
Opteron machine with 60GB of memory, running Linux 3.13
with no modifications. All benchmarks are compiled using
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Figure 5: ferret’s pipeline. The middle four stages each have an
associated thread pool; the input and output stages each consist of
one thread. The colors represent the impact on throughput of each
stage, as identified by COZ: green is low impact, orange is medium
impact, and red is high impact.

GCC version 4.8.2 at the -O3 optimization level, with debug
output enabled. We disable frame pointer elimination with
the -fno-omit-frame-pointer so that perf can collect
accurate call stacks with each sample. COZ is run with the
default sampling period of 1ms, and a sample batch size of
ten. Experiments run for a minimum of 100ms with a cooloff
period of 10ms after each experiment. An experiment does not
end until every progress point has been reached at least five
times. Due to space limitations, we only profile throughput
(and not latency) in this evaluation.

5.2 Effectiveness
We run the PARSEC benchmark suite with COZ, with
progress points and highlighted optimization opportunities
shown in Table 3. For two of these applications, we evalu-
ate the effectiveness of using COZ to guide optimizations
(ferret and dedup).

5.2.1 Case Study: ferret
The ferret benchmark performs a content-based similarity
search of images. ferret consists of a pipeline with six
stages: the first and the last stages are for input and output.
The middle four stages perform image segmentation, feature
extraction, indexing, and ranking. Each stage has its own
thread pool. ferret takes two arguments: an input file and a
desired number of threads, which are divided equally across
the four middle stages. On a 64-core AMD Opteron system,
running the unmodified ferret application with 16 threads
per stage takes 34.5 seconds on the largest available input.

Profiling
We first inserted a call to the CAUSAL_PROGRESS macro in the
final stage of the image search pipeline to measure throughput.
We then ran COZ with the ––source–scope argument to
limit our attention to the ferret-parallel.c file, rather
than across the entire Ferret toolkit and associated libraries.

Figure 6 shows the top three lines identified by COZ,
using its default ranking metric. Lines 320 and 358 are calls
to the cass_table_query function from the indexing and
ranking stages. Line 255 is a call to image_segment in the
segmentation stage of the pipeline. Figure 5 depicts ferret’s
pipeline with the associated thread pools (colors indicate
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Figure 6: COZ output for the unmodified ferret application. The
x-axis shows the amount of virtual speedup applied to each line,
versus the resulting change in throughput on the y-axis. The top two
lines are executed by the indexing and ranking stages; the third line
is executed during image segmentation.

COZ’s computed impact on throughput of optimizing these
stages).

Iterative Optimization
The fact that ferret uses pipeline parallelism leads to the
following optimization strategy: First, use COZ to identify
optimization opportunities. For each of these, check to see
what stage they belong to. Finally, optimize any stage by
allocating more threads to it. We modified ferret to let us
specify the number of threads allocated per stage (changing
4 lines of code).

Round 1. With this modification in hand, we were able to
increase the throughput of the three identified lines simply
by allocating additional threads to these stages. Since COZ
did not find any optimization opportunities in the feature
extraction stage, we took nine threads from that stage and
evenly divided them across the other three stages (for each
stage: 19, 7, 19, 19). With this reallocation, ferret ran in
just 30 seconds, a 13% speedup.

Round 2. We re-ran COZ to see if there were any further
optimization opportunities. Lines 320 and 358 remained as
good targets for optimization, so we moved an additional two
threads from the feature extraction stage (for each stage: 19,
5, 20, 20). This reassignment resulted in a runtime of 28.7
seconds, 17% faster than the original configuration.

Round 3. Finally, we performed one last round of causal
profiling. This profile revealed that the segmentation stage
continued to have a potential optimization impact. This fact
suggested that the now-optimized indexing and ranking stages
occasionally were blocked waiting for inputs to arrive from
the segmentation stage. To balance the pipeline, we took all
but one of the five remaining feature extraction threads and
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Figure 7: In the dedup benchmark, COZ identified hash bucket
traversal as a bottleneck. Collisions per-bucket for the first 4000
buckets before, midway through, and after optimization of the dedup
benchmark (note different y-axes). The dashed horizontal line shows
average collisions per-utilized bucket for each version. Replacing
dedup’s hash function yielded an 8% runtime performance improve-
ment.

added two to indexing, and one each to segmentation and
ranking (for each stage: 20, 1, 22, 21).

The resulting final runtime was 27.5 seconds, a 20%
improvement over the default configuration using the same
number of threads. The entire tuning process described above
took approximately one hour from start to finish. It was
performed by a single graduate student with no previous
familiarity with the application itself.

Comparison with gprof. As a point of comparison, we
also ran ferret with gprof in both the initial and final con-
figurations. Optimization opportunities are not immediately
obvious from that profile. For example, in the flat profile, the
function cass_table_query appears near the bottom of the
ranking, tied with 56 other functions for most cumulative time.
gprof also offers little guidance in iteratively optimizing a
program: its output was virtually unchanged before and after
optimizing ferret, despite a 20% change in performance.

5.2.2 Case Study: dedup
Our second case study is on dedup, an application that per-
forms parallel file compression with deduplication. This pro-
cess is divided into three main stages: fine-grained frag-
mentation, hash computation, and compression. We placed a
progress point immediately after dedup completes compres-
sion of a single block of data.

COZ identifies the source line hashtable.c:217 as the
best opportunity for optimization. This code is the top of the
while loop in hashtable_search that traverses the linked
list of entries that have been assigned to the same hash bin.
This suggests that dedup’s shared hash table has a significant
number of collisions.

Increasing the hash table size had no effect on perfor-
mance, meaning a degenerate hash function must be responsi-
ble for the high degree of hashtable collisions. dedup’s hash
function maps keys to just 2.3% of the available buckets. The
peak number of items in a single bucket was 397.

The original hash function adds characters of the hash
table key, which leads to virtually no high order bits being
set. The resulting hash output is then passed to a bit shifting
procedure intended to compensate for poor hash functions.
We removed the bit shifting step, which increased hash table
utilization to 54.4%. We then changed the hash function to
bitwise XOR 32 bit chunks of the key. This increased hash
table utilization to 82.0% and resulted in an 8% runtime per-
formance improvement. Figure 7 shows the rate of bucket
collisions of the original hash function, the same hash func-
tion without the bit shifting “improvement”, and our final
hash function. The entire optimization required changing just
twelve lines of code.

We ran COZ again, which produced a negative speedup
curve for one line of the compression stage. A negative
speedup curve means that optimizing the identified line
would slow the program down, which is a sign of contention.
We could address this by shifting threads away from this
stage, but as our goal was to quickly identify performance
opportunities, we decided that the restructuring required to
support this change would be too intrusive.

After the changes to the hash function described above,
end-to-end runtime decreased by 6.5%. Halving the number
of buckets further improved performance, yielding an overall
speedup of 8.0%. As with ferret, this result was achieved
by one graduate student who was initially unfamiliar with the
code; the total tuning effort took two hours.

Comparison with gprof. Again, we ran both the original
and final versions of dedup with gprof. As with ferret,
the optimization opportunities identified by coz were not
obvious in gprof’s output. Overall, hashtable_search
had the largest share of highest execution time at 14.38%,
but calls to hashtable_search from the hash computation
stage accounted for just 0.48% of execution time. In the
final profile, hashtable_search’s share of execution time
reduced to 1.1%.

Effectiveness Summary. Our case studies confirm that
COZ is effective at pointing out optimization opportunities
and guiding performance tuning. In both cases, the infor-
mation that COZ provided was precise, pointing to specific
lines, and accurate: optimizing the lines, either by adding
more threads to the corresponding stages or by resolving a
problem with a hash function, significantly sped up programs
(by 8% and 20%). By contrast, the information provided by a
standard profiler proved to be of little assistance.

5.3 Accuracy
We use the results of the optimizations performed in our two
case studies to evaluate the accuracy of COZ’s predictions.
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Note that sampling results in slight performance improvements for
swaptions, vips, and x264.

The optimization strategy we employed for ferret lets us
evaluate the accuracy of COZ’s predictions. By increasing the
number of threads for the indexing stage from 16 to 22, we
have effectively sped up line 320 by 27%. COZ predicted that
this improvement would result in a 21.4% program speedup,
which is nearly the same as the 20% we observe.

In the dedup benchmark, COZ identified the top of the
while loop that traverses a hash bucket’s linked list. By re-
placing the degenerate hash function, we reduced the average
number of elements in each hash bucket from 76.7 to just
2.09. This change reduces the number of iterations from 77.7
to 3.09 (accounting for the final trip through the loop). This
reduction corresponds to a speedup of this line by 96%. For
this speedup, COZ predicted a performance improvement of
9%; we observe an improvement of 8%.

Both of these results demonstrate that COZ’s predictions
are highly accurate.

5.4 Efficiency
We measure COZ’s profiling overhead on the PARSEC bench-
marks running with the native inputs. The sole exception
is streamcluster, where we use the test inputs, because
execution time was excessive with the native inputs.

Figure 8 breaks down the total overhead of running COZ
on each of the PARSEC benchmarks by category. The average
overall overhead is 17%.

The primary contributor to COZ’s overhead is the introduc-
tion of delays for virtual speedup. This source of overhead
can be reduced by performing fewer performance experi-
ments during a program’s run, in exchange for increasing the
execution time required to collect useful causal profiles.

The second greatest contributor to COZ’s overhead is
sampling overhead: the cost of collecting samples, processing
those samples, and producing profile output. The primary cost

is due to initiating sampling with the perf API for every new
thread. In addition, sampling is disabled during introduced
delays, which requires two system calls (one before the delay,
and one after).

Finally, startup overhead is due to COZ’s initial processing
of debugging information for the profiled application. Be-
cause the benchmarks are sufficiently long running (mean:
103s) to amortize startup time, this source of overhead is
minimal.

Efficiency Summary. COZ’s profiling overhead is on av-
erage 17% (minimum: 0.1%, maximum: 65%). For all but
three of the benchmarks, its overhead was under 30%. Given
that the widely used gprof profiler can impose much higher
overhead (e.g., 6× for ferret, versus 6% with COZ), these
results confirm that COZ has sufficiently low overhead to be
used in practice.

6. Conclusion
Profilers are the primary tool in the programmer’s toolbox
for identifying performance tuning opportunities. Previous
profilers only observe actual executions and correlate lines of
code or functions with execution time or performance coun-
ters. This information can be of limited use for concurrent
applications because the amount of time spent does not nec-
essarily correlate with where programmers should focus their
optimization efforts. Past profilers are also limited to report-
ing end-to-end execution time, an unimportant quantity for
servers and interactive applications whose key metrics of in-
terest are throughput and latency. Causal profiling represents
a new, experiment-based approach that establishes causal rela-
tionships between hypothetical optimizations and their effects.
By virtually speeding up lines of code, causal profiling identi-
fies and quantifies the impact on either throughput or latency
of any degree of optimization to any line of code. Our proto-
type causal profiler, COZ, is efficient, accurate, and effective
at guiding programmers in their optimization efforts.
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