
DOUBLETAKE: Evidence-Based Dynamic Analysis

Charlie Curtsinger Emery D. Berger
School of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{charlie,emery}@cs.umass.edu

Tongping Liu
Department of Computer Science

The University of Texas at San Antonio
San Antonio, TX 78249-0667

tongpingliu@cs.utsa.edu

Abstract
Dynamic analysis can be helpful for debugging, but is often
too expensive to use in deployed applications. We introduce
evidence-based dynamic analysis, an approach that enables ex-
tremely lightweight analyses for an important class of errors: those
that can be forced to leave evidence of their existence. Evidence-
based dynamic analysis lets execution proceed at full speed until
the end of an epoch. It then examines program state to find evidence
that an error occurred at some time during that epoch. If so, execu-
tion is rolled back and re-execution proceeds with instrumentation
activated to pinpoint the error. We present DOUBLETAKE, a proto-
type evidence-based dynamic analysis framework. We demonstrate
its generality by building analyses to find buffer overflows, me-
mory use-after-free errors, and memory leaks. DOUBLETAKE is
precise and efficient: its buffer overflow analysis runs with just 2%
overhead on average, making it the fastest such system to date.

1. Introduction
Dynamic analysis tools are widely used to find bugs in applications.
They are popular among programmers because of their precision—
for many analyses, they report no false positives—and can pinpoint
the exact location of errors, down to the individual line of code.

Perhaps the most prominent and widely used dynamic analysis
tool for C/C++ binaries is Valgrind [30]. Valgrind’s most popular
use case, via its default tool, memcheck, is to check memory er-
rors, including buffer overflows, use-after-free errors, and memory
leaks.

Unfortunately, while these dynamic analysis tools are useful,
they are often expensive. Using Valgrind typically slows down ap-
plications by 10-100×. Faster dynamic analysis frameworks ex-
ist for finding particular errors, but all impose substantial over-
heads. Google’s AddressSanitizer, for example, detects buffer over-
flows and use-after-free errors, but slows applications by around
30% [39]. Precise memory leak detectors that identify the point at
which objects are leaked remain far more expensive.

Because of their overhead, this class of dynamic analysis tools
are only used during debugging. However, they are limited by def-
inition to the executions that they have seen. The fact that using
these tools in deployed applications is not practical means that er-
rors that could have been found trivially instead require painstaking
debugging later.

This paper presents a new approach that enables extremely
lightweight dynamic analysis for an important class of errors.
These errors share a monotonicity property: when an error hap-
pens, evidence that it happened either remains or grows in memory
so that it can be recovered at a later point. When this evidence is not
naturally occurring, it is often possible to “plant” evidence via what
we call tripwires to ensure later detection. An example tripwire is

a random value, also known as a “canary”, placed in unallocated
space between heap objects [13]. A corrupted canary is incontro-
vertible evidence that a buffer overflow occurred at some time in
the past.

We present an approach called evidence-based dynamic analy-
sis that is based on the following key insight: by combining check-
pointing with evidence gathering, it is possible to let applications
run at full speed in the common case (no errors). If we discover
evidence of an error, we can go back and re-execute the program
with instrumentation activated to find the exact cause of the error.

We present a prototype evidence-based dynamic analysis frame-
work called DOUBLETAKE. DOUBLETAKE performs its check-
points only at irrevocable system calls, amortizing the cost of
checkpoint collection. Each checkpoint saves the contents of the
stack, globals, registers, and the heap. If it finds evidence of an error
at the next system call or after a segmentation violation, DOUBLE-
TAKE re-executes the application from the most recent checkpoint.
During re-execution, it triggers instrumentation to let it precisely
locate the source of the error. For buffer overflows, DOUBLETAKE
sets hardware watchpoints on the tripwire memory locations that
were found to be corrupted. During re-execution, DOUBLETAKE
can pinpoint exactly the point where the buffer overflow occurred.

We implement DOUBLETAKE as a drop-in library that can ei-
ther be linked directly with the application under analysis, or which
can be activated by setting an environment variable (LD_PRELOAD
on Unix systems) to dynamically load DOUBLETAKE before exe-
cution. No re-compilation or availability of source code is required.
This approach makes DOUBLETAKE as convenient to use as Val-
grind.

We have built three different analyses using DOUBLETAKE:
buffer overflow detection, use-after-free detection, and memory
leak detection. All of these analyses run without any false positives,
precisely pinpoint the error location, and operate with extremely
low overhead: for example, with DOUBLETAKE, buffer overflow
analysis operates with just 2% overhead on average, making it the
fastest overflow detector to date and thus feasible to use in deployed
scenarios.

Contributions
The contributions of this paper are the following:

1. It introduces evidence-based dynamic analysis, a new analysis
technique that combines checkpointing with evidence gathering
and instrumented replay to enable precise error detection with
extremely low overhead.

2. It presents DOUBLETAKE, a framework that implements evidence-
based dynamic analyses for C/C++ programs: its analyses (de-
tecting buffer overflows, use-after-frees, and memory leaks) are
the fastest reported to date.

Snapshot)

Normal)execu2on)

Irrevocable)))
system)calls) Snapshot)

Error)detected)Rollback)

Instrumented)re;execu2on)

Report)errors)

Check)errors)

Figure 1. Overview of DOUBLETAKE: execution is divided into
epochs at the boundary of irrevocable system calls.

2. Overview
DOUBLETAKE is a high performance dynamic analysis framework
for a class of errors that share a monotonicity property: evidence of
the error is persistent and can be gathered after-the-fact. As Figure 1
depicts, program execution is divided into epochs, during which ex-
ecution proceeds at full speed. At the end of each epoch, marked
by irrevocable system calls, DOUBLETAKE checks program state
for evidence of memory errors. If an error is found, the epoch is
re-executed with additional instrumentation to pinpoint the exact
cause of the error. To demonstrate DOUBLETAKE’s effectiveness,
we have implemented detection tools for heap buffer overflows,
use-after-free errors, and memory leaks, which we describe in de-
tail in Section 3. All detection tools share the following core infras-
tructure that DOUBLETAKE provides.

2.1 Efficient Recording
At the beginning of every epoch, DOUBLETAKE saves a snapshot
of program registers, and all writable memory. The epoch ends
when the program attempts to issue an irrevocable system call, but
most system calls do not end the current epoch. DOUBLETAKE also
records the order of thread synchronization operations to support
re-execution of parallel programs. DOUBLETAKE records minimal
system state at the beginning of each epoch (like file offsets),
which allows system calls that modify this state to be undone if
re-execution is required. As a result, most programs require very
few epochs and program state checks. We describe the details of
each application’s state checks in Section 3.

2.2 Precise Replay
When program state checks detect an error, DOUBLETAKE replays
the previous epoch to pinpoint the error’s root cause. DOUBLE-
TAKE ensures that all program-visible state, system call results,
memory allocations, and the order of all thread synchronization op-
erations are identical to the original run. During replay, DOUBLE-
TAKE returns saved return values for most system calls, with spe-
cial handling for some cases. Section 4 describes DOUBLETAKE’s
recording and re-execution of system calls and synchronizations.

2.3 Custom Heap Allocator
DOUBLETAKE replaces the default heap allocator with a new heap
built using Heap Layers [4]. Detection tools can interpose on heap
operations to alter memory allocation requests or defer reuse of
freed memory, and can mark the status of each object on its header.
Memory leak detection uses this information to identify unreach-
able memory. Buffer overflow and use-after-free detection both use
heap canaries to detect errors. DOUBLETAKE includes a bitmap to
track the locations of heap canaries, and automatically checks the
state of canaries at the end of each epoch. Section 4.2 presents fur-
ther details.

canary&requested&header&

allocated(object(1(allocated(object(2(

requested& canary&header&

Figure 2. Heap organization used to provide evidence of buffer
overflow errors. Object headers and unrequested space within allo-
cated objects are filled with canaries; a corrupted canary indicates
an overflow occurred.

canary&

freed(object(1(freed(object(2(

canary& canary&

freed(object(3(

Quaran&ne((FIFO)(

Figure 3. Evidence-based detection of dangling pointer (use-after-
free) errors. Freed objects are deferred in a quarantine in FIFO
order and filled with canaries. A corrupted canary indicates that
a write was performed after an object was freed.

2.4 Watchpoints
DOUBLETAKE lets detection tools set hardware watchpoints during
re-execution. A small number of watchpoints are available on mod-
ern architectures (four on x86). Each watchpoint can be configured
to pause program execution when a specific byte or word of mem-
ory is accessed. Watchpoints are primarily used by debuggers, but
previous approaches have used watchpoints for error detection as
well [10, 11]. DOUBLETAKE’s watchpoints are particularly useful
in combination with heap canaries. During re-execution, our buffer
overflow and use-after-free detectors place a watchpoint at the loca-
tion of the overwritten canary to trap the instruction(s) responsible
for the error.

3. Applications
We have implemented three error detection tools with DOUBLE-
TAKE. These applications are intended to demonstrate DOUBLE-
TAKE’s generality and efficiency. The mechanisms used here are
similar to those used by existing tools, but DOUBLETAKE runs with
substantially lower overhead than prior tools.

3.1 Heap Buffer Overflow Detection
Heap buffer overflows occur when programs write outside the
bounds of an allocated object. Our buffer overflow detector places
canaries between heap objects, and reports an error when canary
values have been overwritten. If an overwritten canary is found,
the detector uses watchpoints during re-execution to identify the
instruction responsible for the overflow.

Detection
Figure 2 presents an overview of the approach used to locate buf-
fer overflows. All heap objects of DOUBLETAKE are managed by
power of two size, adding two words for canaries (16 bytes) for
each heap object. For an allocation size not power of two size (a
non-aligned object), DOUBLETAKE rounds it up to the next power
of two size class, putting byte-based canaries and word-based ca-
naries immediately after this object. This approach lets DOUBLE-
TAKE catch overflows as small as one byte. At memory deallo-
cation, DOUBLETAKE checks buffer overflow for non-aligned ob-
jects, with size different with the power of two class. At the end
of each epoch, DOUBLETAKE checks whether any canaries before
and after aligned objects have been overwritten. For those non-
aligned objects, DOUBLETAKE also checks buffer overflows be-

fore an object is freed. If an overwritten canary is found, a buffer
overflow has been detected and re-execution begins.

Re-Execution
DOUBLETAKE installs a watchpoint at the address of the corrupted
canary before re-execution. When the program is re-executed, any
instruction that writes to this address will trigger the watchpoint.
The operating system will deliver a SIGTRAP signal to DOUBLE-
TAKE before the instruction is executed. By handling this signal,
DOUBLETAKE reports the call stack of trapped instructions, ob-
tained by using backtrace function.

3.2 Use-After-Free Detection
Use-after-free or dangling pointer overflow errors occur when an
application continues to access memory through pointers that have
been passed to free() or delete. Writes to freed memory can
overwrite the contents of other live objects, leading to unexpected
program behavior. Like the buffer overflow detector, our use-after-
free detector uses canaries to detect writes to freed memory. When
a use-after-free error is detected, DOUBLETAKE reports the alloca-
tion and deallocation sites of the object, and all instruction(s) that
wrote to the object after it was freed.

Detection
Fiure 3 illustrates how to detect use-after-free. The use-after-free
detector delays the re-allocation of freed memory. Freed objects
are placed in a FIFO quarantine list, the same mechanism used by
AddressSanitizer [39]. Objects are released from the quarantine list
when the total size of quarantined objects exceeds 16 megabytes, or
when there are 1,024 quarantined objects. This threshold is easily
configurable. Objects in the quarantine list are filled with canary
values, up to 128 bytes. Filling large objects entirely with canaries
introduces too much overhead during normal execution, and is
unlikely to catch any additional errors.

Before an object can be returned to the program heap, DOUBLE-
TAKE verifies that no canaries has been overwritten. All canaries
are checked at epoch boundaries. If a canary has been overwritten,
the detector raises an error and begins re-execution.

Re-Execution
During re-execution, the use-after-free detector interposes on
malloc and free calls to find the allocation and deallocation
sites of the overwritten object. The detector records a call stack
for both sites using the backtrace function. After the object is
freed, the detector installs a watchpoint at the address of the over-
written canary. As with buffer overflow detection, any writes to the
watched address will generate a SIGTRAP signal. The last alloca-
tion and deallocation sites, and the instructions responsible for the
use-after-free error are reported at the end of re-execution.

3.3 Memory Leak Detection
Heap memory is leaked when it becomes inaccessible without be-
ing freed. Memory leaks can significantly degrade program perfor-
mance due to increased memory footprint. Our leak detector identi-
fies possible unreachable allocated objects at the end of each epoch.
Allocation sites can help users fix memory leaks, but collecting
these information for allmalloc calls would unnecessarily slow
down the program in normal execution for the common case (no
memory leaks). Instead, DOUBLETAKE only records the allocation
sites of leaked memory during re-execution, and adds no overhead
for normal execution.

Detection
We detect memory leaks using the same marking mechanism as
conservative garbage collection [44]. The marking phase performs

a breadth-first scan of reachable memory using a work queue.
Initially, all values in registers, globals, and the stack that look like
pointers are added to the work queue. Any eight-byte aligned value
that falls within the range of allocated heap memory is treated as a
pointer.

At each step in the scan, the detector takes the first item off the
work queue. Using the heap metadata located before each object,
the detector finds the bounds of a object. Every object is allocated
with a header containing “marked” and “allocated” bits. If the
“marked” bit is set, the detector removes this object and moves
on to the next item in the queue. If the object is allocated and
unmarked, the detector sets the “marked” bit and adds all pointer
values within the object’s bounds to the work queue. When the
work queue is empty, DOUBLETAKE ends its scan.

DOUBLETAKE then traverse the whole heap to find those allo-
cated but unmarked objects. They are identified as memory leaks.
If there are memory leaks, re-execution begins. The detector can
also find potential dangling pointers (reachable freed objects). This
option is disabled by default because, unlike other applications, po-
tential dangling pointer detection could produce false positives.

Re-Execution
During re-execution, the leak detector checks the results of each
malloc call. When the allocation of a leaked object is found, the
detector records the call stack using the backtrace function. At
the end of the epoch re-execution, the detector reports the last call
stack for each leaked object.

4. Implementation
DOUBLETAKE is implemented as a library and can be linked di-
rectly to programs, or can be injected into unmodified binaries by
setting the LD_PRELOAD environment variable on Linux.

At startup, DOUBLETAKE begins a new epoch. The epoch con-
tinues until the program issues an irrevocable system call (see
Section 4.2 for details). Before this call is issued, DOUBLETAKE
checks program state for evidence of errors. The details are pre-
sented in Section 3.

If no errors are found, DOUBLETAKE ends the epoch, issues the
irrevocable system call, and begins a new epoch. If it has found
evidence of an error, DOUBLETAKE enters re-execution mode.
The remainder of this section describes the implementation of
DOUBLETAKE’s core functionality.

4.1 Epoch Start
At the beginning of each epoch, DOUBLETAKE takes a snapshot
of program state. DOUBLETAKE saves all writable memory (stack,
heap, and globals) from the main program and any linked libraries,
and saves register state of each thread with the getcontext
function. Read-only memory does not need to be saved. To iden-
tify all writable mapped memory, DOUBLETAKE reads the Linux
/proc/self/map file. DOUBLETAKE also saves file positions
of all open files. This lets programs issue read and write sys-
tem calls without ending the current epoch. DOUBLETAKE uses the
saved memory state and file positions to “undo” these calls if the
epoch needs to be re-executed when an error is found.

4.2 Normal Execution
Once a snapshot has been saved, DOUBLETAKE lets the program
execute normally. Most program operations proceed normally, but
DOUBLETAKE interposes on heap allocations and system calls in
order to set tripwires and support re-execution.

Category Functions

Repeatable getpid, sleep, pause

Recordable mmap, gettimeofday, time, clone , open

Revocable write, read

Deferrable close, munmap

Irrevocable fork, exec, exit, lseek, pipe, flock,
socket related system calls

Table 1. System calls handled by DOUBLETAKE. All unlisted
system calls are conservatively treated as irrevocable, and will
end the current epoch. Section 4.2 describes how DOUBLETAKE
handles calls in each category.

System Calls
DOUBLETAKE ends each epoch when the program attempts to
issue an irrevocable system call. However, most system calls can
safely be re-executed or undone prior to re-execution.

DOUBLETAKE breaks system calls into five categories, shown
in Table 1. System calls could be intercepted using ptrace, but
this would add unacceptable overhead during normal execution.
Instead, DOUBLETAKE interposes on all library functions that may
issue system calls.

Repeatable system calls do not modify system state, and return
the same result during normal execution and re-execution. No spe-
cial handling is required for these calls. CCIf you don’t guarantee
perfect replay, then you must argue that perfect replay isn’t neces-
sary and that at the very least the attempted replay does not affect
application behavior.

Recordable system calls may return different results if they are
re-executed. DOUBLETAKE records the result of these system calls
during normal execution, and returns the saved result during re-
execution. Some recordable system calls, such as mmap, change
the state of underlying operating system.

Revocable system calls modify system state, but DOUBLETAKE
can save the original state beforehand and restore it prior to re-
execution. Most file I/O fall into this category. For example, write
modifies file contents, DOUBLETAKE can write the same content
during re-execution. write also changes the current file posi-
tion, which DOUBLETAKE restores to the saved file position using
lseek prior to re-execution. DOUBLETAKE saves all file descrip-
tors of opened files in a hash table at the beginning of each epoch.
In addition, DOUBLETAKE must save stream contents returned by
fread. Calls to read and write on normal files, which can be
identified by check the hash map, don’t need to be handled. But
those calls on socket files are treated as irrevocable system calls.

Deferrable system calls will irrevocably change program state,
but can safely be delayed until the end of the current epoch. DOU-
BLETAKE delays all calls to munmap and close, and executes
these system calls before exiting or starting a new epoch.

Irrevocable system calls change internally-visible program
state, and cannot be undone. DOUBLETAKE must end the current
epoch before these system calls are allowed to proceed. Note that
for DOUBLETAKE, the meaning of “irrevocable” is different from
that used in transactional memory systems [43]. Unlike in transac-
tions, we expect re-execution to be identical to the epoch’s original
execution. It is safe for system calls to affect externally-visible state
as long as the effect on internal state can be hidden or undone.

Multithreaded Support
We have implemented support for multiple threads, but the record-
ing and re-execution of thread synchronizations is not yet stable.

DOUBLETAKE records the sequence of synchronizations and
corresponding results separately for each thread. Basically, a syn-
chronization event is recorded in two lists simultaneously, a per-
thread list and a synchronization variable list.

Every mutex records the order of threads that acquire it, and
condition variables record the order of thread wake-ups. DOUBLE-
TAKE does not enforce a total global order on lock acquisitions.
Operations within a single thread are totally-ordered and recorded,
and DOUBLETAKE enforces local order . In the absence of data
races, this is sufficient to ensure deterministic re-execution. If it
fails to reveal the error on replay, DOUBLETAKE has effectively
tolerated the error and continues execution.

Calls to pthread_create are recorded with the same mech-
anism as recordable system calls. When a new thread starts, DOU-
BLETAKE takes a snapshot of the thread’s stack and registers to en-
able re-execution from the beginning of the thread’s execution. As
with synchronization operations, DOUBLETAKE logs thread cre-
ation order and enforces this order during re-execution. Threads
exits are deferred until the end of the epoch. pthread_join is
effectively deferred as well.

Heap Allocator
Heap allocators typically issue a large number of mmap or sbrk
system calls, which would complicate DOUBLETAKE’s logging
to facilitate re-execution. DOUBLETAKE replaces the default heap
with a fixed-size BiBOP-style allocator with per-thread subheaps
and power-of-two size classes, built using Heap Layers [4].

DOUBLETAKE uses a separate heap for internal usage and only
uses this custom heap allocator for allocations from the application
and corresponding libraries. Any additional memory allocations in
the replay phase are also allocated from a separate heap too, such
as the backtrace call or printing.

DOUBLETAKE’s heap is completely deterministic for a program
without races, so no logging is required to ensure that allocations
do not change during re-execution. To achieve this target, all allo-
cations from the same thread is met at a specific subheap, which
obtains every superblock (large chunks of memory) by acquiring
a lock. Superblock allocations are deterministic in replay phase,
which is enforced by the deterministically acquiring and releasing
of a lock. When an object is freed, this object is returned to the
current thread issuing this free operation. Because of deterministic
superblock allocations and memory free operations (enforced by
the program order), we guarantee that all memory allocations are
deterministic inside the same subheap.

DOUBLETAKE keeps information about each heap object in its
object header. During allocation, objects are marked as allocated
and their requested size are saved, which may be less than the
power-of-two size class. At deallocation, objects are marked as
freed and placed into the quarantine list if the detection of use-
after-free is enabled. For non-aligned objects, DOUBLETAKE also
checks buffer overflows for non-aligned words, which can even
report one-byte buffer overflows because of exact size.

DOUBLETAKE also maintains a bitmap to record the locations
of heap canaries. The bitmap records every word of heap memory
that contains a canary. DOUBLETAKE notifies the detection tool
when any of the bytes do not contain canaries. Buffer overflow
detection places canaries only outside the requested object size.
Re-execution is only started if the detection tool finds that canaries
between allocated objects have been overwritten.

During replay, DOUBLETAKE’s heap allocator checks to see if
the object being allocated or freed contains the address where an
error was detected. If so, DOUBLETAKE calls the backtrace()
function to obtain a call stack for the allocation and deallocation
sites.

2.3

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"
1.8"
2"

40
0.p
er
lbe
nc
h"

40
1.b
zip
2"

40
3.g
cc
"

42
9.m

cf"

44
5.g
ob
mk
"

45
6.h
mm

er
"

45
8.s
jen
g"

46
2.l
ibq
ua
nt
um
"

46
4.h
26
4r
ef"

47
1.o
mn
et
pp
"

47
3.a
sta
r"

48
3.x
ala
nc
bm
k"

43
3.m

ilc
"

44
4.n
am
d"

44
7.d
ea
lII"

45
0.s
op
lex
"

45
3.p
ov
ray
"

47
0.l
bm
"

48
2.s
ph
inx
3"

AV
ER
AG
E"N

or
m
al
iz
ed

+R
un

/
m
e+

OD+

OD+LD+

DOUBLETAKE+

AddressSani/zer+

Figure 4. Runtime overhead of DOUBLETAKE (OD = Buffer Overflow Detection, LD = Leak Detection, DOUBLETAKE = all three detections
enabled) and AddressSanitizer, normalized to each benchmark’s original execution time.

Epoch End
The epoch ends when any thread issues an irrevocable system call.
All other threads are notified with a signal SIGUSR2. Once all
threads have stopped, DOUBLETAKE checks the program state for
errors. The application-specific error checks are described in Sec-
tion 3. If an error is found, DOUBLETAKE immediately switches to
re-execution mode. If not, the runtime issues any deferred system
calls and clears the logs for all recorded system calls.

4.3 Rollback
Before re-executing the current epoch, DOUBLETAKE must roll
back the program state.

Restoring the saved stack may corrupt the current stack, so
DOUBLETAKE switches to a temporary stack during rollback. The
saved state of all writable memory is copied back, and revocable
system calls are undone by calling lseek to reset all opening files
positions. Then DOUBLETAKE installs watchpoints before calling
setcontext to restore its context.

Debug registers are not accessible in user-mode, so DOUBLE-
TAKE must use ptrace to set watchpoints. DOUBLETAKE forks
a child process and attaches to it using ptrace to load watched
addresses into the debug registers and enable the watchpoints.

Once watchpoints have been placed, DOUBLETAKE uses the
setcontext call to restore register state and begin re-execution.

4.4 Re-Execution
During re-execution, DOUBLETAKE replays the saved results of
recordable system calls from the log collected during normal exe-
cution. All deferred system calls are converted to no-ops while the
program is re-executing. DOUBLETAKE issues other system calls
normally.

Synchronization Replay
DOUBLETAKE enforces the recorded order of synchronization op-
erations during re-execution by using the semaphore replay mech-
anism [14]. DOUBLETAKE assigns a binary semaphore for each
thread, initialized as unavailable. Lock acquisitions and conditional
wakeups are treated similarly here.

Before the rollback, DOUBLETAKE checks the first synchro-
nization event of every synchronization variable list. If an syn-
chornization event is also the first event of a thread, the semaphore
of this thread is incremented immediately. Otherwise, this thread
are granted with a pending increment, incremented only after all
previous synchronizations of this thread has been handled.

Benchmark Overhead Benchmark Overhead
400.perlbench 20.5× 458.sjeng 20.3×
401.bzip2 16.8× 471.omnetpp 13.9×
403.gcc 18.7× 473.astar 11.9×
429.mcf 4.5× 433.milc 11.0×
445.gobmk 28.9× 444.namd 24.9×
456.hmmer 13.8× 450.dealII 42.8×

Table 2. Valgrind runtime overhead.

In the replay, a lock acquiring is turned into a semaphore
wait. During a lock release, DOUBLETAKE actually increments
the semaphore of next thread in the same synchronization vari-
able list, no matter whether the next thread is the same thread or
not. In order to support multiple locks for a critical section, a lock
acquisition also increments pending increments if possible.

4.4.1 Trap Handler
DOUBLETAKE handles traps caused by accesses on watchpoints.
Inside the trap handler, DOUBLETAKE firstly determines which
watchpoint causes the current trap if the fault instruction is not is-
sued from DOUBLETAKE library. Normally, the debug status regis-
ter has to be accessed in order to know this information. However,
using ptrace is very inconvenient inside a signal handler because
of involving in another process. DOUBLETAKE always keeps an
updated value for every watchpoint. Thus, it can precisely deter-
mine which watchpoint is triggered by checking the changes of
those watchpoints. Also, DOUBLETAKE prints callsite information
of buffer overflows or use-after-free errors and their memory allo-
cation (or deallocation).

5. Evaluation
We evaluate DOUBLETAKE to demonstrate its efficiency, both in
runtime and memory overhead. We also demonstrate the effective-
ness of our detection tools across a benchmark suite and with sev-
eral real applications. All experiments are run on a quiescent Intel
Core 2 dual-processor system with 16GB of RAM running Linux
2.6.18, and version 2.5 of glibc. Each processor is a 4-core 64-bit
Intel Xeon, operating at 2.33GHz with a 4MB shared L2 cache a
32KB per-core L1 cache. All benchmarks are built as 64-bit exe-
cutables using LLVM 3.2 with the clang front-end and -O2 opti-
mizations.

Benchmark Processes Epochs Syscalls Mallocs (#)
400.perlbench 3 291 60068 360605640
401.bzip2 6 6 968 168
403.gcc 9 9 155505 28458514
429.mcf 1 1 24443 5
445.gobmk 5 5 2248 658034
456.hmmer 2 2 46 2474268
458.sjeng 1 1 23 5
462.libquantum 1 1 11 179
464.h264ref 3 885 2592 146827
471.omnetpp 1 1 19 267168472
473.astar 2 2 102 4799955
483.xalancbmk 1 1 123706 135155557
433.milc 1 1 12 6517
444.namd 1 1 470 1324
447.dealII 1 1 8131 151332314
450.soplex 2 2 37900 310619
453.povray 1 1 25721 2461141

Table 3. Benchmark characteristics.

5.1 Runtime Overhead
The runtime and memory overhead of DOUBLETAKE is evalu-
ated with all C and C++ SPEC CPU2006 benchmarks, 19 in total.
We compare DOUBLETAKE with AddressSanitizer and Valgrind.
AddressSanitizer is the previous state-of-the-art for detecting buf-
fer overflows and use-after-free errors, but cannot detect memory
leaks [39]. Valgrind’s Memcheck tool is widely used to detect buf-
fer overflows, memory leaks, and use-after-free errors [30].

During performance evaluation, we disable DOUBLETAKE’s
rollback to measure only the overhead of normal execution. DOU-
BLETAKE’s memory error detectors only run on the heap, so Ad-
dressSanitizer is configured to check only writes to heap memory.
For each benchmark, we report the average of three runs with the
largest input size, except for Valgrind. We only run Valgrind once
because of its high runtime overhead.

Figure 4 shows the runtime overhead results for DOUBLETAKE
and AddressSanitizer. Results for Valgrind do not fit on the graph,
and are presented separately in Table 2. On average, DOUBLE-
TAKE adds only 9% overhead with all three error detectors en-
abled. Without use-after-free detection, DOUBLETAKE’s overhead
is just 3%. Overflow detection alone slows execution by just 2%.
AddressSanitizer has an average runtime overhead of 30%. Val-
grind has an average runtime overhead of 20×, but two benchmarks
(perlbench and sjeng) have not yet finished running.

For 17 out of 19 benchmarks, DOUBLETAKE outperforms Ad-
dressSanitizer, even with memory leak detection enabled. For 12
benchmarks, DOUBLETAKE’s runtime overhead with all detectors
enabled is under 3%. Both DOUBLETAKE and AddressSanitizer
substantially outperform Valgrind on all benchmarks. Three bench-
marks, 400.perlbench, 403.gcc and 447.dealII, have
substantially higher overhead than most benchmarks with both
DOUBLETAKE and AddressSanitizer. Table 4 shows that DOUBLE-
TAKE and AddressSanitizer both add substantial memory overhead
for these benchmarks. This increased memory footprint is likely re-
sponsible for the degraded performance due to increased cache and
TLB pressure.

DOUBLETAKE’s use-after-free detection adds roughly 6% run-
time overhead: only perlbench, gcc, and h264ref run with
more than 20% overhead. As described in Section 3.2, all freed
objects are filled with canaries (up to 128 bytes). DOUBLETAKE
spends a substantial amount of time filling freed memory with ca-
naries for applications with a large number of malloc and free
calls.

Table 3 shows detailed benchmark characteristics. The “Pro-
cesses” column shows the number of different invocations in the
input set. The number of epochs is significantly lower than the
number of system calls because of DOUBLETAKE’s lightweight
system call handling. Benchmarks with the highest overhead run a
substantial number of epochs (perlbench and h264ref) and
make a large number of malloc calls (gcc, omnetpp, and
xalancbmk).

5.2 Memory Overhead
Much of DOUBLETAKE’s memory overhead comes from the snap-
shot of writable memory at the beginning at each epoch. How-
ever, the first snapshot is very small because the heap is completely
empty. The benchmarks bzip2, mcf, sjeng, milc, and lbm run
in a single epoch, and therefore have very low memory overhead.
System call logs introduce a small amount of additional overhead.
Other sources of memory overhead are application-specific: buffer
overflow detection adds space between heap objects, which can in-
crease memory usage for programs with many small allocations.
Use-after-free detection adds constant-size memory overhead by
delaying memory reuse.

Figure 5 shows memory overhead for DOUBLETAKE and Ad-
dressSanitizer, and Table 4 contains a detailed breakdown. We
measure program memory usage by recording the peak physi-
cal memory usage because DOUBLETAKE’s pre-allocated heap
consumes 4GB of virtual memory. Peak memory usage is col-
lected by periodically sampling the proportional set size files
(/proc/self/smaps).

On average, DOUBLETAKE imposes 2.8× memory overhead,
while AddressSanitizer introduces 4.8× overhead. For povray
and h264ref, both tools introduce large relative memory over-
head because these benchmarks use just 3MB and 24MB respec-
tively. Complete memory usage results are shown in Table 4. For all
other benchmarks, both DOUBLETAKE and AddressSanitizer intro-
duce less than 5× memory overhead. DOUBLETAKE has lower me-
mory overhead than AddressSanitizer on all but two benchmarks:
perlbench and namd. DOUBLETAKE’s total memory usage is
less than twice that of the original programs, and 20% less than
AddressSanitizer.

Benchmark Original AddressSanitizer DOUBLETAKE
400.perlbench 656 1481 1977
401.bzip2 870 1020 1003
403.gcc 683 2293 1583
429.mcf 1716 1951 1994
445.gobmk 28 137 58
456.hmmer 24 256 129
458.sjeng 179 220 203
462.libquantum 66 144 131
464.h264ref 65 179 247
471.omnetpp 172 538 291
473.astar 333 923 477
483.xalancbmk 428 1149 801
433.milc 695 1008 917
444.namd 46 79 92
447.dealII 514 2496 1727
450.soplex 441 1991 1654
453.povray 3 133 50
470.lbm 418 496 470
482.sphinx3 45 181 98
Total 7386 16678 13906

Table 4. DOUBLETAKE and AddressSanitizer memory use (MB).

0"

5"

10"

15"

40
0.p
er
lbe
nc
h"

40
1.b
zip
2"

40
3.g
cc
"

42
9.m

cf"

44
5.g
ob
mk
"

45
6.h
mm

er
"

45
8.s
jen
g"

46
2.l
ibq
ua
nt
um
"

46
4.h
26
4r
ef"

47
1.o
mn
et
pp
"

47
3.a
sta
r"

48
3.x
ala
nc
bm
k"

43
3.m

ilc
"

44
4.n
am
d"

44
7.d
ea
lII"

45
0.s
op
lex
"

45
3.p
ov
ray
"

47
0.l
bm
"

48
2.s
ph
inx
3"

AV
ER
AG
E"

N
or
m
al
iz
ed

++
M
em

or
y+
U
sa
ge
+

Original+

DOUBLETAKE+

AddressSani;zer+

34"

Figure 5. Memory overhead of DOUBLETAKE and AddressSanitizer.

5.3 Effectiveness
We use DOUBLETAKE to find errors in both the SPEC CPU2006
benchmark suite and a suite of real applications.

Benchmarks. DOUBLETAKE detected a one-byte heap buffer
overflow in perlbench, which is not detected by AddressSan-
itizer. DOUBLETAKE also detected a significant number of mem-
ory leaks in perlbench and gcc, which we have verified using
Valgrind’s Memcheck tool.

Real applications. DOUBLETAKE detects known buffer over-
flows in libHX, bzip2, vim,bc, polymorph, and gzip.
Buggy inputs were obtained from prior buffer overflow detection
tools, Red Hat’s Bugzilla, and bugbench [19, 22, 26, 45].

The buffer overflows we observed in these applications are trig-
gered by specific inputs, which are difficult to detect during devel-
opment. In most cases, DOUBLETAKE’s overhead is low enough to
be enabled in deployment, which would make it possible to detect
these bugs in the field. DOUBLETAKE also detects memory leaks
in gcc-4.4.7 and vim.

6. Discussion
In this section, we discuss DOUBLETAKE’s limitations, the limita-
tions of three detection tools we have implemented, and our plans
for future work on DOUBLETAKE.

6.1 Limitations
DOUBLETAKE lets dynamic analyses run with very low overhead,
then re-execute with heavyweight instrumentation when an error
has been detected. This approach will not work for errors that are
not monotonic: once an invariant has been violated, its evidence
must remain until the end of the epoch.

Applications
We have used DOUBLETAKE to implement detectors for heap buf-
fer overflows, use-after-free errors, and memory leaks. These tools
demonstrate DOUBLETAKE’s effectiveness as a framework for ef-
ficient dynamic analyses, but they are not perfect. Our heap buffer
overflow detector cannot identify all non-contiguous buffer over-
flows. If an overflow touches memory only in adjacent objects and
not canaries, DOUBLETAKE’s end-of-epoch scan will not find any
evidence of the overflow. Both the buffer overflow and use-after-
free detectors can detect errors only on writes. To reduce overhead,
use-after-free detection only places canaries in the first 128 bytes
of freed objects. If a write to freed memory touches only above this
threshold, our detector will not find it. The memory leak detector
will not produce false positives, but non-pointer values that look

like pointers to leaked objects can lead to false negatives. Finally,
if a leaked object was not allocated in the current epoch, DOUBLE-
TAKE’s re-execution will not be able to find the object’s allocation
site. In practice, DOUBLETAKE’s epochs are long enough to collect
allocation site information for all leaks detected during our evalua-
tion.

6.2 Future Work
We plan to explore further analyses directions, including concur-
rency error detection.

To further reduce DOUBLETAKE’s overhead, we plan to replace
DOUBLETAKE’s custom allocator with a more efficient heap. For
use-after-free detection, large objects could be allocated directly
using mmap and protected rather than filling them with canaries.

We also plan to integrate the DOUBLETAKE framework with
gdb. Lightweight rollback and re-execution would be useful for di-
agnosing application errors during a debugging session. Addition-
ally, a program run with DOUBLETAKE could automatically begin
a gdb session when an error is detected.

7. Related Work
In this section, we discuss related approaches to dynamic analysis
and efficient record and replay systems.

7.1 Dynamic Analysis
Dynamic analyses typically rely on one or more of the following
approaches: dynamic instrumentation, static instrumentation, and
interposition. We discuss prior analysis tools below, grouped by
approach.

Dynamic Instrumentation
A large number of error detection tools use dynamic instrumen-
tation, including many commercial tools. Valgrind’s Memcheck
tool, Dr. Memory, Purify, Intel Inspector, and Sun Discover all
fall into this category [8, 17, 20, 30, 34]. These tools use dy-
namic instrumentation engines, such as Pin, Valgrind, and Dy-
namiRIO [7, 27, 30]. These tools can detect memory leaks, use-
after-free errors, uninitialized reads, and buffer overflows. Dynamic
instrumentation tools are typically easy to use because they do not
require recompilation, but this easy of use comes at the cost of high
overhead. Programs run with Valgrind take 20× longer than usual,
and Dr. Memory introduces 10× runtime overhead. DOUBLETAKE
is significantly more efficient than prior dynamic instrumentation
tools, with under 10% performance overhead.

Static Instrumentation
Static instrumentation-based techniques leverage compiler anal-
yses and efficient code generation to implement more efficient
dynamic analyses tools. Mudflap instruments references through
pointers to detect buffer overflows, invalid heap usage, and mem-
ory leaks [15]. AddressSanitizer, CCured, LBC, Insured++, and
Baggy bounds-checking leverage static analysis to reduce the
amount of instrumentation [1, 16, 29, 39]. Compared to dynamic
instrumentation-based approaches, these tools incur substantially
lower overhead than dynamic instrumentation-based approaches,
but are more difficult to use. Tools that rely on static instrumen-
tation cannot detect errors in code that was not recompiled with
instrumentation. DOUBLETAKE is more efficient than AddressSan-
itizer, the previous state-of-the-art, and enables dynamic analysis
on the entire program (including libraries) with no recompilation.

Interposition
DOUBLETAKE uses library interposition exclusively during normal
execution. More expensive instrumentation is only introduced after
an error has been detected. BoundsChecker interposes on Windows
heap library calls to detect memory leaks, use-after-free errors and
buffer overflows [28]. Many prior approaches use a mix of library
interposition and virtual memory techniques to detect memory er-
rors [3, 5, 9, 18, 23, 25, 32, 33, 36, 45]. Unlike DOUBLETAKE, the
overhead of these systems remains high.

7.2 Record-and-Replay
Record and replay systems have broad applications. There are nu-
merous replay-based approaches for software debugging and fault
tolerance [6, 21, 37, 38, 40, 41]. Flashback records the results of
every system call to facilitate deterministic replay, but with higher
overhead than DOUBLETAKE [40]. DOUBLETAKE records only the
necessary system state, and “undoes” the effect of system calls be-
fore re-execution. Triage automates the failure diagnosis process,
but must be activated manually when an error is observed [41]. Af-
tersight and Speck use record and replay for dynamic analysis, but
incur substantially higher overhead than DOUBLETAKE [12, 31].
Aftersight executes programs in a virtual machine, and records all
inputs to the VM. Speck is focused on security checks, including
data-flow tracking and virus scanning: applications that likely re-
quire the always-on instrumentation that DOUBLETAKE does not
provide. Other systems have focused on reducing the performance
overhead of recording [2, 24, 35, 42]. None of these systems is as
efficient as DOUBLETAKE.

8. Conclusion
This paper introduces evidence-based dynamic analysis, a new
lightweight dynamic analysis technique. Evidence-based dynamic
analysis works for errors that can be forced to leave evidence of
their presence. These errors include key problems for C and C++
programs: buffer overflows, dangling-pointer errors, and memory
leaks. Evidence-based dynamic analysis is fast because it lets the
application run at full speed until an error is detected; execution
is then rolled back and replayed with instrumentation at the point
where the evidence was found, pinpointing the error. We present
DOUBLETAKE, the first evidence-based dynamic analysis frame-
work, and implement these analyses inside it. The resulting analy-
ses are the fastest versions to date, demonstrating the effectiveness
and efficiency of this new dynamic analysis approach.

References
[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds

checking: an efficient and backwards-compatible defense against out-
of-bounds errors. In Proceedings of the 18th conference on USENIX
security symposium, SSYM’09, pages 51–66, Berkeley, CA, USA,
2009. USENIX Association.

[2] G. Altekar and I. Stoica. ODR: Output-deterministic replay for
multicore debugging. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 193–
206, New York, NY, USA, 2009. ACM.

[3] H. Ayguen and M. Eddington. DUMA - Detect Unintended Memory
Access. http://duma.sourceforge.net/.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, PLDI ’01, pages 114–124, New York, NY, USA,
2001. ACM.

[5] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online memory
leak detection. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 61–72, New York, NY, USA, 2006.
ACM.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 1–11, New York, NY, USA,
1995. ACM.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed
and runtime optimization, CGO ’03, pages 265–275, Washington,
DC, USA, 2003. IEEE Computer Society.

[8] D. Bruening and Q. Zhao. Practical memory checking with dr.
memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages
213–223, Washington, DC, USA, 2011. IEEE Computer Society.

[9] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle:
early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ISSTA 2012, pages 133–143, New
York, NY, USA, 2012. ACM.

[10] L. Chew and D. Lie. Kivati: fast detection and prevention of atomicity
violations. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 307–320, New York, NY,
USA, 2010. ACM.

[11] T.-c. Chiueh. Fast bounds checking using debug register. In
Proceedings of the 3rd international conference on High performance
embedded architectures and compilers, HiPEAC’08, pages 99–113,
Berlin, Heidelberg, 2008. Springer-Verlag.

[12] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic
program analysis from execution in virtual environments. In
USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ATC’08, pages 1–14, Berkeley, CA, USA, 2008.
USENIX Association.

[13] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In In
Proceedings of the 7th USENIX Security Symposium, pages 63–78,
1998.

[14] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic
multithreading through schedule memoization. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–13, Berkeley, CA, USA, 2010.
USENIX Association.

[15] Frank Ch. Eigler. Mudflap: pointer use checking for C/C++. Red
Hat Inc., 2003.

http://duma.sourceforge.net/

[16] N. Hasabnis, A. Misra, and R. Sekar. Light-weight bounds checking.
In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, pages 135–144, New York,
NY, USA, 2012. ACM.

[17] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In In Proc. of the Winter 1992 USENIX Conference,
pages 125–138, 1991.

[18] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In Proceedings of
the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XI, pages
156–164, New York, NY, USA, 2004. ACM.

[19] T. Hoger. "vim: heap buffer overflow". https://bugzilla.redhat.com/
show_bug.cgi?id=455455.

[20] Intel Corporation. Intel inspector xe 2013. http://software.intel.com/
en-us/intel-inspector-xe, 2012.

[21] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC
’05, pages 1–1, Berkeley, CA, USA, 2005. USENIX Association.

[22] L. Kundrak. Buffer overflow in bzip2’s bzip2recover. https:
//bugzilla.redhat.com/show_bug.cgi?id=226979.

[23] D. Lea. The GNU C library. http://www.gnu.org/software/libc/libc.
html.

[24] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: efficient online multiprocessor replay via
speculation and external determinism. In Proceedings of the fifteenth
edition of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS XV, pages 77–90, New
York, NY, USA, 2010. ACM.

[25] M. O. X. D. Library. Enabling the malloc debugging features. https:
//developer.apple.com/library/mac/#documentation/performance/
Conceptual/ManagingMemory/Articles/MallocDebug.html.

[26] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In In Workshop on
the Evaluation of Software Defect Detection Tools, 2005.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New York,
NY, USA, 2005. ACM.

[28] Microfocus. Micro focus devpartner boundschecker. http://www.
microfocus.com/store/devpartner/boundschecker.aspx, 2011.

[29] G. C. N. Necula, M. Scott, and W. Westley. Ccured: Type-safe
retrofitting of legacy code. In Proceedings of the Principles of
Programming Languages, pages 128–139, 2002.

[30] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’07, pages 89–100, New York, NY, USA,
2007. ACM.

[31] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
security checks on commodity hardware. In Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, pages 308–318,
New York, NY, USA, 2008. ACM.

[32] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: automatically
correcting memory errors with high probability. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 1–11, New York, NY, USA, 2007.
ACM Press.

[33] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely
locating memory leaks and bloat. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’09, pages 397–407, New York, NY, USA,
2009. ACM.

[34] Oracle Corporation. Sun memory error discovery tool (discover).
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.
html.

[35] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. PRES: probabilistic replay with execution sketching
on multiprocessors. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages 177–
192, New York, NY, USA, 2009. ACM.

[36] B. Perens. Electric Fence. http://perens.com/FreeSoftware/
ElectricFence/.

[37] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies—a safe method to survive software failures. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles,
SOSP ’05, pages 235–248, New York, NY, USA, 2005. ACM.

[38] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated practical
record/replay system. ACM Trans. Comput. Syst., 17(2):133–152,
May 1999.

[39] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: a fast address sanity checker. In Proceedings
of the 2012 USENIX conference on Annual Technical Conference,
USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012. USENIX
Association.

[40] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback:
a lightweight extension for rollback and deterministic replay for
software debugging. In Proceedings of the annual conference
on USENIX Annual Technical Conference, ATEC ’04, pages 3–3,
Berkeley, CA, USA, 2004. USENIX Association.

[41] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
Diagnosing production run failures at the user’s site. In Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 131–144, New York, NY, USA, 2007.
ACM.

[42] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: parallelizing sequential logging
and replay. In Proceedings of the sixteenth international conference
on Architectural support for programming languages and operating
systems, ASPLOS XVI, pages 15–26, New York, NY, USA, 2011.
ACM.

[43] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions
and their applications. In Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, SPAA
’08, pages 285–296, New York, NY, USA, 2008. ACM.

[44] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Management,
IWMM ’92, pages 1–42, London, UK, UK, 1992. Springer-Verlag.

[45] Q. Zeng, D. Wu, and P. Liu. Cruiser: concurrent heap buffer overflow
monitoring using lock-free data structures. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’11, pages 367–377, New York, NY, USA,
2011. ACM.

https://bugzilla.redhat.com/show_bug.cgi?id=455455
https://bugzilla.redhat.com/show_bug.cgi?id=455455
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-xe
https://bugzilla.redhat.com/show_bug.cgi?id=226979
https://bugzilla.redhat.com/show_bug.cgi?id=226979
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
https://developer.apple.com/library/mac/#documentation/performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://developer.apple.com/library/mac/#documentation/performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
https://developer.apple.com/library/mac/#documentation/performance/Conceptual/ManagingMemory/Articles/MallocDebug.html
http://www.microfocus.com/store/devpartner/boundschecker.aspx
http://www.microfocus.com/store/devpartner/boundschecker.aspx
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
http://perens.com/FreeSoftware/ElectricFence/
http://perens.com/FreeSoftware/ElectricFence/

	Introduction
	Overview
	Efficient Recording
	Precise Replay
	Custom Heap Allocator
	Watchpoints

	Applications
	Heap Buffer Overflow Detection
	Use-After-Free Detection
	Memory Leak Detection

	Implementation
	Epoch Start
	Normal Execution
	Rollback
	Re-Execution
	Trap Handler

	Evaluation
	Runtime Overhead
	Memory Overhead
	Effectiveness

	Discussion
	Limitations
	Future Work

	Related Work
	Dynamic Analysis
	Record-and-Replay

	Conclusion

