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ABSTRACT
Physical human mobility has played an important role in the
design and operation of mobile networks. Physical mobility,
however, differs from mobility from a network or network-
addressing perspective. A physically mobile user may be
stationary (i.e., maintain its network address) from a network
point of view, while a physically stationary multi-homed or
multi-device user may transition among different access net-
works, possibly maintaining multiple contemporaneous con-
nections to different networks. We perform a measurement
study of such user transitioning among networks from a network-
level point of view, characterizing the sequence of access
networks to which a user is attached and from which it ob-
tains its routable IP address, and discuss insights and impli-
cations drawn from these measurements. We characterize
network transitioning in terms of network residency time,
degree of multi-homing, transition rates and more. We find
that users typically spend time attached to a small number
of access networks, and that a surprisingly large number
of users access two networks contemporaneously. We also
develop and validate a parsimonious Markov chain model
of canonical user transitioning among networks that can be
used to provision network services and to analyze mobility
protocols.

1. INTRODUCTION
Physical human mobility has played a central role in

the design and operation of mobile networks (including
cellular, Wi-Fi, and mobile ad hoc networks) and their
protocols for hand-off, routing, location management,
and more. Consequently, numerous research studies
have developed models of human physical mobility and
used these models in the design and evaluation of mobile
network protocols.

Physical user mobility, however, is quite different than
mobility from a network or network-layer addressing
point of view. For example, a user physically moving
among access points or base stations within the same
subnet retains its IP address. Conversely, a multi-homed
stationary user or a stationary user shifting among mul-
tiple devices attached via contemporaneous connections

to different networks will change access networks and the
IP address to which his/her identity was most recently
associated. In the former case, the physically mobile
user is stationary from a network perspective; in the
latter case, the physically stationary user is mobile from
a network perspective.

This distinction between physical mobility and mobil-
ity among networks (i.e., a changing network address
associated with a device or an end user) is an impor-
tant one, since it is this mobility among networks that
is important to location management protocols such
as Mobile-IP [15], HLR/VLR registration in cellular
networks [3], and name/address resolution protocols in
current (e.g., LISP [8]) and next generation (e.g., Mo-
bilityFirst [21], XIA [12]) network architectures and
protocols. The amount of network-level signaling for
location management depends on mobility among net-
works rather than physical mobility; similarly it is mo-
bility among networks (rather than physical mobility)
that determines the network or set of networks in which
a user is reachable at a given point in time. Recognizing
the ambiguity between physical and network mobility,
we will refer to a user moving among networks from
a network-layer/addressing viewpoint as transitioning
among networks.

In this paper, we perform a measurement study of
user-transitioning among networks and discuss insights
and implications drawn from these measurements. Based
on these measurements, we also develop and validate
a parsimonious Markov chain model of canonical user
transitioning among networks. Our measurement study,
conducted using two sets of IMAP server logs (a year-
long log of approximately 80 users, and a four-month log
of a different population of more than 7,000 users) quan-
titatively characterizes network transitioning in terms
of transition rates among networks, network residency
time, degree of contemporaneous connection to multi-
ple networks, and more. We find that users spend the
majority of their time attached to a small number of
access networks, and that a surprisingly large number
of users access two networks contemporaneously. We
also show that our Markov chain model of a canonical
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individual user, in spite of its many simplifying assump-
tions, can accurately predict aggregate transition rates,
the degree of contemporaneous multi-homing, and other
key network-transitioning performance metrics for an
aggregate population.

Our measurements provide quantitative insight into
the location management signaling overhead needed by
modern and proposed name/address translation and lo-
cation management protocols; our models provide the
ability to design, dimension and analyze such systems.
More generally, we believe that while physical mobil-
ity and the design of link-layer and intra-subnetwork
handoff protocols are relatively well-understood, the
behavior, modeling and measurement of users transi-
tioning among networks and the design of protocols for
managing that mobility at global scale are much less
well-understood. This paper is an important step in
deepening that understanding.

The remainder of this paper is structured as follows.
In Section 2, we introduce the notion of user transitions
among networks, and contemporaneous multi-homing
to multiple networks. In Section 3, we describe the
information of our collected trace, and describe our
measurement scenario and methodology. In Section 4,
we then quantify various aspects of user transitioning
and discuss insights drawn from these measurements.
Section 5 presents and validates a parsimonious Markov
chain model of canonical transitioning. In Section 6, we
discuss related past research. Section 7 concludes this
paper.

2. “MOBILITY” AND NETWORK TRANSI-
TIONING

Figure 1: A user may transition among net-
works, or be concurrently attached to multiple
networks.

Let us consider an individual, say Alice, who is often
connected to the Internet via numerous different access
networks during the course of her day. She might be-
gin her day reading email or a newspaper on a tablet,
connected to the Internet via a residential DSL or cable
network or a wide-area wireless network; she might later
work a bit from home using a computer connected via

Ethernet to her residential access network and then later
connect wirelessly via her smartphone to her wide-area
wireless network service provider as she bikes or drives
to work. At work, Alice connects via the company net-
work, but also uses her smartphone. At the end of the
day, her transitioning among networks is repeated in
reverse. Together, these networks might be considered
Alice’s set of frequently used “home” networks. When
traveling, Alice connects via her smartphone’s wireless
provider network and via airport, airplane, cafe, hotel
and remote institutional networks. Indeed, we see that
the identity that is “Alice” connects to the Internet via
many different networks over time and is sometimes
connected using different devices on different networks
at the same time, as shown in Figure 1.

A user transition between networks can occur in a
number of different scenarios: (i) a user might detach
from one network and attach to a new network (e.g., a
user explicitly disassociating from one wireless network
and then associating with a different wireless network);
(ii) a user with multiple devices1 might move his/her
activity from a device attached to one network to an-
other device attached to a different network, or use both
devices concurrently; we will refer this latter case as a
user being “contemporaneously connected” to two (or
more) networks; (iii) a user with one device with multi-
ple interfaces may change the interface being used, or
use multiple interfaces on the single device contempo-
raneously (which we believe is rare); (iv) a user may
connect to a VPN, thus changing its network-visible IP
address.

The mobility of an individual among networks, and
the need to map a user’s identity (name) to his/her
current network location via mobility registration and
lookup/indirection protocols, are central concerns for
mobility architectures such as Mobile-IP [15], HLV/VLR
registration in cellular networks [3], and name/address
resolution protocols in current and next generation ar-
chitectures such as LISP [8], MobilityFirst [21], and
XIA [12]). Thus, a quantitative understanding of how
an identity (e.g., “Alice”) transitions among access net-
works – the networks through which that identity is
addressed and ultimately reached – is of great inter-
est for mobility architecture and protocol design and
analysis.

3. MEASUREMENT METHODOLGY
In this section we first discuss the challenge of measur-

ing user-transitioning at large scale and our decision to
1The use of multiple devices is increasing rapidly. The Pew
Internet Research Project [20] notes that in addition to
traditional Internet access via computers, 58% of Americans
own a smartphone, with approximately 50% of these users
using a smartphone as their primary Internet-connected
device. 43% of Americans own a tablet, a thirteen-fold
increase in ownership over four years.
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use IMAP logs to do so. We then provide details of the
IMAP logs themselves and discuss the set of networks
visited by users in our logs. We conclude this section
with a discussion of how we estimate user session lengths
based on log data.

3.1 Why IMAP access logs?
Measuring user mobility between networks is itself a

challenging task. Measuring network connectivity di-
rectly at the end user requires a population of users will-
ing to install software on each of their network-connected
devices (e.g., laptop, home/office desktops, tablet and/or
smartphone), periodically monitoring/logging network
connectivity on all interfaces on all devices, and then
collecting measurement data. In addition to the diffi-
culty of finding and managing such a user base, the task
is technically complicated by concerns regarding battery
drain for monitoring connectivity on mobile devices. For
these reasons, a more centralized, server-based approach
might seem preferable. In particular, since a client’s
connection to a server provides that client’s IP address,
the (possibly changing) access network used by each of
the server’s multiple clients can thus be easily logged at
a server.

Yet there are also many challenges associated with
server-side measurement of user transitioning among net-
works. Each server implements a single service/application
and each user runs many services and applications. Mon-
itoring all service and application servers is impossible
- there are far too many servers, and many commonly-
accessed servers (e.g., Google, Amazon) are proprietary.
Moreover, a user invoking multiple applications has a
different “identity” in each application; correlating a
user’s identity on one application with his/her identity
on another application is a difficult research problem [10].
From a practical viewpoint then, we ideally need a server
application that (i) is frequently used by an online user,
(ii) can be monitored at a non-proprietary server, and
(iii) provides both a user “identity,” so that the same
user can be tracked across multiple sessions, and the
network address from which that identified user accesses
that server.

Although no single application server meets this ideal,
we believe that an IMAP mail server [7] is a compelling
choice. Email checking, reading, polling and delivery
all create entries in the IMAP server’s log containing
an associated client IP address, as well as an identifier
- the email address - for that client; this email address
typically remains the same across a user’s many devices.
A user who accesses the IMAP server from a desktop
while at work, and then from a mobile device while
commuting, and then from a laptop at home will cre-
ate IMAP log entries evidencing transitions from office
network to cellular provider network to home access
network. Although many e-mail clients periodically and

automatically access their IMAP server while online
(providing a rich source of IMAP data), not all clients
do so. Consequently, using IMAP logs to trace a user’s
transitioning among access networks may miss a network
transition or underestimate the amount of time spent
in a network. And email is indeed but one application
(albeit popular one). Thus, we can think of our results
here informally as a lower bound on the actual amount
of network-transitioning performed by used.

IMAP logs can be also used to indicate a multi-homed
user, or a user contemporaneously belonging to multiple
networks via multiple devices. In the former case, if
the user with a single device accesses the IMAP server
using multiple device interfaces connected to different
networks, the multi-homed IMAP accesses via these
different client IP addresses (and networks) will be ev-
idenced in the IMAP log. In the latter case, a user
accessing the IMAP server from multiple devices (e.g.,
working and reading email on laptop or PC, while also
having email pushed to a smartphone) within the same
period of time will have IMAP accesses via multiple
contemporaneous connections during this period of time
evidenced in the IMAP logs.

3.2 IMAP log collection

Period # # of # IP #
(day) users IMAP entries prefixes ASNs

CS-IMAP 314 81 2 - 79,392 1,405 387
OIT-IMAP 115 7,137 1 - 1,490,473 9,016 1,777

Table 1: IMAP trace characteristics

Figure 2: CDF of the average number of IMAP
log entries per day over all users.

For this study, we collected two sets of traces from
IMAP servers located at the University of Massachusetts
Amherst, as shown in Table 1. The CS-IMAP set con-
tains logs from IMAP servers in the Computer Science
Department from April 14, 2013 to February 22, 2014;
the CS-IMAP has a population of 81 users mostly consist-
ing of CS faculty and staff members2. The OIT-IMAP
set contains approximately four months of logs from
2We found that CS graduates rarely retrieved their emails
via IMAP.
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IMAP servers operated by the UMass Office of Informa-
tion Technology (OIT) from December 1, 2013 to March
25, 2014; OIT supports a mail service for UMass stu-
dents (primarily), faculty and staff that is separate from
the CS mail service. The OIT-IMAP has a campus-wide
user population of 7,137 users. The total number of
CS-IMAP and OIT-IMAP log entries per user over the
measurement period ranged from 2 to 79,392, and from 1
to 1,490,473, respectively. Figure 2 plots the CDF of the
average number of daily IMAP log entries per user and
shows that users belonging to CS-IMAP (mostly faculty
members) tend to access mail servers more frequently
than OIT-IMAP (mostly students).

Each trace consists of a series of individual IMAP
log entries stored by syslog [9], recording a user’s e-mail
activities including signing into the mail server, checking
the INBOX, deleting messages, and unilateral server
decisions to close (idle) connections. We processed only
a user’s sign-in logs which allowed us to extract the
following pieces of information for each entry:

• A user’s account ID. We consistently anonymized
a user’s account ID (email address) using SHA2-
hashing for privacy purposes.

• A timestamp. The time at which a user signs into
the IMAP mail server to poll, check, or retrieve
email.

• A client-side IP address. This is the user’s (client-
side) IP address when accessing the IMAP server3.

Given an IP address, we determined the user’s IP
prefix network, Autonomous system number (ASN),
and network domain ownership using UNIX’s whois
command with whois.cymru.com [1]. Information at
whois.cymru.com is updated every 4 hours from the
regional registries including ARIN, RIPE, AFRINIC,
APNIC, and LACNIC. As shown in Table 1, the CS-
IMAP set contains 1,405 unique IP prefixes and 387
unique ASNs, and the OIT-IMAP set contains 9,016
unique IP prefixes and 1,777 unique ASNs4. The net-
work information for two IP addresses in the CS-IMAP
and 63 IP addresses in the OIT-IMAP was unknown,
but the number of IMAP logs generated from such IP
addresses was negligible; these entries were excluded
from our analysis.
3Users in the CS-IMAP set occasionally accessed mail via
a departmental web-based server, rather than directly from
a client email application. In this case, the user’s logged IP
address is recorded in the IMAP log as 127.0.0.1; we analyzed
the server’s web logs to determine the client address of the
user browser associated with this IMAP access. Only 1.6%
of all IMAP web-based log entries could not be identified
due to missing web logs; those entries were excluded from
our analysis.
4VPN access to the IMAP servers is not required. Anecdo-
tally, we believe VPN access is used primarily for accessing
library and other restricted campus resources.

3.3 IMAP traces: network information

Figure 3: CDF of the number of observed IP
prefixes associated with an ASN over all users.

Figure 3 shows the CDFs of the number of observed
unique IP prefixes associated with an ASN over all users
in the CS-IMAP and the OIT-IMAP sets. Figure 3
shows that approximately 61% and 57% of ASNs had
only a single observed IP prefix in the CS-IMAP, the
OIT-IMAP, respectively.

Service CS-IMAP OIT-IMAP
provider ASN, IP ASN, IP

AT&T wireless 3, 88 10, 147
Sprint wireless 1, 78 2, 238
T-Mobile 6, 2 3, 8
Verizon wireless 4, 199 6, 685

Comcast cable 18, 97 29, 555
Charter communications 1, 22 1, 182
Cox communications 1, 9 1, 222
Time Warner cable 4, 20 2, 115
Cablevision 1, 5 1, 31
Hughes 1, 8 1, 45

Five colleges (incl. UMass) 1, 5 1, 6

SAS 4, 9 2, 7
Unicom NONE 3, 11

Table 2: Most used service providers: number of
unique ASNs observed and number of observed
IP prefixes per ASN.

Table 2 shows the ASN and IP prefix information of
frequently visited service providers; we will investigate
the length of time a user is resident in an IP prefix or
ASN network in Section 4. For each service provider,
Table 2’s rows show the number of observed unique
ASNs, and the number of observed unique IP prefixes
for the CS-IMAP and the OIT-IMAP. For instance, we
observe that users in the CS-IMAP visited four ASNs
and 199 IP prefixes owned by Verizon wireless. AT&T,
Sprint, T-Mobile, and Verizon wireless are mobile access
service providers. Comcast, Charter, Cox, Time Warner,
and Cablevision are residential wired Internet service
providers (e.g., cable and DSL access networks); the
Hughes network supports a satellite Internet service
used in rural communities lacking wired and cellular
broadband service. The UMass campus network is part
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of the Five Colleges AS (AS1249) network. SAS in the
CS-IMAP (a DSL and Wi-Fi service provider in France)
and Unicom in the OIT-IMAP (a mobile service provider
in China) were used for a non-negligible amount of time
in our measurements.

Figure 4: CDF of the number of unique ASNs
visited daily per user over all users.

Figure 4 plots the CDF of the number of unique ASNs
visited daily per user over all users, indicating that users
in both OIT-IMAP and CS-IMAP access at most four
unique ASNs in a day, but users belonging to CS-IMAP
(mostly faculty members) access more ASNs than OIT-
IMAP (mostly students).

(a) CS-IMAP.

(b) OIT-IMAP.

Figure 5: Cumulative number of unique ASNs
accessed by all users over time.

Figures 5(a) and (b) plot the daily cumulative numbers
of unique IP prefixes and ASNs accessed by all users
over time. These figures indicate that the cumulative
number of unique IP prefixes and ASNs each increase
roughly linearly over time; the slopes of two curves
during vacations (when users would be out of town
more frequently) are steeper compared with the slope
during the academic term. This constant increase in
the daily number of new networks accessed (after the

initial startup period) was initially surprising, as we had
expected that users would generally access the same
set of networks over time. We’ll see later that a user
typically does indeed spend most of the time in the
same (relatively small) number of networks over time,
but does visit new networks outside of this set of common
networks at a roughly constant rate, resulting in the
positive slope in Figures 5.

3.4 From IMAP log data to sessions
We use the notion of a time window to determine

intervals of time during which a user is connected to a
network.

Definition 1. Time is divided into consecutive time
windows, each of length ∆t. A session is defined as a
series of consecutive time windows, each of which has
one or more IMAP log entries from the same network
(distinguished by either its IP prefix or ASN).

By Definition 1, two IMAP log entries in the same time
window that have different IP addresses but the same IP
prefix (or the same ASN) would be regarded as belonging
to the same session. Our measurements indicate that a
user may be also connected to more than one network
during a window of time; in Section 2, we said that such
a user was “contemporaneously connected” to these two
or more networks.

Definition 2. Given time window of length ∆t, a multi-
sessioned time window for a user is one in which that
user has IMAP entries from two or more different net-
works.

Choosing a value for ∆t for session identifica-
tion via Definition 1. If we choose a small time
window value, this would break a user’s single session
into multiple distinct sessions separated by empty ∆ts
having no IMAP logs entries. If a user was indeed con-
nected during these empty ∆t intervals, then we would
overestimate the amount of user network-transitioning.
Conversely, if the time window is too large, intervals
of time during which the user disconnects and then re-
connects to that same network would be coalesced into
a single session, thus underestimating the amount of
user transitioning. This dilemma is often faced when
reconstructing user session behavior from discrete log
entries [18,6]. We choose the length of the time window
∆t by observing the number of sessions as a function of
∆t, as discussed below.

Definition 3. Given time window ∆t, define ρ as the
fraction of time windows that (i) contain no entries;
(ii) fall between two time windows that contain IMAP
entries, and (iii) in the ground truth case, the user
remains connected to the network (even while producing
no IMAP entries).
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(a) CS-IMAP.

(b) OIT-IMAP.

Figure 6: Aggregate number of sessions over all
users.

Figures 6 plot the total number of all users’ ASN-
based sessions5 as a function of a time-window length
for different values of ρ. The black curve in Figure 6(a)
shows that the number of sessions with ρ = 0 in CS-
IMAP initially decreases sharply with increasing values
of ∆t, and then, at around a time-window length of 15
minutes, begins decreasing more slowly. Figure 6(a)’s
red curve plots that the hypothetical number of sessions
with ρ = 0.1 for different time-window sizes in CS-IMAP.
The red curve is significantly lower than the black curve
in the inital region, and then shows a knee of the curve
at 15 minutes; this pattern was also found for different
values of ρ. Similarly, the knees of the curves in OIT-
IMAP appears at approximately 20 minutes as shown
in Figure 6(b). We also noted that approximately 97%
of the time intervals between a user’s two consecutive
IMAP log entries in CS-IMAP were less than or equal to
15 minutes, and approximately 82% of the time intervals
between a user’s two consecutive IMAP log entries in
OIT-IMAP were less than or equal to 20 minutes.

A similar analysis can be applied to the case of a
user being contemporaneously connected to multiple
networks. Figures 7(a) and 7(b) plot the total number
of all users’ ASN-based multi-sessioned time windows for
different time-window sizes. Figure 7(a) shows that the
number of multi-sessioned time windows in CS-IMAP
increases until a window length of 15 minutes and then
flattens out. Figure 7(b) also shows that the knee of
the curve appears at 20 minutes, the same knee location
5A comparison of using IP prefix versus ASN distinctions
to identify the number and length of sessions indicates that
there is not a significant difference between IP prefix-based
and ASN-based session lengths. Thus we only show ASN
results.

(a) CS-IMAP.

(b) OIT-IMAP.

Figure 7: Aggregate number of ASN-based
multi-sessioned time-slots over all users.

found in Figure 6(b). Thus, a user who has been con-
nected to multiple networks is likely to be completely
offline for an amount of time greater than the time inter-
val length at the knee. We will thus choose 15 minutes
in CS-IMAP and 20 minutes in OIT-IMAP to be the
length of the time window and identify user sessions
accordingly via Definition 1. We will only show the
results with ρ = 0 in our subsequent discussion.

4. MEASUREMENT ANALYSIS AND FIND-
INGS

In this section, we present and discuss our measure-
ment results regarding user residence time in various
networks and multi-sessioned behavior. The insights
and implications drawn from these results for the foun-
dation for our Markov chain modeling of user network
transitioning in Section 5.

4.1 Network residence time

House Comcast (AS7015, AS7922, AS33651, AS33668),
f Charter (AS20115), Cox (AS22773), Hughes
(AS6621), Time Warner Cable (AS11351), Cable-
vision (AS6128)

Work Five colleges AS (AS1249)
Mobile Verizon (AS22394, AS701, AS6167), AT&T

(AS20057, AS7018), T-Mobile (AS21928), Sprint
(AS3651)

Table 3: House, work, and mobile categorization
of a user’s home networks.

Let us first consider the aggregate network residence
time over all users spent in various networks. Table 3
defines house, work, and mobile networks whose con-
stituent ASNs are registered in U.S. and are accessed
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by users for more than 0.5% of aggregate network res-
idence time. The MISC category, which includes all
other network domains observed in our logs, may thus
include rarely-used residential wired service provider or
mobile access provider ASNs that account for negligible
fractions of network residence time. Broadly, we may
consider the house/work/mobile networks as a user’s
“home” networks and the remaining MISC networks as a
user’s “visited” networks.

(a) Daily fractions of network residence times.

(b) Daily total network residence time.

(c) Daily user population.

Figure 8: OIT-IMAP. Time series plot of net-
work residence time over all users.

Figures 8(a), 9(a) plot the daily fraction of aggregate
residence time spent in house, work, mobile and MISC
ASNs over all users for OIT-IMAP, CS-IMAP respec-
tively. Given that the house, work and mobile networks
are collectively constituted by only 17 (as shown in Ta-
ble 3) out of the 1,858 ASNs observed in CS-IMAP and
OIT-IMAP, Figures 8(a), 9(a) show that users spend
the majority of their time (approximately 80% through
a measurement period, and in particular more than 90%
during fall semester in CS-IMAP) resident in only a
small number of networks. We also observed that just
two ASNs (Comcast AS7015, and Five colleges AS1249)
account for more than half of the overall residency time
in OIT-IMAP and CS-IMAP, and that the ten most com-
mon ASNs collectively account for approximately 85%
(for OIT-IMAP) and 90% (for CS-IMAP) of the overall
residency time, confirming the observation that the lion
share of aggregate user time is spent in a relatively small
number of networks.

Figures 8(a), 9(a) also show seasonality corresponding

to the UMass Amherst academic calendar; a decrease in
work network occupancy and a concomitant increase in
MISC network occupancy during vacations; conversely,
an increase in house network occupancy and work net-
work occupancy but a decrease in MISC network occu-
pancy during semesters. Not surprisingly, Figure 8(a),
9(a) also show per-week periodicity for house and work
network residence times, with the percentage of time
in work networks higher on workdays and less on week-
end days, and the percentage of time in house networks
higher on weekend days and less during workdays. Fig-
ures 8(b), 9(b) plot the daily total residence time spent
in all networks over all users for CS-IMAP, OIT-IMAP,
respectively and Figure 8(c) plots the daily population of
users producing IMAP logs for OIT-IMAP, all showing
similar periodic behavior.

(a) Hourly network residence time.

(b) Weekly network residence time.

Figure 10: OIT-IMAP. Box plot with whiskers
with average and maximum for hourly and
weekly network residence time over all users.

We also observe hourly and weekly patterns in the ag-
gregate average and maximum for hourly and weekly net-
work residence times (shown as box plots with whiskers
in Figures 10(a) and 10(b)) over all users in OIT-IMAP.
Figure 10(a) shows that users tend to be connected
approximately 10 minutes on average and up to 35 min-
utes per hour. Network residence time during daytime
is longer than during nighttime, with an increase of
residence time in work networks during the day. Fig-
ure 10(b) shows that users are connected approximately
5 hours a day on average up to 10 hours per day. Network
residence time during workdays is longer than during
weekend days, with an increase of residence time in work
networks during the week. Similar hourly and weekly
results are also found in CS-IMAP.

Let us now turn our analysis from the aggregate to the
individual, and investigate the fraction of an individual
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(a) Daily fractions of network residence times.

(b) Daily total network residence time.

Figure 9: CS-IMAP. Time series plot on network residence time over all users.

Figure 11: CS-IMAP. pdf of the fraction of the
(three) longest residency ASNs’ residence times
to the total residence times.

user’s residence time spent in the single network in which
it is most often resident, as well as in the three networks
in which together it is most often resident? Figure 11
plots the distribution (over all users) of the fraction of
time that a user in CS-IMAP spends resident in the
network in which it is most often resident (grey line
with triangle points), and in the three networks in which
together it is most often resident (black line with triangle
points). The black curve indicates, for example, that
approximately 75% of the users spend between 90% and
100% of their time in their top three networks, and that
nearly 20% of the users spend between 80% and 90% of
their time in their top three networks. Thus we see that
individual users generally also spend the lion share of
their residency time in just a few (e.g., three) networks.
A much smaller fraction of the users spend their time in
just one network - the gray curve indicates that roughly
25% of the users spend 90% to 100% of their time in
their most commonly resident network. Similar results

are also found in OIT-IMAP.

4.2 User’s multi-sessioned behavior
Having considered a user’s connectivity to individual

networks, let us next examine a user’s contemporaneous
connection to two or more networks. In our measure-
ments, we observe that 99% of the ASN-based multi-
sessioned time windows in OIT-IMAP and 99.5% of the
ASN-based multi-sessioned time windows in CS-IMAP
consist of only two ASNs.

Figure 12: pdf of ASN-based multi-session time
per user.

Figure 12 plots the fraction of users (y-axis) who
spend a given fraction of their time (x-axis) connected
to multiple networks in CS-IMAP and OIT-IMAP. Fig-
ure 12’s gray bar indicates, for example, that 20% of
the users in CS-IMAP were always connected to a single
network (when online). Approximately 70% of the users
spent less than 10% (but greater than 0%) of their time
multi-sessioned and approximately 7% of users were
multi-sessioned between 10 and 20% of their time online.
Figure 12’s black bar shows that approximately 50% of
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the users in OIT-IMAP were always connected to just a
single network. Overall, however, we found the amount
of multi-sessioned time to be much higher than we would
have expected, suggesting that contemporaneous con-
nectivity to multiple networks should not be considered
“outlier” behavior.

A deeper investigation in the multi-sessioned time
windows revealed three common scenarios, with the
following potential causes of multi-sessions:

1. Fixed and mobile networks. 55% of multi-
sessioned time windows in OIT-IMAP and 51%
in CS-IMAP consisted of a fixed (residential or
Five colleges) and a mobile network (as defined
in Table 3’s mobile category). (i) These scenarios
could correspond to the cases of a user carrying
multiple devices or a single device with multiple
NICs being contemporaneously connected to differ-
ent networks (e.g., a laptop connected to a wired
network and a smartphone connected to a cellular
data network). (ii) Network transitions between
fixed and mobile networks within a time window
could also have resulted from a user’s switching
his/her devices.

2. Fixed networks across different ISPs. 17% of
multi-sessioned time-slots in OIT-IMAP and 27%
in CS-IMAP consisted of two fixed networks (res-
idential and Five colleges) with little overlap in
their physical footprints - the Five colleges network
is generally confined to campus locations. (i) Con-
temporaneous access to these two networks in the
same time window could have resulted from a user
physically moving from one network to another
(e.g., office to home or vice versa) or (ii) could also
have resulted from emails being automatically by
a user device in a different physical location that
the user him/herself, or from VPN access to the
Five colleges network via the residential network.

3. Network transitions within the same ISP.
6% of multi-sessions in OIT-IMAP and 4% in CS-
IMAP show multiple networks access from two
ASNs owned by a single service provider such as
SAS, Verizon, AT&T and Comcast. This may
correspond to the case of a user who is either phys-
ically moving and connecting to different 3G/4G
or 802.11 base stations while in motion, or a sta-
tionary user connecting to different base stations
within a time window.

Let us conclude this section by further dissecting the
cases above to determine which multi-sessioned time
windows might result from a user’s transition between
networks (e.g., as indicated by a series of IMAP log
entries from one network followed by a series of IMAP
log entries from another network during a time window)

versus a user switching back and forth between networks
in that time window. Let St2

t1 be a sequence of networks
to which a user is connected from t1 to t2. For instance,
if a user at t generates three consecutive IMAP log en-
tries via network B followed by one IMAP log entry via
network A, then St

t = {B,A}. We determine whether a
user performs a network transition or is contemporane-
ously connected to multiple networks at multi-sessioned
time window t based on the following proposition.

Proposition 1. Given a user’s IMAP log entries over
three consecutive time-slots from t− 1 to t+ 1, a user
is regarded as performing a network transition at multi-
sessioned time-slot t if St

t = St+1
t−1 .

For example, suppose that St−1
t−1 = {A}, St

t = {A,B},
and St+1

t+1 = {B}. Then we derive St+1
t−1 = {A,B}, and

thus St
t = St+1

t−1 , implying a network transition during
the time window. On the other hand, suppose that
St−1

t−1 = {A}, St
t = {A,B}, and St+1

t+1 = {A}. In this case,
St+1

t−1 = {A,B,A}, and thus St
t 6= St+1

t−1 , indicating the
user does not perform a network transition at t; instead
we interpret this as there being one session associated
with network A from t− 1 to t+ 1, contemporaneously
existing with another session associated with network
B during time window t.

Using Proposition 1, we observed that users performed
network transitions in only 12% of multi-sessioned time
windows in both OIT-IMAP and CS-IMAP, suggest-
ing that a user is more likely to be using multiple net-
works contemporaneously during a multi-sessioned time
window rather than being the process of transitioning
between networks.

5. EMPIRICAL INVESTIGATION OF THE
MARKOV MODEL

In this section, we develop a parsimonious discrete-
time Markov chain model of individual user transition-
ing among networks. This model can be used to de-
sign, analyze and provision protocols and services that
support mobility (e.g., Mobile-IP home and foreign
agents, or next generation services such as Mobility-
First’s GNS [21]). A model of individual user behavior
is particularly valuable, as it can be easily used to scale
up evaluation workloads. After presenting our model,
we validate how well performance measures determined
via the aggregation of individual user-level models (in
particular, signaling overhead due to user-transitioning
between networks) match those determined from the
traces.

5.1 Markov Chain Model of User-Centric Net-
work Transitioning

We develop a parsimonious discrete-time Markov chain
model of individual user network-transitioning. Our unit
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of discrete time is the time window discussed in Sec-
tion 3. The Markov chain states encode enough state
information to compute the cost of a user’s signaling at
each time-step.

• Let Xt be the number of new networks to which
a user is attached at time t, with respect to time
t-1. The first dimension of the Markov chain tracks
the value of Xt, which will be used to quantita-
tively compute signaling overhead induced as a
user transitions among networks, as we will discuss
below.

• Let Yt be the number of networks to which a user
is attached at time t. The second dimension of the
Markov chain tracks the value of Yt, which will be
used to quantitatively compute signaling overhead
induced when a user detaches from a network, as
we will discuss below.

Xt and Yt may take value {0, 1, ∗}, where ∗ denotes
two or more networks contemporaneously connected at
t; for simplicity, we do not distinguish the case of more
than two contemporaneous sessions from the case of
exactly two such sessions, since approximately 99% of
multi-sessioned time windows consist of only two network
domains in our traces, as discussed in Section 4. Our
model can be easily extended to cover the more general
case. Our Markov model thus consists of six states,

{(0, 0), (0, 1), (1, 1), (0, ∗), (1, ∗), (∗, ∗)}.

The model has a stochastic transition probability matrix
P = [pij ] where pij = Pr{(Xt, Yt) = j|(Xt−1, Yt−1) =
i} and

∑
j pij = 1. These transition probabilities will

be determined empirically from our traces.
The overall signaling cost from the user to a network-

wide mobility management service (e.g., a Mobile-IP
home agent, or the MobilityFirst GNS) on a state tran-
sition at t − 1 to t, is computed as follows. Let A be
the signaling cost generated when a user joins a new
network, and let D be the signaling cost generated when
a user departs from a network. (For simplicity, we will
not consider signaling costs in the reverse direction from
the management service to the user, although these can
be easily included in the model.)

• Explicit detach. In the case that network de-
tachment is explicitly signaled, COt is computed
by

COt = A ·Xt +D · (Yt−1 − (Yt −Xt))

• Implicit detach. In the case that network de-
tachment is implicitly signaled by attachment to a
new network, COt is computed by

COt = A ·Xt.

5.2 Trace properties
We investigate the properties of our CS-IMAP and

OIT-IMAP traces. We first extract subtraces from the
CS-IMAP and the OIT-IMAP traces and bisect each
subtrace into the training phase (also called phase 1)
and the validation phase (also called phase 2), which
will be used in model parameter estimation and model
validation, respectively.

• CS-Fall subtrace. Figures 13(a), (b) show the
time series plots of daily aggregate values of Xt and
Yt for 79 users during the Fall 2013 semester (using
IP prefix distinction). The CS-Fall subtrace’s train-
ing phase and validation phase consist of data from
September 3rd to October 25th and from October
26th to December 16th, respectively.

• OIT-Spring subtrace. Figures 13(c), (d) show
the time series plots of daily aggregate values of
Xt and Yt over 7,137 users in OIT-IMAP (using
IP prefix distinction). Unlike the CS-Fall subtrace,
Figure 13(d) shows a downward drift, particularly
during the first half of the trace, likely resulting
from the change in user population previously ob-
served in Figure 8(c). Since our goal is to model
the system in steady state, we thus only consider
the subtrace during February and March for mod-
eling, with the training phase and validation phase
consisting of data from February and March, re-
spectively. This subtrace has 5,793 users generating
IMAP logs.

For each subtrace, we derive one set of aggregate values
of Xt over all users, and another set of aggregate values
of Yt over all users (using IP prefix distinction), sampled
at 15 minutes (for CS-Fall) or at 20 minutes (for OIT-
Spring).
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Figure 14: Autocorrelation function for Xt and
Yt at different time lags (n), OIT-Spring data.

Patterns of ACFs. The sample autocorrelation
function (ACF) measures the degree of correlation be-
tween data at varying time lags (denoted by n), detects
any trends and periodicity in a data series, and is also
used to check the randomness of data. If random, the
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(a) CS-Fall. Xt. (b) CS-Fall. Yt.

(c) OIT-IMAP. Xt. (d) OIT-IMAP. Yt.

Figure 13: Time series plot of “daily” aggregate cost of X, Y over all users (using IP prefix distinction).

autocorrelation should be near zero for any and all time-
lag separations. Figure 14 plots the ACFs of values of
Xt and Yt for the OIT-Spring subtrace. Figures 14(a)
and (b) demonstrate that Xt and Yt in the OIT-Spring
subtrace have daily (n = 72) and weekly (n = 504) peri-
odicity, and drop to near zero correlation at lag 20 so
that Xt and Yt are considered independent at around ev-
ery seven hours (20·20 minutes). Similar periodicity and
seven-hour independence results were also encountered
in CS-Fall trace, but with lower amplitudes.

Testing for Stationarity. We check the subtraces
themselves for stationarity using the KPSS test [17].
The KPSS assesses the null hypothesis that data is
stationary over a range of time lags. The tests at the
1% significance level suggest that Xt and Yt data in
OIT-Spring are stationary for n > 0, but Xt data in
CS-Fall is stationary for n > 1 and Yt data in CS-Fall is
stationary for n > 4.

5.3 Model estimation and validation procedure
We use the observed relative transition rates during

the training phase to estimate the transition probabilities
of our Markov chain model. To determine how well
our Markov chain model predicts user behavior we will
compare signaling costs determined by the model with
those found in data from the validation phase. We
proceed as follows:

1. Transition probabilities for the Markov Chain
Model. Using the training phase data, we derive
the transition probabilities for our Markov Chain
model of a canonical user by counting the number
of times that U users move from state i to state
j per time-step and then normalize these counts
so that the sum of the transition counts out of
each state equals 1. This gives us our empirical
transition probability matrix, P̂ = [P̂ij ].

2. Generating a sequence of synthetic transi-
tions between states for a population of U
users. For each of the U users, we start from state
(0, 0) and generate a next state using the transi-

tion probabilities P̂ . We repeat this process for φ
time-steps (5,000) and then generate a sequence of
length φ of state transitions made by the U users.

3. Determining the signaling cost for U users.
For each time-step, we compute the aggregate sig-
naling cost of the U users, using COt as in the
previous subsection; for simplicity, we assume that
users explicitly signal network detachment, with
A = D = 1. Then we compute the distribution of
signaling cost for the U users.

4. Model validation. Once the baseline distribution
is built, we test how well our model predicts the
number of signaling messages generated per time-
step for the U users. To validate our model, we
compare the model-predicted values (whose state
transition probabilities were derived from training
phase data) with the empirical distribution found
in validation phase.

5.4 Prediction with aggregate user population
CS-Fall. Figure 15(a) plots the pdf of the model-

predicted and the observed aggregate cost over all users
for the CS-Fall data set. Figures 15(b), (c) show the Q-Q
plot of the randomly generated, independent standard
normal data (N (0, 1)) on x-axis versus the model cost
data on y-axis, and the Q-Q plot of the model cost data
on x-axis versus the observed cost data on y-axis, respec-
tively; a data point (x,y) on the Q-Q plot corresponds
to one of the quantiles of the distribution plotted on
the y-axis against the same quantile of the distribution
on the x-axis; the plot has a red reference line through
the origin with slope 1; points denoted as + should lie
roughly on this line if the x-axis and y-axis data come
from the same distribution. The linearity evidenced in
Figure 15(b) suggests that the data follows a Gaussian
distribution with slightly positive skew. Figures 15(a),
(c) confirm that the model cost and the observed cost
datasets come from a Gaussian distribution and the
model fits the observed data well, passing the chi-square
goodness of fit test with 5% significance level.
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Figure 15: CS-Fall. Aggregate cost over all users.

Recall that our model for U users aggregates the
results from U independent user-level models. Since the
ACFs of empirical values of Xt and Yt show both positive
and negative correlation at different time lags in Figure
14, it is not surprising that signaling costs match the least
well at the lower and upper extremes of the distributions
in Figures 15(a), (c). If the tail distribution of cost is of
interest (e.g., for provisioning system resources at the
95% workload maximum), interesting future work would
be to develop a model that more accurately matches
this tail behavior.
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Figure 16: OIT-Spring. pdf of aggregate cost
over 5,793 users.

OIT-Spring. Figure 16 plots the pdf of the model-
predicted and the observed aggregate cost over all users
for the OIT-Spring data set. Figure 16 shows that the
Gaussian distribution of cost predicted by the aggrega-
tion of individual user models does not fit the observed
multi-modal data, which shows three distinct peaks. Vi-
sually, Figure 16 suggests that costs might better be
modeled as a mixture of Gaussian distributions. But
what might each component of the mixture correspond
to, and how many distributions should be mixed? To
answer this question, we performed a clustering analysis.

5.5 Prediction with user clusters
Since a user’s affiliation is not known in our OIT-

IMAP traces, we partitioned the 5,793 users in OIT-
Spring subtrace into K clusters based on their signal-
ing cost, using Expectation Maximization (EM) clus-

tering [4]. Let ui be the average daily signaling cost
during the OIT-Spring’s training phase for user i, and
let zi be the latent variable for the user cluster assign-
ment for user i. We assume that ui follows a mix-
ture of K Gaussian distributions, i.e., ui|(zi = k) ∼
N (ui|µk, σk), with mixture weight τk = Pr[zi = k] sub-
ject to

∑K
k=1 τk = 1. EM clustering iteratively estimates

θ = (τ, µ1, · · · , µK , σ1, · · · , σK) while maximizing the
following likelihood function until there is convergence
of θ.

L(θ|u, z) = Pr[u, z|θ]

=
n∏

i=1

K∑
k=1

1(zi = k) · τk · N (ui|µk, σk),

where 1 is an indicator function.

Figure 18: OIT-Spring. Log likelihood of cross-
validation data for different numbers of clusters.

We use WEKA’s EM clustering implementation [22,2]
which determines the best number of clusters using 10-
fold cross-validation6. Figure 18 shows the negative log
likelihood of the cross-validation data as a function of
the number of clusters; the curve quickly decreases up
to four clusters and then flattens out, suggesting that
6In the 10-fold cross validation, the data is partitioned into
ten folds. Each of the folds is then set aside at turn as a test
set, a clustering model computed on the other nine training
sets, and the value of the log likelihood calculated for the
test set. These ten values are averaged for each alternative
number of clusters. WEKA’s EM algorithm iterates until
the change in log likelihood falls below 10−6 or 100 iterations
have elapsed by default.
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Figure 17: OIT-Spring. pdfs of aggregate cost over cluster users.

four clusters be used.

# users mean std. dev.

Light-user cluster 870 (15%) 0.25 0.19
Mid#1-user cluster 2,274 (39%) 2.30 1.16
Mid#2-user cluster 1,928 (33%) 6.57 2.65
Heavy-user cluster 721 (12%) 13.62 6.23

Table 4: OIT-Spring. Four clusters resulting
from the EM clustering.

Table 4 shows the resulting four clusters, labeled as
light-user, mid#1-user, mid#2-user, and heavy-user clus-
ters, according to the mean of ui values of each cluster’s
constituent users. The second column shows the number
(and the percentage) of users belonging to each cluster.
The third and the fourth columns show the mean and
the standard deviation of values of ui in each cluster.

Figure 17 plots the pdf of the model-predicted and the
observed aggregate cost over the users belonging to each
cluster. Figure 17 shows that the cost distributions
for the four-cluster model, with clustering based on
signaling cost, are closer to their empirically observed
distributions when compared with the single cluster (i.e.,
non-clustered) case. However, even the clustered models
do not pass the chi-square goodness-of-fit test.
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(a) Light-user cluster. (b) Heavy-user cluster.

Figure 19: OIT-Spring. Q-Q plots for aggregate
cost over manually picked 100 users.

We thus next handpicked the light-user cluster to
consist of the 100 users having the least signaling cost
(a mean cost of 0.06) and a heavy-user cluster consisting
of 100 users having the highest signaling cost (a mean

cost of 41) in OIT-Spring’s training phase. Figure 19
shows the Q-Q plots for aggregate costs for the light-
user cluster and heavy-user cluster, and show a good
fit, passing the chi-square goodness of fit test with the
5% significance level. These results suggest that proper
clustering can improve model performance in predicting
signaling costs, a topic we plan to pursue in future
research.

state (0, 0) (0,1) (0, *) (1, *) (*, *)

86%, 87% 7%, 7% 6%, 6% 0%, 0% 0%, 0%

(a) Aggregate user population.
state Light Mid#1 Mid#2 Heavy

(0, 0) 85%, 87% 85%, 86% 85%, 87% 85%, 86%
(0, 1) 7%, 7% 8%, 7% 7%, 7% 8%, 7%
(1, 1) 6%, 6% 6%, 6% 6%, 6% 6%, 6%
(0, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%
(1, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%
(∗, ∗) 0%, 0% 0%, 0% 0%, 0% 0%, 0%

(a) Clustered users.

Table 5: OIT-Spring. Model-based and empiri-
cally observed state occupancies.

Table 5 compares model-based and empirically-observed
state occupancies of OIT-Spring, showing good agree-
ment for both the aggregate population of users and
for clustered users. Each entry of the table denotes
the model-predicted value and the observed value. For
example, as shown in Table 5(a), the model predicts
that a user is offline (i.e., state (0, 0)) 86% of the time,
while we empirically observe that a user is offline 87%
of the time.

6. RELATED WORK
Numerous studies have characterized physical human

movement using empirical datasets and discussed the
impact of physical user mobility patterns on network
performance and design. Human mobility traces have
been collected from diverse access networks such as
WLAN [16, 13, 5], Bluetooth networks [5], and cellu-
lar networks [11, 19, 14]. Research using Wi-Fi access
datasets has been done in a single, physically-scoped
network domain, such as a campus or enterprise, thus
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focusing on user mobility within that limited physical
domain. In this sense, cellular network data might more
fully model human mobility (since users typically carry
their cellular phones); such cellular data, however, is
typically proprietary. But individual WiFi and cellular
traces by definition only include data from an individual
type of network, and have not considered contemporane-
ous residence within multiple networks nor transitions
among networks. More generally, we believe there is
an important distinction to be made between physical
mobility and mobility among networks, as discussed in
Section I; our work is the first to characterize and model
mobility among networks (which we have referred to as
network transitioning).

[11, 19, 6] have related human mobility patterns to
network resource use in Wi-Fi access points or cellular
network base stations. [11,19] have found that the extent
of users’ physical mobility is low and concentrated among
a small number base stations, with infrequent visits to
other base stations in that network. Those conclusions,
however, are based on physical mobility within a single
network.

7. CONCLUSION
In this paper, we performed a measurement study of

user transitioning among networks and discussed insights
and implications from the measurements. Our measure-
ment study, conducted using two sets of IMAP server
logs of populations of approximately 80 users and more
than 7,000 users, characterizes user network transition-
ing in terms of transition rates, network residency time,
and degree of contemporaneously resident network do-
mains. Based on these measurements, we also developed
and validated a parsimonious discrete time Markov chain
model of canonical user transitioning among networks.
Our measurements and models provide quantitative in-
sight into the location management signaling overhead
needed by modern and proposed name/address trans-
lation and location management protocols; our models
provide the ability to design, dimension and analyze
such systems.
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