
PROBABILISTIC MODELS FOR MOTION SEGMENTATION
IN IMAGE SEQUENCES

A Dissertation Presented

by

MANJUNATH NARAYANA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2014

School of Computer Science

c© Copyright by Manjunath Narayana 2014

All Rights Reserved

PROBABILISTIC MODELS FOR MOTION SEGMENTATION
IN IMAGE SEQUENCES

A Dissertation Presented

by

MANJUNATH NARAYANA

Approved as to style and content by:

Allen Hanson, Co-chair

Erik G. Learned-Miller, Co-chair

Rui Wang, Member

Aura Ganz, Member

Lori A. Clarke, Chair
School of Computer Science

Om.

ACKNOWLEDGMENTS

I would like to thank my advisors Allen and Erik for their guidance and support through

the years. Allen’s support during the initial years helped me find my areas of interest while

Erik’s efforts in the later years defined the final shape of my thesis. Their inputs have helped

me polish my rough work into research that may be of interest to others. Special thanks

to Erik for painstaking efforts into our publications. I have learned a lot in the process of

writing papers with him.

Thanks to my committee members Dr. Rui Wang and Dr. Aura Ganz for their feedback

on my thesis. My labmates and friends in Amherst - Dima, Gary, Moe, Andrew, Jackie,

Laura, Ben, and Partha - Thank you for your company and friendship.

The greatest thanks to my mother Girijamma for her love, support, and sacrifices. My

elder brothers Bhanu and Gopi have always been a source of support in my education and

otherwise. I am fortunate to have caring sisters-in-law Savithri and Jaya. My nephews and

niece - Suchi, Ved, Chaitu, and Raksha are the greatest source of joy.

Thanks to my in-laws Jayaram and Shobha for their support and because my higher

studies have meant time away from their daughter for them.

Most of all, thanks to my wife Aruna for being the greatest source of strength and love.

The arduous journey has been easier in her company.

Thank God, this is done.

v

ABSTRACT

PROBABILISTIC MODELS FOR MOTION SEGMENTATION
IN IMAGE SEQUENCES

FEBRUARY 2014

MANJUNATH NARAYANA

B.E., B. M. S. COLLEGE OF ENGINEERING, BANGALORE, INDIA

M.S., UNIVERSITY OF KANSAS, LAWRENCE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allen Hanson and Professor Erik G. Learned-Miller

Motion segmentation is the task of assigning a binary label to every pixel in an image

sequence specifying whether it is a moving foreground object or stationary background. It

is often an important task in many computer vision applications such as automatic surveil-

lance and tracking systems. Depending on whether the camera is stationary or moving,

different approaches are possible for segmentation. Motion segmentation when the camera

is stationary is a well studied problem with many effective algorithms and systems in use

today. In contrast, the problem of segmentation with a moving camera is much more com-

plex. In this thesis, we make contributions to the problem of motion segmentation in both

camera settings. First for the stationary camera case, we develop a probabilistic model that

intuitively combines the various aspects of the problem in a system that is easy to interpret

and extend. In most stationary camera systems, a distribution over feature values for the

background at each pixel location is learned from previous frames in the sequence and used

for classification in the current frame. These pixelwise models fail to account for the influ-

vi

ence of neighboring pixels on each other. We propose a model that by spatially spreading

the information in the pixelwise distributions better reflects the spatial influence between

pixels. Further, we show that existing algorithms that use a constant variance value for the

distributions at every pixel location in the image are inaccurate and present an alternate pix-

elwise adaptive variance method. These improvements result in a system that outperforms

all existing algorithms on a standard benchmark.

Compared to stationary camera videos, moving camera videos have fewer established

solutions for motion segmentation. One of the contributions of this thesis is the develop-

ment of a viable segmentation method that is effective on a wide range of videos and robust

to complex background settings. In moving camera videos, motion segmentation is com-

monly performed using the image plane motion of pixels, or optical flow. However, objects

that are at different depths from the camera can exhibit different optical flows, even if they

share the same real-world motion. This can cause a depth-dependent segmentation of the

scene. While such a segmentation is meaningful, it can be ineffective for the purpose of

identifying independently moving objects. Our goal is to develop a segmentation algorithm

that clusters pixels that have similar real-world motion. Our solution uses optical flow ori-

entations instead of the complete vectors and exploits the well-known property that under

translational camera motion, optical flow orientations are independent of object depth.

We introduce a non-parametric probabilistic model that automatically estimates the

number of observed independent motions and results in a labeling that is consistent with

real-world motion in the scene. Most importantly, static objects are correctly identified as

one segment even if they are at different depths. Finally, a rotation compensation algo-

rithm is proposed that can be applied to real-world videos taken with hand-held cameras.

We benchmark the system on over thirty videos from multiple data sets containing videos

taken in challenging scenarios. Our system is particularly robust on complex background

scenes containing objects at significantly different depths.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Motion segmentation with a stationary camera . 4
1.2 Motion segmentation with a moving camera . 6
1.3 Algorithms for motion segmentation . 7

1.3.1 Stationary camera algorithms and our contributions 7
1.3.2 Moving camera algorithms and our contributions 9
1.3.3 Contributions of the thesis . 10
1.3.4 Ambiguity in motion segmentation . 11

2. A COMPLETE MODEL FOR MOTION SEGMENTATION IN
STATIONARY CAMERA SYSTEMS . 13

2.1 Introduction . 13
2.2 Background likelihood . 15

2.2.1 Existing work on spatial smoothing of distributions 18

2.3 Foreground likelihood . 19
2.4 Priors . 20
2.5 Computing the posteriors - putting the components together during

inference . 23

2.5.1 Likelihood ratio-based classification in the joint domain-range
model . 24

2.5.2 Dependence of the joint domain-range model on spatial
neighborhood extent . 24

2.5.3 Model initialization and update . 25

2.6 Comparison to earlier systems . 26
2.7 Discussion . 28

viii

3. PIXELWISE ADAPTIVE VARIANCES FOR STATIONARY CAMERA
SYSTEMS . 29

3.1 Pixelwise adaptive kernel variance selection . 31

3.1.1 A single global variance value for all pixels in an image 31
3.1.2 Optimal kernel variance across different videos 32
3.1.3 Background and foreground variances . 32
3.1.4 Optimal kernel variances for classification . 33

3.2 Results . 35
3.3 Caching optimal kernel variances from the previous frame 40
3.4 Discussion . 40

4. MOTION SEGMENTATION IN MOVING CAMERA VIDEOS 44

4.1 Introduction . 44
4.2 Segmentation using optical flow orientations . 50

4.2.1 Choosing α . 53
4.2.2 Gradient descent for largest component . 54
4.2.3 Handling pixels with near-zero motion . 54

4.3 Segmentation comparisons . 54
4.4 Modeling the appearance and the prior . 55

4.4.1 Mixing a uniform distribution component . 56
4.4.2 Posterior computation . 56

4.5 A non-parametric FOF segmentation model . 57
4.6 Results . 59
4.7 More comparisons . 65

4.7.1 FOF versus flow vector-based segmentations . 65
4.7.2 Our model versus other models using flow orientations 68

4.8 Discussion . 68

5. MODELING COMPLEX CAMERA MOTIONS BY ROTATION
COMPENSATION . 70

5.1 Introduction . 70
5.2 Modeling and compensating for the flow due to camera rotation 72
5.3 Synthetic examples . 73
5.4 Real video examples . 81
5.5 Test for the presence of rotation . 88
5.6 Results . 88
5.7 Conclusions . 95

6. CONCLUSIONS AND FUTURE WORK . 96

APPENDIX: ADDITIONAL FIGURES . 98

ix

BIBLIOGRAPHY . 102

x

LIST OF TABLES

Table Page

2.1 F-measure comparison between various existing algorithms on I2R data.
Modeling the spatial influence of pixels (jKDE and DFB) significantly
improves accuracy. MoG and ACMMM03 results are as reported by
Li et al. [41]. For KDE, jKDE, and DFB, we use color dimension
covariance value of 45/4 for both the background and foreground
models. For jKDE and DFB, we use spatial dimension covariance
values of 3/4 and 12/4 for the background and foreground models
respectively. 27

3.1 F-measure for different kernel variances. Using our selection procedure (
Column 6) results in the highest accuracy. 37

3.2 Parameter values for DFBA implementation. 38

3.3 F-measure on I2R data. DFBA significantly outperforms other color
feature-based methods and improves on SILTP texture features on
most videos. Blue color indicates performance better than SILTP. 39

4.1 Results. F-measure value for all videos in three data sets using FOF (no
color modeling) . 63

4.2 Results. F-measure value for all videos in three data sets using FOF along
with color and prior modeling . 64

5.1 Results. Comparison of FOF rotation compensation to Yamaguchi rotation
compensation . 90

5.2 Results. F-measure values for all videos for different models using only
FOF segmentation. 92

5.3 Results: F-measure values for all videos for the different models using
FOF segmentation along with color and prior information. 93

5.4 Results - summarized . Average F-measure value across videos in each
data set for the different models. 94

xi

LIST OF FIGURES

Figure Page

1.1 The camouflaged insect is very difficult to spot. If it were moving, it
would be much easier to detect and identify. image source:
http:/www.indiastudychannel.com/resources/98707-Camouflage-The-
Invisible-Illusion.aspx
. 2

1.2 Figures (a) and (c) shows subjects with lights attached to their joints.
Figures (b) and (d) show only the light points which were the input for
various studies that show that humans can identify the subjects and
their actions by looking at the motion of these points alone. image
source: Johansson [33] . 3

1.3 Ullman [73] showed that humans could infer the cylindrical surface from
the motion of the projected dots on an image. image source : Caudek
and Rubin [7] . 3

1.4 A typical pipeline for video surveillance and analysis . 4

1.5 Figure (a) shows the input frame that is being processed. Figure (b) shows
the result of a motion segmentation algorithm with white pixels
corresponding to pixels that belong to moving objects. Removing
small regions which are likely to be noise results in a relatively cleaner
result in (c). Figure (d) visualizes the detected objects with bounding
boxes. The detected objects may be tracked across multiple frames,
visualized using dotted lines. 5

1.6 The first row shows a stationary camera example and the second row
shows a moving camera example. Figures (a) and (d) are the previous
frames. Figures (b) and (e) correspond to the current frame. Figure (c)
is the difference between (a) and (b) with pixels that have a difference
value larger than 10 colored in white. Most background pixels for the
stationary camera case have a difference value less than 10. Figure (f)
is the corresponding difference between (d) and (e). For the moving
camera case, many background pixels have a difference value larger
than 10. 7

1.7 Illustration of optical flow orientations. (a) A forest scene with a moving
person (from Sintel [6] data set). The person is holding on to a
bamboo tree, which moves with the person. There are also a few
leaves falling in the scene. (b) Visualization of the optical flow vectors
(using code from [63]). (c) Orientation of the optical flow vectors.
The optical flow vectors and magnitudes on the trees depend on the
distance of the trees from the camera. The orientations are not
depth-dependent and can much more reliably predict that all the trees
are part of the coherently moving background entity. 10

xii

2.1 Influence of neighboring pixels on each other is modeled by spreading
information spatially. Figure (a) shows some example likelihoods for
each pixel in a single-dimensional (row) image. The distributions
shown below each pixel are the estimated background likelihoods. The
vertical axis corresponds to color values which are visualized in the
color map on the left side of the image. The horizontal axis
corresponds to the probability of the corresponding color. Figure (b)
shows the smoothed likelihood at each pixel, which is a weighted sum
of the likelihoods in the pixel’s neighborhood. The effect of smoothing
is clearly visible in the first pixel. The distribution in the first pixel
clearly influences the distributions at the second and third pixels. The
distance-dependent nature of the weights results in the first pixel
influencing the third pixel less than it does the second pixel. 16

2.2 Modeling the likelihoods using pixel data samples and KDE. Figure (a)
shows the colors at each pixel. The corresponding color and its
location with respect to the vertical color axis is shown under each
pixel. Figure (b) shows the likelihood at each pixel estimated using
KDE with a Gaussian kernel. Figure (c) shows the effect of spatial
smoothing of the KDE-based likelihoods. Again, the illustration uses a
one-dimensional row image in which a pixel’s color is also represented
in one dimension. It is straightforward to extend the example to
two-dimensional spatial coordinates and three-dimensional color
space. 17

2.3 Illustration of computation of the spatially dependent prior. The image
from the previous frame is shown in (a). The background probabilities
in (b) are first smoothed with a Gaussian filter to allow for some
amount of object motion in the scene. The smoothed probabilities are
shown in (c), from which the background prior (d), the foreground
prior (e), and the unseen foreground prior (f) are computed. The
mapping from color to probability values is given in (g). We use
equivalent equations for the foreground and unseen foreground priors
which result in (e) and (f) being identical. 22

2.4 Sheikh and Shah normalization equation leads to a dependency between
neighborhood size and likelihood values. Our normalization does
not. 25

3.1 Two video sequences classified using increasing values of spatial kernel
variance. Column 1: Original image. Column 2: σBS = 1/4. Column
3: σBS = 3/4. Column 4: σBS = 12/4. With a low value for spatial
variance (b and f), many background pixels are misclassified as
foreground. Increasing the spatial variance helps correct these errors,
but can lead to foreground pixels being incorrectly classified as
background (for example, the person’s leg in d and the persons in h are
lost). 32

3.2 1-dimensional example shows the effect of the kernel variance in
classification. Using a higher or lower variance at point ‘a’ compared
to point ‘b’ can cause misclassification of the intermediate point
between them. 34

xiii

3.3 (a) and (b) Spatial uncertainty in the central part of the background. (c)
Small uniform variance results in low likelihoods for pixels that have
moved. (d) Large uniform variance results in higher likelihoods of the
moved pixels at the expense of lowering the likelihoods of stationary
pixels. (e) Adaptive variance results in high likelihoods for both the
moved and stationary pixels. 35

3.4 Color uncertainty in the central part of the background is best modeled by
using adaptive kernel variances. (c) Small uniform variance results in
low likelihoods for pixels that have changed color. (d) Large uniform
variance results in higher likelihoods of the altered pixels at the
expense of lowering the likelihoods of other pixels. (e) Adaptive
variance results in high likelihoods for both kinds of pixels. 35

3.5 Qualitative comparison of algorithms on image results reported in Liao et
al. [41]. 42

3.6 Comparison of DFBA and SILTP results. Column 1: Original video.
Column 2: SILTP [41]. Column 3: DFBA-lab+siltp. 43

4.1 (a) A forest scene with a moving person (from the Sintel [6] data set). The
person is holding on to a bamboo tree, which moves with the person.
There are also a few leaves falling in the scene. (b) Visualization of the
ground truth optical flow vectors (using code from [63]). (c)
Magnitudes of the optical flow vectors. (d) Orientation of the optical
flow vectors. The optical flow vectors and magnitudes on the trees
depend on the distance of the trees from the camera. The orientations
are not depth-dependent and can much more reliably predict that all
the trees are part of the coherently moving background entity. 47

4.2 A sample set from the orientation fields that are used in our graphical
model. Above each field are the motion parameters (tx, ty, tz) that
cause it. The colorbar on the right shows the mapping from color
values to corresponding angles in degrees. 51

4.3 A mixture model for segmentation based on optical flow orientations.
Notation: Variables inside circles are random variables and variables
inside squares are deterministic. The dark colored dot represents a
deterministic function, the shaded circle represents an observed
variable and small shaded circles represent hyperparameters. 51

4.4 Comparison of segmentation algorithms. The rows correspond to the
original images, spectral clustering [50], and our FOF segmentation.
The tracked keypoints used in spectral clustering are shown as squares
with their colors representing the cluster memberships. Despite the use
of a post-processing merge step in the implementation, in many
images, spectral clustering is not certain about some background
keypoints (white squares) and in cases with large depth disparity, the
background is broken into smaller sections. Our method avoids these
errors and also results in a dense labeling of the image. The last
column is an example of our method failing because the car happens to
move consistently with the FOF due to camera motion. Comparisons
to several other methods are presented in Section 4.7.1. 55

4.5 Non-parametric mixture model for segmentation based on optical flow
orientations. 58

xiv

4.6 Sample results from four videos. The columns are the original image, the
observed FOF, FOF segmentation results, and results from combining
FOF with color and prior models, respectively. FOF is very accurate
when the foreground objects’ FOFs are easily distinguishable from the
camera motion’s FOF. When the observed FOF cannot distinguish
between the foreground and the background, FOF segmentation is not
accurate. Color and prior information can help in these cases (row 2 in
(a)). If the foreground object is not obvious from the FOF for a long
duration, the color and prior too are unable to help recover them after
some time (row 3 in (b) and (d)). In the new videos(c and d), camera
rotation is a challenge (row 3 in (c) and row 2 in (d)). Occasionally,
the largest detected segment is the foreground object, which gets
labeled as background (row 3 in (c)). Using a prior helps reduce this
error as well as errors due to rotation. 61

4.7 Comparison of FOF segmentation to several other optical flow
vector-based methods. 66

4.8 Comparison of our FOF model to other methods using orientation fields.
. 69

5.1 Rotation compensation algorithm illustration 1. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green
= 50) and arrows showing the optical flow due to camera motion (there
are no moving objects in this scene). (f) observed orientation field
(FOF) due to flow in (a). The presence of rotation in the camera makes
orientations depth dependent. (b) Dominant translation FOF (without
considering any rotation compensation). (g) Difference between
observed FOF and dominant translation FOF. Depth-dependent nature
of flow orientations in the presence of camera rotation makes them
less ideal for use as a basis for segmentation. Although all objects are
stationary, many regions in the difference image exhibit high
difference values (light blue). Dark blue corresponds to a value of 0.
(c) Dominant rotation flow estimated using the rotation compensation
algorithm in Equation 5.3. (h) FOF corresponding to the estimated
rotation flow in (c). (d) Observed flow (a) after subtracting rotation
flow (c) from it. (i) FOF corresponding to the rotation compensated
flow in (d). (e) Dominant translation FOF considering the rotation
compensation using Equation 5.3. This is significantly different from
(b). (j) Difference between dominant rotation compensated translation
FOF and rotation compensated observed FOF. (j) shows a low
difference value for the entire scene, which is a significant
improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene. 76

xv

5.2 Rotation compensation algorithm illustration 2. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green
= 50) and arrows showing the optical flow due to camera motion (there
are no moving objects in this scene) (f) observed orientation field
(FOF) due to flow in (a). The presence of rotation in the camera makes
orientations depth dependent. (b) Dominant translation FOF (without
considering any rotation compensation) (g) Difference between
observed FOF and dominant translation FOF. Depth-dependent nature
of flow orientations in the presence of camera rotation makes them
less ideal for use as a basis for segmentation. Although all objects are
stationary, many regions in the difference image exhibit high
difference values (light blue). Dark blue corresponds to a value of 0.
(c) Dominant rotation flow estimated using the rotation compensation
algorithm in Equation 5.3. (h) FOF corresponding to the estimated
rotation flow in (c). (d) Observed flow (a) after subtracting rotation
flow (c) from it. (i) FOF corresponding to the rotation compensated
flow in (d). (e) Dominant translation FOF considering the rotation
compensation using Equation 5.3. This is significantly different from
(b). (j) Difference between dominant rotation compensated translation
FOF and rotation compensated observed FOF. (j) shows a low
difference value for the entire scene, which is a significant
improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene. 77

5.3 Rotation compensation algorithm illustration 3. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green
= 50) and arrows showing the optical flow due to camera motion (there
are no moving objects in this scene) (f) observed orientation field
(FOF) due to flow in (a). The presence of rotation in the camera makes
orientations depth dependent. (b) Dominant translation FOF (without
considering any rotation compensation) (g) Difference between
observed FOF and dominant translation FOF. Depth-dependent nature
of flow orientations in the presence of camera rotation makes them
less ideal for use as a basis for segmentation. Although all objects are
stationary, many regions in the difference image exhibit high
difference values (light blue). Dark blue corresponds to a value of 0.
(c) Dominant rotation flow estimated using the rotation compensation
algorithm in Equation 5.3. (h) FOF corresponding to the estimated
rotation flow in (c). (d) Observed flow (a) after subtracting rotation
flow (c) from it. (i) FOF corresponding to the rotation compensated
flow in (d). (e) Dominant translation FOF considering the rotation
compensation using Equation 5.3. This is significantly different from
(b). (j) Difference between dominant rotation compensated translation
FOF and rotation compensated observed FOF. (j) shows a low
difference value for the entire scene, which is a significant
improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene. 78

xvi

5.4 Rotation compensation algorithm illustration 4. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green
= 50) and arrows showing the optical flow due to camera motion (there
are no moving objects in this scene) (f) observed orientation field
(FOF) due to flow in (a). The presence of rotation in the camera makes
orientations depth dependent. (b) Dominant translation FOF (without
considering any rotation compensation) (g) Difference between
observed FOF and dominant translation FOF. Depth-dependent nature
of flow orientations in the presence of camera rotation makes them
less ideal for use as a basis for segmentation. Although all objects are
stationary, many regions in the difference image exhibit high
difference values (light blue). Dark blue corresponds to a value of 0.
(c) Dominant rotation flow estimated using the rotation compensation
algorithm in Equation 5.3. (h) FOF corresponding to the estimated
rotation flow in (c). (d) Observed flow (a) after subtracting rotation
flow (c) from it. (i) FOF corresponding to the rotation compensated
flow in (d). (e) Dominant translation FOF considering the rotation
compensation using Equation 5.3. This is significantly different from
(b). (j) Difference between dominant rotation compensated translation
FOF and rotation compensated observed FOF. (j) shows a low
difference value for the entire scene, which is a significant
improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene. 79

5.5 Rotation compensation failure illustration 1. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green
= 50) and arrows showing the optical flow due to camera motion (there
are no moving objects in this scene) (f) observed orientation field
(FOF) due to flow in (a). The presence of rotation in the camera makes
orientations depth dependent. (b) Dominant translation FOF (without
considering any rotation compensation). In this case, the true
translation FOF is a radial FOF. Large amount of rotation causes the
gradient descent to return an unreliable initial point. (g) Difference
between observed FOF and dominant translation FOF. (c) Dominant
rotation flow estimated using the rotation compensation algorithm in
Equation 5.3. (h) FOF corresponding to the estimated rotation flow in
(c). (d) Observed flow (a) after subtracting rotation flow (c) from it. (i)
FOF corresponding to the rotation compensated flow in (d). (e)
Dominant translation FOF considering the rotation compensation
using Equation 5.3. (j) Difference between dominant rotation
compensated translation FOF and rotation compensated observed
FOF. This is an failure example. Due to a very bad initial estimate for
translation FOF, a reliable decomposition into translation and rotation
was not possible. The resulting difference image (j) is not any better
than the initial difference image (g). 80

xvii

5.6 Rotation compensation real examples - cars7 video. (a) Observed flow -
The camera motion is a counter-clockwise rotation with translation to
the left. (b) Observed FOF - camera rotation is evident. (c)
Segmentation result based on the observed FOF (no rotation
compensation). (d) Segmentation labels returned by the model (no
rotation compensation). (e) Estimated rotation flow using our rotation
compensation algorithm. (f) Observed flow after rotation flow has
been removed from it. (g) FOF corresponding to the rotation
compensated flow. (h) Segmentation output resulting from the rotation
compensated FOF. (i) Segmentation labels returned by the model for
the rotation compensated flow orientations. 82

5.7 Rotation compensation real examples - parachute video. (a) Observed
flow - The camera motion is counter-clockwise rotation along with a
translation to the right. (b) Observed FOF - camera rotation is evident.
(c) Segmentation result based on the observed FOF (no rotation
compensation). (d) Segmentation labels returned by the model (no
rotation compensation). (e) Estimated rotation flow using our rotation
compensation algorithm. (f) Observed flow after rotation flow has
been removed from it. (g) FOF corresponding to the rotation
compensated flow. (h) Segmentation output resulting from the rotation
compensated FOF. (i) Segmentation labels returned by the model for
the rotation compensated flow orientations. 83

5.8 Rotation compensation real examples - forest video. (a) Observed flow -
The camera motion is mainly translation to the right and downwards
along with a slight rotation. (b) Observed FOF - camera rotation is
evident. (c) Segmentation result based on the observed FOF (no
rotation compensation). (d) Segmentation labels returned by the model
(no rotation compensation). (e) Estimated rotation flow using our
rotation compensation algorithm. (f) Observed flow after rotation flow
has been removed from it. (g) FOF corresponding to the rotation
compensated flow. (h) Segmentation output resulting from the rotation
compensated FOF. (i) Segmentation labels returned by the model for
the rotation compensated flow orientations. 84

5.9 Rotation compensation real examples - traffic video. (a) Observed flow -
The camera motion is mainly translation downwards with a slight
rotation. (b) Observed FOF - camera rotation is evident. (c)
Segmentation result based on the observed FOF (no rotation
compensation). (d) Segmentation labels returned by the model (no
rotation compensation). (e) Estimated rotation flow using our rotation
compensation algorithm. (f) Observed flow after rotation flow has
been removed from it. (g) FOF corresponding to the rotation
compensated flow. (h) Segmentation output resulting from the rotation
compensated FOF. (i) Segmentation labels returned by the model for
the rotation compensated flow orientations. 85

xviii

5.10 Rotation compensation real example (failure case) - cars10 video. (a)
Observed flow - The camera motion is pure translation, upwards and
to the left. (b) Observed FOF - there is evidently no camera rotation in
this frame. (c) Segmentation result based on the observed FOF (no
rotation compensation). (d) Segmentation labels returned by the model
(no rotation compensation). (e) Estimated rotation flow using our
rotation compensation algorithm. (f) Observed flow after rotation flow
has been removed from it. (g) FOF corresponding to the rotation
compensated flow. (h) Segmentation output resulting from the rotation
compensated FOF. The flow orientation observations on the slowly
moving bus become indistinguishable from the background. (i)
Segmentation labels returned by the model for the rotation
compensated flow orientations. 86

5.11 Rotation compensation real example (failure case) - cars7 video. (a)
Observed flow - the camera motion is pure translation, to the left and
slightly downwards. (b) Observed FOF - there is evidently no camera
rotation in this frame. (c) Segmentation result based on the observed
FOF (no rotation compensation). (d) Segmentation labels returned by
the model (no rotation compensation). (e) Estimated rotation flow
using our rotation compensation algorithm. (f) Observed flow after
rotation flow has been removed from it. (g) FOF corresponding to the
rotation compensated flow. (h) Segmentation output resulting from the
rotation compensated FOF. The flow orientation observations on the
moving car become indistinguishable from the background. (i)
Segmentation labels returned by the model for the rotation
compensated flow orientations . 87

A.1 The complete set of orientation fields used in our model. The motion
parameters responsible for each field are given within each image. The
color bar on the bottom right of the figure shows the mapping from
angles in degrees to color values in the images. 99

A.2 Flows due to translation and rotation of a camera are commutative-
example 1. (a) A synthetic scene with color indicating depth of object
from the camera (dark blue = 0, green = 50). (b) Optical flow samples
due to composite camera motion (parameters listed). (c) Optical flow
due to translation alone. (d) Optical flow due to rotation alone. (e)
Subtracting rotation flow (d) from composite flow (b) returns
translation flow. (f) Orientation field corresponding to the composite
flow in (b). (g) Orientation field corresponding to the translation flow
in (c). (h) Orientation field corresponding to the rotation flow in (d).
(i) Orientation field corresponding to the flow in (e) when rotation flow
is subtracted from the composite flow. Clearly, (e) and (i), which are
identical to (c) and (g) respectively show that translational and
rotational flows are commutative. 100

xix

A.3 Flows due to translation and rotation of a camera are commutative-
example 2. (a) A synthetic scene with color indicating depth of object
from the camera (dark blue = 0, green = 50). (b) Optical flow samples
due to composite camera motion (parameters listed). (c) Optical flow
due to translation alone. (d) Optical flow due to rotation alone. (e)
Subtracting rotation flow (d) from composite flow (b) returns
translation flow. (f) Orientation field corresponding to the composite
flow in (b). (g) Orientation field corresponding to the translation flow
in (c). (h) Orientation field corresponding to the rotation flow in (d).
(i) Orientation field corresponding to the flow in (e) when rotation flow
is subtracted from the composite flow. Clearly, (e) and (i), which are
identical to (c) and (g) respectively show that translational and
rotational flows are commutative. 101

xx

CHAPTER 1

INTRODUCTION

Motion is an important source of information in the world. The ability to detect motion

is one of the most important functions performed in biological vision systems [3]. This

ability in animals can be critical for their survival in the wild. For example, being able

to detect and identify biological motion can help an animal recognize that a predator is

approaching [66]. In many cases, otherwise ambiguous stimuli can be better understood

when motion is considered. For instance, as shown in Figure 1.1, a well camouflaged

animal can be mistaken for the foliage that it imitates and can be difficult to detect unless

it starts moving. Because moving stimuli often represent biologically important objects,

visual processing in animals has evolved to handle motion effectively [15].

The ability of animals to perceive motion has been the subject of much research [33,

14, 42, 12, 13, 66]. Motion perception studies have shown that humans are able to reli-

ably recognize the animal subjects simply by observing the motion of the subjects’ joints.

Visualization of the motion of joints by the use of lights on the joints of subjects who are

otherwise invisible due to dark clothing in a dark environment [33](see Figure 1.2) has

led to several studies that highlight the importance of motion analysis in human vision

systems [14, 42]. Ullman [73] showed that dots on a cylinder when projected on an image

appeared random to observers when static, but were perceived as a cylinder when set in mo-

tion (Figure 1.3). Wallach and O’Connell [74] demonstrated that when unfamiliar objects

were rotated behind a translucent screen and their shadows cast on the screen, viewers were

able to describe the objects in motion. The static shadows were not recognizable, which

shows the importance of motion segmentation and processing. Research from cognitive

science has shown that the human visual system performs segmentation by combining mo-

tion cues with spatial information [20, 51]. Motion is hence a very important factor in our

visual perception of the world around us.

Akin to animal vision systems, motion is very important in computer vision systems as

well. The same cues that biological visual systems derive from motion are also useful in

artificial vision systems. Many vision applications are built using motion processing as an

1

Figure 1.1. The camouflaged insect is very difficult to spot. If it were
moving, it would be much easier to detect and identify. image source:
http:/www.indiastudychannel.com/resources/98707-Camouflage-The-Invisible-
Illusion.aspx

integral part of larger systems. One of the most common examples of motion processing

is the grouping of image pixels into regions based on their motion. These regions often

correspond to the different objects in the scene and such grouping can help in higher level

tasks such as identifying the objects.

In this thesis, we address the problem of labeling of each pixel in an image sequence as

belonging to either moving or stationary objects in the scene, or motion segmentation. Such

a labeling is useful because objects that have moved tend to be involved in some interesting

activity. Motion segmentation can help in vision systems by allowing computationally

expensive algorithms to be applied to a much smaller region within an image instead of the

entire image.

Figure 1.4 illustrates a typical pipeline in a video surveillance system that uses motion

segmentation. An input video stream is typically processed using motion segmentation

algorithms to identify potential moving regions in the scene. Subsequently, these mov-

ing regions may be processed to remove false detections and to classify the objects that

are present in the genuinely moving regions. These objects may then be tracked and fur-

ther analyzed to recognize the activities being performed. Although visualized as a linear

pipeline, there is often feedback and significant interaction between the modules in real

implementations of such systems. Processing of other cues such as color, texture, shape,

etc. is also extremely useful in vision systems but not shown in the simple pipeline.

An illustration of the input and output at the various stages is given in Figure 1.5.

An input frame from the video sequence after processing yields a mask which marks the

2

Figure 1.2. Figures (a) and (c) shows subjects with lights attached to their joints. Figures
(b) and (d) show only the light points which were the input for various studies that show
that humans can identify the subjects and their actions by looking at the motion of these
points alone. image source: Johansson [33]

Figure 1.3. Ullman [73] showed that humans could infer the cylindrical surface from the
motion of the projected dots on an image. image source : Caudek and Rubin [7]

3

Figure 1.4. A typical pipeline for video surveillance and analysis

moving regions in the image. Small moving regions are removed during the clean-up phase

(c). Various objects may then be identified and marked by bounding boxes while tracking

them across many frames (d).

1.1 Motion segmentation with a stationary camera
Motion segmentation for stationary cameras is a well-studied problem with many good

solutions. The most common application of motion segmentation is in visual surveillance

systems. Motion segmentation followed by selective processing, storage of information,

and automatic analysis has led to the ubiquitous use of cameras for surveillance. Although

the emphasis of this thesis is not on visual surveillance, a short discussion of several surveil-

lance systems highlights the application of motion segmentation in many widely deployed

vision systems.

4

Figure 1.5. Figure (a) shows the input frame that is being processed. Figure (b) shows the
result of a motion segmentation algorithm with white pixels corresponding to pixels that
belong to moving objects. Removing small regions which are likely to be noise results in
a relatively cleaner result in (c). Figure (d) visualizes the detected objects with bounding
boxes. The detected objects may be tracked across multiple frames, visualized using dotted
lines.

Pfinder [77] is a real-time system for tracking people and analyzing their behavior.

Designed for analyzing a single person at a time with a stationary camera setup, the system

uses motion segmentation to identify image regions on which detailed analysis is performed

to locate the person and his/her body parts. More complex applications such as recognizing

the gestures of the detected persons are enabled by the system.

W4 [24] is a surveillance system for detecting and tracking people to monitor their

activities in an outdoor environment. Motion segmentation is performed by building a

statistical model of the scene at each pixel. Moving regions are then classified into “people”

or “other” objects for subsequent tracking, body pose estimation, and detection of objects

that people may be carrying. Hydra [23] extends W4 to detect and analyze regions that

consist of multiple people when they appear in a group.

Visual Surveillance and Monitoring (VSAM) [9] is another surveillance system and a

multi-year testbed consisting of multiple cameras in different locations that are analyzed in

a single control room on different monitors. Moving regions are classified into “people”

and “vehicles”. Actions such as “appearing”, “moving”, and “stopped” and interactions

between objects such as “moving away from” and ”moving towards” are then automatically

determined.

The ADVISOR system [61] is a surveillance system designed for analyzing crowd be-

havior in train stations with the aim of using such analysis to enhance public safety. IBM

S3 system [60] describes a system architecture with a focus on the storage and management

of the video data for the purpose of behavior analysis and event-based retrieval.

5

More recent extensions to the above systems include multiple cameras which coordi-

nate amongst themselves to achieve surveillance over a larger geographic area. As part of

the VSAM project, extensions to multiple-camera systems are discussed by Collins et al.

[10]. A system for surveillance in parking lots using a network of cameras is described by

Micheloni et al. [44]. Nguyen et al. [49] discuss coordination between cameras for an in-

door surveillance application. Algorithms for detection and tracking of objects in a network

of cameras require special considerations. Some approaches for multi-camera systems are

presented by Javed et al. [31, 30].

Thus, we see that a large number of systems have been developed and deployed for

video analysis for stationary camera settings. Most existing systems use motion segmenta-

tion in some form to achieve the eventual goals of object identification and activity analysis.

1.2 Motion segmentation with a moving camera
Motion segmentation when the camera is moving is much more challenging technically.

In comparison with stationary cameras, the main challenge with moving cameras is illus-

trated in Figure 1.6. Two subsequent frames and the difference between the intensities of

the two frames at each pixel are shown in the figure. The first row is an example from a sta-

tionary camera video and the second row is from a moving camera video. We can see from

the difference images that for the stationary camera, most of the background pixels exhibit

very little change from one frame to the next. This observation is the basis for building

statistical models for the background based on observed pixel intensities or color values.

Pixels that deviate from the constructed statistical model at each pixel location are strong

candidates for moving pixels. On the contrary, with a moving camera, both the background

and moving objects exhibit a high difference in intensity values from one frame to the next.

Before a statistical model can be built for each pixel, the two consecutive frames must be

adjusted so that the background pixels in both frames are in correspondence [29, 25, 55].

This process is not straightforward and often not reliable enough to obtain a good model

for the background.

Compared to the large number of deployed systems with stationary cameras, automatic

moving camera systems are far less pervasive. Effective methods for motion segmentation

for a moving camera can perhaps unlock the potential for many useful applications of

the future. Moving camera segmentation algorithms can be useful in many interesting

6

Figure 1.6. The first row shows a stationary camera example and the second row shows a
moving camera example. Figures (a) and (d) are the previous frames. Figures (b) and (e)
correspond to the current frame. Figure (c) is the difference between (a) and (b) with pixels
that have a difference value larger than 10 colored in white. Most background pixels for the
stationary camera case have a difference value less than 10. Figure (f) is the corresponding
difference between (d) and (e). For the moving camera case, many background pixels have
a difference value larger than 10.

platforms such as hand-held cameras, cameras on autonomous robots, and cameras on

automobiles.

1.3 Algorithms for motion segmentation
Depending on whether the camera is stationary or moving, different algorithms may be

used for motion segmentation. In this thesis, we present novel and effective algorithms for

motion segmentation for both stationary and moving camera settings.

1.3.1 Stationary camera algorithms and our contributions
For a stationary camera such as a stationary surveillance camera in a building, one may

assume that all the points on non-moving objects in the scene always maps to the same

pixel location in the captured image for every frame in the video. Also called background

modeling, the problem is extensively studied in the literature [69, 62, 17, 81, 40, 58, 26].

In its early implementations, background modeling was a process of building a model for

the background of a video with a stationary camera, and identifying pixels that did not

7

conform well to this model. The pixels that were not well-described by the background

model were assumed to be moving objects. Many systems today maintain models for the

moving objects or foreground as well as the background, and these models compete to

explain the pixels in a video. If the foreground model explains the pixels better, they are

considered foreground. Otherwise they are considered background. In the first part of this

thesis, we argue that the logical endpoint of this evolution is to simply use Bayes’ rule to

classify pixels. In particular, it is essential to have a background likelihood, a foreground

likelihood, and a prior at each pixel. A simple application of Bayes’ rule then gives a

posterior probability over the label.

The only remaining question is the quality of the component models: the background

likelihood, the foreground likelihood, and the prior. We describe a model for the likeli-

hoods that is built by using not only the past observations at a given pixel location, but by

also including observations in a spatial neighborhood around the location. This enables

us to model the influence between neighboring pixels and is an improvement over earlier

pixelwise models that do not allow for such influence. Further we use a spatially dependent

prior for the background and foreground. The background and foreground labels from the

previous frame, after spatial smoothing to account for movement of objects, are used to

build the prior for the current frame.

These components are, by themselves, not novel aspects in background modeling. As

we will show, many existing systems account for these aspects in different ways. We argue

that separating these components, as suggested in this thesis, yields a very simple and

effective model. Our intuitive description also isolates the model components from the

classification or inference step. Improvements to each model component can be carried

out without any changes to the inference or other components. The various components

can hence be modeled effectively and their impact on the overall system understood more

easily.

We discuss one such improvement in the likelihood estimation. We show that the use

of a constant variance for all pixels in the image is not optimal and present a pixelwise

adaptive variance method that results in higher segmentation accuracy. Our improvements

result in a system that outperforms all existing algorithms on a standard benchmark data

set.

8

1.3.2 Moving camera algorithms and our contributions
Motion segmentation with a moving camera is a more challenging problem. It is also

more interesting because moving camera motion segmentation algorithms can be applied in

a wide array of applications including robotics, automobile camera systems, and hand-held

video cameras. Simple pixelwise models from stationary camera algorithms are inadequate

for moving camera videos because both stationary and moving objects in the scene map

to different pixel locations in each frame. For moving cameras, a common approach for

motion segmentation involves computing the velocities of pixels in the image plane or

optical flow [27]. Segmentation may be performed by clustering pixels based on the optical

flow vectors. An alternative to using optical flow estimates is to track interesting points in

the images and use long term trajectory information to model the motion observed in the

background pixels. Several approaches combine motion information with color appearance

information to perform motion segmentation. Chapter 4 describes these algorithms and

their shortcomings.

We propose to perform motion segmentation with two significant differences from ex-

isting approaches. Firstly, we use the orientation of the optical flow vectors, instead of the

complete vectors or their magnitudes. For camera translation, the orientation of optical

flow vectors are invariant to the depth of the objects in the scene. Thus, in comparison to

object depth-dependent optical flow magnitudes which could result in characterizing the

background objects at different depths as separate entities, the optical flow orientations re-

sult in a more robust representation. This is illustrated in Figure 1.7. Secondly, we consider

the 3-d motion of the camera and make use of the strong constraints that motion enforces

on optical flow orientations.

In order to perform segmentation, we estimate the 3-d motions that best explain the ob-

served orientations in the image sequence. The 3-d motion that best explains a majority of

the pixels in the image is considered the camera’s motion and the pixels that are consistent

with the camera motion are classified as background or non-moving. We introduce a prob-

abilistic model that automatically estimates the number of independently moving objects,

computes the motion parameters for the camera as well as the moving objects, and labels

the image pixels as either background or foreground.

The assumption of pure translation motion in the camera is often violated in real videos.

To address the issue of rotation in the camera, we present an algorithm for rotation com-

pensation. Camera rotation is handled by using the property that the optical flow due to a

camera’s rotation does not depend on the scene structure. Similarly to optical flow orienta-

9

Figure 1.7. Illustration of optical flow orientations. (a) A forest scene with a moving
person (from Sintel [6] data set). The person is holding on to a bamboo tree, which moves
with the person. There are also a few leaves falling in the scene. (b) Visualization of the
optical flow vectors (using code from [63]). (c) Orientation of the optical flow vectors. The
optical flow vectors and magnitudes on the trees depend on the distance of the trees from
the camera. The orientations are not depth-dependent and can much more reliably predict
that all the trees are part of the coherently moving background entity.

tions for camera translation, optical flow vectors due to camera rotation are independent of

the depth of objects in the scene. Given the camera’s rotation parameters, rotational optical

flow vectors can be predicted exactly. We iteratively estimate the translation and rotation

parameters such that the error between the translational flow orientations and the orienta-

tions of the observed flow vectors, after the rotational flow components have been removed

from them, is minimized. With the rotation component removed, the assumption of pure

translation holds good and results in reliable segmentation in videos where the original

algorithm failed due to camera rotation.

Our system is shown to work on more than thirty videos from multiple benchmark data

sets. Ours is the first system to report results on such a large set of videos. In comparison

to existing approaches, our system does not require any special initialization step to detect

objects in the first frame or motion information from multiple frames to achieve reliable

segmentation. The system presents a viable approach for motion segmentation in complex

background scenarios.

1.3.3 Contributions of the thesis
The main contributions of this thesis are:

1. Description of a probabilistic background model that intuitively combines location-

specific priors and spatially smoothed appearance likelihoods for the background and

foreground.

10

2. Improvements to stationary camera motion segmentation algorithms by using pixel-

wise adaptive kernel variances resulting in the state of the art accuracy on benchmark

data.

3. Development of an accurate moving camera motion segmentation algorithm that ad-

dresses current challenges in segmentation by using optical flow orientations in a

non-parametric probabilistic model.

4. Introduction of a rotation compensation algorithm that enables the application of the

segmentation algorithm to videos that contain both translation and rotation motion of

the camera.

The thesis is organized as follows. Chapter 2 discusses algorithms for motion segmen-

tation in a stationary camera setting and our complete probabilistic model where the various

components are intuitively separated. In chapter 3, we address the important problem of

variance selection for background modeling. Chapter 4 describes our model that uses op-

tical flow orientations for motion segmentation in moving camera systems. Modeling of

camera rotation for the purpose of segmentation is discussed in Chapter 5. We conclude

with a discussion in Chapter 6.

1.3.4 Ambiguity in motion segmentation
Although motion segmentation is defined as the labeling of pixels as either moving or

stationary, in many scenarios, it is an ill-defined problem. A few examples where a human

may or may not consider the object to be moving are:

1. Leaves and branches waving in the wind

2. Waves on a water surface

3. Shadows cast by moving objects on stationary surfaces

4. Reflections on shiny surfaces

5. Periodic motion or vibrations on objects such as escalators

6. Occasional motion in objects such as curtains

7. Natural phenomena such as snow fall, rain, and waterfalls

8. A moving object that has stopped for a brief period, such as a car at an intersection.

11

It is not easy to arrive at a definition of motion segmentation that encompasses all am-

biguous scenarios like those listed above. Our system identifies objects as moving if their

physical location in the scene has changed more than was expected under the statistical

model built from the history of the scene.

12

CHAPTER 2

A COMPLETE MODEL FOR MOTION SEGMENTATION IN
STATIONARY CAMERA SYSTEMS

2.1 Introduction
Motion segmentation for stationary camera videos, also called background subtraction,

is a well researched problem. Algorithms have evolved from early approaches modeling the

background at each pixel [77, 69, 62, 17] to methods that include an explicit model for the

foreground [40, 58], and finally to more recent models that incorporate spatial dependence

between neighboring pixels [58].

In early algorithms [77, 62], a probability distribution px(c|bg) over background colors

c is defined and learned for each location x in the image. These distributions are essen-

tially the background likelihood at each pixel location. Pixels that are well explained by the

background likelihood are classified as background and the remaining pixels in the image

are labeled as foreground. Toyama et al. [69] use a Weiner filter to predict the intensities

of the background pixels in the current frame using the observed values from the previous

frames and to identify non-conforming pixels as foreground. Wren et al. [77] model the

background as a Gaussian distribution at each pixel. To account for the multiple intensities

often displayed by background phenomena such as leaves waving in the wind or waves on

water surfaces, Stauffer and Grimson [62] learn a parametric mixture of Gaussians (MoG)

model at each pixel. The MoG model update procedure as described by Stauffer and Grim-

son can be unreliable during initialization when not enough data have been observed. To

improve the performance during model initialization, Kaewtrakulpong and Bowden [35]

suggest a slightly different model update procedure. Porikli and Tuzel [52] obtain the back-

ground likelihood by using a Bayesian approach to model the mean and variance values of

the Gaussian mixtures. Elgammal et al. [17] avoid the drawbacks of using a parametric

MoG model by instead building the background likelihoods with non-parametric kernel

density estimation (KDE) using data samples from previous frames in history.

While they are still called “backgrounding” systems, later systems maintain a model for

the foreground as well as the background [40, 58]. Explicit modeling of the foreground has

13

been shown to improve the accuracy of background subtraction [58]. In these models, pixel

labeling is performed in a competitive manner by labeling as foreground the pixels that are

better explained by the foreground model. The remaining pixels are labeled as background.

Although it is natural to think about priors along with likelihoods, the use of an explicit

prior for the background and foreground is less common. In the object tracking literature,

Aeschliman et al. [2] use priors for the background and foreground objects for segmenta-

tion of tracked objects. In background modeling algorithms that do not explicitly model the

prior, the foreground-background likelihood ratio is used for classification. Pixels that have

a likelihood ratio greater than some predefined threshold value are labeled as foreground.

This method is equivalent to using an implicit prior that is the same at all pixel locations.

Thus, existing algorithms make use of some subset of the three natural components

for background modeling - the background likelihood, the foreground likelihood, and the

prior. They make up for the missing components by including effective model-specific

procedures at the classification stage. For instance, Elgammal et al. [17] and Stauffer and

Grimson [62] use only the background likelihood, but, during classification, consider a

likelihood threshold below which pixels are considered as foreground. Zivkovic [81] ap-

plies Bayes’ rule to the problem of computing background posteriors, but since neither the

foreground likelihood nor the priors are explicitly modeled, the classification is essentially

based on a threshold on background likelihood values. Sheikh and Shah [58] utilize both

foreground and background likelihoods, but do not use an explicit prior. Instead, by using a

foreground-background likelihood ratio as the classification criterion, they effectively use

a uniform prior.

We argue that the logical endpoint of the model evolution for backgrounding is a system

where all three components are explicitly modeled and Bayes’ rule is applied for classifi-

cation. Such a system has the advantage of being a simpler model where the modeling of

the individual components is isolated from the inference step. This separation allows us to

describe the components without any relation to the classification procedure. Our motiva-

tion behind this approach is that the components can individually be improved, as we will

show in later sections, without affecting each other or the final inference procedure.

In this chapter of the thesis, the components of our background system are described

and placed in the context of existing algorithms where possible. Section 2.2 discusses the

evolution of the background likelihood models and our improvements to the most success-

ful models. In Section 2.3, we discuss the modifications to the likelihood for modeling the

foreground. Modeling of the prior is described in Section 2.4. Computation of posterior

14

probabilities by using the above components is explained in Section 2.5. Results comparing

our system to earlier methods on a benchmark data set are given in Section 2.6.

2.2 Background likelihood
The background likelihood, which is a distribution over feature values, is a common

aspect among many backgrounding systems. Stauffer and Grimson [62] model the back-

ground likelihood at each pixel using a mixture of Gaussians (MoG) approach. The re-

quirement of specifying the number of mixture components in the MoG model is removed

in the non-parametric kernel density estimation (KDE) model [17]. In the KDE model, the

distributions at each pixel location are estimated by summing up contributions from the

observed background data samples at that location from previous frames in history. For

each pixel location x = [x, y], both these models maintain a distribution px(c) that is in-

dependent of the neighboring pixels. Here, c = [r, g, b] is a vector that represents color.

These neighbor-independent distributions have the drawback of not being able to account

for the influence of neighboring pixels on each other’s color distributions.

To allow neighboring pixels to influence the background likelihood at a given pixel

location, we model the likelihood at a particular pixel location to be a weighted sum of

distributions from its spatial neighbors. Our smoothed background likelihood Px(c) for

each pixel location x is a weighted sum of distributions from a spatial neighborhood NB
around x. Each neighboring likelihood is weighted by its spatial distance (i.e., distance in

the image coordinates) from x:

Px(c|bg; ΣB
S) =

1

Z

∑
∆∈NB

px+∆(c|bg)×G(∆; 0,ΣB
S). (2.1)

Here ∆ is a spatial displacement that defines a spatial neighborhood NB around the pixel

location x at which the likelihood is being computed. G(·; 0,ΣB
S) is a zero-mean multi-

variate Gaussian with covariance ΣB
S . B indicates that the covariance is for the background

model and S denotes the spatial dimensions. The normalization constant Z is

Z =
∑

∆∈NB

G(∆; 0,ΣB
S). (2.2)

The weighted sum results in a spatial smoothing of the distributions as shown in Figure

2.1. This spreading of information is useful in modeling spatial uncertainty of background

15

Figure 2.1. Influence of neighboring pixels on each other is modeled by spreading infor-
mation spatially. Figure (a) shows some example likelihoods for each pixel in a single-
dimensional (row) image. The distributions shown below each pixel are the estimated
background likelihoods. The vertical axis corresponds to color values which are visual-
ized in the color map on the left side of the image. The horizontal axis corresponds to the
probability of the corresponding color. Figure (b) shows the smoothed likelihood at each
pixel, which is a weighted sum of the likelihoods in the pixel’s neighborhood. The effect
of smoothing is clearly visible in the first pixel. The distribution in the first pixel clearly
influences the distributions at the second and third pixels. The distance-dependent nature
of the weights results in the first pixel influencing the third pixel less than it does the second
pixel.

pixels. ΣB
S controls the amount of smoothing and spreading of information in the spatial

dimensions.

Explicitly maintaining a distribution at each pixel location is impractical for color fea-

tures which can take one of 2563 values if each of the three color channels have a range

between 0 and 255. Instead, we compute likelihoods with KDE using the data samples

from the previous frame. Let bt−1
x be the observed background color at pixel location x in

the previous frame. Using a Gaussian kernel with covariance ΣB
C in the color dimensions,

our KDE background likelihood in the current frame (at time t) is given by

P t
x(c|bg; ΣB

C,Σ
B
S) =

1

Z

∑
∆∈NB

G(c− bt−1
x+∆; 0,ΣB

C)×G(∆; 0,ΣB
S). (2.3)

Figure 2.2 illustrates the process of computing the background likelihood using the

observed background colors in one image. It may be noted that the covariance matrix ΣB
S

16

Figure 2.2. Modeling the likelihoods using pixel data samples and KDE. Figure (a) shows
the colors at each pixel. The corresponding color and its location with respect to the vertical
color axis is shown under each pixel. Figure (b) shows the likelihood at each pixel estimated
using KDE with a Gaussian kernel. Figure (c) shows the effect of spatial smoothing of the
KDE-based likelihoods. Again, the illustration uses a one-dimensional row image in which
a pixel’s color is also represented in one dimension. It is straightforward to extend the
example to two-dimensional spatial coordinates and three-dimensional color space.

controls the amount of spatial influence from neighboring pixels. The covariance matrix

ΣB
C controls the amount of variation allowed in the color values of the background pixels.

Finally, we consider background data samples not just from the previous frame, but

from the previous T frames in order to obtain a more accurate likelihood. We also allow

probabilistic contribution from the previous frames’ pixels by weighting each pixel accord-

ing to its probability of belonging to the background:

P t
x(c|bg;ΣB)=

1

Kbg

∑
i∈1:T

∑
∆∈NB

G(c− bt−i
x+∆; 0,ΣB

C)×G(∆; 0,ΣB
S)× Pt−i

x (bg|bt−i
x+∆). (2.4)

ΣB represents the covariance matrices for the background model and consists of the

color dimensions covariance matrix ΣB
C and the spatial dimensions covariance matrix ΣB

S .

P t
x(bg|bt

x) is the probability that pixel at location x in the frame t is background. Kbg is

the appropriate normalization factor:

Kbg =
∑
i∈1:T

∑
∆∈NB

G(∆; 0,ΣB
S)× P t−i

x (bg|bt−i
x+∆). (2.5)

For efficiency, we restrict the covariance matrices to be diagonal and hence parameterize

them by their diagonal elements.

17

2.2.1 Existing work on spatial smoothing of distributions
The use of spatial smoothing of distributions is not entirely new. Sheikh and Shah [58]

use a joint domain-range model that combines the pixels’ position values and color obser-

vations into a joint five-dimensional space. By modeling the likelihoods in the joint space,

they allow pixels in one location to influence the distribution in another location. Their

background likelihood is defined as:1

P t(c,x|bg; ΣB)=
1

K

∑
i∈1:T

∑
∆∈NB

G(c− bt−i
x+∆; 0,ΣB

C)G(∆; 0,ΣB
S)Pt−i

x (bg|bt−i
x+∆). (2.6)

The normalization constant, K, is given by

K =
∑
i∈1:T

∑
∆∈NB

P t−i
x (bg|bt−i

x+∆). (2.7)

The key difference between their model and ours is that theirs is, for the entire image,

essentially a single distribution in the joint domain-range space whereas ours consists of

a different location-dependent distribution at each pixel. This difference has a big effect

on the classification stage. As we will see later, their classification criterion, based on

the ratio of foreground and background likelihoods in this five-dimensional space, has an

undesirable dependence on the size of the image. By replacing the single joint distribution

with a field of distributions dependent on image location, we avoid the dependence on

image size and achieve better results.

The joint domain-range model has been used earlier in the object tracking literature.

Elgammal et al. [16] use a joint domain-range model that is almost identical to the back-

ground model of Sheikh and Shah [58]. A scheme very similar to our Equation 2.1 was

used in a tracking system by Han and Davis [22] to interpolate the pixelwise appearance

distributions for an object whose size has changed during the tracking process. The close

resemblance between these models suggests that tracking and background modeling share

similar fundamental principles and can be achieved under the same framework. One such

framework that integrates segmentation and tracking has been described by Aeschliman et

al. [2].

1We have modified their equation to allow probabilistic contributions from the pixels and changed the
notation to make it easily comparable to ours.

18

Ko et al. [36] use a histogram-based variant of the Sheikh and Shah [58] background

model which is built from observations in a spatial neighborhood around each pixel from

previous frames in history. However, they do not consider the spatial distance between a

pixel and its neighbor when summing up the contributions. In addition, they build another

distribution, which can be interpreted as the “texture” at each pixel, by using only the cur-

rent frame observations in each pixel’s spatial neighborhood. Their classification criterion

for foreground pixels is to threshold the Bhattacharya distance between the background

distribution and the “texture” distribution. Our model is different because of our classifi-

cation criterion that uses foreground likelihoods and explicit priors for the background and

foreground which we discuss in subsequent sections.

2.3 Foreground likelihood
Explicit modeling of the foreground likelihood has been shown to result in more accu-

rate systems [40, 58]. Our foreground likelihood is very similar to our background like-

lihood. However, it is important to consider in the foreground likelihood the possibility

of hitherto unseen color values appearing as foreground. This may happen because a new

foreground object enters the scene or an existing foreground object either changes color or,

by moving, exposes a previously unseen part of it. We find it useful to separate the fore-

ground process into two different sub-processes: previously seen foreground, which we

shall refer to as seen foreground, and previously unseen foreground, which we shall refer

to as unseen foreground. The likelihood for the seen foreground process is computed using

a KDE procedure similar to the background likelihood estimation:

P t
x(c|fg;ΣF)=

1

Kfg

∑
i∈1:T

∑
∆∈NF

G(c− f t−i
x+∆; 0,ΣF

C)×G(∆; 0,ΣF
S)× Pt−i

x (fg|f t−i
x+∆). (2.8)

Similar to Equation 2.4, f tx is the observed foreground color at pixel location x in frame t.

ΣF is the covariance matrix for the foreground model, and Kfg is the normalization factor,

analogous to Kbg. P t
x(fg|f t

x) is the probability that pixel at location x in the frame t is

foreground.

Since foreground objects typically move more than background objects in stationary

camera videos and also exhibit more variation in their color appearance, we typically use

higher covariance values for the foreground than for the background. Compared to the

19

background, we use a larger spatial neighborhood for the foreground to account for larger

expected motion in the foreground.

The likelihood for the unseen foreground process is simply a uniform distribution over

the color space.

P t
x(c|fu) =

1

R×G× B
(2.9)

for all locations x in the image, where R, G, and B, are the number of possible intensity

values for red, green, and blue colors respectively.

The unseen foreground process constantly tries to account as foreground any colors not

reasonably explained by both the background and the seen foreground likelihood.

The concept of using a uniform likelihood is not new. For instance, Sheikh and Shah [58]

mix a uniform distribution (in five-dimensional space) to their foreground likelihoods to ex-

plain the appearance of new foreground colors in the scene. Separation of the foreground

process into two sub-processes, as we have done, is equivalent to the mixing of the likeli-

hoods into one combined likelihood. The advantage of considering them as separate sub-

processes is that when combined with a separate prior for each, greater modeling flexibility

can be achieved. For instance, at image boundaries where new objects tend to enter the

scene, a higher prior can be used for the unseen foreground process.

2.4 Priors
In addition to modeling the likelihoods, we explicitly model spatially varying priors for

the background and foreground processes. Such spatial priors have recently been used for

segmentation of objects being followed in a tracking algorithm [2]. Background modeling

systems that use a likelihood ratio as the classification criterion are implicitly assuming a

uniform prior for the entire image. In such systems, if the foreground-background likeli-

hood ratio at a given pixel is greater than some predefined threshold L, then the pixel is

labeled as foreground. Using a value of 1 for L means that the background and foreground

processes have a uniform and equal prior value at every pixel location. Other values of L

imply using a uniform but unequal prior for the background and foreground.

We generalize the notion of the prior by considering a spatially varying prior. The

uniform prior is simply a special case of our model. We define pixelwise priors for the three

processes involved - background, previously seen foreground, and unseen foreground. The

classified pixel labels from the previous frame are used as a starting point for building the

priors for the current frame. We assume that a pixel that is classified as background in the

20

previous frame has a 95% probability of belonging to the background in the current frame

as well. The pixel has a 2.5% probability of belonging to a seen foreground object, and a

2.5% probability of coming from a previously unseen foreground object. For a foreground

pixel in the previous frame, we assume that due to object motion, there is a 50% probability

of this pixel becoming background, a 25% probability of this pixel belonging to the same

foreground object as in the previous frame, and a 25% probability that it becomes a new

unseen object. The choice of these values is discussed later.

There are hence essentially two settings for the prior at each pixel depending on whether

the pixel was labeled background or foreground in the previous frame. Instead of using the

hard thresholds described above, we use the pixel’s background label probability from the

previous frame when computing the prior. For instance, a pixel that has probability p of

being background in the previous frame will have a background prior equal to p × .95 +

(1 − p) × .5. Also, since objects typically move by a few pixels from the previous frame

to the current frame, we apply a smoothing (7× 7 Gaussian filter with a standard deviation

value of 1.75) to the classification results from the previous frame before computing the

priors for the current frame. Let P̃ t−1
x (bg) be the smoothed background posterior image

from the previous frame. The priors for the current frame are

P t
x(bg) =P̃ t−1

x (bg)× .950 + (1− P̃t−1
x (bg))× .500,

P t
x(fg) =P̃ t−1

x (bg)× .025 + (1− P̃t−1
x (bg))× .250,

P t
x(fu) =P̃ t−1

x (bg)× .025 + (1− P̃t−1
x (bg))× .250.

(2.10)

Figure 2.3 is an illustration of the prior computation process. Figure 2.3(a) shows the pre-

vious frame for which the background label probabilities at each pixel have been computed

in (b). The background probabilities are smoothed with a Gaussian filter in (c). Using

Equation 2.10, the background prior (d), the foreground prior (e), the unseen foreground

prior (f) are computed. These priors are then used for computing the posterior probabilities

in the current frame, as we explain in the next section.

In our implementation, although the likelihoods for the foreground and unseen fore-

ground processes are different, the priors for the two processes are equal at every pixel.

It is not necessary that the priors for the seen foreground and the unseen foreground be

the same in all background modeling systems. For instance, at image boundaries, using a

higher prior value for the unseen foreground could result in better detection of new objects

that enter the scene in these regions.

21

Figure 2.3. Illustration of computation of the spatially dependent prior. The image from the
previous frame is shown in (a). The background probabilities in (b) are first smoothed with
a Gaussian filter to allow for some amount of object motion in the scene. The smoothed
probabilities are shown in (c), from which the background prior (d), the foreground prior
(e), and the unseen foreground prior (f) are computed. The mapping from color to prob-
ability values is given in (g). We use equivalent equations for the foreground and unseen
foreground priors which result in (e) and (f) being identical.

Our choice of the values .95 and .50 for the background prior for pixels that have been

labeled as background and foreground in the previous frame respectively is guided by the

intuition that background pixels change their label from one frame to the next very rarely

and foreground objects that are moving have a moderate chance of revealing the back-

ground in the next frame. That these values are set by hand is a weakness of our current

system.2 The advantage of our approach is that these values can easily be learned auto-

matically by accumulating statistics from the scene over a long period of time. Although

the effect of using different priors for the background and foreground is equivalent to using

2Observations from the ground truth labels from videos in the change detection data set [21] show that
between 95 and 100 percent of all pixels labeled as background in each frame retain their background label
in the next frame. We believe the use of the value .95 for background prior is justified in light of this
observation. The use of .50 for the background prior in pixel locations that were labeled as foreground in the
previous frame essentially allows the likelihood to decide the labels of these pixels in the current frame.

22

a decision threshold on the foreground-background likelihood ratio, the priors are easier

to understand and update. For example, if the priors at each pixel are updated using the

pixel labels from long term scene history, the statistics could reveal a higher foreground

prior near doors in the scene and at image borders. A similar scheme to update a decision

threshold at these locations is far less natural.

We use a Gaussian filter of size 7 because the foreground objects in these videos typi-

cally move by 5 to 10 pixels. The size of the filter can potentially be learned by tracking the

foreground objects. If there is a significant depth variation in different parts of the scene, a

different parameter can be learned for the corresponding image regions by using tracking

information [46].

2.5 Computing the posteriors - putting the components together dur-

ing inference
Given the likelihoods and the priors as described in the previous sections, the only thing

left to do is to compute the posterior probability of background and foreground, conditioned

on the observed pixel values using Bayes’ rule.

Given an observed color vector c at pixel location x in frame t, the probability of

background and foreground are

P t
x(bg|c) =

Pt
x(c|bg; ΣB)× Pt

x(bg)∑
l=bg,fg Pt

x(c|l; Σl)× Pt
x(l) + Pt

x(c|fu)× Pt
x(fu)

P t
x(fg) = 1− Pt

x(bg|c).

(2.11)

When the ideal likelihoods and priors are known, classification based on Bayes’ rule

gives the minimum possible error. A common alternative classification criterion is the ratio

of the foreground likelihood to the background likelihood. The likelihood ratio classifica-

tion in the joint domain-range model deserves special consideration because it implicitly

includes a notion of a prior. However, as we show in the next section, the implicit prior

involved causes a peculiar dependence on the image size. Our model does not exhibit this

undesired consequence.

23

2.5.1 Likelihood ratio-based classification in the joint domain-range model
In the Sheikh and Shah joint domain-range model [58], the classification of pixels is

done based on the likelihood ratios of the background and foreground processes. The

decision criterion based on the ratios of the five-dimensional background and foreground

likelihoods can be represented as

P t(c,x|bg)
?

≷ P t(c,x|fg)

P t(c|x, bg)× Pt(x|bg)
?

≷ P t(c|x, fg)× Pt(x|fg).

(2.12)

The classification decision hence depends on the factors P t(x|bg) and P t(x|fg). These

factors are the prior probability of a particular pixel location given the background or fore-

ground process. For any pixel location x, these factors can depend upon parts of the image

that are arbitrarily far away. This is because the prior likelihood of a given pixel location

being foreground will be smaller if more pixels from another part of the image are de-

tected as foreground, and larger if fewer pixels elsewhere are detected as foreground (since

P t(x|fg) must integrate to 1). Furthermore, these factors will change when the image size

is changed, hence affecting the classification [47]. By separating the system components

and bringing them together during the posterior computation, we avoid this arbitrary de-

pendence on the size of the image.

2.5.2 Dependence of the joint domain-range model on spatial neighborhood extent
Another undesirable effect in the Sheikh and Shah model is that the likelihood compu-

tation depends on the size of the spatial neighborhoods considered for the background and

foreground processes. Their likelihood model (Equation 2.6) is biased towards whichever

process has a smaller spatial neighborhood - typically the background process in our sys-

tem. If the neighborhood is large, pixel samples that are spatially far away contribute little

to the numerator, but heavily to the denominator. Figure 2.4 illustrates this phenomenon

with a synthetic example. Consider that a red foreground object was present in front of a

pink background in the previous frame and that the foreground pixel samples from this im-

age are used to compute the foreground likelihoods at each pixel in the current frame. For

simplicity, we consider the case where the object has not moved from the previous frame

to the current. Applying the Sheikh and Shah normalization scheme, we see that as the size

of the neighborhood for foreground samples is increased from 1 to 3, the likelihood values

24

for the foreground pixels decrease dramatically (compare Figures 2.4c and d). Using our

normalization method, the dependence between the spatial neighborhood and likelihood

values is eliminated (Figures 2.4e and f).

Figure 2.4. Sheikh and Shah normalization equation leads to a dependency between neigh-
borhood size and likelihood values. Our normalization does not.

2.5.3 Model initialization and update
To initialize the models, it is assumed that the first few frames (typically 50) are all

background pixels. The background model is populated using pixel observations from

these frames. In order to improve efficiency, we sample 5 frames at equal time inter-

vals from these 50 frames. The foreground model is initialized to have no observations.

The foreground likelihood (Equation 2.8) enables colors that are not well explained by the

background model to be classified as foreground, thus bootstrapping the foreground model.

Once the observed pixel cx at location x in a new frame is classified using Equation 2.11,

the background and foreground models at the location x can then be updated with the new

observation. Background and foreground observations at location x from the oldest frame

in the models are replaced by cx. Observations from the previous 5 frames are maintained

in memory as the foreground model data samples. The label probabilities of the back-

ground/foreground from Equation 2.11 are also saved along with the sample values for

subsequent use in the Equations 2.4 and 2.8.

One consequence of the update procedure described above is that when a large fore-

ground object occludes a background pixel at x for more than 50 frames, all the back-

ground observations in the spatial neighborhood of x are replaced by these foreground

observations that have very low P (bg|bx) values. This causes the pixel at x to be misclas-

25

sified as foreground even when the occluding foreground object has moved away (because

the background likelihood will be extremely low due to the influence of P (bg|bx) in Equa-

tion 2.4). To avoid this problem, we replace the background observations from location x

in the oldest frame in the background model with the new observation cx from the current

frame only if P (bg|cx) estimated from Equation 2.11 is greater than 0.5.

In our chosen evaluation data set, there are several videos with moving objects in the

first 50 frames. The assumption that all these pixels are background is not severely limiting

even in these videos. The model update procedure allows us to recover from any errors that

are caused by the presence of foreground objects in the initialization frames.

2.6 Comparison to earlier systems
In this section, we compare our system to the various earlier systems described. We use

the I2R benchmark data set [40] with nine videos taken in different settings. The videos

have several challenging features like moving leaves and waves, strong object shadows,

and moving objects becoming stationary for a long duration. The videos are between 500

and 3000 frames in length and typically 128 x 160 pixels in size. Each video has 20 frames

for which the ground truth has been marked. We use the F-measure to judge accuracy [41];

the higher the F-measure, the better the system:

F =
2× recall × precision
recall + precision

. (2.13)

To evaluate our results, the posterior probability of the background label is thresholded at a

value of 0.5 to get the foreground pixels. Following the same procedure as Liao et al. [41],

any foreground 4-connected components smaller than a size threshold of 15 pixels are

ignored. The various systems compared are the MoG model of Stauffer and Grimson [62],

the KDE model of Elgammal et al. [17], the complex background-foreground model of Li

et al. (ACMMM03) [40], the joint domain-range model of Sheikh and Shah (jKDE) [58], 3

and our model, which we call the distribution field background (DFB) model. The naming

reflects the fact that our model is a field of distributions with one distribution at each pixel

location and was inspired by the description of such models in the tracking literature by

Sevilla-Lara and Learned-Miller [56].

3The KDE and jKDE models are our own implementations and include spatially-dependent priors and
Bayes’ classification criterion in order to make a fair comparison.

26

Results in Table 2.1 show that systems that model the spatial influence of pixels, namely

the jKDE model and our DFB model yield significantly higher accuracy. The table shows

that the jKDE system is most accurate for our chosen parameter setting. It shows that very

effective systems can be built even if the underlying model has certain deficiencies (as we

showed in Section 2.5.2 for the jKDE). Mere separation of the model components as we

have done and computing posterior probabilities for the labels does not guarantee better re-

sults. The usefulness of our system description is in that it enables a clear understanding of

the different components and allows for better modeling of the components without having

to tweak the inference procedure. To illustrate this aspect of our system, we describe one

specific example of improving the background likelihood model by identifying a shortcom-

ing in the model and developing a strategy to fix it in Chapter 3. The improved background

likelihood model yields significantly more accurate results than the jKDE model as Section

3.2 will show.

Video MoG KDE ACMMM03 jKDE DFB

AirportHall 57.86 62.46 50.18 70.13 67.95
Bootstrap 54.07 61.15 60.46 71.77 69.17
Curtain 50.53 61.83 56.08 87.34 85.66
Escalator 36.64 40.84 32.95 53.70 54.01
Fountain 77.85 52.76 56.49 57.35 77.11
ShoppingMall 66.95 63.05 67.84 74.12 70.95
Lobby 68.42 22.78 20.35 27.88 21.64
Trees 55.37 64.01 75.40 85.80 82.61
WaterSurface 63.52 51.16 63.66 78.16 75.80
Average 59.02 53.34 53.71 67.36 67.21

Table 2.1. F-measure comparison between various existing algorithms on I2R data. Mod-
eling the spatial influence of pixels (jKDE and DFB) significantly improves accuracy. MoG
and ACMMM03 results are as reported by Li et al. [41]. For KDE, jKDE, and DFB, we use
color dimension covariance value of 45/4 for both the background and foreground models.
For jKDE and DFB, we use spatial dimension covariance values of 3/4 and 12/4 for the
background and foreground models respectively.

27

2.7 Discussion
We argue that the view of background modeling described in this chapter is, from a

probabilistic perspective, clean and complete for the purpose of background modeling. By

separating the various aspects of a background modeling system, namely the background

likelihood, the foreground likelihood, and a prior, into distinct components, we have pre-

sented a simple view of background modeling. For inference, these separate components

are brought together to compute the posterior probability for background.

Previous backgrounding systems have also modeled the components that we have de-

scribed, but have often combined them with each other or caused dependence between the

components and the inference. The separation of the components from each other and their

isolation from the inference step makes the system easy to understand and extend. The

individual components can be improved without having to consider their interdependence

and effect on the inference. In the next chapter, we will show one example of improving

the background likelihood model and its positive impact on the system’s accuracy.

We use a spatially varying prior that depends on the labels from the previous frame. The

model can further be improved by using a different prior at the image boundaries where new

foreground objects are more likely. The modeling of the prior can also be improved by the

explicit use of object tracking information.

We also believe that isolation of the model components can help in the development

of effective learning methods for each of them. For example, the prior can be learned

simply by counting the number of times each pixel is labeled as background or foreground.

Maintaining a record of the number of times a pixel changes its label from background

to foreground and vice-versa is one possible scheme to learn the prior values described

in Section 2.4. Such a learning scheme can help build a dynamic model for the priors at

different regions in the image.

28

CHAPTER 3

PIXELWISE ADAPTIVE VARIANCES FOR STATIONARY
CAMERA SYSTEMS

Chapter 2 explains background modeling by clearly separating the various components

involved and combining them during inference. In this chapter, we discuss improvements to

the likelihood part of the model. The clear separation of likelihoods and priors means that

the prior modeling and final classification procedures discussed earlier remain unchanged

- only the likelihood component changes.

In this chapter, the effect of kernel variance in the KDE for likelihood estimation is dis-

cussed. Using a uniform kernel variance for the entire image is not effective. A pixelwise

adaptive kernel variance enables significantly better likelihood estimates. As explained ear-

lier, the likelihood distributions at each pixel may be modeled in a parametric manner using

a mixture of Gaussians [62] (MoG) or using non-parametric kernel density estimation [17]

(KDE). Sheikh and Shah [58] allow a pixel’s spatial neighbors to influence its distribution

via a joint domain-range density estimation [58] resulting in a more accurate system com-

pared to earlier neighbor-independent models. Sheikh and Shah also show that the use of

an explicit foreground model along with a background model can be useful. In a manner

similar to theirs, we used kernel density estimates to obtain the background and foreground

likelihoods at each pixel location using data samples from a spatial neighborhood around

that location from previous frames. The variance used in the estimation kernel reflects the

spatial and appearance uncertainties in the scene. On applying our method to a data set

with wide variations across the videos, we found that choosing suitable kernel variances

during the estimation process is very important. With various experiments, we establish

that the best kernel variance could vary for different videos and more importantly, even

within a single video, different regions in the image should be treated with different vari-

ance values. For example, in a scene with a stationary tree trunk and leaves that are waving

in the wind, the trunk region can be explained with a small amount of spatial variance.

The leaf regions may be better explained by a process with a large variance. Interestingly,

when there is no wind, the leaf regions may also be explained with a low variance. The

29

optimal variance hence changes for each region in the video and also across time. This

phenomenon is captured reasonably in MoG [62] by the use of a different parameter for

each pixel which adapts dynamically to the scene statistics, but the pixelwise model does

not allow a pixel’s neighbors to affect its distribution. KDE-based models are updated

with data samples from the most recent frame to better model a scene’s dynamic nature.

We show that using location-specific variances in addition to updating the model greatly

improves background modeling. Our approach with pixelwise variances, which we call

adaptive distribution fields backgrounding (DFBA) results in significant improvement over

uniform variance models and state of the art backgrounding systems.

Although KDE is a non-parametric approach for estimating probability densities, the

choice of the kernel variance or the bandwidth is an important one. Using large variance

values can result in a very smooth density function while low variance values result in in-

sufficient smoothing of the density function. The idea of using a pixelwise variance for

background modeling is not new. Although Sheikh and Shah [58] use a uniform variance,

they discuss the use of variances that change as a function of the data samples or as a

function of the point at which the estimation is made. (called sample-point estimator and

balloon estimator in the KDE literature respectively [34, 45]). Variance selection for KDE

is a well studied problem [72] with common solutions including mean integrated square er-

ror (MISE), asymptotic MISE (AMISE), and the leave-one-out-estimator based solutions.

In the background subtraction context, there has been work on using a different covariance

at each pixel [45, 65]. Zivkovic and Heijden [82] use a balloon estimator to adapt the kernel

variance. Mittal and Paragios [45] use a hybrid approach but require that the uncertainty

in the features be known. Tavakkoli et al. [65] learn the covariances for each pixel from

a training set of frames and keep the learned covariances fixed for the entire classification

phase. We use a maximum-likelihood approach to select the best variance at each pixel

location. For every frame of the video, at each pixel location, the best variance is picked

from a set of variance values by maximizing the likelihood of the pixel’s observation under

the different variances. This makes our method a balloon estimator [45]. By explicitly se-

lecting the best variance from a range of variance values, we do not require the covariances

to be calculable in closed-form and also allow for more flexibility at the classification stage.

Selecting the best of many kernel variances for each pixel means increased computa-

tion. One possible trade-off between accuracy and speed can be achieved by a caching

scheme where the best kernel variances from the previous frame are used to calculate the

likelihoods for the current frame pixels. If the resulting classification is overwhelmingly in

30

favor of either label, there is no need to perform a search for the best kernel variance for

that pixel. The expensive variance selection procedure can be applied only to pixels where

there is some contention between the two labels. We present a heuristic that achieves sig-

nificant reduction in computation compared to our full implementation while maintaining

the benefits of adaptive variance.

Development and improvement of the probabilistic models is one of the two main

themes in background modeling research in recent years. The other theme is the develop-

ment of complex features like local binary [26] and ternary patterns [41] that are more ro-

bust than color features for the task of background modeling. Scale-invariant local ternary

patterns [41] (SILTP) are recently developed features that have been shown to be very ro-

bust to lighting changes and shadows in the scene. By combining color features with SILTP

features in our adaptive variance kernel model, we bring together the best ideas from both

themes in the field and achieve state of the art results on a benchmark data set.

The main contributions of this chapter are:

1. A practical scheme for pixelwise variance selection for background

2. A heuristic for selectively updating variances to improve speed further.

3. Incorporation of complex SILTP features into the joint domain-range kernel frame-

work to achieve state of the art results.

The chapter is organized as follows. Dynamic adaptation of kernel variances is dis-

cussed in Section 3.1. Results and comparisons are in Section 3.2. An efficient algorithm

involving caching is discussed in Section 3.3. We end with a discussion in Section 3.4.

3.1 Pixelwise adaptive kernel variance selection
A few issues with the choice of kernel variance values are discussed along with our

proposed solution of using a different kernel variance for each pixel in the image.

3.1.1 A single global variance value for all pixels in an image
As explained in the introduction, different parts of the scene may have different statis-

tics and hence need different kernel variance values. For example, consider the examples

in Figure 3.1 where the same variance value is used for every pixel in the image. In Figure

3.1a to 3.1d, using a high spatial dimension kernel variance helps in accurate classification

31

Figure 3.1. Two video sequences classified using increasing values of spatial kernel vari-
ance. Column 1: Original image. Column 2: σBS = 1/4. Column 3: σBS = 3/4. Column
4: σBS = 12/4. With a low value for spatial variance (b and f), many background pixels are
misclassified as foreground. Increasing the spatial variance helps correct these errors, but
can lead to foreground pixels being incorrectly classified as background (for example, the
person’s leg in d and the persons in h are lost).

of the water surface pixels, but doing so causes some pixels on the person’s leg to become

part of the background. Ideally, we would have different kernel variances for the water

surface pixels and the rest of the pixels. Similarly in the second video (Figure 3.1e to 3.1h),

having a high spatial kernel variance allows accurate classification of some of the fountain

pixels as background at the cost of misclassifying many foreground pixels.

3.1.2 Optimal kernel variance across different videos
Figure 3.1 also shows that while the medium kernel variance may be the best choice

for the first video, the low kernel variance may be best for the second video. In the results

section, we show that for a data set with large variations like I2R [40], a single value for

kernel variance for all videos is not sufficient to capture the variability in all the videos.

3.1.3 Background and foreground variances
Sheikh and Shah use the same kernel parameters for background and foreground mod-

els. Given the different nature of the two processes, it is reasonable to use different kernel

parameters. For instance, foreground objects typically move between 5 and 10 pixels per

32

frame in the I2R [40] data set, whereas background pixels are either stationary or move

very little. Hence, it is useful to have a larger spatial variance for the foreground model

than for the background model.

3.1.4 Optimal kernel variances for classification
Having different variances for the background and foreground models reflects the dif-

ferences between the expected uncertainty in the two processes. However, having different

variances for the two processes could cause erroneous classification of pixels. Figure 3.2

shows a 1-dimensional example where using a very wide kernel (high variance) or very

narrow kernel for the background process causes misclassification. Assuming that the red

point (square) is a background sample and the blue point (triangle) is a foreground sample,

it is reasonable to infer that the center point ‘x’ is equally likely to belong to the back-

ground or the foreground. Using the same variance for the background and foreground

kernels would result in an equal likelihood for both at the center point. However, having a

very low variance kernel (dashed red line) or a very high variance (solid red line) for the

background process makes the background likelihood of the center point ‘x’ lower than the

foreground likelihood. Thus, it is important to pick the optimal kernel variance for each

process during classification.

In order to address all four issues discussed above, we propose the use of location-

specific variances. For each location in the image, a range of kernel variances is tried and

the variance which results in the highest likelihood is chosen for the background and the

foreground models separately.

Mathematically, the likelihood and normalization factor Equations 2.4 and 2.5 now

include a location-specific covariance matrix:

P t
x(c|bg;ΣB

x)=
1

Kbg

∑
i∈1:T

∑
∆∈NB

G(c− bt−i
x+∆; 0,σB

C,x)×G(∆; 0,σB
S,x)× Pt−i

x (bg|bt−i
x+∆). (3.1)

where σBC,x and σBS,x represent the location-specific color and spatial dimension variances

at location x. For each pixel location x, the optimal variance for the background process is

selected by maximizing the likelihood of the background at pixel x under different variance

values:

{σ̂BC,x, σ̂BS,x} = arg max
σBC,x,σ

B
S,x

P (cx|bg;σB
C,x, σ

B
S,x). (3.2)

33

Figure 3.2. 1-dimensional example shows the effect of the kernel variance in classification.
Using a higher or lower variance at point ‘a’ compared to point ‘b’ can cause misclassifi-
cation of the intermediate point between them.

Here, σBC,x ∈ RB
c and σBS,x ∈ RB

x . RB
c and RB

x represent the set of color and spa-

tial dimension variances from which to choose the optimal variance. These constitute the

diagonal elements in the covariance matrices ΣB
C and ΣB

S .

Figures 3.3 and 3.4 illustrate the effect of using adaptive kernels. Consider a synthetic

scene with no foreground objects, but in which the colors in the central greenish part of

the background have been displaced at random by one or two pixel locations to simulate

spatial uncertainty. As shown in Figure 3.3, the adaptive kernel variance method models

the scene better by applying a high spatial variance for pixels that have moved and a low

spatial variance for pixels that have not moved. Similarly, for color variance, Figure 3.4

shows the resulting likelihoods when uniformly sampled noise is added to the color values

in the central part of the image. A small color variance value results in low likelihoods

for pixels whose colors have changed. A large color variance results in low likelihoods for

pixels that have not changed. The adaptive kernel variance method performs well in both

kinds of pixels.

A similar variance selection procedure may be followed for the foreground likelihood.

However, in practice, it was found that the variance selection procedure yielded large im-

provements when applied to the background model and little improvement in the fore-

34

Figure 3.3. (a) and (b) Spatial uncertainty in the central part of the background. (c) Small
uniform variance results in low likelihoods for pixels that have moved. (d) Large uniform
variance results in higher likelihoods of the moved pixels at the expense of lowering the
likelihoods of stationary pixels. (e) Adaptive variance results in high likelihoods for both
the moved and stationary pixels.

Figure 3.4. Color uncertainty in the central part of the background is best modeled by
using adaptive kernel variances. (c) Small uniform variance results in low likelihoods for
pixels that have changed color. (d) Large uniform variance results in higher likelihoods of
the altered pixels at the expense of lowering the likelihoods of other pixels. (e) Adaptive
variance results in high likelihoods for both kinds of pixels.

ground model. Hence, our final implementation uses an adaptive kernel variance procedure

for the background model and a fixed kernel variance for the foreground model.

3.2 Results
The proposed method is analyzed on the I2R data set discussed in the previous chapter.

The effect of choosing various kernel widths for the background and foreground models is

shown in Table 3.1. The table shows the F-measure for each of the videos in the data set for

35

various choices of the kernel variances. The first 5 columns correspond to using a constant

variance for each process at all pixel locations in the video.

The table shows that using a larger spatial variance for the foreground is beneficial

(compare columns 2 and 3). The table reports the F-measure averaged over 20 ground

truth frames. On average, the setting in column 3 returns the best result among uniform

variance settings. The table does not show the differences when in individual frames are

considered. When individual frames are observed, variance settings from other columns

often outperform the settings in column 3. Using a selection procedure where the best

kernel variance is chosen from a set of values gives the best results for most videos (column

6) and frames.

Comparison of our selection procedure to a baseline method of using a standard algo-

rithm for variance selection in KDE (AMISE criterion1) shows that the standard algorithm

is not as accurate as our method (column 7). Our choice for the variance values for spa-

tial dimension reflects no motion (σBS = 1/4) and very little motion (σBS = 3/4) for the

background, and moderate amount of motion (σFS = 12/4) for the foreground. For the

color dimension, the choice is between little variation (σBC = 5/4), moderate variation

(σBC = 15/4), and high variation (σBC = 45/4) for the background, and moderate variation

(σFC = 15/4) for the foreground. These choices are based on our intuition about the pro-

cesses involved. For videos that differ significantly from the videos we use, it is possible

that the baseline AMISE method would perform better.

We would like to point out that ideally the variance value sets should be learned auto-

matically from a separate training data set. In absence of suitable training data for these

videos in particular and for background subtraction research in general, we resort to manu-

ally choosing these values. This also appears to be the common practice among researchers

in this area.

Benchmark comparisons are provided for selected existing methods - MOG [62], the

complex foreground model [40] (ACMMM03), the Sheikh and Shah model [58] (jKDE),

and SILTP [41]. Figure 3.5 shows qualitative results for the same frames that were reported

by Liao et al. [41]. We present results for our kernel method with uniform variances and

adaptive variances with RGB features (DFB-rgb and DFBA-rgb respectively), and adaptive

variances with a hybrid feature space of LAB color and SILTP features (DFBA-lab+siltp).

Except for the Lobby video, the DFBA results are better than other methods. The Lobby

1We use the publicly available implementation from http://www.ics.uci.edu/ ihler/code/kde.html.

36

Column num (1) (2) (3) (4) (5) (6) (7)
4*σBS −→ 3 3 3 1 3 [1 3] AMISE
4*σBC −→ 15 45 45 45 45 [5 15 45] AMISE
4*σFS −→ 3 3 12 1 12 [12] [12]
4*σFC −→ 15 45 45 45 15 [15] [15]
AirportHall 53.64 66.37 67.95 62.46 56.58 68.28 53.01
Bootstrap 58.90 66.96 69.17 61.15 65.56 71.86 63.38
Curtain 49.96 71.22 85.66 61.83 38.32 93.57 52.00
Escalator 35.32 53.01 54.01 40.84 33.97 66.37 32.02
Fountain 56.02 59.00 77.11 52.76 56.82 77.43 28.50
ShoppingMall 62.67 70.28 70.95 63.05 62.08 76.46 70.14
Lobby 23.27 22.55 21.64 22.78 20.54 13.24 36.77
Trees 62.35 78.35 82.61 64.01 80.42 83.88 64.30
WaterSurface 46.78 55.63 75.80 51.16 42.81 93.81 30.29

Average 49.88 60.37 67.21 53.34 50.79 70.18 47.82

Table 3.1. F-measure for different kernel variances. Using our selection procedure (Col-
umn 6) results in the highest accuracy.

video is an instance where there is a sudden change in illumination in the scene (turning a

light switch on and off). Due to use of an explicit foreground model, our kernel methods

misclassify most of the pixels as foreground and take a long time to recover from this error.

A possible solution for this case is presented later. Compared to the uniform variance kernel

estimates, we see that DFBA-rgb has fewer false positive foreground pixels.

Quantitative results in Table 3.3 compare the F-measure likelihoods for our method

against MoG, ACMMM03, and SILTP results as reported by Liao et al. [41]. The table

shows that methods that share spatial information with RGB features (jKDE, DFB, and

DFBA - columns 5, 6, and 7) give significantly better results than methods that use RGB

features without spatial sharing (columns 2 and 3). Compared to uniform kernel methods

that use RGB feature space along with spatial influence (columns 5 and 6), the variable

kernel method (column 7) is more accurate for most videos. Scale-invariant local ternary

pattern (SILTP) [41] is a recent texture feature that is robust to soft shadows and light-

ing changes. We believe SILTP represents the state of the art in background modeling

and hence compare our results to this method. Scale-invariant local states [80] is a slight

variation in the representation of the SILTP feature. For comparison, we use SILTP re-

37

4∗σBS 4∗σFS 4∗σBC 4∗σFC 4∗σBl 4∗σFl 4∗σBab 4∗σFab 4∗σBsiltp 4∗σFsiltp
DFBA [1,3] 12 [5, 15, 45] 15 - - - - - -
rgb
DFBA [1,3] 12 - - [5, 10, 20] 15 [4,6] 4 3 3
lab+siltp

Table 3.2. Parameter values for DFBA implementation.

sults from Liao et al. because in Yuk and Wong [80], human judgement2 was used to vary

a size threshold parameter for each video. We believe results from the latter fall under

a different category of human-assisted backgrounding and hence do not compare to our

method where no video-specific hand-tuning of parameters was done. Table 3.3 shows that

SILTP is very robust to lighting changes and works well across the entire data set. Blue

entries in Table 3.3 correspond to videos where our method performs better than SILTP.

DFBA with RGB features (DFBA-rgb) performs well in videos that have few shadows and

lighting changes. Use of color features that are more robust to illumination change, like

LAB features in place of RGB helps in successful classification of the shadow regions

as background. Texture features are robust to lighting changes but not effective on large

texture-less objects. Color features are effective on large objects, but not very robust to

varying illumination. By combining texture features with LAB color features, we expect

to benefit from the strengths of both feature spaces. Such a combination has proved useful

in earlier work [79]. Augmenting the LAB features with SILTP features (computed at 3

resolutions) in the DFBA framework (DFBA-lab+siltp) results in an improvement in 7 out

of 9 videos (last column). The variance values used in our implementation are given in

Table 3.2.

We also compare our results (DFBA-lab+siltp) to the 5 videos that were submitted as

supplementary material by Liao et al. [41]. Figure 3.6 highlights some key frames that

highlight the strengths and weaknesses of our system versus the SILTP results. The com-

mon problems with our algorithm are shadows being classified as foreground (row e) and

initialization errors (row e shows a scene where the desk was occluded by people when

the background model was initialized. Due to the explicit foreground model, DFBA takes

some time to recover from the erroneous initialization). A common drawback with SILTP

is that large texture-less objects have “holes” in them (row a). Use of color features helps

2This was learned via personal communication with the authors.

38

(1) (2) (3) (4) (5) (6) (7) (8)
Video ACMMM03 MoG SILTP [41] jKDE DFB DFBA DFBA

rgb rgb rgb rgb rgb lab+siltp
AirportHall 50.18 57.86 68.02 70.13 67.95 68.28 70.75
Bootstrap 60.46 54.07 72.90 71.17 69.17 71.86 77.64
Curtain 56.08 50.53 92.40 87.34 85.66 93.57 94.07
Escalator 32.95 36.64 68.66 53.70 54.01 66.37 49.99
Fountain 56.49 77.85 85.04 57.35 77.11 77.43 85.88
ShoppingMall 67.84 66.95 79.65 74.12 70.95 76.46 82.64
Lobby 20.35 68.42 79.21 27.88 21.64 13.24 62.60
Trees 75.40 55.37 67.83 85.80 82.61 87.64 87.85
WaterSurface 63.66 63.52 83.15 78.16 75.80 93.79 92.61

Table 3.3. F-measure on I2R data. DFBA significantly outperforms other color feature-
based methods and improves on SILTP texture features on most videos. Blue color indi-
cates performance better than SILTP.

avoid these errors. The SILTP system also loses objects that stop moving (rows b, c, d, f).

Due to the explicit modeling of the foreground, DFBA is able to detect objects that stop

moving.

The two videos in the data set where our algorithm performs worse than SILTP are the

Escalator video (rows g, h) and the Lobby video (rows i, j). In the Escalator video, our

algorithm fails at the escalator steps due to large variation in color in the region.

In the Lobby video, at the time of sudden illumination change, many pixels in the im-

age get classified as foreground. Due to the foreground model, these pixels continue to be

misclassified for a long duration (row j). The problem is more serious for RGB features

(Figure 3.5 column 2). One method to address the situation is to observe the illumination

change from one frame to the next. If more than half the pixels in the image change in illu-

mination by a threshold value of TI or more, we throw away all the background samples at

that instance and begin learning a new model from the subsequent 50 frames. This method

allows us to address the poor performance in the Lobby video with resulting F-measure

values of 86.77 for uniform-rgb, 78.46 for DFBA-rgb, and 77.76 for DFBA-lab+siltp. TI
of 10 and 2.5 were used for RGB and LAB spaces respectively. The illumination change

procedure does not affect the performance of DFBA on any other video in the data set.

39

3.3 Caching optimal kernel variances from the previous frame
A major drawback with trying multiple variance values at each pixel to select the best

variance is that the amount of computation per pixel increases significantly. In order to

reduce the complexity of the algorithm, we use a scheme where the current frame’s optimal

variance values for each pixel location for both the background and foreground processes

are stored (σ̂BC,x cached, σ̂
B
S,x cached, σ̂

F
C,x cached, σ̂

F
S,x cached) for each location x in the image.

When classifying pixels in the next frame, these cached variance values are first tried. If

the resulting background and foreground likelihoods are very far apart, then it is very likely

that the pixel has not changed its label from the previous frame. The expensive variance

selection procedure is performed only at pixels where the resulting likelihoods are close to

each other.

Algorithm 1 Efficient variance selection
for each pixel sample cx in the current frame do

if P (cx|bg;σ̂B
C,x cached,σ̂

B
S,x cached)

P (cx|fg;σ̂F
C,x cached,σ̂

F
S,x cached)

> τBF then
Compute the label likelihoods resulting from use of the cached variance values.

else
Search over the values in the variance sets to pick the optimal variances.
Compute the label likelihoods using the optimal variances.

end if
end for

Algorithm 1 for efficient computation results in a reduction in computation in about

80% of the pixels in the videos when τBF is set to 2, with a slight reduction in the F-

measure by about 1 to 2% on most videos when compared to the full implementation. The

efficient variance selection procedure however still performs significantly better than the

uniform variance model by 2 to 10% on most videos.

3.4 Discussion
By applying kernel estimate method to a large data set, we have established, as do

Sheikh and Shah [58], that the use of spatial information is extremely helpful. Some of

the important issues pertaining to the choice of kernel parameters for data sets with wide

variations have been addressed. Having a uniform kernel variance for the entire data set

and for all pixels in the image results in a poor overall system. Dynamically adapting the

variance for each pixel results in a significant increase in accuracy.

40

Using color features in the joint domain-range kernel estimation approach can com-

plement complex background model features in settings where the latter are known to be

inaccurate. Combining robust color features like LAB with texture features like SILTP in

a DFBA framework yields a reasonably accurate background classification system.

We have also shown an example where improvements to the likelihood aspect of the

backgrounding system is done without altering any other aspects. Similar changes to earlier

systems would require changes to the classification step. For instance, in systems that use

a likelihood ratio for classification, the ratio thresholds may need to be readjusted.

41

Figure 3.5. Qualitative comparison of algorithms on image results reported in Liao et
al. [41].

42

Figure 3.6. Comparison of DFBA and SILTP results. Column 1: Original video. Column
2: SILTP [41]. Column 3: DFBA-lab+siltp.

43

CHAPTER 4

MOTION SEGMENTATION IN MOVING CAMERA VIDEOS

4.1 Introduction
Motion segmentation in stationary camera videos is relatively straightforward and a pix-

elwise background model can be used to classify pixels as background or foreground. In

the previous chapters, we described various methods and presented approaches for improv-

ing the background modeling and segmentation. While these approaches yield reasonably

accurate background segmentation for stationary cameras, separating the non-moving ob-

jects from moving ones when the camera is moving is significantly more challenging. With

a moving camera, the definition of which pixels are background and which are foreground

is not so straightforward. Consider a scene where a pedestrian with a hand-held camera

is walking while filming a car that is moving in the opposite direction. Comparing two

consecutive frames, we would find that almost all pixels have changed. Pixelwise models

described in earlier chapters would incorrectly classify all pixels as foreground. For the

moving camera scenario, we define background pixels to be the pixels that have changed

location only as a result of the camera’s motion. Pixels that have changed location due to

independent motion by objects in the scene are considered foreground.

Motion segmentation with moving cameras is an active area of research. Early ap-

proaches largely rely on estimating the camera’s motion, egomotion, and compensating

for such motion. After using a homography or a 2-d affine transformation to compen-

sate for the camera’s motion, the pixelwise background modeling techniques can be ap-

plied [29, 25, 55]. This approach is applicable only when the background is reasonably

approximated as a planar surface. Furthermore, accurate computation of egomotion from

a pair of consecutive video frames is not easy, especially in the presence of independently

moving objects.

A common theme in moving camera motion segmentation is to use image plane mo-

tion (optical flow) [27] or trajectories as a surrogate for real-world object motion. Seg-

mentation may be performed by clustering pixels based on the image plane motion flow

44

values [59, 75]. Bugeau and Perez [5] use optical flow to predict the locations of current

frame pixels in the next frame. Pixels that exhibit significant difference from the expected

appearance at their predicted locations are used as initial samples for the foreground pix-

els. The remaining pixels are labeled using foreground color and motion distributions built

from these samples.

Many optical flow estimation algorithms use a notion of layers in the scene both for

purposes of improving the optical flow estimates and segmenting image into layers de-

pending on the depth of the objects. Sun et al. [64] jointly segment the image into layers

and estimate flow using an affine model for object motion. However, because the resulting

layers in these methods correspond roughly to the depth in the scene, the result is that the

background pixels get separated into various layers. In motion segmentation, we are in-

terested in segmenting the background objects into one layer irrespective of differences in

their depths.

Simultaneous segmentation and optical flow estimation has been performed in different

ways. Cremers [11] formulates the problem as a Bayesian inference problem and solves

it using level set methods. A hierarchic coarse-to-fine model for improved accuracy is de-

scribed by Memin and Perez [43]. Farneback [19] uses simultaneous segmentation and es-

timation to segment coherent motion regions that are consistent with a given affine motion

model. Another approach for segmentation is to use optical flow as a first step to iden-

tify initial segments. Using an optical flow-based initial segmentation, Kwak et al. [38]

describe a graphical model to perform subsequent classification by combining pixel posi-

tions, appearance (color) information, optical flow estimates, and labels from the previous

frames.

An alternative to using optical flow values is the use of tracking information. Sheikh et

al. [57] observe the trajectories of tracked salient points in the image sequence and use a

factorization method to identify the bases for the background trajectories. Outlier trajecto-

ries are considered foreground. KDE appearance models are built from the pixels belonging

to these trajectories to determine a dense labeling of pixels. Their method however assumes

orthographic projections, which may not be a valid assumption in many videos. Brox and

Malik [4] segment trajectories by computing the pairwise distances between all trajectories

and finding a low-dimensional embedding using spectral clustering. Their method is not

online and works on the video by considering all or a subset of frames at once.

Ochs and Brox [50] improved the spectral clustering by using higher order interactions

that consider triplets of trajectories. Elqursh and Elgammal [18] proposed an online exten-

45

sion of spectral clustering by considering trajectories from 5 frames at a time. Because they

rely on distance between optical flow vectors, these spectral methods are not guaranteed to

group all the background pixels into one cluster. To obtain the complete background as one

segment, a post-processing merging step is required where segments with similar motions

are merged [4, 50]. The merging step assumes an affine motion model and hence may

not work for complex backgrounds, as we show in Section 4.3. Elqursh and Elgammal

learn a mixture of 5 Gaussians in the embedded space to represent the trajectories. Any

trajectory that is not well explained by the mixture of Gaussians model is assumed to be

a foreground trajectory. The parametric Gaussian mixtures model requires the number of

mixtures, which can vary from scene to scene.

A significant improvement over the simple appearance and tracking model in the above

papers was proposed by Kwak et al. [38]. They use a Bayesian filtering framework that

combines block-based color appearance models with separate motion models for the back-

ground and foreground to estimate the labels at each pixel. However, they use a special

initialization procedure in the first frame for segmenting the foreground objects. Their ini-

tialization procedure and the earlier trajectory-based methods use image plane motion. As

described earlier, this cue is prone to causing errors.

In comparison to the above methods, we use motion information only from two frames

at a time and do not require the use of trajectory information from multiple frames. In

contrast to Kwak et al. , our system is completely online, with no special initialization step

for the first frame. Due to automatic determination of the number of observed motions, our

system is able to detect objects that are at rest initially and which begin to move during the

video sequence.

Object tracking in a moving camera video is another theme in recent work. Chock-

alingam et al. [8] learn a fragmented model of the scene by breaking the image into smaller

fragments which are then assigned foreground/background labels and tracked in subsequent

frames. Tsai et al. [71] achieve tracking by using a spatio-temporal Markov random field

(MRF) and introducing pairwise potentials that represent appearance and motion similar-

ity between neighboring pixels. These tracking systems require an initial human-labeled

foreground object while our goal is to build a foreground-background segmentation algo-

rithm without any human intervention. Lee et al. [39] detect object-like segments called

key-segments in the image, hypothesize which segments are more likely to be foreground

objects, and finally use a spatio-temporal graph to perform segmentation. Although they

avoid the requirement of hand-labeling the object of interest, their method is suited for of-

46

Figure 4.1. (a) A forest scene with a moving person (from the Sintel [6] data set). The
person is holding on to a bamboo tree, which moves with the person. There are also a few
leaves falling in the scene. (b) Visualization of the ground truth optical flow vectors (using
code from [63]). (c) Magnitudes of the optical flow vectors. (d) Orientation of the optical
flow vectors. The optical flow vectors and magnitudes on the trees depend on the distance
of the trees from the camera. The orientations are not depth-dependent and can much more
reliably predict that all the trees are part of the coherently moving background entity.

fline processing of videos because the initial key-segments generation phase requires the

processing of all frames of the video. Our goal is to process a video frame-by-frame as

they appear in the video stream.

Earlier motion segmentation methods described above rely heavily on image plane mo-

tion. Furthermore, the real-world motion is approximated as an affine motion in the image

plane. We propose to solve the problem of motion segmentation by considering motion in

the 3-d world. The problem with estimating the 3-d motion from images is that the real

depth of the objects in the scene is unknown. The depth of the object in the scene greatly

influences the optical flow observed in the image. In contrast, it well known that the depth

of the object does not affect the orientations of the optical flow vectors in the case of cam-

era translation. More importantly, motion of the camera enforces rigid constraints on the

47

possible values that the orientations can take at each pixel. For instance, for a camera trans-

lating towards a particular location in the world, all optical flow orientations point to the

location’s projection in the image. Based on these observations, a robust segmentation al-

gorithm has been developed using the depth-invariance property of optical flow orientations

in conjunction with the constraints that motion enforces on the orientations.

The use of the optical flow orientations is not entirely new. Recently, Adato et al.

[1] showed that a polar representation of optical flow is much more effective in analyzing

many classes of motions. In a method closely related to ours, Wedel et al. [76] improve

the process of optical flow estimation by considering the projection of optical flows onto

epipolar lines. Yamaguchi et al. [78] perform optical flow estimation by explicitly consid-

ering epipolar line orientations. However, in both these works, epipolar lines are obtained

by first estimating the fundamental matrix. Fundamental matrix estimates are not reliable

when there is independent object motion in the scene.

The major drawback of using optical flow is that an object’s projected motion on the

image plane depends on the object’s distance from the camera. Objects that have the same

real-world motion can have different optical flows depending on their depth. This can

cause a clustering algorithm to label two background objects at different depths as two

separate objects although they both have zero motion in the real-world. While this labeling

is semantically reasonable because the two segments are likely to correspond to different

objects in the world, for the purpose of detecting independently moving objects in the

scene, this over-segmentation of the scene is undesirable. For example, in Figure 4.1, the

optical flow vectors separate the forest background into many smaller tree segments. A

segmentation based on the vectors would have to be followed by a post-processing step to

merge smaller segments into one background cluster. Existing algorithms merge segments

based on their color, motion, and edge energy [50]. If the number of distinct background

layers is known, mixture modeling of the background motion is another solution [4].

An ideal solution would not require the use of such post-processing or prior knowledge

about the scene. Our goal is to segment the scene into coherent regions based on the real-

world motion of the objects in it. This can be challenging since the information about 3-D

motion in the scene is only available in the form of the optical flow field. Our solution is

based on the well-known property that in the case of camera translation, while optical flow

magnitudes and vectors depend on the depth of the object in the scene, the orientations of

the optical flow vectors do not. Figure 4.1 is an example that shows that the optical flow

48

orientations are reliable indicators of independent motion, much more so than the flow

vectors or magnitudes.

Assuming only translational motions in the scene, given the motion parameters of the

objects and knowledge about which pixels belong to each object, it is straightforward to

predict the orientations at each pixel exactly. Figure 4.2 shows some examples of such pre-

dicted orientation fields for different motion parameter values. Our problem is the converse:

Given the observed optical flow orientations at each pixel, estimate the motion parameters

and pixel labels. We solve the problem by starting with a “library” of predicted orientation

fields which cover a large space of possible translations and then use a probabilistic model

to estimate which of these predicted orientation fields are actually being observed in the

current image. Since multiple motions (one camera motion and possibly other indepen-

dent object motions) are possible, we use a mixture model to determine which motions are

present in the scene and which pixels belong to each motion. Finally, we favor explanations

with fewer 3-D motions. A similar system involving optical flow magnitudes is much more

complicated because in addition to estimating the motion parameters, it would be required

to determine the object depth at each pixel.

Performing clustering when the number of foreground objects is unknown can be chal-

lenging. Techniques such as K-means or expectation maximization (EM) require know-

ing the number of clusters before-hand. We avoid this problem by instead using a non-

parametric Dirichlet process-like mixture model where the number of components is deter-

mined automatically. Our system is capable of segmenting background objects at different

depths into one segment and identifying the various regions that correspond to coherently

moving foreground segments.

The optical flow orientations are not always reliable. Our algorithm is prone to failure

when the assumption of pure translation is not satisfied. Also, a foreground object that

moves in a direction consistent with the flow orientations due to the camera’s motion will

go undetected until it changes its motion direction. Some of these errors are handled in

our system through the use of the pixelwise color appearance model and priors from Chap-

ter 2. To handle complex camera motions that include rotations, we propose a rotation

compensation algorithm in Chapter 5.

Extensive testing is performed on a wide range of videos. Earlier background segmen-

tation methods report results only on 3 or 4 out of 26 videos from the Hopkins segmentation

data set [4]. In addition to all 26 videos from this set, we also include results from the Seg-

Track motion segmentation data set [71]. Although good segmentation results are achieved

49

on these data sets, these videos have few cases of depth disparity in the background. Conse-

quently, results from other videos with complex backgrounds that can involve many many

depth layers, such as in a forest scene, are also presented. To the best of our knowledge, this

is the first work to report moving background segmentation results on such a large number

of videos spanning different scenarios. The results show the efficacy of the algorithm and

its applicability to a wide range of videos. Despite the assumption of translational camera

motion, the algorithm is capable of handling many scenarios as exhibited in the data set.

This chapter is organized as follows. Optical flow orientations and the probabilistic seg-

mentation model are explained in Section 4.2. Section 4.3 compares our flow orientation-

based segmentations to various other segmentation schemes. Use of color-based appear-

ance modeling and the overall video segmentation workflow is given in Section 4.4. A

non-parametric model is described in Section 4.5. Benchmark results are presented in Sec-

tion 4.6 and qualitative comparisons to some baseline methods in Section 4.7. We conclude

with Section 4.8.

4.2 Segmentation using optical flow orientations
Given a camera’s translation t = (tx, ty, tz), the resulting optical flows vx and vy in the

x and y image dimensions are given by:

vx =
tz×x− tx×f

Z
and vy =

tz×y − ty×f
Z

, (4.1)

where (x, y) represents a pixel location in the image, Z is the real-world depth of the

observed point and f is the camera’s focal length [28].

The optical flow orientations,

F (t, x, y) = arctan(tz×y − ty×f, tz×x− tx×f), (4.2)

are thus independent of the depth Z of the points. Here, arctan(y, x) returns the arctangent

of (y/x) with a range (−π, π]. Figure 4.2 shows the optical flow orientations for a few

different camera motions. It may be noted that the orientations are not always constant

throughout the entire image. We call the 2-D matrix of optical flow orientations at each

pixel the flow orientation field (FOF).

50

Figure 4.2. A sample set from the orientation fields that are used in our graphical model.
Above each field are the motion parameters (tx, ty, tz) that cause it. The colorbar on the
right shows the mapping from color values to corresponding angles in degrees.

Figure 4.3. A mixture model for segmentation based on optical flow orientations. Notation:
Variables inside circles are random variables and variables inside squares are deterministic.
The dark colored dot represents a deterministic function, the shaded circle represents an
observed variable and small shaded circles represent hyperparameters.

51

In the probabilistic model given in Figure 4.3, the orientation values returned by an

optical flow estimation algorithm [63] are observed variables and the labels for each pixel

are latent. At pixel number i, whose location is given by xi = (xi, yi), we have an observed

optical flow orientation ai and a label li that represents which segment the pixel belongs to.

Each segment k is associated with a motion parameter tuple Φk = (tkx, t
k
y, t

k
z) representing

the translation along x, y, and z directions respectively. The continuous velocity space is

discretized into a finite number of possible motions: 46 values for translation (tx, ty, tz) are

sampled from a unit hemisphere in front of an observer. Φk can hence take one of 46 values

and the resulting FOFs due to these motion values form a “library” that is used to explain

the observed data. Figure 4.2 shows a few of the library FOFs; a complete listing of the

FOFs used is provided in the appendix. φk is used to denote the values that the variables

Φk take. For a given motion parameter tuple t, denote the resulting flow orientation field at

pixel location x to be F (t,x), which is computed using Equation 4.2.

The graphical model is then defined by the following generative process:

P (θ|α) = Dir(θ|α);

P (Φk|β) = Uniform(β);

P (li|θ) =
K∏
k=1

θ
[li=k]
k ;

P (ai|Φ = φ, li = k, F,xi) = P (ai|Φk = φk, F (φk,xi))

= G(ai;F (φk,xi), σ
2
k),

(4.3)

where [·] represents an indicator function, Dir is a Dirichlet distribution, and G(·;µ, σ2)

is a Gaussian with mean µ and variance σ2. The last equation means that given the label

li = k for a pixel at location xi and motion parameter Φk = φk, the observed orientation

ai is a Gaussian random variable whose mean is F (φk,xi). The variance for the Gaussian

is the observed variance from F (φk,x
′
i) at all pixel locations x′ that were labeled k in the

previous iteration. If no pixels were labeled k in the previous iteration, a variance value of

(ax − Fx(φk))
2 is used.

We note that the above model is similar to a Dirichlet process mixture model with

the exception that we sample Φk from a finite set of parameters. Algorithm 2 details the

sampling procedure used. The algorithm is similar to the Gibbs sampling procedure for

Dirichlet processes with non-conjugate priors as described by Neal (algorithm 8 in [48]).

52

The algorithm adds additional auxiliary Φ parameters at each iteration and retains the aux-

iliary parameters that explain any observed data. We begin withK = 1 component and add

one new auxiliary component (M = 1) to the model at each iteration. The model hence

adds components as required to explain the data.

Algorithm 2 Sampling procedure in our model
Step 0 : Initialize Φ1 = c1 where c1 is sampled from a uniform distribution over the set
of “library” camera motion parameters.
for n iterations do

Let K be the current number of motion components. Sample M new motion parame-
ters from β.
for i = 1 to N pixels do

Sample label li with the following probability:

P (li = c|c−i, ai,Φ1,Φ2, ...ΦK+M) ={
b
N−i,c
N−1+α

P (ai,Φc) for 1 ≤ c ≤ K

b
α
M

N−1+α
P (ai,Φc) for K < c ≤ K +M

,
(4.4)

where c−i represents cj for all j 6= i, N−i,c represents the number of labels lj that
have value c and j 6= i, and b is an appropriate normalization constant.

end for
for all c ∈ {c1, c2, ...cN} do

Draw a new value Φc|li such that li = c.
end for

end for

4.2.1 Choosing α
The concentration parameter α determines the propensity of the system to add new

components. In the absence of suitable training data to learn the concentration parame-

ter, the Gibbs sampler is run with different values for αj ∈ {.0001, .01, 10} and, from

the resulting segmented images, the segmented image that best agrees with the other seg-

mented images is chosen. From each candidate αj , the segmented result is obtained and

an image bj(x), which has a value 1 at locations that correspond to the largest segment

and 0 at all other locations, is created. The sum of these bj images is then computed:

bsum(x) =
∑nα

j=1 bj(x), where nα is the number of different α’s being considered. Sim-

ilarly, fj and fsum images are computed, where fj = 1 − bj . The best α corresponds to

ĵ = arg maxj
∑

x{bsum(x)× bj(x)}+ {fsum(x)× fj(x)}. Intuitively, bsum and fsum are the

53

pixelwise sum of the votes for the background and foreground from all candidate α’s. The

best α is the one that best agrees with this voting.

4.2.2 Gradient descent for largest component
Improvements can be made to the results by finding a better fit for the largest segment’s

motion than provided by the relatively coarse initial sampling of library motion parameters.

To achieve this, after n
2

iterations, at each iteration, we follow the Gibbs sampling step with

a gradient descent step. With the motion parameters corresponding to the largest segment

as the starting point, gradient descent is used to find the motion parameters that result in an

FOF with the minimum average L1 distance to the observed orientations. Only the pixels

that are currently assigned to the largest segment are used in computing the L1 distance.

The resulting minimum motion parameter tuple is added as an additional motion parameter

to the set of library motions. This process helps in the proper segmentation of observed

background orientation patterns that are not well explained by any of the initial set of

motions.

4.2.3 Handling pixels with near-zero motion
One of the implications of using the orientations is that the orientation is not defined

for pixels that do not move. The orientation values at these pixels can be very noisy. To

account for this possibility, pixels that have optical flow component magnitudes less than a

threshold Tf (typically 0.5) in both x and y directions are marked as “zero-motion” pixels.

They are accounted for by a “zero-motion” FOF and Gibbs sampling is not performed for

these pixels.

4.3 Segmentation comparisons
The proposed FOF segmentation is compared to existing motion segmentation meth-

ods. Spectral clustering of trajectory information [4, 18, 50] has been shown to be useful

for motion segmentation. The implementation provided by Ochs and Brox [50] that returns

spectral clustering of tracked keypoints is used. Their algorithm is designed to work on

trajectories from multiple frames. The number of frames is set to 3 for trajectory tracking

(the minimum that their implementation requires). Further, their method uses a merging

step that joins segments that have similar motion parameters. Note that FOF segmentation

uses only flow information from two consecutive frames and performs no post-processing

54

Figure 4.4. Comparison of segmentation algorithms. The rows correspond to the original
images, spectral clustering [50], and our FOF segmentation. The tracked keypoints used
in spectral clustering are shown as squares with their colors representing the cluster mem-
berships. Despite the use of a post-processing merge step in the implementation, in many
images, spectral clustering is not certain about some background keypoints (white squares)
and in cases with large depth disparity, the background is broken into smaller sections.
Our method avoids these errors and also results in a dense labeling of the image. The last
column is an example of our method failing because the car happens to move consistently
with the FOF due to camera motion. Comparisons to several other methods are presented
in Section 4.7.1.

to merge segments. Figure 4.4 shows the segmentations for some example frames. FOF

segmentation, despite only using information from two frames and no merging procedure,

successfully segments the background in most examples. Images that have large depth dis-

parity show the clear advantage of our method (columns 3 and 4). Here spectral clustering

with a subsequent merge step fails and the background is over-segmented depending on

depth. The FOF-based clustering is successful in identifying the background objects as one

segment.

4.4 Modeling the appearance and the prior
The described FOF-based mixture model returns the number of mixture components,

the maximum a posteriori component assignments for each pixel, and the probabilities of

each pixel belonging to each component. In order to classify each pixel as background or

55

foreground, we take the component with the largest number of pixels to be the background

component.

In addition to using the FOF-based segmentation, we maintain a color appearance

model for the background and foreground at each pixel as described in Chapter 2. A his-

tory of pixel data samples from the previous frames is maintained and after classification

of pixels in each new frame, new data samples are added to the history. To account for

motion, the maintained history at each pixel is motion-compensated and moved to a new

location as predicted by the optical flow in the current frame. KDE is used with the data

samples to obtain the likelihoods as given in Equations 2.4 and 2.8. The parameter values

for the KDE are ΣB
C = ΣF

C = 15
4
,ΣB

S = ΣF
S = 5

4
, T = 5.

4.4.1 Mixing a uniform distribution component
In cases when the background has been occluded in all the previous T frames, there are

no reliable history pixels for the background. To allow the system to recover from such a

situation, a uniform color distribution is mixed into the color likelihood:

P̂ t
x(c|bg) = γbgx × Pt

x(c|bg; ΣB) + (1− γbgx)× U, (4.5)

where U is a uniform distribution over all possible color values. The mixture proportion

is given by γbgx =
P
i∈1:T

P
∆∈NB

P t−ix+∆(bg|bt−i
x+∆)P

i∈1:T

P
∆∈NB

(1)
. The implication of this mixture proportion

is that if the history pixels are highly confident background pixels, then no uniform distri-

bution is added to the likelihood. When there is unreliable information about background

pixels in the history, a larger weight is assigned to the uniform component.

4.4.2 Posterior computation
The classification results from the previous frame contain useful prior information

about which pixels are likely to belong to the background. The background posterior prob-

ability at each pixel in the previous frame is motion compensated according to optical flow

and used as the pixelwise background prior for the current frame. A smoothed(7× 7 Gaus-

sian filter with a standard deviation value of 1.75) image of the posterior, P̃ t−1
x (bg), is used

for the prior for the background process in the current frame.

56

The posterior probability of background in the current frame can now be computed

by combining the color likelihoods, the segmentation label likelihoods from the graphical

model, and the prior:

P t
x(bg|c, lx) =

P̂t
x(c|bg)× Pt

x(lx|bg)× Pt
x(bg)∑

L=bg,fg P̂t
x(c|L; Σl)× Pt

x(lx|L)× Pt
x(L)

. (4.6)

The use of color likelihoods and prior information helps to recover from errors in the FOF-

based segmentation as we explain in the results.

4.5 A non-parametric FOF segmentation model
The model discussed in Section 4.2 requires a predefined set of FOFs sampled from

the possible space of translation parameters. The set of 46 motions is fixed throughout the

inference process. Only the assignment of pixels to each cluster and the variance associated

with each cluster is updated in the inference process. Although the results in the next

section show that the model works well in practice, the requirement of preselecting a set of

motion values is a serious drawback. In this section, instead of relying on a finite number

of motion values, we propose a scheme where the motion values are continuously sampled

from the space of motion parameters. In this approach, there is no limit on the number of

motions inferred by the system. This makes the approach non-parametric and the number

of motions is allowed to grow as much as required to explain the observed data.

The model, shown in Figure 4.5, is similar to the earlier model except that ΦK is sam-

pled thus:

tx ∼ Uniform(−1, 1),

ty ∼ Uniform(−1, 1),

tz ∼ G(·; 0, .01),

(4.7)

where G(·;µ, σ2) is a Gaussian with mean µ and variance σ2. The above sampling of Φk

corresponds to sampling with a high probability in a disk region around a observer’s sphere

of view.

57

Figure 4.5. Non-parametric mixture model for segmentation based on optical flow orien-
tations.

In addition to sampling for the motion parameters from the above base distributions, we

include a inverse gamma prior for the variance parameter for each cluster. The following

scheme is used to update the variance for each cluster:

Âk = Ak +
nk
2
,

B̂k = Bk +

∑
i=1:nk

(ai − Fk,i)2

2
,

σ̂2
k =

B̂k

Âk
,

(4.8)

where k represents the cluster whose parameters are being updated, Ak and Bk represent

the prior hyper-parameters, and Âk and B̂k are updated parameters after observing data. nk
is the number of pixels assigned to the cluster k, Fk,i represents the FOF value for cluster k

at pixel i, and ai is the observed flow orientation at pixel i. We use Ak = R×C × .01 and

Bk = 15×Ak whereR and C are the number of rows and columns in the image. Ak can be

interpreted as the number of pixels that are to be observed before the prior value of variance

(Bk
Ak

= 15) is replaced by the observed variance in the cluster. In practice, it is useful

to restrict the updated variance σ̂2
k to lie within reasonable limits. Our implementation

58

uses a floor of 15 and ceiling of 100 for the variance. This causes any cluster to roughly

have a minimum tolerance of 4 degrees and maximum tolerance of 10 degrees between the

predicted and observed orientation values at any given pixel.

4.6 Results
The system’s performance is evaluated on two existing benchmarks. In addition to

these benchmarks, we also present results on a new set of videos that include several with

complex background phenomena to highlight the strengths of the system. The first bench-

mark is a motion segmentation data set [4], derived from the Hopkins data set [70], which

consists of 26 moving camera videos. The data set has ground truth segmentation for a few

frames sampled throughout the video. The second data set is the SegTrack segmentation

data set [71]. The third data set1 ,which we produced ourselves, is a challenging one with

complex backgrounds including trees in a forest and large occluding objects in front of the

moving foreground object. This data set is extremely challenging for traditional motion

segmentation algorithms.

Tables 4.1 and 4.2 show the average F-measure (Equation 2.13) for each video. We

present results of FOF segmentation for both the models described earlier. The first model

with predefined motion values we refer to as the finite-K model and the later model with

continuously sampled motion values is called the infinite-K model. For both models, pure

FOF segmentation results (Table 4.1) as well as the results after adding the color appearance

and prior models (Table 4.2) are shown. Three different runs of the finite-K model are

shown to understand the effect of changing the number of library motion components. The

most accurate method for each video is marked in bold. The tables show that in the finite-K

model, for different videos different values of K yield the best accuracy. While the K value

of 92 results in the highest accuracy for the most number of videos, K value of 46 yields

the highest average accuracy over all videos. Choosing an optimal value of K for all videos

is thus not straightforward.

In general, comparing Tables 4.1 and 4.2 shows that the use of color and prior infor-

mation helps improve the accuracy of FOF segmentation. In the Hopkins set, the videos

that are challenging are the ones where the foreground object’s FOF matches the camera

1The ComplexBackground data set is available for public use at
http://vis-www.cs.umass.edu/motionSegmentation/complexBgVideos.html.

59

http://vis-www.cs.umass.edu/motionSegmentation/complexBgVideos.html

motion’s FOF for a long duration (cars4), the foreground object covers a majority of the

pixels in the image (marple6, marple9), or where the foreground object is stationary for the

first few hundred frames although the ground truth labeling considers them to be moving

because they move later on in the sequence (marple6, marple11). In this set, the finite-K

model with a large number of components and the infinite-K model perform better than the

finite-K model with a small number of components.

Among the SegTrack data set, three videos (marked with *) have multiple moving ob-

jects, but the ground truth intended for tracking analysis marks only one primary object as

the foreground, causing our system to appear less accurate. We chose to retain the orig-

inal ground truth labeling and report the numbers as seen. In this set, the performance

of the finite-K and the infinite-K models are comparable on most videos. The exception

is the parachute video, which actually contains a significant amount of rotation. Because

the observed background optical flow orientations are not explainable by one dominant

translation, the infinite-K model tends to break the background into smaller segments.

Finally, in the new ComplexBackground videos taken with a hand-held camera, rotation

is a major challenge. In general all the methods are less accurate on this set. For the

finite-K model a moderate number of motions (46) is most successful in videos where

there is rotation (ComplexBackground set and parachute). A small or large number of

finite motions or the infinite motion model are both less successful on these videos. Using

color information helps in many of these videos for all models. The forest video has the

additional challenge that the foreground object moves very slowly in many frames. Despite

these challenges in the new videos, our system performs segmentation with reasonable

accuracy across multiple data sets. Figure 4.6 shows a few sample segmentation results

from four videos.

The infinite-K model is more sound and achieves better segmentation in videos that do

not have significant amount of camera rotation. It yields the highest accuracy for the data

set which satisfies the assumption of translation motion and returns moderate accuracy on

the other data sets. An algorithm to handle camera rotation, discussed in Chapter 5, makes

the infinite-K model suitable for a wide range of videos. It has the distinct advantage of not

requiring that the number of motions be tuned for each video or data set.

The most relevant papers for foreground-background classification are Kwak et al.

[38], and Elqursh and Elgammal [18]. Other papers that use the Hopkins data [70, 4, 50]

report sparse trajectory classification results for each frame which are not directly compa-

rable to foreground-background classification accuracy measures.

60

Figure 4.6. Sample results from four videos. The columns are the original image, the
observed FOF, FOF segmentation results, and results from combining FOF with color and
prior models, respectively. FOF is very accurate when the foreground objects’ FOFs are
easily distinguishable from the camera motion’s FOF. When the observed FOF cannot dis-
tinguish between the foreground and the background, FOF segmentation is not accurate.
Color and prior information can help in these cases (row 2 in (a)). If the foreground object
is not obvious from the FOF for a long duration, the color and prior too are unable to help
recover them after some time (row 3 in (b) and (d)). In the new videos(c and d), camera
rotation is a challenge (row 3 in (c) and row 2 in (d)). Occasionally, the largest detected
segment is the foreground object, which gets labeled as background (row 3 in (c)). Using a
prior helps reduce this error as well as errors due to rotation.

Elqursh and Elgammal perform a spectral clustering of trajectories and obtain a dense

labeling of pixels. However, segmentation of each frame is performed by considering tra-

jectory information from the current frame as well as four future frames. FOF segmentation

is a frame-to-frame segmentation method and hence solving a different problem with the

aim of achieving real-time processing of frames.

Kwak et al. report results on 3 of the 26 videos in the Hopkins data set, where they use

a special initialization procedure to segment the object of interest in the first frame. For the

Cars1, People1, and People2 videos, they report average F-measure values of .88, .94, and

61

.87, respectively. FOF segmentation which makes no assumptions about the first frame and

does not require an initialization step is not as accurate on the first two videos. In particular,

as shown in the Cars1 video in Figure 4.4 (last column), a heavy penalty is paid when our

bootstrapped system fails to detect the object in the first frame. The initialization procedure

used by Kwak et al. was not reproducible because of lack of detail in the paper. Further,

through correspondence with the authors, it was found that in their modified ground truth,

they do not consider smaller moving objects other than the primary tracked object to be

foreground. Thus, while their reported F-measures are presented here for completeness, a

direct comparison of the numbers is not very meaningful.

62

Videoname Finite K model Finite K model Finite K model Infinite K model
K=23 K=46 K=92

Hopkins set
Cars1 47.87 47.81 47.61 47.75
Cars2 64.10 46.37 64.01 63.16
Cars3 66.86 67.18 67.35 67.92
Cars4 28.48 38.51 28.65 38.41
Cars5 62.08 64.85 63.00 63.54
Cars6 80.11 78.09 80.47 79.57
Cars7 55.61 37.63 11.43 66.83
Cars8 86.73 87.13 86.94 86.78
Cars9 50.03 68.99 58.28 60.60
Cars10 56.59 53.98 64.29 61.20
Marple1 79.09 65.65 81.54 77.59
Marple2 60.50 49.68 62.84 59.81
Marple3 78.10 67.83 78.81 79.05
Marple4 51.91 61.33 60.75 63.91
Marple5 50.36 50.05 50.36 50.36
Marple6 32.85 26.95 31.81 33.43
Marple7 56.03 51.57 63.74 59.57
Marple8 69.43 68.89 80.88 80.88
Marple9 55.70 40.53 61.63 58.10
Marple10 32.48 57.19 28.60 32.45
Marple11 37.42 37.33 38.28 36.75
Marple12 63.90 65.83 63.90 63.90
Marple13 69.38 67.09 69.17 71.53
People1 53.15 56.76 56.51 58.77
People2 85.45 85.35 85.08 85.17
Tennis 59.54 61.63 59.67 63.79
Segtrack set
birdfall2 68.68 68.68 68.68 68.68
girl 75.92 75.73 76.07 75.70
parachute 49.36 51.49 46.01 09.54
cheetah* 13.47 12.68 10.34 13.26
monkeydog* 10.80 10.79 10.18 11.94
penguin* 15.76 14.74 16.16 15.39
ComplexBackground set
drive 31.20 30.13 16.16 31.51
forest 18.28 19.48 10.61 14.04
parking 37.03 43.47 22.92 36.67
store 16.67 28.46 16.87 23.13
traffic 56.72 66.08 55.94 42.29
Hopkins mean 58.99 57.85 59.45 61.95
Segtrack mean 38.99 39.02 37.91 32.42
ComplexBg mean 31.98 37.52 24.50 29.53
average all videos 52.10 52.05 51.23 52.78

Table 4.1. Results. F-measure value for all videos in three data sets using FOF (no color
modeling) 63

Videoname Finite K model Finite K model Infinite K model Infinite K model
K = 23 K = 46 K = 92

Hopkins set
Cars1 49.48 50.84 49.26 49.09
Cars2 71.14 56.60 72.78 74.72
Cars3 74.16 73.57 75.24 67.51
Cars4 48.10 47.96 50.32 51.11
Cars5 69.11 70.94 71.17 67.48
Cars6 83.88 84.34 84.94 85.24
Cars7 61.54 42.92 27.25 83.53
Cars8 87.27 87.61 87.32 87.35
Cars9 50.79 66.38 52.59 59.19
Cars10 50.14 50.84 53.27 52.29
Marple1 92.39 88.25 92.54 90.93
Marple2 66.01 60.88 69.22 73.18
Marple3 79.83 70.71 84.64 81.15
Marple4 67.64 69.01 57.69 67.79
Marple5 45.25 45.15 45.24 45.24
Marple6 35.03 23.95 36.06 36.41
Marple7 72.45 67.13 74.01 75.96
Marple8 83.66 80.32 77.08 77.08
Marple9 44.20 36.36 70.96 56.37
Marple10 48.00 58.72 47.40 46.89
Marple11 41.66 41.41 41.09 40.47
Marple12 66.53 70.01 64.92 68.71
Marple13 83.71 80.96 83.80 82.40
People1 65.82 69.53 66.80 71.07
People2 87.97 88.40 88.72 88.06
Tennis 66.18 67.59 66.26 63.61
Segtrack set
birdfall2 75.69 75.69 68.68 75.69
girl 81.58 81.95 81.36 81.71
parachute 20.71 54.36 12.20 46.13
cheetah* 24.15 22.31 15.45 22.96
monkeydog* 19.47 18.62 19.58 21.05
penguin* 23.98 20.71 24.81 22.38
ComplexBackground set
drive 50.04 61.80 37.46 43.34
forest 25.00 31.44 17.07 22.45
parking 56.84 73.19 38.58 36.34
store 51.99 70.74 24.87 23.20
traffic 67.63 71.24 65.75 50.17
Hopkins mean 65.07 63.48 65.02 67.03
Segtrack mean 40.93 45.61 38.18 44.99
ComplexBg mean 50.30 61.68 36.75 35.10
average all videos 59.16 60.34 56.85 59.14

Table 4.2. Results. F-measure value for all videos in three data sets using FOF along with
color and prior modeling 64

4.7 More comparisons
In this section, additional comparisons with some other approaches is presented. Com-

parison of our segmentation results to various other methods is presented in Section 4.7.1.

In Section 4.7.2, we compare our model to other models with optical flow orientations as

the input.

4.7.1 FOF versus flow vector-based segmentations
In Section 4.3, FOF segmentation results were compared to spectral clustering results

of Ochs and Brox [50], which represented the best method among many that were ex-

perimented with. K-means, Dirichlet process Gaussian mixture model, and the spectral

clustering method of Elqursh and Elgammal [18], were among the other methods used.

Sample qualitative results from all methods are given in Figure 4.7. The first four rows are

the input image, a visualization of the optical flow vectors [63], the optical flow magni-

tudes, and optical flow orientations respectively. The optical flow vectors appear to have

similar values for all background pixels when the background is relatively simple and at

roughly uniform depth from the camera. When background objects are at varying depths

(columns 3 and 4), their flow vectors are not uniform. The magnitudes of the vectors (row

3) depend heavily on object depth. Optical flow orientations (row 4), arguably, are the most

reliable indicators of independent motion. For orientations, it may be noted that the color

blue represents 0 degrees and red represents 360 degrees. Hence they should be considered

as equivalent (for instance, in column 3).

As a baseline method, K-means was used with the flow vectors as input. Rows 5, 6, and

7 show the results of K-means clustering for K = 2, K = 3, and K = 5, respectively. The

results are highly sensitive to the value ofK. For videos with simple backgrounds (columns

1, 2, and 5), small values of K work well. For complex background videos (columns 3 and

4), there is no value of K that yields good results. This can be seen in row 8 where human

judgement was used to pick the best results from many different K values.

Since requiring knowledge of K beforehand severely limits the use of K-means to gen-

eral video settings, a non-parametric mixture model with optical flow vectors as the fea-

tures is presented next. Results from the accelerated variational Dirichlet process Gaussian

mixture model (DPGMM) implementation of Kurihara et al. [37] are shown in row 9. Al-

though DPGMM is non-parametric and can adapt to the complexity in the data, the use of

optical flow vectors as the features causes the method to over-segment the background.

65

Figure 4.7. Comparison of FOF segmentation to several other optical flow vector-based
methods.

Spectral clustering has been shown to be useful for motion segmentation by cluster-

ing tracked keypoints based on their long-term trajectories. Elqursh and Elgammal [18]

66

find a low-dimensional embedding for trajectories from 5 consecutive frames. However,

their method tends to separate the background into several clusters. In order to apply their

method for background subtraction, they assume that the background is a Gaussian mixture

model of 5 components. Row 10 shows keypoints with the colors representing cluster mem-

berships for their algorithm with a mixture model of 5 components2. It is not clear whether

using a mixture of 5 components would work for across all videos. In some videos, the

foreground object keypoints clearly form a separate cluster (column 1 and 5), but in others,

they are grouped with the background.

Finally, the spectral clustering of Ochs and Brox [50] which represents the state of the

art for segmentation of trajectories is shown. This method considers interaction between

triplets of keypoints instead of simply using pairwise distances for the clustering. Further,

they use some post-processing to merge regions with similar motion properties. The re-

sults from their implementation3 that includes a merging step is given in row 11. Again,

the results show keypoints with the colors representing their clusters. The method works

well when the background is fairly at a uniform distance from the camera. Complex back-

grounds, however, still suffer from over-segmentation. Both the above spectral methods

result in labels for sparse keypoints. For a dense labeling of all pixels, additional pro-

cessing is required. In contrast, FOF segmentation directly returns a dense labeling of the

image.

The results in the last row show the efficacy of FOF-based segmentation across different

scenarios. Note that these results are from the orientation-based segmentation alone, with-

out any use of color or prior information. Foreground objects are broken down into smaller

segments depending on their motion, but all of the background is correctly identified as

one segment. The method is prone to failure when the object’s motion happens to be in a

direction that is consistent with the orientation field due to the camera’s motion (column

5). The object will go undetected until it or the camera change their motion direction. In

the above video, the object is detected after 5 frames.

2 Our own implementation of [18]

3The number of tracked frames is set to 3 in their method for a fair comparison

67

4.7.2 Our model versus other models using flow orientations
Section 4.3 shows the advantages of using flow orientations compared to flow vectors.

In this section, we compare other models to ours while keeping the feature representation

common - flow orientations. Using flow orientations as the common feature representa-

tion, our segmentation model is directly compared to K-means and DPGMM in Figure 4.8.

Once again, results from K-means (rows 3, 4, and 5) are sensitive to the choice of K.

When the correct value of K is provided by human judgement, the resulting segmentations

are reasonable (row 6), but still fall short of our FOF results in the last row. For com-

plex backgrounds (columns 3 and 4), K-means with flow orientations results in a better

segmentation than K-means with flow vectors in Figure 4.7. DPGMM automatically deter-

mines the number of components, but tends to break the background into smaller sections.

Our segmentation method, by explicitly modeling the spatial dependency between pixels

through the “field” of orientations for a given set of motion parameters, results in a better

segmentation compared to both human-assisted K-means and DPGMM.

4.8 Discussion
We have presented a system that performs motion segmentation that uses optical flow

orientations. While using optical flow can cause the segmentation of objects with similar

real-world motion into separate objects depending on their depth, the use of orientations

can avoid such over-segmentation. Our system is able to determine the number of fore-

ground motions automatically. We have shown promising results on a wide range of videos

including some that have very complex backgrounds. The main drawback of our method is

that we assume that only translational motion is present in the camera. Although it works

for a majority of frames, the system is prone to error when the camera rotates. Explicitly

modeling the camera rotation could help handle such cases. Incorporating magnitude in-

formation in the model can help further improve results, especially in cases where a tracked

foreground object suddenly disappears in the FOF observations. Finally, our appearance

model update procedure is extremely simple and can be improved by using a sophisticated

scheme as described by Kwak et al. .

68

Figure 4.8. Comparison of our FOF model to other methods using orientation fields.

69

CHAPTER 5

MODELING COMPLEX CAMERA MOTIONS BY ROTATION
COMPENSATION

In Chapter 4, we discussed a model to achieve segmentation by predicting the trans-

lational motion parameters for the camera and the moving objects in the scene and using

the resulting optical flow orientations. One of the assumptions in Chapter 4 was that the

camera’s motion is only translational. In this chapter, a rotation compensation algorithm

is presented that enables the application of the FOF segmentation algorithm to videos in

which there is both translation and rotation of the camera.

5.1 Introduction
The assumption of pure translation in the camera allows us to make use of the depth-

independence property of the resulting optical flow orientations. A majority of the videos

in the Hopkins and Segtrack data sets satisfy the assumption of translation motion and

good segmentation results are achieved on these videos. In videos where rotation is a

significant component of the camera’s motion, the depth-independence property of optical

flow orientations is lost. While a small amount of tolerance to rotation is observed in the

results, an explicit rotation compensation algorithm would be useful for handling general

videos such as those taken using hand-held cameras.

It is interesting to note another depth-independent aspect of optical flow: for pure rota-

tion motion in the camera, the resulting optical flow vectors do not depend on the depth

of the objects in the scene. In this chapter, this property is leveraged along with the

depth-independence of translational optical flow orientations to design a robust segmen-

tation algorithm. The rotation compensation algorithm helps achieve a much more reliable

segmentation when complex camera motion is present.

Estimation of a camera’s translation and rotation from the observed optical flow in

images is a related and well studied problem. In camera motion estimation, also known

as egomotion estimation, the relationship between the camera’s translation and rotation to

70

the observed optical flow and the constraints that the two motions place on the optical flow

are exploited in different ways to estimate the motion parameters. Jepson and Heeger [32]

constructed a set of constraints for optical flow observations in a manner that effectively

negates the rotation component. Prazdny [54] showed that the difference between any two

flow vectors yields a constraint that does not depend on rotation. Tomasi and Shi [68]

estimated translation by using the property that the change in angular distance between a

pair of image points is independent of camera rotation. In the above methods, translation

is first estimated using the rotation invariant constraints, followed by rotation estimation.

Prazdny [53] estimated the rotation first by using constraints that are independent of camera

translation and the depth of the points in the scene. These and other methods for egomotion

estimation are described by Tian et al. [67]. Reliable estimation of egomotion is difficult

in the presence of independently moving objects, which is commonly the case in motion

segmentation scenarios. We are not directly interested in computing the egomotion, but

rather in transforming the observed optical flow vectors so that the flow vectors due to

camera rotation, which cause the flow orientations to become depth-dependent, can be

removed.

Recent work by Yamaguchi et al. [78] used a rotation compensation procedure in their

optical flow estimation algorithm. They estimated the rotation flow at each pixel so that

when the rotational flow vectors are subtracted from the observed flow vectors, a pure

translational flow field is obtained. Their method estimates the fundamental matrix for

consecutive frames and uses epipolar constraints to arrive at the rotational flow. The fun-

damental matrix basically establishes constraints between matching points in two images

from a stereo camera or two consecutive frames in a video sequence. It is a 3x3 matrix that

defines epipolar lines in an image pair. Given matching points p1 and p2 in homogenous

coordinates,1 the epipolar constraint is that the point p2 lies on the line Fp1 in the second

image, also called the epipolar line. Yamaguchi et al. use the property that application

of rotational flow to the points in the first image causes the resulting points to lie on the

epipolar line in the second image. The fundamental matrix is typically estimated by first

finding corresponding matching points across two images. Although their algorithm is de-

signed for scenes that do not contain independently moving objects, robust methods are

available for computing the fundamental matrix in the presence of outliers. This makes the

Yamaguchi et al. algorithm a potential candidate for use in our task of motion segmenta-

1Homogenous coordinates for a point p = (x, y) are (x, y, 1)

71

tion where independently moving objects would be outliers that can affect the fundamental

matrix computation. Direct comparison of the methods shows that the Yamaguchi et al.

algorithm depends heavily on the accuracy of the estimated fundamental matrix and that

the proposed orientation fields based rotation compensation is more robust.

In Section 5.2, the nature of optical flow when there is rotation in the camera and an

algorithm to compensate for rotation are discussed. Synthetic examples that illustrate the

algorithm are in Section 5.3. Some examples from real videos that highlight the algorithm,

its strengths, and its drawbacks are presented in Section 5.4. In practice, it is useful to per-

form rotation compensation only when necessary. In Section 5.5, we discuss an algorithm

that determines whether the observed optical flow vectors necessitate the use of the rotation

compensation procedure. Results on the benchmark data sets are presented in Section 5.6.

5.2 Modeling and compensating for the flow due to camera rotation
Optical flow due to a camera’s motion can be broken down into the flow due to the

translational motion and the flow due to the rotational motion of the camera. Assume that

a camera’s translation and rotation parameters are (tx, ty, tz) and (rx, ry, rz) respectively.

With perspective projection, a point at location (X, Y, Z) in the real world projects to the

location (x, y) = (X/Z, Y/Z) in the image. The optical flow values due to camera motion

along the x (column) and y (row) dimensions are given by

vx(x) = (
tzx− txf

Z
) + (−ryf + rzy +

rxxy

f
− ryx

2

f
)

vy(x) = (
tzy − tyf

Z
) + (rxf − rzx−

ryxy

f
+
rxy

2

f
),

(5.1)

where x is the pixel location (x, y) and f is the focal length of the camera.

The flow components clearly separate into flow due to the translational component and

flow due to the rotational component of the camera motion. We saw in Equation 4.2 that

the orientation of the translational component does not depend on the point depth Z. It

may also be noted that the rotational component of the flow does not have a Z term and is

thus independent of the point depth. We propose an algorithm that makes use of these two

independence properties of optical flow to compensate for rotation, thus enabling a more

accurate segmentation of independently moving objects.

72

We reparameterize the rotational flow components from Equation 5.1 as done by Yam-

aguchi et al. [78]:

vrx = (r1 − r3y + r4x
2 + r5xy)

vry = (r2 + r3x+ r4xy + r5y
2),

(5.2)

where the superscript r represents the rotational component of optical flow.

Our rotation compensation algorithm basically tries to find the rotation flow vectors

which when subtracted from the observed optical flow vectors results in adjusted orienta-

tion values that are very close to some translation motion orientation field. We start with

some initial estimate for translation that results in an orientation field that has the minimum

absolute sum of errors from the observed orientation field. Next, the 3 translation and 5

rotation parameters are found such that the difference between the orientation field due to

the translation parameters and the adjusted observed orientation field, which are the orien-

tations of the observed flow vectors after rotation flow vectors corresponding to the rotation

parameters have been subtracted from them, is minimized. Mathematically,

(r̂, t̂) = arg min
r,t

Σi(| arctan(
oi,y − vri,y
oi,x − vri,x

)− F (t,xi)|), (5.3)

where F represents the translation orientation field as described in Equation 4.2, r is the

vector (r1, r2, r3, r4, r5), t is the vector (tx, tx, tz), oi,y and oi,x are the observed optical flow

vectors in the y and x directions, and vri,y and vri,x are the predicted rotation flow components

along y and x directions for pixel i.

Performing an unconstrained minimization often yields an undesirable result that the

returned solution is one where a very large rotation is hypothesized and the resulting ro-

tation compensation makes the translation flow insignificant. To avoid this situation, we

constrain the solution such that the returned rotation parameters result in a rotational op-

tical flow whose magnitude is not larger than the observed optical flow magnitude at each

pixel.

5.3 Synthetic examples
In this section, we illustrate the algorithm and the effect of rotation compensation on

synthetic data. For the interested reader, the thesis appendix (Section A.2) lists some syn-

73

thetic examples that illustrate that the flow due to a camera’s translation and rotation are

commutative. Figures 5.1 through 5.4 illustrate the rotation compensation algorithm. In

each of the figures, (a) shows the depth map of the objects in the scene. The scene is one of

gradually increasing depth from the sides of the image to the center. There are also planar

objects placed at different depths from the camera. Dark blue corresponds to a depth of

0 and light blue corresponds to a depth of 50 units from the camera. None of the objects

in the scene are moving on their own. The only observed motion is due to the camera’s

motion. Observed optical flow samples for the scene for a given motion parameter setting

(listed above (a)) are shown as arrows in (a). (f) shows the resulting orientation field from

the flow vectors in (a). (b) shows the dominant translation flow orientation field (FOF) ob-

tained by performing gradient descent only for the translation parameters with the objective

of minimizing the sum of absolute errors between the dominant translation FOF and the ob-

served FOF in (f). (g) shows the difference between the dominant translation FOF and the

observed FOF, with dark blue corresponding to 0 and red corresponding to 60 degrees. If

no rotation were present in the camera, this image would be all zero. The presence of rota-

tion causes a large difference between the dominant translation FOF and the observed FOF.

Using (g) as the basis for segmentation could lead to erroneously inferring that many high

difference regions are independently moving objects, when in reality all the objects in the

scene are stationary. (c) shows the dominant rotation flow as estimated by our algorithm in

Equation 5.3. The corresponding rotation FOF is shown in (h). Subtracting the estimated

rotation flow in (c) from the observed flow in (a) results in the rotation compensated flow

in (d). The FOF corresponding to the rotation compensated flow is shown in (i). (e) shows

the dominant translation FOF obtained from the minima translation parameters returned

from Equation 5.3. Note that this differs significantly from the initial dominant translation

FOF in (b). The effectiveness of the rotation compensated translation FOF is clearly visible

when the difference between it and the rotation compensated flow FOF (i) are observed in

(j). The difference image shows very low values and is a significant improvement over (g)

for the purposed of identifying that all the objects in the scene are non-moving.

It must be noted that the proposed rotation compensation algorithm is not designed to

find the exact rotation parameters of the camera. The algorithm finds the translation and

rotation settings that best explain the observed optical flow vectors and orientations. It is

possible that many different combinations of translation and rotation yield similar optical

flow. The algorithm may find one of these possible settings which is not guaranteed to

be the exact set of parameters that actually caused the observed optical flow. For the pur-

74

pose of motion segmentation, we are not as concerned about computing the exact motion

parameters as we are in achieving reliable segmentation.

The rotation compensation algorithm does not always work well. For instance, in Fig-

ure 5.5, we see a case where the rotation compensation is not able to return a low difference

image (j). This happens when the initial translation FOF (b) is very unreliable.

75

Figure 5.1. Rotation compensation algorithm illustration 1. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green = 50) and arrows
showing the optical flow due to camera motion (there are no moving objects in this scene).
(f) observed orientation field (FOF) due to flow in (a). The presence of rotation in the
camera makes orientations depth dependent. (b) Dominant translation FOF (without con-
sidering any rotation compensation). (g) Difference between observed FOF and dominant
translation FOF. Depth-dependent nature of flow orientations in the presence of camera
rotation makes them less ideal for use as a basis for segmentation. Although all objects
are stationary, many regions in the difference image exhibit high difference values (light
blue). Dark blue corresponds to a value of 0. (c) Dominant rotation flow estimated using
the rotation compensation algorithm in Equation 5.3. (h) FOF corresponding to the esti-
mated rotation flow in (c). (d) Observed flow (a) after subtracting rotation flow (c) from
it. (i) FOF corresponding to the rotation compensated flow in (d). (e) Dominant translation
FOF considering the rotation compensation using Equation 5.3. This is significantly differ-
ent from (b). (j) Difference between dominant rotation compensated translation FOF and
rotation compensated observed FOF. (j) shows a low difference value for the entire scene,
which is a significant improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene.

76

Figure 5.2. Rotation compensation algorithm illustration 2. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green = 50) and arrows
showing the optical flow due to camera motion (there are no moving objects in this scene)
(f) observed orientation field (FOF) due to flow in (a). The presence of rotation in the
camera makes orientations depth dependent. (b) Dominant translation FOF (without con-
sidering any rotation compensation) (g) Difference between observed FOF and dominant
translation FOF. Depth-dependent nature of flow orientations in the presence of camera
rotation makes them less ideal for use as a basis for segmentation. Although all objects
are stationary, many regions in the difference image exhibit high difference values (light
blue). Dark blue corresponds to a value of 0. (c) Dominant rotation flow estimated using
the rotation compensation algorithm in Equation 5.3. (h) FOF corresponding to the esti-
mated rotation flow in (c). (d) Observed flow (a) after subtracting rotation flow (c) from
it. (i) FOF corresponding to the rotation compensated flow in (d). (e) Dominant translation
FOF considering the rotation compensation using Equation 5.3. This is significantly differ-
ent from (b). (j) Difference between dominant rotation compensated translation FOF and
rotation compensated observed FOF. (j) shows a low difference value for the entire scene,
which is a significant improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene.

77

Figure 5.3. Rotation compensation algorithm illustration 3. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green = 50) and arrows
showing the optical flow due to camera motion (there are no moving objects in this scene)
(f) observed orientation field (FOF) due to flow in (a). The presence of rotation in the
camera makes orientations depth dependent. (b) Dominant translation FOF (without con-
sidering any rotation compensation) (g) Difference between observed FOF and dominant
translation FOF. Depth-dependent nature of flow orientations in the presence of camera
rotation makes them less ideal for use as a basis for segmentation. Although all objects
are stationary, many regions in the difference image exhibit high difference values (light
blue). Dark blue corresponds to a value of 0. (c) Dominant rotation flow estimated using
the rotation compensation algorithm in Equation 5.3. (h) FOF corresponding to the esti-
mated rotation flow in (c). (d) Observed flow (a) after subtracting rotation flow (c) from
it. (i) FOF corresponding to the rotation compensated flow in (d). (e) Dominant translation
FOF considering the rotation compensation using Equation 5.3. This is significantly differ-
ent from (b). (j) Difference between dominant rotation compensated translation FOF and
rotation compensated observed FOF. (j) shows a low difference value for the entire scene,
which is a significant improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene.

78

Figure 5.4. Rotation compensation algorithm illustration 4. (a) A synthetic scene with
color indicating depth of object from the camera (dark blue = 0, green = 50) and arrows
showing the optical flow due to camera motion (there are no moving objects in this scene)
(f) observed orientation field (FOF) due to flow in (a). The presence of rotation in the
camera makes orientations depth dependent. (b) Dominant translation FOF (without con-
sidering any rotation compensation) (g) Difference between observed FOF and dominant
translation FOF. Depth-dependent nature of flow orientations in the presence of camera
rotation makes them less ideal for use as a basis for segmentation. Although all objects
are stationary, many regions in the difference image exhibit high difference values (light
blue). Dark blue corresponds to a value of 0. (c) Dominant rotation flow estimated using
the rotation compensation algorithm in Equation 5.3. (h) FOF corresponding to the esti-
mated rotation flow in (c). (d) Observed flow (a) after subtracting rotation flow (c) from
it. (i) FOF corresponding to the rotation compensated flow in (d). (e) Dominant translation
FOF considering the rotation compensation using Equation 5.3. This is significantly differ-
ent from (b). (j) Difference between dominant rotation compensated translation FOF and
rotation compensated observed FOF. (j) shows a low difference value for the entire scene,
which is a significant improvement over the result in (g). (j) is hence a much more reliable
basis for detecting independently moving objects in the scene.

79

Figure 5.5. Rotation compensation failure illustration 1. (a) A synthetic scene with color
indicating depth of object from the camera (dark blue = 0, green = 50) and arrows show-
ing the optical flow due to camera motion (there are no moving objects in this scene) (f)
observed orientation field (FOF) due to flow in (a). The presence of rotation in the camera
makes orientations depth dependent. (b) Dominant translation FOF (without considering
any rotation compensation). In this case, the true translation FOF is a radial FOF. Large
amount of rotation causes the gradient descent to return an unreliable initial point. (g)
Difference between observed FOF and dominant translation FOF. (c) Dominant rotation
flow estimated using the rotation compensation algorithm in Equation 5.3. (h) FOF cor-
responding to the estimated rotation flow in (c). (d) Observed flow (a) after subtracting
rotation flow (c) from it. (i) FOF corresponding to the rotation compensated flow in (d).
(e) Dominant translation FOF considering the rotation compensation using Equation 5.3.
(j) Difference between dominant rotation compensated translation FOF and rotation com-
pensated observed FOF. This is an failure example. Due to a very bad initial estimate for
translation FOF, a reliable decomposition into translation and rotation was not possible.
The resulting difference image (j) is not any better than the initial difference image (g).

80

5.4 Real video examples
Figures 5.6 through 5.9 show examples of rotation compensation in real videos. In each

of these images, the first row shows the observed flow (a), observed FOF (b), segmentation

output (c), and segmentation labels for the image pixels (d). No rotation compensation is

applied for the results in (c) and (d). The second row shows the estimated rotation flow

(e) and the observed flow after rotation flow has been subtracted from it (f). The FOF of

the rotation compensated flow in (f) is shown in (g). Segmentation performed using the

rotation compensated FOF results in the output image (h) and segmentation labels shown

in (i).

The figures show successful cases where rotation compensation results in a large im-

provement in the segmentation. It may be noted that in comparison to the original FOF

before rotation compensation (b), the visualization of the rotation compensated FOF (g)

tends to have a more smooth color distribution for the background pixels. There are fewer

discontinuities in the background pixels in the rotation compensated FOF. This is a desir-

able outcome and demonstrates that the rotation compensation is working as one would

expect.

A few failure cases are also presented in Figures 5.10 and 5.11. In the cars10 video,

the bus moves very slowly. The FOF values observed on the bus are only slightly different

from the background. Without rotation compensation, the FOF segmentation can success-

fully identify the bus as a moving object. Although there appears to be little rotation in

this frame, the rotation compensation algorithm predicts a rotation of a large magnitude.

Upon subtracting this large rotation flow from the observed flow, the initial small difference

between the bus and background flow orientations gets smoothed out and the bus can no

longer be segmented.

Frame numbered 20 in the cars7 video is another example where there does not appear

to be rotation in the scene, but rotation compensation returns a rotation of high magnitude.

Subtracting the estimated large rotation flow causes the otherwise identifiable car to disap-

pear in the rotation compensated FOF. Note that red color in the FOF image corresponds

to 360 degrees and blue corresponds to 0, which means they represent the same orientation

and hence indistinguishable. The two failure cases show that performing rotation compen-

sation when there is no rotation in the scene can lead to loss of discriminative power in the

FOF observations. This is particularly true if the moving object has flow orientations in

roughly the same direction as the camera’s FOF, as is the case with the bus in the cars10

81

Figure 5.6. Rotation compensation real examples - cars7 video. (a) Observed flow - The
camera motion is a counter-clockwise rotation with translation to the left. (b) Observed
FOF - camera rotation is evident. (c) Segmentation result based on the observed FOF (no
rotation compensation). (d) Segmentation labels returned by the model (no rotation com-
pensation). (e) Estimated rotation flow using our rotation compensation algorithm. (f)
Observed flow after rotation flow has been removed from it. (g) FOF corresponding to the
rotation compensated flow. (h) Segmentation output resulting from the rotation compen-
sated FOF. (i) Segmentation labels returned by the model for the rotation compensated flow
orientations.

video and the car in the cars7 video. In the next section, we develop a strategy to avoid

using rotation compensation in frames where rotation is clearly not present.

82

Figure 5.7. Rotation compensation real examples - parachute video. (a) Observed flow -
The camera motion is counter-clockwise rotation along with a translation to the right. (b)
Observed FOF - camera rotation is evident. (c) Segmentation result based on the observed
FOF (no rotation compensation). (d) Segmentation labels returned by the model (no rota-
tion compensation). (e) Estimated rotation flow using our rotation compensation algorithm.
(f) Observed flow after rotation flow has been removed from it. (g) FOF corresponding to
the rotation compensated flow. (h) Segmentation output resulting from the rotation com-
pensated FOF. (i) Segmentation labels returned by the model for the rotation compensated
flow orientations.

83

Figure 5.8. Rotation compensation real examples - forest video. (a) Observed flow - The
camera motion is mainly translation to the right and downwards along with a slight rota-
tion. (b) Observed FOF - camera rotation is evident. (c) Segmentation result based on the
observed FOF (no rotation compensation). (d) Segmentation labels returned by the model
(no rotation compensation). (e) Estimated rotation flow using our rotation compensation
algorithm. (f) Observed flow after rotation flow has been removed from it. (g) FOF cor-
responding to the rotation compensated flow. (h) Segmentation output resulting from the
rotation compensated FOF. (i) Segmentation labels returned by the model for the rotation
compensated flow orientations.

84

Figure 5.9. Rotation compensation real examples - traffic video. (a) Observed flow - The
camera motion is mainly translation downwards with a slight rotation. (b) Observed FOF -
camera rotation is evident. (c) Segmentation result based on the observed FOF (no rotation
compensation). (d) Segmentation labels returned by the model (no rotation compensation).
(e) Estimated rotation flow using our rotation compensation algorithm. (f) Observed flow
after rotation flow has been removed from it. (g) FOF corresponding to the rotation com-
pensated flow. (h) Segmentation output resulting from the rotation compensated FOF. (i)
Segmentation labels returned by the model for the rotation compensated flow orientations.

85

Figure 5.10. Rotation compensation real example (failure case) - cars10 video. (a) Ob-
served flow - The camera motion is pure translation, upwards and to the left. (b) Observed
FOF - there is evidently no camera rotation in this frame. (c) Segmentation result based
on the observed FOF (no rotation compensation). (d) Segmentation labels returned by the
model (no rotation compensation). (e) Estimated rotation flow using our rotation compen-
sation algorithm. (f) Observed flow after rotation flow has been removed from it. (g) FOF
corresponding to the rotation compensated flow. (h) Segmentation output resulting from
the rotation compensated FOF. The flow orientation observations on the slowly moving
bus become indistinguishable from the background. (i) Segmentation labels returned by
the model for the rotation compensated flow orientations.

86

Figure 5.11. Rotation compensation real example (failure case) - cars7 video. (a) Ob-
served flow - the camera motion is pure translation, to the left and slightly downwards. (b)
Observed FOF - there is evidently no camera rotation in this frame. (c) Segmentation result
based on the observed FOF (no rotation compensation). (d) Segmentation labels returned
by the model (no rotation compensation). (e) Estimated rotation flow using our rotation
compensation algorithm. (f) Observed flow after rotation flow has been removed from it.
(g) FOF corresponding to the rotation compensated flow. (h) Segmentation output resulting
from the rotation compensated FOF. The flow orientation observations on the moving car
become indistinguishable from the background. (i) Segmentation labels returned by the
model for the rotation compensated flow orientations

87

5.5 Test for the presence of rotation
Application of rotation compensation to a few videos resulted in the observation that in

videos where rotation was present, rotation compensation made a significant improvement

to the results. In many videos where there was no rotation, using rotation compensation re-

sulted in genuinely moving objects becoming classified as background because the rotation

compensation explained away the differences between the background orientations and the

foreground orientations by hypothesizing a large amount of rotation for the scene.

In order to avoid the use of rotation compensation in videos where no rotation is present,

we test for camera rotation at each frame and apply rotation compensation only if the test

concludes that rotation is probable in the current frame. The algorithm to test for rotation

is described in Algorithm 3. Intuitively, the algorithm computes what percentage of pixels

which are assigned to the largest cluster exhibit orientations that are significantly different

from the dominant translation FOF. If in any frame of the video, more than 25% of the

pixels assigned to the largest cluster have a large deviation from the dominant translation

FOF, rotation is likely to be present and rotation compensation is performed in such frames.

Algorithm 3 Test to check if rotation is present
Step 1 : Obtain the index of the largest cluster k′, its corresponding translation FOF
(without rotation compensation) Fk′ , the number of pixels nk′ currently assigned to the
cluster, and the pixels currently assigned to the cluster i : li == k′.
Step 2 : Compute the difference Di between observed orientation values and Fk′ for all
pixels i currently assigned to cluster k′.
Step 3 : Compute median value of D, µ = median(Di).
Step 4 : Compute a weight for each pixel wi = G(Di;µ, σ

2 = 15), where G(·;µ, σ2)
is a Gaussian function with mean µ and variance σ2. Note that the variance used here
(σ2 = 15) corresponds to the floor value used for variance in the infinite-K segmentation
model of Section 4.5.
Step 5 : Compute the median of the weights, µw = median(wi). Determine threshold
Tr = 0.9× µw.
Step 6 : Compute the number of pixels, m, whose weights wi are lower than Tr.
Step 7 : If ratio m

nk′
> 0.25, rotation is present in the current frame.

5.6 Results
The proposed FOF rotation compensation algorithm is compared to the algorithm by

Yamaguchi et al. [78]. Yamaguchi et al. compute the fundamental matrix that relates two

consecutive frames in the video by matching keypoints across the images. Next, the rotation

88

flows are computed such that the sum of the errors from the epipolar constraint equation

at each pixel is minimized. The rotation flows returned by their algorithm are subtracted

from the observed optical flow vectors at each pixel. The rotation compensated optical flow

vectors are then used in the infinite-K FOF segmentation model from the previous chapter.

The results of this procedure are compared to the FOF rotation compensation algorithm

from Section 5.2.

Table 5.1. shows that the FOF rotation compensation algorithm clearly outperforms

the Yamaguchi method on a majority of videos. Detailed analysis of the results in indi-

vidual frames in the videos revealed that the Yamaguchi method returns good results when

the estimated fundamental matrix is accurate. In video frames where the fundamental ma-

trix estimate is erroneous, the Yamaguchi method fails. The correct fundamental matrix

F should satisfy the constraint p1 × F × pT2 = 0, where p1 and p2 are the homogenous

coordinates of matching points in the two images and T denotes the matrix transpose op-

eration. We verified that in the frames where the Yamaguchi method fails, the average

error in the values of p1 × F × pTr was about 25 times the error in the frames where the

method works. Thus, it is very likely that the shortcoming is not in the Yamaguchi rota-

tion compensation algorithm itself, but in the fact that the fundamental matrix estimation

procedure is unstable and prone to errors. In the Hopkins data set where camera motion is

mainly translation and the background is largely planar, estimating the fundamental matrix

is less error prone and as a result, the Yamaguchi method returns reasonable results. In the

ComplexBackground data set where both the background and camera motion are complex,

the Yamaguchi method performs poorly. It may be noted that the videos are taken from

uncalibrated cameras and no additional information such as focal length of the camera is

known. Obtaining the fundamental matrix in such scenarios can be extremely difficult. The

FOF rotation compensation is much more stable and accurate across different data sets and

scenarios. It is not adversely affected by the uncalibrated nature of the camera and the

presence of outliers (independently moving objects).

The results of performing FOF-based rotation compensation are compared to the earlier

translation-only models in Tables 5.2, 5.3, and 5.4. Table 5.2 shows the results of using the

FOF segmentation without the color and prior models. Augmenting FOF-based segmenta-

tion with the color and prior information yields the results in Table 5.3. To summarize the

performance over the three data sets and over all videos, the mean values from the tables

are reproduced in Table 5.4.

89

Videoname Yamaguchi FOF (Infinite K model)
compensation compensation

FOF only FOF only
Hopkins set
Cars1 40.14 49.38
Cars2 39.93 42.47
Cars3 51.32 67.89
Cars4 25.61 25.28
Cars5 59.52 59.72
Cars6 85.70 83.52
Cars7 34.51 61.45
Cars8 88.79 87.69
Cars9 47.46 53.69
Cars10 24.67 45.51
Marple1 56.57 74.35
Marple2 36.38 52.84
Marple3 61.06 72.08
Marple4 33.13 51.38
Marple5 50.36 50.36
Marple6 31.82 30.56
Marple7 48.76 55.13
Marple8 68.87 81.30
Marple9 57.26 52.92
Marple10 34.02 33.15
Marple11 36.49 37.34
Marple12 66.43 65.87
Marple13 50.76 71.31
People1 45.27 54.93
People2 75.11 84.50
Tennis 43.36 61.58
Segtrack set
birdfall2 68.68 68.68
girl 42.04 73.67
parachute 39.22 75.69
cheetah* 03.64 11.76
monkeydog* 08.22 11.76
penguin* 15.61 15.07
ComplexBackground set
drive 13.51 30.93
forest 04.37 22.87
parking 36.63 51.14
store 15.56 53.06
traffic 43.71 67.92
Hopkins mean 49.74 59.03
Segtrack mean 29.57 42.77
ComplexBg mean 22.76 45.18
average all videos 42.82 54.39

Table 5.1. Results. Comparison of FOF rotation compensation to Yamaguchi rotation
compensation

90

The first column of numbers corresponds to the finite-K segmentation model with 46

components without the use of rotation compensation. The second column of numbers

corresponds to the infinite-K model without the use of rotation compensation. The third

column of numbers shows the results for the infinite-K model with rotation compensation.

The last column are results for the rotation test followed by rotation compensation in frames

that pass the rotation test. The results show that rotation compensation indeed helps in the

videos where large amount of rotation is observed. However, in some videos where there

is no rotation (Hopkins data set), performing rotation compensation results in less accurate

results. Using the algorithm to test for rotation and performing rotation compensation

only on videos in which the test passes results in the best performance on a majority of

videos. The average over all videos shows that the rotation test followed by the rotation

compensation algorithm yields the highest accuracy.

91

Videoname Finite K model Infinite K model Infinite K model Infinite K model
No rot. comp. No rot. comp. Rot. comp. Rot. test+comp.

FOF only FOF only FOF only FOF only
Hopkins set
Cars1 47.81 47.75 49.38 47.75
Cars2 46.37 63.16 42.47 63.16
Cars3 67.18 67.92 67.89 67.92
Cars4 38.51 38.41 25.28 38.41
Cars5 64.85 63.54 59.72 63.54
Cars6 78.09 79.57 83.52 80.02
Cars7 37.63 66.83 61.45 61.51
Cars8 87.13 86.78 87.69 87.15
Cars9 68.99 60.60 53.69 60.64
Cars10 53.98 61.20 45.51 55.78
Marple1 65.65 77.59 74.35 79.76
Marple2 49.68 59.81 52.84 63.50
Marple3 67.83 79.05 72.08 79.09
Marple4 61.33 63.91 51.38 50.99
Marple5 50.05 50.36 50.36 50.36
Marple6 26.95 33.43 30.56 30.58
Marple7 51.57 59.57 55.13 56.66
Marple8 68.89 80.88 81.30 81.46
Marple9 40.53 58.10 52.92 56.20
Marple10 57.19 32.45 33.15 32.31
Marple11 37.33 36.75 37.34 36.75
Marple12 65.83 63.90 65.87 65.82
Marple13 67.09 71.53 71.31 71.50
People1 56.76 58.77 54.93 60.59
People2 85.35 85.17 84.50 85.16
Tennis 61.63 63.79 61.58 63.67
Segtrack set
birdfall2 68.68 68.68 68.68 68.68
girl 75.73 75.70 73.67 75.70
parachute 51.49 09.54 75.69 68.31
cheetah* 12.68 13.26 11.76 12.21
monkeydog* 10.79 11.94 11.76 12.56
penguin* 14.74 15.39 15.07 15.32
ComplexBackground set
drive 30.13 31.51 30.93 32.71
forest 19.48 14.04 22.87 19.70
parking 43.47 36.67 51.14 51.05
store 28.46 23.13 53.06 52.91
traffic 66.08 42.29 67.92 62.04
Hopkins mean 57.85 61.95 59.03 61.16
Segtrack mean 39.02 32.42 42.77 42.13
ComplexBg mean 37.52 29.53 45.18 43.68
average all videos 52.05 52.78 54.39 55.72

Table 5.2. Results. F-measure values for all videos for different models using only FOF
segmentation.

92

Videoname Finite K model Infinite K model Infinite K model Infinite K model
No rot. comp. No rot. comp. Rot. comp. Rot. test+comp.

FOF+color+prior FOF+color+prior FOF+color+prior FOF+color+prior
Hopkins set
Cars1 50.84 49.09 51.12 49.07
Cars2 56.60 74.72 63.17 74.71
Cars3 73.57 67.51 61.50 66.84
Cars4 47.96 51.11 22.24 51.11
Cars5 70.94 67.48 68.52 67.62
Cars6 84.34 85.24 87.23 85.60
Cars7 42.92 83.53 60.48 82.87
Cars8 87.61 87.35 88.02 87.51
Cars9 66.38 59.19 48.06 57.01
Cars10 50.84 52.29 45.39 49.02
Marple1 88.25 90.93 92.68 93.17
Marple2 60.88 73.18 63.05 71.82
Marple3 70.71 81.15 80.19 80.27
Marple4 69.01 67.79 48.40 52.99
Marple5 45.15 45.24 45.24 45.24
Marple6 23.95 36.41 34.23 34.18
Marple7 67.13 75.96 78.60 75.62
Marple8 80.32 77.08 85.08 86.92
Marple9 36.36 56.37 57.30 55.83
Marple10 58.72 46.89 48.25 47.65
Marple11 41.41 40.47 40.42 40.42
Marple12 70.01 68.71 67.55 65.67
Marple13 80.96 82.40 83.27 82.87
People1 69.53 71.07 65.84 72.48
People2 88.40 88.06 86.23 87.80
Tennis 67.59 63.61 70.05 66.48
Segtrack set
birdfall2 75.69 75.69 75.69 75.69
girl 81.95 81.71 81.59 81.71
parachute 54.36 46.13 91.69 91.14
cheetah* 22.31 22.96 22.77 23.53
monkeydog* 18.62 21.05 23.64 21.61
penguin* 20.71 22.38 23.47 21.58
ComplexBackground set
drive 61.80 43.34 45.13 52.10
forest 31.44 22.45 38.27 39.95
parking 73.19 36.34 76.02 75.78
store 70.74 23.20 70.07 70.31
traffic 71.24 50.17 72.04 68.28
Hopkins mean 63.48 67.03 64.32 66.57
Segtrack mean 45.61 44.99 53.14 52.54
ComplexBg mean 61.68 35.10 60.31 61.28
average all videos 60.34 59.14 61.90 63.58

Table 5.3. Results: F-measure values for all videos for the different models using FOF
segmentation along with color and prior information.

93

V
id

eo
na

m
e

Fi
ni

te
K

m
od

el
In

fin
ite

K
m

od
el

In
fin

ite
K

m
od

el
In

fin
ite

K
m

od
el

N
o

ro
t.

co
m

p.
N

o
ro

t.
co

m
p.

R
ot

.c
om

p.
R

ot
.t

es
t+

co
m

p.
FO

F
on

ly
FO

F+
co

lo
r+

pr
io

r
FO

F
on

ly
FO

F+
co

lo
r+

pr
io

r
FO

F
on

ly
FO

F+
co

lo
r+

pr
io

r
FO

F
on

ly
FO

F+
co

lo
r+

pr
io

r
H

op
ki

ns
m

ea
n

57
.8

5
63

.4
8

61
.9

5
67

.0
3

59
.0

3
64

.3
2

61
.1

6
66

.5
7

Se
gt

ra
ck

m
ea

n
39

.0
2

45
.6

1
32

.4
2

44
.9

9
42

.7
7

53
.1

4
42

.1
3

52
.5

4
C

om
pl

ex
B

g
m

ea
n

37
.5

2
61

.6
8

29
.5

3
35

.1
0

45
.1

8
60

.3
1

43
.6

8
61

.2
8

av
er

ag
e

al
lv

id
eo

s
52

.0
5

60
.3

4
52

.7
8

59
.1

4
54

.3
9

61
.9

0
55

.7
2

63
.5

8

Ta
bl

e
5.

4.
R

es
ul

ts
-s

um
m

ar
iz

ed
.A

ve
ra

ge
F-

m
ea

su
re

va
lu

e
ac

ro
ss

vi
de

os
in

ea
ch

da
ta

se
tf

or
th

e
di

ff
er

en
tm

od
el

s.

94

5.7 Conclusions
We have presented an algorithm for rotation compensation that leverages the depth-

independence properties of translational flow orientations and rotational flow vectors. The

use of rotation compensation in conjunction with the flow orientation based motion seg-

mentation results in a system that works well on a wide range of videos. The system is able

to handle challenging background phenomena of varying depths in the scene.

A drawback of the current system is that rotation compensation is performed separately

from the probabilistic segmentation model. For future work, inclusion of rotation as a

variable in the probabilistic model would be an elegant and more complete solution for

motion segmentation.

Modeling the presence or absence of rotation by using a suitable prior variable for

rotation would be a good improvement over the current test to detect rotation.

95

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Motion segmentation is interesting from a biological as well as computer vision per-

spective. Higher level vision systems such as object tracking, object recognition, and activ-

ity analysis can be built using motion segmentation as the first step. With this motivation,

this thesis makes contributions to the research in motion segmentation under different cam-

era conditions.

For the stationary camera case, in Chapter 2 we described a clean probabilistic system

that models the various aspects involved as separate components that are brought together

using the Bayes rule. The advantage of separating the components is that they can be

better understood and interpreted. Suitable learning mechanisms can be designed for the

components when they are clearly understood. For instance, we discussed a few examples

of how the prior can be learned using the history of pixel labels from previous frames.

In Chapter 3, we presented an adaptive kernel variance method that addressed the im-

portant issue of variance adaptation for background modeling. For future extension, the

kernel variance values which were hand-picked in this thesis may be automatically learned.

Such learning mechanisms for priors, variances, and other aspects of background subtrac-

tion can help build adaptable surveillance systems that are more accurate and robust.

Many practical applications of tracking and analysis have been built on the foundation

of motion segmentation in stationary cameras. There are fewer established solutions and

applications of the same kind for moving cameras because segmentation is a much more

challenging problem when the camera is moving. In Chapter 4, we have presented a viable

approach for segmentation with a moving camera that is applicable to any scene irrespective

of its geometric structure. Existing segmentation algorithms are highly prone to errors

when there is a significant depth disparity between the various objects that make up the

background. Higher level applications can now be built on top of the proposed motion

segmentation algorithm.

Our algorithm makes use of certain properties of optical flow which are not dependent

on the depth of the objects, but depend only on the objects’ motion. Hence, we are able to

96

segment a scene based upon the real-world motion of the objects without being affected by

their relative depth. This property of our system makes it extremely useful in many practical

settings such as hand-held cameras and cameras on autonomous robots. The efficacy of our

algorithm is demonstrated on a wide range of videos.

Although the proposed algorithm is very effective, there are many aspects that can be

improved. A major shortcoming of the current algorithm is that objects that are moving

with the same flow orientation values as the camera are not distinguishable from the back-

ground. This is an inherently ambiguous scenario and it is very difficult to detect such

objects. One possible way to handle such a scenario is to use information about the flow

magnitudes which we currently ignore. Use of region level information instead of pixel

level information, such as superpixels, can be helpful in resolving such ambiguities as well

as improving the accuracy in general. Edge and texture information can be used to augment

the color appearance model that is currently being used.

The rotation compensation algorithm presented in Chapter 5 is early work with scope

for many improvements. Currently, the rotation compensation is separate from the flow

orientation based segmentation. Rotation compensation could be included elegantly into a

probabilistic segmentation model. A prior over rotation parameters instead of the current

test for rotation would help in better understanding and modeling of the problem.

Another related line of work is optical flow estimation. While we use optical flow

estimates from another algorithm, it could be beneficial to include the flow estimation and

motion segmentation within one framework. The constraint that the camera’s motion places

on possible orientations of the optical flow that we use for segmentation can also be a strong

source of information to guide the optical flow estimation process.

Finally, better automatic scene understanding by considering optical flow estimation,

motion segmentation, and depth estimation as inter-related problems is an interesting larger

research direction that can be pursued based on the ideas laid forth in this thesis.

97

APPENDIX

ADDITIONAL FIGURES

A.1 Flow orientation fields
In Figure 4.2, a subset of the library FOF’s was shown. The complete set of orientations

is given here in Figure A.1. The motion parameter tuple t = (tx, ty, tz) responsible for each

FOF is listed within each image.

A.2 Translational and rotational flow
It is a well known property that that the optical flow due to a camera’s translation and ro-

tation are commutative and when added together result in the same composite flow vectors

that would be obtained if the camera translated and rotated at the same time. Figures A.2

and A.3 are two examples to illustrate that the composite flow due to a complex translation

and rotation motion of the camera can be obtained by adding the respective pure translation

and pure rotation flow. The examples clearly show that if the correct rotation parameters

are known and the resulting rotation flow subtracted from the observed composite flow,

pure translation flow can be obtained.

98

Figure A.1. The complete set of orientation fields used in our model. The motion param-
eters responsible for each field are given within each image. The color bar on the bottom
right of the figure shows the mapping from angles in degrees to color values in the images.

99

Figure A.2. Flows due to translation and rotation of a camera are commutative- example
1. (a) A synthetic scene with color indicating depth of object from the camera (dark blue
= 0, green = 50). (b) Optical flow samples due to composite camera motion (parameters
listed). (c) Optical flow due to translation alone. (d) Optical flow due to rotation alone. (e)
Subtracting rotation flow (d) from composite flow (b) returns translation flow. (f) Orienta-
tion field corresponding to the composite flow in (b). (g) Orientation field corresponding
to the translation flow in (c). (h) Orientation field corresponding to the rotation flow in (d).
(i) Orientation field corresponding to the flow in (e) when rotation flow is subtracted from
the composite flow. Clearly, (e) and (i), which are identical to (c) and (g) respectively show
that translational and rotational flows are commutative.

100

Figure A.3. Flows due to translation and rotation of a camera are commutative- example
2. (a) A synthetic scene with color indicating depth of object from the camera (dark blue
= 0, green = 50). (b) Optical flow samples due to composite camera motion (parameters
listed). (c) Optical flow due to translation alone. (d) Optical flow due to rotation alone. (e)
Subtracting rotation flow (d) from composite flow (b) returns translation flow. (f) Orienta-
tion field corresponding to the composite flow in (b). (g) Orientation field corresponding
to the translation flow in (c). (h) Orientation field corresponding to the rotation flow in (d).
(i) Orientation field corresponding to the flow in (e) when rotation flow is subtracted from
the composite flow. Clearly, (e) and (i), which are identical to (c) and (g) respectively show
that translational and rotational flows are commutative.

101

BIBLIOGRAPHY

[1] Adato, Yair, Zickler, Todd, and Ben-Shahar, Ohad. A polar representation of mo-
tion and implications for optical flow. In Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on (2011), IEEE, pp. 1145–1152.

[2] Aeschliman, C., Park, J., and Kak, A.C. A probabilistic framework for joint seg-
mentation and tracking. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2010), pp. 1371 –1378.

[3] Albright, T D, and Stoner, G R. Visual motion perception. Proceedings of the Na-
tional Academy of Sciences 92, 7 (1995), 2433–2440.

[4] Brox, Thomas, and Malik, Jitendra. Object segmentation by long term analysis of
point trajectories. In European Conference on Computer Vision (2010), pp. 282–295.

[5] Bugeau, Aurlie, and Prez, Patrick. Detection and segmentation of moving objects in
highly dynamic scenes. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2007).

[6] Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. A naturalistic open source
movie for optical flow evaluation. In European Conference on Computer Vision
(2012).

[7] Caudek, Corrado, and Rubin, Nava. Segmentation in structure from motion: modeling
and psychophysics. Vision Research 41, 21 (2001), 2715 – 2732.

[8] Chockalingam, Prakash, Pradeep, S. Nalin, and Birchfield, Stan. Adaptive fragments-
based tracking of non-rigid objects using level sets. In Proceedings of the Sixth Inter-
national Conference on Computer Vision (2009).

[9] Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver,
D., Enomoto, N., Hasegawa, O., Burt, P., and Wixson, L. A system for video surveil-
lance and monitoring. Carnegie Mellon University Technical Report, CMU-RI-TR-
00-12 (2000).

[10] Collins, Robert T., Lipton, Alan J., Fujiyoshi, Hironobu, and Kanade, Takeo. Algo-
rithms for cooperative multisensor surveillance. In Surveillance, Proceedings of the
IEEE (2001).

[11] Cremers, Daniel. A multiphase level set framework for motion segmentation. In
4th International Conference on Scale Space Theories in Computer Vision (2003),
Springer, pp. 599–614.

102

[12] Croner, L. J., and Albright, T. D. Image segmentation enhances discrimination of
motion in visual noise. Vision Res 37, 11 (1997), 1415–27.

[13] Croner, Lisa J., and Albright, Thomas D. Segmentation by color influences responses
of motion-sensitive neurons in the cortical middle temporal visual area. Journal of
Neuroscience 19 (1999), 3935–3951.

[14] Dittrich, W. H. Action categories and the perception of biological motion. Perception
22, 1 (1993), 15–22.

[15] Dittrich, W. H., and Lea, S. E. G. Motion discrimination and recognition. Avian visual
cognition [On-line] Available: www.pigeon.psy.tufts.edu/avc/dittrich/ (2001).

[16] Elgammal, Ahmed, Duraiswami, Ramani, and Davis, Larry S. Probabilistic tracking
in joint feature-spatial spaces. In Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on (Washington, DC, USA, 2003), CVPR’03, IEEE Computer So-
ciety, pp. 781–788.

[17] Elgammal, Ahmed M., Harwood, David, and Davis, Larry S. Non-parametric model
for background subtraction. In European Conference on Computer Vision (2000),
pp. 751–767.

[18] Elqursh, Ali, and Elgammal, Ahmed M. Online moving camera background subtrac-
tion. In European Conference on Computer Vision (2012), Andrew W. Fitzgibbon,
Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, Eds., vol. 7577
of Lecture Notes in Computer Science, Springer, pp. 228–241.

[19] Farnebäck, Gunnar. Very high accuracy velocity estimation using orientation tensors
parametric motion and simultaneous segmentation of the motion field. In Interna-
tional Conference on Computer Vision (ICCV) (2001), pp. 171–177.

[20] Gepshtein, Sergei, and Kubovy, Michael. The emergence of visual objects in space-
time. Proceedings of the National Academy of Sciences 97, 14 (2000), 8186–8191.

[21] Goyette, Nil, Jodoin, Pierre-Marc, Porikli, Fatih, Konrad, Janusz, and Ishwar,
Prakash. Changedetection.net: A new change detection benchmark dataset. In
Change Detection (CDW 12) at CVPR, IEEE Workshop on (2012).

[22] Han, Bohyung, and Davis, Larry. On-line density-based appearance modeling for
object tracking. In Proceedings of the Tenth IEEE International Conference on Com-
puter Vision - Volume 2 (Washington, DC, USA, 2005), ICCV ’05, IEEE Computer
Society, pp. 1492–1499.

[23] Haritaoglu, I., Harwood, D., and Davis, L.S. Hydra: multiple people detection and
tracking using silhouettes. In Image Analysis and Processing, 1999. Proceedings.
International Conference on (1999), pp. 280–285.

103

[24] Haritaoglu, Ismail, Harwood, David, and Davis, Larry S. W4: Real-time surveillance
of people and their activities. IEEE Transactions Pattern Analysis Machine Intelli-
gence 22, 8 (2000), 809–830.

[25] Hayman, Eric, and Eklundh, Jan-Olof. Statistical background subtraction for a mobile
observer. In Proceedings of the Ninth IEEE International Conference on Computer
Vision - Volume 2 (Washington, DC, USA, 2003), ICCV ’03, IEEE Computer Society,
pp. 67–.

[26] Heikkila, M., and Pietikainen, M. A texture-based method for modeling the back-
ground and detecting moving objects. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 28, 4 (2006), 657 –662.

[27] Horn, Berthold K. P., and Schunck, Brian G. Determining optical flow. Artificial
Intelligence 17 (1981), 185–203.

[28] Irani, M., Rousso, B., and Peleg, S. Recovery of ego-motion using image stabilization.
In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (1994).

[29] Irani, Michal, Rousso, Benny, and Peleg, Shmuel. Computing occluding and trans-
parent motions. International Journal of Computer Vision 12 (1994), 5–16.

[30] Javed, O., Shafique, K., and Shah, M. Appearance modeling for tracking in multiple
non-overlapping cameras. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on (2005), vol. 2, pp. 26–33.

[31] Javed, Omar, Rasheed, Zeeshan, Shafique, Khurram, and Shah, Mubarak. Tracking
across multiple cameras with disjoint views. In Proceedings of the Ninth IEEE Inter-
national Conference on Computer Vision - Volume 2 (Washington, DC, USA, 2003),
ICCV ’03, IEEE Computer Society, pp. 952–.

[32] Jepson, Allan D., and Heeger, David J. Linear subspace methods for recovering
translational direction. In Proceedings of the 1991 York conference on Spatial vision
in humans and robots (New York, NY, USA, 1993), Cambridge University Press,
pp. 39–62.

[33] Johansson, Gunnar. Visual perception of biological motion and a model for its analy-
sis. Perception and Psychophysics 14, 2 (1973), 201–211.

[34] Jones, M.C. Variable kernel density estimates. Australian Journal of Statistics 32, 3
(1990), 361–371.

[35] Kaewtrakulpong, P., and Bowden, R. An improved adaptive background mixture
model for real-time tracking with shadow detection. In Proceedings of 2nd European
Workshop on Advanced Video Based Surveillance Systems (2001), vol. 5308.

[36] Ko, Teresa, Soatto, Stefano, and Estrin, Deborah. Background subtraction on dis-
tributions. In European Conference on Computer Vision (Berlin, Heidelberg, 2008),
ECCV ’08, Springer-Verlag, pp. 276–289.

104

[37] Kurihara, Kenichi, Welling, Max, and Vlassis, Nikos. Accelerated variational Dirich-
let process mixtures. In Neural Information Processing Systems (2006).

[38] Kwak, Suha, Lim, Taegyu, Nam, Woonhyun, Han, Bohyung, and Han, Joon Hee.
Generalized background subtraction based on hybrid inference by belief propaga-
tion and Bayesian filtering. In Proceedings of the 2011 International Conference on
Computer Vision (Washington, DC, USA, 2011), ICCV ’11, IEEE Computer Society,
pp. 2174–2181.

[39] Lee, Yong Jae, Kim, Jaechul, and Grauman, Kristen. Key-segments for video object
segmentation. In Proceedings of the Sixth International Conference on Computer
Vision (2011).

[40] Li, Liyuan, Huang, Weimin, Gu, Irene Y. H., and Tian, Qi. Foreground object detec-
tion from videos containing complex background. In ACM International Conference
on Multimedia (2003), pp. 2–10.

[41] Liao, Shengcai, Zhao, Guoying, Kellokumpu, Vili, Pietikäinen, Matti, and Li, Stan Z.
Modeling pixel process with scale invariant local patterns for background subtrac-
tion in complex scenes. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2010), pp. 1301 –1306.

[42] Mather, George, and West, Sophie. Recognition of animal locomotion from dynamic
point-light displays. Perception 22 (1993), 759–766.

[43] Mémin, Etienne, and Pérez, Patrick. Hierarchical estimation and segmentation of
dense motion fields. International Journal of Computer Vision 46, 2 (Feb. 2002),
129–155.

[44] Micheloni, C., Foresti, G.L., and Snidaro, L. A cooperative multicamera system for
video-surveillance of parking lots. In Intelligence Distributed Surveillance Systems,
IEE Symposium on (2003), pp. 21–24.

[45] Mittal, A., and Paragios, N. Motion-based background subtraction using adaptive
kernel density estimation. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2004), pp. II–302 – II–309 Vol.2.

[46] Narayana, Manjunath. Automatic segmentation and tracking of moving objects in
video for surveillance applications. Master’s thesis, University of Kansas, Lawrence,
Kansas, USA, 2007.

[47] Narayana, Manjunath, Hanson, Allen, and Learned-Miller, Erik. Improvements in
joint domain-range modeling for background subtraction. In Proceedings of the
British Machine Vision Conference (2012), BMVA Press, pp. 115.1–115.11.

[48] Neal, Radford M. Markov chain sampling methods for Dirichlet process mixture
models. Journal of Computational and Graphical Statistics 9, 2 (2000), 249–265.

105

[49] Nguyen, Nam T., Venkatesh, Svetha, West, Geoff, and Bui, Hung H. Multiple camera
coordination in a surveillance system. ACTA Automatica Sinica 29 (2003), 408–422.

[50] Ochs, Peter, and Brox, Thomas. Higher order motion models and spectral clustering.
In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2012).

[51] Olivers, C. N. L., and Humphreys, G. W. Spatiotemporal segregation in visual search:
Evidence from parietal lesions. Journal of Experimental Psychology: Human Percep-
tion and Performance 30, 4 (2004), 667–688.

[52] Porikli, Fatih, and Tuzel, Oncel. Bayesian background modeling for foreground de-
tection. In Proceedings of the third ACM international workshop on Video surveil-
lance & sensor networks (New York, NY, USA, 2005), VSSN ’05, ACM, pp. 55–58.

[53] Prazdny, K. Egomotion and relative depth map from optical flow. Biological Cyber-
netics 36, 2 (1980), 87–102.

[54] Prazdny, K. On the information in optical flows. Computer Vision, Graphics, and
Image Processing 22, 2 (1983), 239–259.

[55] Ren, Ying, Chua, Chin-Seng, and Ho, Yeong-Khing. Statistical background modeling
for non-stationary camera. Pattern Recognition Letters 24, 13 (2003), 183 – 196.

[56] Sevilla-Lara, Laura, and Learned-Miller, Erik. Distribution fields for tracking. In
Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2012).

[57] Sheikh, Yaser, Javed, Omar, and Kanade, Takeo. Background subtraction for freely
moving cameras. In IEEE 12th International Conference on Computer Vision, ICCV
2009, Kyoto, Japan, September 27 - October 4, 2009 (2009), IEEE, pp. 1219–1225.

[58] Sheikh, Yaser, and Shah, Mubarak. Bayesian modeling of dynamic scenes for ob-
ject detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27
(2005), 1778–1792.

[59] Shi, Jianbo, and Malik, Jitendra. Motion segmentation and tracking using normal-
ized cuts. In Proceedings of the Sixth International Conference on Computer Vision
(Washington, DC, USA, 1998), ICCV ’98, IEEE Computer Society, pp. 1154–.

[60] Shu, Chiao-Fe, Hampapur, Arun, Lu, Max, Brown, Lisa M. G., Connell, Jonathan,
Senior, Andrew W., and Tian, Yingli. IBM smart surveillance system (S3): a open and
extensible framework for event based surveillance. In IEEE Conference on Advanced
Video and Signal Based Surveillance (2005), IEEE Computer Society, pp. 318–323.

[61] Siebel, Nils T, and Maybank, Stephen J. The advisor visual surveillance system. In
ECCV 2004 workshop Applications of Computer Vision (ACV) (2004), pp. 103–111.

[62] Stauffer, Chris, and Grimson, W. Eric L. Adaptive background mixture models for
real-time tracking. In Computer Vision and Pattern Recognition (CVPR), IEEE Con-
ference on (1999), vol. 2, pp. 246–252.

106

[63] Sun, Deqing, Roth, Stefan, and Black, Michael J. Secrets of optical flow estimation
and their principles. In The Twenty-Third IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010 (2010),
IEEE, pp. 2432–2439.

[64] Sun, Deqing, Sudderth, Erik B., and Black, Michael J. Layered segmentation and op-
tical flow estimation over time. In Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on (2012), pp. 1768–1775.

[65] Tavakkoli, Alireza, Nicolescu, Mircea, Bebis, George, and Nicolescu, Monica. Non-
parametric statistical background modeling for efficient foreground region detection.
Machine Vision Applications 7 (2009), 1–15.

[66] Thornton, Ian M., Rensink, Ronald A., and Shiffrar, Maggie. Active versus passive
processing of biological motion. Perception 31 (2002), 837–853.

[67] Tian, T.Y., Tomasi, C., and Heeger, D.J. Comparison of approaches to egomotion
computation. In Computer Vision and Pattern Recognition, 1996. Proceedings CVPR
’96, 1996 IEEE Computer Society Conference on (1996), pp. 315–320.

[68] Tomasi, C., and Shi, J. Direction of heading from image deformations. In Computer
Vision and Pattern Recognition, 1993. Proceedings CVPR ’93., 1993 IEEE Computer
Society Conference on (1993), pp. 422–427.

[69] Toyama, Kentaro, Krumm, John, Brumitt, Barry, and Meyers, Brian. Wallflower:
principles and practice of background maintenance. In IEEE International Confer-
ence on Computer Vision (1999), vol. 1, IEEE, pp. 255–261 vol.1.

[70] Tron, Roberto, and Vidal, René. A benchmark for the comparison of 3-d motion
segmentation algorithms. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2007).

[71] Tsai, David, Flagg, Matthew, and Rehg, James M. Motion coherent tracking with
multi-label MRF optimization. Proceedings of the British Machine Vision Conference
(2010).

[72] Turlach, Berwin A. Bandwidth selection in kernel density estimation: A review. In
CORE and Institut de Statistique (1993).

[73] Ullman, S. The interpretation of visual motion. MIT Press Cambridge, Mass, 1979.

[74] Wallach, Hans, and O’connell, DN. The kinetic depth effect. Journal of experimental
psychology 45, 4 (1953), 205.

[75] Wang, J. Y.A., and Adelson, E. H. Representing moving images with layers. IEEE
Transactions on Image Processing 3, 5 (Sept. 1994), 625–638.

[76] Wedel, Andreas, Cremers, Daniel, Pock, Thomas, and Bischof, Horst. Structure-
and motion-adaptive regularization for high accuracy optic flow. In International
Conference on Computer Vision (2009), IEEE, pp. 1663–1668.

107

[77] Wren, Christopher Richard, Azarbayejani, Ali, Darrell, Trevor, and Pentland, Alexan-
der. Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (1997), 780–785.

[78] Yamaguchi, Koichiro, McAllester, David, and Urtasun, Raquel. Robust monocular
epipolar flow estimation. In Computer Vision and Pattern Recognition (CVPR), IEEE
Conference on (2013).

[79] Yao, Jian, and Odobez, J.-M. Multi-layer background subtraction based on color and
texture. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on
(2007), pp. 1 –8.

[80] Yuk, J.S.-C., and Wong, K.-Y.K. An efficient pattern-less background modeling based
on scale invariant local states. In IEEE International Conference on Advanced Video
and Signal-Based Surveillance (2011), pp. 285 –290.

[81] Zivkovic, Z. Improved adaptive gaussian mixture model for background subtraction.
In International Conference on Pattern Recognition (ICPR) (2004), vol. 2, pp. 28 –
31 Vol.2.

[82] Zivkovic, Zoran, and van der Heijden, Ferdinand. Efficient adaptive density esti-
mation per image pixel for the task of background subtraction. Pattern Recognition
Letters 27, 7 (May 2006), 773–780.

108

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motion segmentation with a stationary camera
	Motion segmentation with a moving camera
	Algorithms for motion segmentation
	Stationary camera algorithms and our contributions
	Moving camera algorithms and our contributions
	Contributions of the thesis
	Ambiguity in motion segmentation

	A complete model for motion segmentation in stationary camera systems
	Introduction
	Background likelihood
	Existing work on spatial smoothing of distributions

	Foreground likelihood
	Priors
	Computing the posteriors - putting the components together during inference
	Likelihood ratio-based classification in the joint domain-range model
	Dependence of the joint domain-range model on spatial neighborhood extent
	Model initialization and update

	Comparison to earlier systems
	Discussion

	Pixelwise adaptive variances for stationary camera systems
	Pixelwise adaptive kernel variance selection
	A single global variance value for all pixels in an image
	Optimal kernel variance across different videos
	Background and foreground variances
	Optimal kernel variances for classification

	Results
	Caching optimal kernel variances from the previous frame
	Discussion

	Motion segmentation in moving camera videos
	Introduction
	Segmentation using optical flow orientations
	Choosing
	Gradient descent for largest component
	Handling pixels with near-zero motion

	Segmentation comparisons
	Modeling the appearance and the prior
	Mixing a uniform distribution component
	Posterior computation

	A non-parametric FOF segmentation model
	Results
	More comparisons
	FOF versus flow vector-based segmentations
	Our model versus other models using flow orientations

	Discussion

	Modeling complex camera motions by rotation compensation
	Introduction
	Modeling and compensating for the flow due to camera rotation
	Synthetic examples
	Real video examples
	Test for the presence of rotation
	Results
	Conclusions

	Conclusions and future work
	Additional figures
	Flow orientation fields
	Translational and rotational flow

	Bibliography

