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ABSTRACT

MAKING NETWORKS ROBUST TO COMPONENT
FAILURES

MAY 2014

DANIEL P. GYLLSTROM

B.Sc., TRINITY COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jim Kurose

In this thesis, we consider instances of component failure in the Internet and in

networked cyber-physical systems, such as the communication network used by the

modern electric power grid (termed the smart grid). We design algorithms that make

these networks more robust to various component failures, including failed routers,

failures of links connecting routers, and failed sensors. This thesis divides into three

parts: recovery from malicious or misconfigured nodes injecting false information

into a distributed system (e.g., the Internet), placing smart grid sensors to provide

measurement error detection, and fast recovery from link failures in a smart grid

communication network.

First, we consider the problem of malicious or misconfigured nodes that inject and

spread incorrect state throughout a distributed system. Such false state can degrade

vi



the performance of a distributed system or render it unusable. For example, in the

case of network routing algorithms, false state corresponding to a node incorrectly

declaring a cost of 0 to all destinations (maliciously or due to misconfiguration) can

quickly spread through the network. This causes other nodes to (incorrectly) route

via the misconfigured node, resulting in suboptimal routing and network congestion.

We propose three algorithms for efficient recovery in such scenarios and evaluate their

efficacy.

The last two parts of this thesis consider robustness in the context of the electric

power grid. We study the use and placement of a sensor, called a Phasor Measurement

Unit (PMU), currently being deployed in electric power grids worldwide. PMUs

provide voltage and current measurements at a sampling rate orders of magnitude

higher than the status quo. As a result, PMUs can both drastically improve existing

power grid operations and enable an entirely new set of applications, such as the

reliable integration of renewable energy resources. However, PMU applications require

correct (addressed in thesis part 2) and timely (covered in thesis part 3) PMU data.

Without these guarantees, smart grid operators and applications may make incorrect

decisions and take corresponding (incorrect) actions.

The second part of this thesis addresses PMU measurement errors, which have

been observed in practice. We formulate a set of PMU placement problems that aim to

satisfy two constraints: place PMUs “near” each other to allow for measurement error

detection and use the minimal number of PMUs to infer the state of the maximum

number of system buses and transmission lines. For each PMU placement problem,

we prove it is NP-Complete, propose a simple greedy approximation algorithm, and

evaluate our greedy solutions.

In the last part of this thesis, we design algorithms for fast recovery from link

failures in a smart grid communication network. We propose, design, and evalu-

ate solutions to all three aspects of link failure recovery: (a) link failure detection,
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(b) algorithms for pre-computing backup multicast trees, and (c) fast backup tree

installation.

To address (a), we design link-failure detection and reporting mechanisms that

use OpenFlow to detect link failures when and where they occur inside the network.

OpenFlow is an open source framework that cleanly separates the control and data

planes for use in network management and control. For part (b), we formulate a

new problem, Multicast Recycling, that pre-computes backup multicast trees

that aim to minimize control plane signaling overhead. We prove Multicast Re-

cycling is at least NP-hard and present a corresponding approximation algorithm.

Lastly, two control plane algorithms are proposed that signal data plane switches

to install pre-computed backup trees. An optimized version of each installation al-

gorithm is designed that finds a near minimum set of forwarding rules by sharing

forwarding rules across multicast groups. This optimization reduces backup tree in-

stall time and associated control state. We implement these algorithms using the

POX open-source OpenFlow controller and evaluate them using the Mininet emula-

tor, quantifying control plane signaling and installation time.
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p = {0.05, 0.15} Erdös-Rényi with link weights selected randomly
with different λ values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Plots for Simulation 7 using Erdös-Rényi graphs with link weights
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CHAPTER 1

INTRODUCTION

Communication network components (routers, links, and sensors) fail. These

failures can cause widespread network service disruption and outages, and potentially

critical errors for network applications. In this thesis, we examine how networks –

traditional networks and networked cyber-physical systems, such as the electric power

grid – can be made more robust to component failures.

1.1 Thesis Overview

1.1.1 Component Failures in Communication Networks

We consider three separate but related problems in this thesis: node (i.e., switch or

router) failure in traditional networks such as the Internet or wireless sensor networks,

the failure of critical sensors that measure voltage and current throughout the smart

grid, and link failures in a smart grid communication network. The term smart grid

refers to modern and future electric power grids that automate power grid operations

using sensors and wide-area communication.

For distributed network algorithms, a malicious or misconfigured node can inject

and spread incorrect state throughout the distributed system. Such false state can

degrade the performance of the network or render it unusable. For example, in 1997 a

significant portion of Internet traffic was routed through a single misconfigured router

that had spread false routing state to several Internet routers. As a result, a large

potion of the Internet became inoperable for several hours [64].
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Component failure in a smart grid can be especially catastrophic. For example, if

smart grid sensors or links in its supporting communication network fail, smart grid

applications can make incorrect decisions and take corresponding (incorrect) actions.

Critical smart grid applications required to operate and manage a power grid are

especially vulnerable to such failures because typically these applications have strict

data delivery requirements, needing both ultra low latency and assurance that data

is received correctly. In the worst case, component failure can lead to a cascade of

power grid failures like the August 2003 blackout in the USA [2] and the recent power

grid failures in India that left hundreds of millions of people without power [79].

1.1.2 Approaches to Making Networks More Robust to Failures

For many distributed systems, recovery algorithms operate on-demand (as op-

posed to being preplanned) because algorithm and system state is typically distributed

throughout the network of nodes. As a result, fast convergence time and low control

message overhead are key requirements for efficient recovery from component failure.

In order to make the problem of on-demand recovery in a distributed system concrete,

we investigate distance vector routing as an instance of this problem where nodes must

recover from incorrectly injected state information. Distance vector forms the basis

for many routing algorithms widely used in the Internet (e.g., BGP, a path-vector

algorithm) and in multi-hop wireless networks (e.g., AODV, diffusion routing).

In the first technical chapter of this thesis, we design, develop, and evaluate three

different approaches for correctly recovering from the injection of false distance vector

routing state (e.g., a compromised node incorrectly claiming a distance of 0 to all

destinations). Such false state, in turn, may propagate to other routers through the

normal execution of distance vector routing, causing other nodes to (incorrectly) route

via the misconfigured node, making this a network-wide problem. Recovery is correct

if the routing tables of all nodes have converged to a global state where, for each node,
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all compromised nodes are removed as a destination and no least cost path routes

through a compromised node.

The second and third thesis chapters consider robustness from component failure

in the context of the smart grid. Because reliability is a key requirement for the smart

grid, each chapter focuses on preplanned approaches to failure recovery.

In our second thesis chapter, we study the placement of a sensor, called a Phasor

Measurement Unit (PMU), currently being deployed in electric power grids world-

wide. PMUs provide voltage and current measurements at a sampling rate orders

of magnitude higher than the status quo. As a result, PMUs can both drastically

improve existing power grid operations and enable an entirely new set of applications,

such as the reliable integration of renewable energy resources. We formulate a set of

problems that consider PMU measurement errors, which have been observed in prac-

tice. Specifically, we specify four PMU placement problems that aim to satisfy two

constraints: place PMUs “near” each other to allow for measurement error detection

and use the minimal number of PMUs to infer the state of the maximum number of

system buses and transmission lines. For each PMU placement problem, we prove it

is NP-Complete, propose a simple greedy approximation algorithm, and evaluate our

greedy solutions.

In our final technical chapter, we design algorithms that provide fast recovery

from link failures in a smart grid communication network. We propose, design, and

evaluate solutions to all three aspects of link failure recovery: (a) link failure detection,

(b) algorithms for pre-computing backup multicast trees, and (c) fast backup tree

installation. Because this requires modifying network switches and routers, we use

OpenFlow – an open standard that cleanly separates the control and data planes for

use in network management and control – to program data plane forwarding using

novel control plane algorithms.
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To address (a), we design link-failure detection and reporting mechanisms that

use OpenFlow to detect link failures when and where they occur inside the network.

For part (b), we formulate a new problem, Multicast Recycling, that aims to

pre-compute backup multicast trees that minimize control plane signaling overhead.

We prove Multicast Recycling is at least NP-hard and present a corresponding

approximation algorithm. Lastly, two control plane algorithms are proposed that

signal data plane switches to install pre-computed backup trees. An optimized version

of each installation algorithm is designed that finds a near minimum set of forwarding

rules by sharing forwarding rules across multicast groups. This optimization reduces

backup tree install time and control state. We implement these algorithms using

the POX open-source OpenFlow controller [57] and evaluate them using the Mininet

emulator [50], quantifying control plane signaling and installation time.

1.2 Thesis Contributions

The main contributions of this thesis are:

• We design, develop, and evaluate three different algorithms – 2nd-Best, Purge,

and CPR – for correctly recovering from the injection of false routing state in

distance vector routing. 2nd-Best performs localized state invalidation, fol-

lowed by network-wide recovery using the traditional distance vector algorithm.

Purge first globally invalidates false state and then uses distance vector rout-

ing to recompute distance vectors. CPR takes and stores local routing table

snapshots at each router, and then uses a rollback mechanism to implement

recovery. We prove the correctness of each algorithm for scenarios of single and

multiple compromised nodes.

• We use simulations and analysis to evaluate 2nd-Best, Purge, and CPR

in terms of control message overhead and convergence time. We find that
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2nd-Best performs poorly due to routing loops. Over topologies with fixed

link weights, Purge performs nearly as well as CPR even though our simula-

tions and analysis assume near perfect conditions for CPR. Over more realistic

scenarios in which link weights can change, we find that Purge yields lower

message complexity and faster convergence time than CPR and 2nd-Best.

• We define four PMU placement problems, three of which are completely new,

that place PMUs at a subset of electric power grid buses. Two PMU placement

problems consider measurement error detection by requiring PMUs to be placed

“near” each other to allow for their measurements to be cross-validated. For

each PMU placement problem, we prove it is NP-Complete and propose a simple

greedy approximation algorithm.

• We prove our greedy approximations for PMU placement are correct and give

complexity bounds for each. Through simulations over synthetic topologies

generated using real portions of the North American electric power grid as

templates, we find that our greedy approximations yield results that are close

to optimal: on average, within 97% of optimal. We also find that imposing our

requirement of cross-validation to ensure PMU measurement error detection

comes at small marginal cost: on average, only 5% fewer power grid buses

are observed (covered) when PMU placements require cross-validation versus

placements that do not.

• We propose, implement, and evaluate a suite of algorithms for fast recovery

from link failures in a smart grid communication network: Pcount, Bunchy,

Proactive, Reactive, and Merger. Pcount uses OpenFlow to accurately

detect link failures inside the network, rather than using slower end-to-end

measurements. Then, we define a new problem, Multicast Recycling, that

computes backup multicast trees with the aim of minimizing control plane sig-
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naling overhead. This problem is shown to be at least NP-hard, motivating

the design of an approximation, Bunchy. Next, we design two algorithms –

Proactive and Reactive – for fast backup tree installation. Proactive

pre-installs backup tree forwarding rules and activates these rules after a link

failure is detected, while, Reactive installs backup trees after a link a failure

is detected. Lastly, we present Merger, an algorithm that can be applied to

Proactive and Reactive to speed backup tree installations and reduce the

amount of pre-installed forwarding state. Merger does so using local optimiza-

tion to create a near minimal set of forwarding rules by “merging” forwarding

rules in cases where multiple multicast trees have common forwarding behavior.

• We use Mininet [50] emulations to evaluate our algorithms over communication

networks based on real portions of the power grid. We find that Pcount

provides fast and accurate link loss estimates: after sampling only 75 packets the

95% confidence interval is within 15% of the true loss probability. Additionally,

we find Proactive yields faster recovery than Reactive (Reactive sends up

to 10 times more control messages than Proactive) but at the cost of storage

overhead at each switch (pre-installed backup trees can account for as much

as 35% of the capacity of a conventional OpenFlow switch [21]). Finally, we

observe that Merger reduces control plane messaging and the amount of pre-

installed forwarding state by a factor of 2 to 2.5 when compared to a standard

multicast implementation, resulting in faster installation and manageable sized

flow tables.

1.3 Thesis Outline

The rest of this thesis is organized as follows. We present algorithms for recovery

from false routing state in distributed routing algorithms in Chapter 2. In Chapter

3, we formulate PMU placement problems that provide measurement error detection.
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Chapter 4 presents our algorithms for fast recovery from link failures in a smart grid

communication network. We conclude, in Chapter 5, with a summary and discussion

of open problems emerging from this thesis.
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CHAPTER 2

RECOVERY FROM FALSE ROUTING STATE IN
DISTRIBUTED ROUTING ALGORITHMS

2.1 Introduction

Malicious and misconfigured nodes can degrade the performance of a distributed

system by injecting incorrect state information. Such false state can then be further

propagated through the system either directly in its original form or indirectly, e.g.,

by diffusing computations initially using this false state. In this chapter, we consider

the problem of removing such false state from a distributed system.

In order to make the false-state-removal problem concrete, we investigate dis-

tance vector routing as an instance of this problem. Distance vector forms the basis

for many routing algorithms widely used in the Internet (e.g., BGP, a path-vector

algorithm) and in multi-hop wireless networks (e.g., AODV, diffusion routing). How-

ever, distance vector is vulnerable to compromised nodes that can potentially flood a

network with false routing information, resulting in erroneous least cost paths, packet

loss, and congestion. Such scenarios have occurred in practice. For example, in 1997

a significant portion of Internet traffic was routed through a single misconfigured

router, rendering a large part of the Internet inoperable for several hours [64]. Dis-

tance vector currently has no mechanism to recover from such scenarios. Instead,

human operators are left to manually reconfigure routers. It is in this context that

we propose and evaluate automated solutions for recovery.

In this chapter, we design, develop, and evaluate three different approaches for

correctly recovering from the injection of false routing state (e.g., a compromised node
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incorrectly claiming a distance of 0 to all destinations). Such false state, in turn,

may propagate to other routers through the normal execution of distance vector

routing, making this a network-wide problem. Recovery is correct if the routing

tables in all nodes have converged to a global state in which all nodes have removed

each compromised node as a destination, and no node has a least cost path to any

destination that routes through a compromised node.

Specifically, we develop three novel distributed recovery algorithms: 2nd-Best,

Purge, and CPR. 2nd-Best performs localized state invalidation, followed by

network-wide recovery. Nodes directly adjacent to a compromised node locally select

alternate paths that avoid the compromised node; the traditional distributed dis-

tance vector algorithm is then executed to remove remaining false state using these

new distance vectors. The Purge algorithm performs global false state invalidation

by using diffusing computations to invalidate distance vector entries (network-wide)

that routed through a compromised node. As in 2nd-Best, traditional distance vec-

tor routing is then used to recompute distance vectors. CPR uses snapshots of each

routing table (taken and stored locally at each router) and a rollback mechanism to

implement recovery. Although our solutions are tailored to distance vector routing,

we believe they represent approaches that are applicable to other diffusing distributed

computations.

For each algorithm, we prove correctness, derive communication complexity bounds,

and evaluate its efficiency in terms of message overhead and convergence time via

simulation. Our analysis and simulations show that when considering topologies in

which link weights remain fixed, CPR outperforms both Purge and 2nd-Best (at

the cost of checkpoint memory). This is because CPR can efficiently remove all false

state by simply rolling back to a checkpoint immediately preceding the injection of

false routing state. In scenarios where link weights can change, Purge outperforms

CPR and 2nd-Best. CPR performs poorly because, following rollback, it must
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process the valid link weight changes that occurred since the false routing state was

injected; 2nd-Best and Purge, however, can make use of computations subsequent

to the injection of false routing state that did not depend on the false routing state.

We will see, however, that 2nd-Best performance suffers because of the so-called

count-to-infinity problem.

Recovery from false routing state has similarities to the problem of recovering from

malicious transactions [6, 54] in distributed databases. Our problem is also similar

to that of rollback in optimistic parallel simulation [40]. However, we are unaware of

any existing solutions to the problem of recovering from false routing state. A related

problem to the one considered in this chapter is that of discovering misconfigured

nodes. In Section 2.2, we discuss existing solutions to this problem. In fact, the

output of these algorithms serve as input to the recovery algorithms proposed in this

chapter.

This chapter has six sections. In Section 2.2 we define the false-state-removal

problem and state our assumptions. We present our three recovery algorithms in Sec-

tion 4.3. Then, in Section 2.4, we briefly state the results of our message complexity

analysis, leaving the details to Appendix A.3. Section 2.5 describes our simulation

study. We detail related work in Section 2.6 and conclude the chapter in Section 2.7.

The research described here has been published in [34].

2.2 Problem Formulation

We consider distance vector routing [11] over arbitrary network topologies. We

model a network as an undirected graph, G = (V,E), with a link weight function

w : E → N. 1 Each node, v, maintains the following state as part of distance vector:

1Recovery is simple with link state routing: each node uses its complete topology map to
compute new least cost paths that avoid all compromised nodes. Thus we do not consider
link state routing in this chapter.
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a vector of all adjacent nodes (adj(v)), a vector of least cost distances to all nodes in

G (
−−→
minv), and a distance matrix that contains distances to every node in the network

via each adjacent node (dmatrixv).

For simplicity, we present our recovery algorithms in the case of a single compro-

mised node. We describe the necessary extensions to handle multiple compromised

nodes in Section 2.3.5. We assume that the identity of the compromised node is pro-

vided by a different algorithm, and thus do not consider this problem in this thesis.

Examples of such algorithms include [25, 26, 28, 61, 65, 71]. Specifically, we assume

that at time tb, this algorithm is used to notify all neighbors of the compromised

node. Let t′ be the time the node was compromised.

For each of our algorithms, the goal is for all nodes to recover “correctly”: all

nodes should remove the compromised nodes as a destination and find new least cost

distances that do not use a compromised node. If the network becomes disconnected

as a result of removing the compromised node, all nodes need only compute new least

cost distances to all other nodes within their connected component.

For simplicity, let v denote the compromised node, let
−→
old refer to

−−→
minv before v

was compromised, and let
−→
bad denote

−−→
minv after v has been compromised. Intuitively,

−→
old and

−→
bad are snapshots of the compromised node’s least cost vector taken at two

different timesteps:
−→
old marks the snapshot taken before v was compromised and

−→
bad

represents a snapshot taken after v was compromised.

Table 2.1 summarizes the notation used in this chapter.
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Abbreviation Meaning
−−→
mini node i’s the least cost vector
dmatrixi node i’ distance matrix
DV Distance Vector
tb time the compromised node is detected
t′ time the compromised node was compromised
−→
bad compromised node’s least cost vector at and after t
−→
old compromised node’s least cost vector at and before t′

v compromised node
adj(v) nodes adjacent to v in G′

Table 2.1. Table of abbreviations.

2.3 Recovery Algorithms

In this section we propose three new recovery algorithms: 2nd-Best, Purge,

and CPR. With one exception, the input and output of each algorithm is the same.

2

• Input: Undirected graph, G = (V,E), with weight function w : E → N.

∀v ∈ V ,
−−→
minv and dmatrixv are computed (using distance vector). Also, each

v ∈ adj(v) is notified that v was compromised.

• Output: Undirected graph, G′ = (V ′, E ′), where V ′ = V − {v}, E ′ = E −

{(v̄, vi) | vi ∈ adj(v̄)}, and link weight function w : E → N.
−−→
minv and dmatrixv

are computed via the algorithms discussed below ∀v ∈ V ′.

Before we describe each recovery algorithm, we outline a preprocessing procedure

common to all three recovery algorithms. Correctness proofs for 2nd-Best, Purge,

and CPR can be found in Appendix A.2.

2Additionally, as input CPR requires that each v ∈ adj(v) is notified of the time, t′, in
which v was compromised.
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2.3.1 Preprocessing

All three recovery algorithms share a common preprocessing procedure. The pro-

cedure removes v as a destination and finds the node IDs in each connected com-

ponent. This is implemented using diffusing computations [23] initiated at each

v ∈ adj(v). A diffusing computation is a distributed algorithm started at a source

node which grows by sending queries along a spanning tree, constructed simultane-

ously as the queries propagate through the network. When the computation reaches

the leaves of the spanning tree, replies travel back along the tree towards the source,

causing the tree to shrink. The computation eventually terminates when the source

receives replies from each of its children in the tree.

In our case, each diffusing computation message contains a vector of node IDs.

When a node receives a diffusing computation message, the node adds its ID to the

vector and removes v as a destination. At the end of the diffusing computation, each

v ∈ adj(v) has a vector that includes all nodes in v’s connected component. Finally,

each v ∈ adj(v) broadcasts the vector of node IDs to all nodes in their connected

component. In the case where removing v partitions the network, each node will only

compute shortest paths to nodes in the vector.

Consider the example in Figure 2.1 where v is the compromised node. When i

receives the notification that v has been compromised, i removes v as a destination

and then initiates a diffusing computation. i creates a vector and adds its node ID

to the vector. i sends a message containing this vector to j and k. Upon receiving

i’s message, j and k both remove v as a destination and add their own ID to the

message’s vector. Finally, l and d receive a message from j and k, respectively. l

and d add their node own ID to the message’s vector and remove v as a destination.

Then, l and d send an ACK message back to j and k, respectively, with the complete

list of node IDs. Eventually when i receives the ACKs from j and k, i has a complete
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list of nodes in its connected component. Finally, i broadcasts the vector of node IDs

in its connected component.

2.3.2 The 2nd Best Algorithm

2nd-Best invalidates state locally and then uses distance vector to implement

network-wide recovery. Following the preprocessing described in Section 2.3.1, each

neighbor of the compromised node locally invalidates state by selecting the least cost

pre-existing alternate path that does not use the compromised node as the first hop.

The resulting distance vectors trigger the execution of traditional distance vector to

remove the remaining false state. Algorithm A.1.1 in the Appendix gives a complete

specification of 2nd-Best.

We trace the execution of 2nd-Best using the example in Figure 2.1. In Figure

2.1(b), i uses v to reach nodes l and d. j uses i to reach all nodes except l. Notice

that when j uses i to reach d, it transitively uses
−→
bad (e.g., uses path j − i−v−d to

d). After the preprocessing completes, i selects a new neighbor to route through to

reach l and d by finding its new smallest distance in dmatrixi to these destinations:

i selects the routes via j to l with a cost of 100 and i picks the route via k to reach

d with cost of 100. (No changes are required to route to j and k because i uses its

direct link to these two nodes). Then, using traditional distance vector i sends
−−→
mini

to j and k. When j receives
−−→
mini, j must modify its distance to d because

−−→
mini

indicates that i’s least cost to d is now 100. j’s new distance value to d becomes 150,

using the path j − i− k− l. j then sends a message sharing
−−→
minj with its neighbors.

From this point, recovery proceeds according by using traditional distance vector.

2nd-Best is simple and makes no synchronization assumptions. However, 2nd-

Best is vulnerable to the count-to-infinity problem. Because each node only has

local information, the new shortest paths may continue to use v. For example, if

w(k, d) = 400 in Figure 2.1, a count-to-infinity scenario would arise. After notification
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Figure 2.1. Three snapshots of a graph, G, where v is the compromised node. Parts
of i and j’s distance matrix are displayed to the right of each sub-figure. The least
cost values are underlined.

of v’s compromise, i would select the route via j to reach d with cost 151 (by consulting

dmatrixi), using a path that does not actually exist in G (i − j − i−v−d), since j

has removed v as a neighbor. When i sends
−−→
mini to j, j selects the route via i to

d with cost 201. Again, the path j − i − j − i−v−d does not exist. In the next

iteration, i picks the route via j having a cost of 251. This process continues until

each node finds their correct least cost to d. We will see in our simulation study that

the count-to-infinity problem can incur significant message and time costs.
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2.3.3 The Purge Algorithm

Purge globally invalidates all false state using a diffusing computation and then

uses distance vector to compute new distance values that avoid all invalidated paths.

Recall that diffusing computations preserve the decentralized nature of distance vec-

tor. The diffusing computation is initiated at the neighbors of v because only these

nodes are aware if v is used an intermediary node. The diffusing computations spread

from v’s neighbors to the network edge, invalidating false state at each node along the

way. Then ACKs travel back from the network edge to the neighbors of v, indicating

that the diffusing computation is complete. See Algorithm A.1.2 and A.1.3 in the

Appendix for a complete specification of this diffusing computation.

Next, Purge uses distance vector to recompute least cost paths invalidated by

the diffusing computations. In order to initiate the distance vector computation, each

node is required to send a message after diffusing computations complete, even if no

new least cost is found. Without this step, distance vector may not correctly compute

new least cost paths invalidated by the diffusing computations. For example, consider

the following the scenario when the diffusing computations complete: a node i and all

of i’s neighbors have least cost of ∞ to destination node a. Without forcing i and its

neighbors to send a message after the diffusing computations complete, neither i nor

i’s neighbors may never update their least cost to a because they may never receive

a non-∞ cost to a.

In Figure 2.1, the diffusing computation executes as follows. First, i sets its

distance to l and d to ∞ (thereby invalidating i’s path to l and d) because i uses

v to route these nodes. Then, i sends a message to j and k containing l and d as

invalidated destinations. When j receives i’s message, j checks if it routes via i to

reach l or d. Because j uses i to reach d, j sets its distance estimate to d to ∞. j

does not modify its least cost to l because j does not route via i to reach l. Next, j

sends a message that includes d as an invalidated destination. l performs the same
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steps as j. After this point, the diffusing computation ACKs travel back towards

i. When i receives an ACK, the diffusing computation is complete. At this point, i

needs to compute new least costs to node l and d because i’s distance estimates to

these destinations are ∞. i uses dmatrixi to select its new route to l (which is via j)

and uses dmatrixi to find i’s new route to d (which is via k). Both new paths have

cost 100. Finally, i sends
−−→
mini to its neighbors, triggering the execution of distance

vector to recompute the remaining distance vectors.

Note that a consequence of the diffusing computation is that not only is all
−→
bad

state deleted, but all
−→
old state as well. Consider the case when v is detected before

node i receives
−→
bad. It is possible that i uses

−→
old to reach a destination, d. In this

case, the diffusing computation will set i’s distance to d to ∞.

An advantage of Purge is that it operates without the need for any clock synchro-

nization. We will find that CPR, unlike Purge, either requires extra computation

to maintain logical clocks or assumes clocks are loosely synchronized. Also, Purge’s

diffusing computations ensure that the count-to-infinity problem does not occur by

removing false state from the entire network. However, globally invalidating false

state can be wasteful if valid alternate paths are locally available.

2.3.4 The CPR Algorithm

CPR3 is our third and final recovery algorithm. Unlike 2nd-Best and Purge,

CPR only requires that clocks across different nodes be loosely synchronized i.e. the

maximum clock offset between any two nodes is assumed to be bounded. For ease of

explanation, we describe CPR as if the clocks at different nodes are perfectly synchro-

nized. Extensions to handle loosely synchronized clocks should be clear. Accordingly,

we assume that all neighbors of v, are notified of the time, t′, at which v was com-

3The name is an abbreviation for CheckPoint and Rollback.
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promised. At the end of this section we comment on how the clock synchronization

requirement assumption can be dropped by using logical clocks.

For each node, i ∈ G, CPR adds a time dimension to
−−→
mini and dmatrixi, which

CPR then uses to locally archive a complete history of values. Once the compromised

node is discovered, the archive allows the system to rollback to a system snapshot

from a time before v was compromised. From this point, CPR needs to remove v and

−→
old and update stale distance values resulting from link weight changes. We describe

each algorithm step in detail.

Step 1: Create a
−−→
min and dmatrix archive. We define a snapshot of a data

structure to be a copy of all current distance values along with a timestamp. 4 The

timestamp marks the time at which that set of distance values start being used.
−−→
min

and dmatrix are the only data structures that need to be archived. This approach is

similar to ones used in temporal databases [41, 55].

Our distributed archive algorithm is quite simple. Each node has a choice of

archiving at a given frequency (e.g., every m timesteps) or after some number of

distance value changes (e.g., each time a distance value changes). Each node must

choose the same option, which is specified as an input parameter to CPR. A node

archives independently of all other nodes. A side effect of independent archiving,

is that even with perfectly synchronized clocks, the union of all snapshots may not

constitute a globally consistent snapshot. For example, a link weight change event

may only have propagated through part of the network, in which case the snapshot for

some nodes will reflect this link weight change (i.e., among nodes that have learned

of the event) while for other nodes no local snapshot will reflect the occurrence of this

event. We will see that a globally consistent snapshot is not required for correctness.

4In practice, we only archive distance values that have changed. Thus each distance
value is associated with its own timestamp.
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Step 2: Rolling back to a valid snapshot. Rollback is implemented using

diffusing computations. Neighbors of the compromised node independently select a

snapshot to roll back to, such that the snapshot is the most recent one taken before

t′. Each such node, i, rolls back to this snapshot by restoring the
−−→
mini and dmatrixi

values from the snapshot. Then, i initiates a diffusing computation to inform all other

nodes to do the same. If a node has already rolled back and receives an additional

rollback message, it is ignored. (Note that this rollback algorithm ensures that no

reinstated distance value uses
−→
bad because every node rolls back to a snapshot with

a timestamp less that t′). A pseudo-code specification of this rollback algorithm can

be found in the Appendix (Algorithm A.1.4).

Step 3: Steps after rollback. After Step 2 completes, the algorithm in Section

2.3.1 is executed. There are two issues to address. First, some nodes may be using

−→
old. Second, some nodes may have stale state as a result of link weight changes

that occurred during [t′, tb] and consequently are not reflected in the snapshot. To

resolve these issues, each neighbor, i, of v, sets its distance to v to∞ and then selects

new least cost values that avoid the compromised node, triggering the execution of

distance vector to update the remaining distance vectors. That is, for any destination,

d, where i routes via v to reach d, i uses dmatrixi to find a new least cost to d. If

a new least costs value is used, i sends a distance vector message to its neighbors.

Otherwise, i sends no message. Messages sent trigger the execution of distance vector.

During the execution of distance vector, each node uses the most recent link

weights of its adjacent links. Thus, if the same link changes cost multiple times during

[t′, tb], we ignore all changes but the most recent one. Algorithm A.1.5 specifies Step

3 of CPR.

In the example from Figure 2.1, the global state after rolling back is nearly the

same as the snapshot depicted in Figure 2.1(c): the only difference between the actual

system state and that depicted in Figure 2.1(c) is that in the former (i,v) = 50 rather
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than ∞. Step 3 in CPR makes this change. Because no nodes use
−→
old, no other

changes take place.

Rather than using an iterative process to remove false state (like in 2nd-Best and

Purge), CPR does so in one diffusing computation. However, CPR incurs storage

overhead resulting from periodic snapshots of
−−→
min and dmatrix. Also, after rolling

back, stale state may exist if link weight changes occur during [t′, tb]. This can be

expensive to update. Finally, unlike Purge and 2nd-Best, CPR requires loosely

synchronized clocks because without a bound on the clock offset, nodes may rollback

to highly inconsistent local snapshots. Although correct, this would severely degrade

CPR performance.

Using Logical Clock Timestamps. We can use Lamport’s clock algorithm [49]

to assign timestamps based on logical, rather than physical, clocks. This allows us

to drop the inconvenient assumption of loosely synchronized clocks. Here we briefly

outline how the stated CPR algorithm can be modified to use Lamport timestamps

to create and restore system snapshots.

First, CPR is modified to create network-wide snapshots using diffusing com-

putations instead of each node creating snapshots independently. Here each node

records the logical timestamp when creating a checkpoint. The logical clock values

are determined using the “happened before” relation defined by Lamport [49], where

we limit events to be messages sent and received, and by piggybacking each node’s

logical clock value with each message it sends.

The second change to CPR is in how each node determines the snapshot to restore

during the roll back process (i.e., Step 2 above). Starting with each i ∈ adj(v), i de-

termines the logical timestamp of the snapshot it wishes to restore. This requires that

the detection algorithm specifies either
−→
bad or the logical time v was compromised.

In the latter case, finding the appropriate snapshot to restore is straightforward. If

only
−→
bad is provided, i must additionally record each

−−→
min vector received (as a part
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of standard distance vector messaging) along with the corresponding Lamport times-

tamp. By doing so, this archive can be searched to find the logical timestamp in

which
−→
bad was first received at i. Let tl denote this timestamp. Next, i initiates a

diffusing computation instructing all other nodes to roll back to their most recent

snapshot taken before tl. After this point, the diffusing computations continue as

described in Step 2 above and Step 3 remains unchanged.

Rolling back using logical timestamps does not guarantee that all
−→
bad state is

removed because Lamport timestamps only provide partial ordering of events. With

logical clocks, CPR can be thought of as a best-effort approach to quickly removing

false routing state by rolling back in time. CPR is still correct with logical clocks for

the reasons described in its correctness proof (Corollary A.6).

2.3.5 Multiple Compromised Nodes

Here we detail the necessary changes to each of our recovery algorithms when

multiple nodes are compromised. Since we make the same changes to all three algo-

rithms, we do not refer to a specific algorithm in this section. Let V refer to the set

of nodes compromised at time t′.

In the case where multiple nodes are simultaneously compromised, each recovery

algorithm is modified such that for each v ∈ V , all adj(v) are notified that v was

compromised. From this point, the changes to each algorithm are straightforward.

For example, the diffusing computations described in Section 2.3.1 are initiated at

the neighbor nodes of each node in V . 5

More changes are required to handle the case where an additional node is compro-

mised during the execution of a recovery algorithm. Specifically, when another node

is compromised, v2, we make the following change to the distance vector computa-

5For CPR, t′ is set to the time the first node is compromised.
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tion of each recovery algorithm. 6 If a node, i, receives a distance vector message

which includes a distance value to destination v2, then i ignores said distance value

and processes the remaining distance values (if any exist) to all other destinations

(e.g., where d 6= v2) normally. If the message contains no distance information for

any other destination d 6= v2, then i ignores the message. Because v2’s compromise

triggers a diffusing computation to remove v2 as a destination, each node eventually

learns the identity of v2, thereby allowing the node execute the specified changes to

distance vector.

Without this change it is possible that the recovery algorithm will not terminate.

Consider the case of two compromised nodes, v1 and v2, where v2 is compromised

during the recovery triggered by v1’s compromise. In this case, two executions of the

recovery algorithm are triggered: one when v1 is compromised and the other when v2

is compromised. Recall that all three recovery algorithms set all link weights to v1 to

∞ (e.g., (vi, v1) = ∞,∀vi ∈ adj(v1)). If the first distance vector execution triggered

by v1’s compromise is not modified to terminate least cost computations to v2, the

distance vector step of the recovery algorithm would never complete because the least

cost to v2 is ∞.

2.4 Analysis of Algorithms

Here we summarize the results from our analysis, the detailed proofs can be found

in Appendix A.3. Using a synchronous communication model, we derive communica-

tion complexity bounds for each algorithm. Our analysis assumes: a graph with unit

link weights of 1, that only a single node is compromised, and that the compromised

node falsely claims a cost of 1 to every node in the graph. For graphs with fixed

link weights, we find that the communication complexity of all three algorithms is

6Recall that each of our recovery algorithms use distance vector to complete their com-
putation.
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bounded above by O(mnd) where d is the diameter, n is the number of nodes, and

m the maximum out-degree of any node.

In the second part of our analysis, we consider graphs where link weights can

change. Again, we assume a graph with unit link weights of 1 and a single compro-

mised node that declares a cost of 1 to every node. Additionally, we let link weights

increase between the time the malicious node is compromised and the time at which

error recovery is initiated. We assume that across all network links, the total increase

in link weights is w units. We find that CPR incurs additional overhead (not experi-

enced by 2nd-Best and Purge) because CPR must update stale state after rolling

back. 2nd-Best and Purge avoid the issue of stale state because neither algorithm

rolls back in time. As a result, the message complexity for 2nd-Best and Purge is

still bounded by O(mnd) when link weights can change, while CPR is not. CPR’s

upper bound becomes O(mnd) +O(wn2).

2.5 Simulation Study

In this section, we use simulations to characterize the performance of each of our

three recovery algorithms in terms of message and time overhead. Our goal is to

illustrate the relative performance of our recovery algorithms over different topology

types (e.g., Erdös-Rényi graphs, Internet-like graphs) and different network conditions

(e.g., fixed link weighs, changing link weights).

We build a custom simulator with a synchronous communication model as de-

scribed in Section A.3. All algorithms are deterministic under this communication

model. The synchronous communication model, although simple, yields interesting

insights into the performance of each of the recovery algorithms. We find the same

trends hold when using a more general asynchronous communication model but, for

ease of exposition, we only present the results found using synchronous communica-

tion.
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We simulate the following scenario: 7

1. Before t′, ∀v ∈ V −−→minv and dmatrixv are correctly computed.

2. At time t′, v is compromised and advertises a
−→
bad (a vector with a cost of 1 to

every node in the network) to its neighboring nodes.

3.
−→
bad spreads for a specified number of hops (this varies by simulation). Variable

k refers to the number of hops that
−→
bad has spread.

4. At time t, some node v ∈ V notifies all v ∈ adj(v) that v was compromised. 8

The message and time overhead are measured in step (4) above. The pre-computation

described in Section 2.3.1, is not counted towards message and time overhead be-

cause the same exact pre-computation steps are executed by all three recovery al-

gorithms. We describe our simulation scenario for multiple compromised nodes in

Section 2.5.1.4.

2.5.1 Simulations using Graphs with Fixed Link Weights

In the next five simulations, we evaluate our recovery algorithms over different

topology types in the case where link weights remain fixed.

2.5.1.1 Simulation 1: Erdös-Rényi Graphs with Fixed Unit Link Weights

We start with a simplified setting and consider Erdös-Rényi graphs with param-

eters n and p. n is the number of graph nodes and p is the probability that link

(i, j) exists where i, j ∈ V . The link weight of each edge in the graph is set to 50.

We iterate over different values of k. For each k, we generate an Erdös-Rényi graph,

7In Section 2.5.1.4 we consider the case of multiple compromised nodes. In that simula-
tion we modify our simulation scenario to consider a set of compromised nodes, V , instead
of v.

8 For CPR this node also indicates the time, t′, v was compromised.
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G = (V,E), with parameters n and p. Then we select a v ∈ V uniformly at random

and simulate the scenario described above, using v as the compromised node. In total

we sample 20 unique nodes for each G. We set n = 100, p = {0.05, 0.15, 0.25, 0.50},

and let k = {1, 2, ...10}. Each data point is an average over 600 runs (20 runs over

30 topologies). We then plot the 90% confidence interval.

For each of our recovery algorithms, Figure 2.2 shows the message overhead for

different values of k. We conclude that CPR outperforms Purge and 2nd-Best

across all topologies. CPR performs well because
−→
bad is removed using a single

diffusing computation, while the other algorithms remove
−→
bad state through distance

vector’s iterative process. CPR’s global state after rolling back is almost the same

as the final recovered state.

2nd-Best recovery can be understood as follows. By Corollary A.9 and A.10 in

Section A.3.1, distance values increase from their initial value until they reach their

final (correct) value. Any intermediate, non-final, distance value uses
−→
bad or

−→
old.

Because
−→
bad and

−→
old no longer exist during recovery, these intermediate values must

correspond to routing loops. Table 2.2 shows that there are few pairwise routing

loops during 2nd-Best recovery in the network scenarios generated in Simulation

1, indicating that 2nd-Best distance values quickly count up to their final value.

9 Although no pairwise routing loops exist during Purge recovery, Purge incurs

overhead in performing network-wide state invalidation. Roughly, 50% of Purge’s

messages come from these diffusing computations. For these reasons, Purge has

higher message overhead than 2nd-Best.

9We compute this metric as follows. After each simulation timestep, we count all pairwise
routing loops over all source-destination pairs and then sum all of these values.
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(a) p = 0.05, diameter=6.14
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(b) p = 0.15, diameter=3.01
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(c) p = 0.25, diameter=2.99
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(d) p = 0.50, diameter=2

Figure 2.2. Simulation 1: message overhead as a function of the number of hops false
routing state has spread from the compromised node (k), over Erdös-Rényi graphs
with fixed link weights. Note the y-axes have different scales.
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(a) p = 0.05, diameter=6.14
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(b) p = 0.15, diameter=3.01
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(c) p = 0.25, diameter=2.99
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(d) p = 0.50, diameter=2

Figure 2.3. Simulation 1: time overhead as a function of the number of hops false
routing state has spread from the compromised node (k), over Erdös-Rényi graphs
with fixed link weights. Note the different scales of the y-axes.
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k = 1 k = 2 k = 3 k = 4− 10
p = 0.05 0 14 87 92
p = 0.15 0 7 8 9
p = 0.25 0 0 0 0
p = 0.50 0 0 0 0

Table 2.2. Average number pairwise routing loops for 2nd-Best in Simulation 1.

k = 1 k = 2 k = 3 k = 4− 10
p = 0.05 554 1303 9239 12641
p = 0.15 319 698 5514 7935
p = 0.25 280 446 3510 5440
p = 0.50 114 234 2063 2892

Table 2.3. Average number pairwise routing loops for 2nd-Best in Simulation 2.

Figure 2.3 shows the time overhead for the same p values. The trends for time

overhead match the trends we observe for message overhead. 10

Purge and 2nd-Best message overhead increases with larger k. Larger k imply

that false state has propagated further in the network, implying more paths to repair,

and therefore increased messaging. For values of k greater than a graph’s diameter,

the message overhead remains constant, as expected.

2.5.1.2 Simulation 2: Erdös-Rényi Graphs with Fixed but Randomly

Chosen Link Weights

The simulation setup is identical to Simulation 1 with one exception: link weights

are selected uniformly at random between [1, n], rather than using a fixed link weight

of 50.

Figure 2.4 show the message overhead for different k where p = {0.05, 0.15, 0.25, 0.50}.

In striking contrast to Simulation 1, Purge outperforms 2nd-Best for most values

10For the remaining simulations, we omit time overhead plots because time overhead
follows the same trends as message overhead.
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(a) p = 0.05, diameter=6.14
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(b) p = 0.15, diameter=3.01
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(c) p = 0.25, diameter=2.99
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(d) p = 0.50, diameter=2

Figure 2.4. Simulation 2: message overhead as a function of k, the number of hops
false routing state has spread from the compromised node. Erdös-Rényi graph with
link weights selected randomly from [1, 100] are used. Note the different scales of the
y-axes.

of k. 2nd-Best performs poorly because the count-to-infinity problem: Table 2.3

shows the large average number of pairwise routing loops in this simulation, an in-

dicator of the occurrence of count-to-infinity problem. In the few cases (e.g., k = 1

for p = 0.15, p = 0.25 and p = 0.50) that 2nd-Best performs better than Purge,

2nd-Best has few routing loops.

No routing loops are found with Purge. CPR performs well for the same reasons

described in Section 2.5.1.1.
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(a) GT-ITM, n = 156, diameter=14.133
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(b) Rocketfuel 6461, n = 141, diameter=8
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(c) Rocketfuel 3867, n = 79, diameter=10

Figure 2.5. Simulation 3: Internet-like graph message overhead as a function of k,
the number of hops false routing state has spread from the compromised node.

In addition, we counted the number of epochs in which at least one pairwise

routing loop existed. For 2nd-Best (across all topologies), on average, all but the

last three timesteps had at least one routing loop. This suggests that the count-to-

infinity problem dominates the cost for 2nd-Best.

2.5.1.3 Simulation 3: Internet-like Topologies

Thus far, we studied the performance of our recovery algorithms over Erdös-Rényi

graphs, which have provided us with useful intuition about the performance of each

algorithm. In this simulation, we simulate our algorithms over Internet-like topologies

downloaded from the Rocketfuel website [3] and generated using GT-ITM [1]. The

30



Rocketfuel topologies have inferred edge weights. For each Rocketfuel topology, we

let each node be the compromised node and average over all of these cases for each

value of k. For GT-ITM, we used the parameters specified in Heckmann et al [37]

for the 154-node AT&T topology described in Section 4 of [37]. For the GT-ITM

topologies, we use the same criteria specified in Simulation 1 to generate each data

point.

The results, shown in Figure 2.5, follow the same pattern as in Simulation 2. In

the cases where 2nd-Best performs poorly, the count-to-infinity problem dominates

the cost, as evidenced by the number of pairwise routing loops. In the few cases that

2nd-Best performs better than Purge, there are few pairwise routing loops.

2.5.1.4 Simulation 4: Multiple Compromised Nodes

In this simulation, we evaluate our recovery algorithms when multiple nodes are

compromised. Our simulation setup is different from what we have used to this point:

we fix k = ∞ and vary the number of compromised nodes. Specifically, for each

topology we create m = {1, 2, ..., 15} compromised nodes, each of which is selected

uniformly at random (without replacement). We then simulate the scenario described

at the start of Section 2.5 with one modification: m nodes are compromised during

[t′, t′ + 10]. The simulation is setup so that the outside algorithm identifies all m

compromised node at time t. After running the simulation for all possible values for

m, we generate a new topology and repeat the above procedure. We continue sampling

topologies until the 90% confidence interval for message overhead falls within 10% of

the mean message overhead.

First, we perform this simulation using Erdös-Rényi graphs with fixed link weights.

The message overhead results are shown in Figure 2.6(a) for p = 0.05 and n = 100.
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11 The relative performance of the three algorithms is consistent with the results

from Simulation 1, in which we had a single compromised node. As in Simulation 1,

2nd-Best and CPR have few pairwise routing loops (Figure 2.6(b)). In fact, there is

more than an order of magnitude fewer pairwise routing loops in this simulation when

compared to the results for the same simulation scenario of m compromised nodes

using Erdös-Rényi graphs with random link weights (Figure 2.7(b)). Few routing

loops imply that 2nd-Best and CPR (after rolling back) quickly count up to correct

least costs. In contrast, Purge has high message overhead because Purge globally

invalidates false state before computing new least cost paths, rather than directly

using alternate paths that are immediately available when recovery begins at time t.

2nd-Best and Purge message overhead are nearly constant for m ≥ 8 because

at that point
−→
bad state has saturated G. Figure 2.6 shows the number of least cost

paths, per node, that use
−→
bad or

−→
old at time t (e.g., after

−→
bad state has propagated

k hops from v). The number of least cost paths that use
−→
bad is nearly constant for

m ≥ 8.

In contrast, CPR message overhead increases with the number of compromised

nodes. After rolling back, CPR must remove all compromised nodes and all stale

state (e.g.,
−→
old) associated with each v. As seen in Figure 2.6(c), the amount of

−→
old

state increases as the number of compromised nodes increase.

Next, we perform the same simulation using Erdös-Rényi graphs with with link

weights selected uniformly at random from [1, 100]. We only show the results for

p = .05 and n = 100 because the trends are consistent for other values of p. The

message overhead results for this simulation are shown in Figure 2.7(a). Purge

performs best because, unlike 2nd-Best and CPR, Purge does not suffer from the

11We do not include the results for p = {0.15, 0.25, 0.50} because they are consistent with
the results for p = 0.05.
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count-to-infinity problem. Below, we explain the performance of each algorithm in

detail.

Consistent with Simulation 2 and 3, 2nd-Best performs poorly because of the

count-to-infinity problem. Figure 2.7(b) shows that a significant number of pairwise

routing loops occur during 2nd-Best recovery. 2nd-Best message overhead remains

constant when m ≥ 6 because at this point
−→
bad state has saturated the network.

Figure 2.7(c) confirms this: the number of effected least cost paths remains constant

(at 80) for all m ≥ 6.

CPR message overhead increases with the number of compromised nodes because

the amount of
−→
old state increases as the number of compromised nodes increase (Fig-

ure 2.7(c)). More
−→
old state results in more routing loops – as shown in Figure 2.7(b)

– causing increased message overhead.

Purge performs well because unlike CPR and 2nd-Best, no routing loops occur

during recovery. Surprisingly, Purge’s message overhead decreases when m ≥ 5.

Although more least cost paths need to be computed with larger m, the message

overhead decreases because the residual graph, G′, – resulting from the removal of all

m compromised nodes – is smaller than G. As a result, there are m fewer destinations

and m fewer nodes sending messages during the recovery process.

Finally, we simulated the same scenario ofm compromised node using the Internet-

like graphs from Simulation 3. The results were consistent with those for Erdös-Rényi

graphs with random link weights.

2.5.1.5 Simulation 5: Adding Poisoned Reverse

Poisoned reverse is a common heuristic used to remove routing loops in distance

vector routing. Poisoned reverse works as follows. When a node x routes through

y to reach a destination w, x will advertise to y that its cost to reach w is ∞.

In doing so, this prevents y from using x as its first-hop node to reach w, thereby
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Figure 2.6. Simulation 4: simulations with multiple compromised nodes using
Erdös-Rényi graphs with fixed link weights, p = .05, n = 100, and diameter=6.14.
Results for different metrics as a function of the number of compromised nodes are
shown.
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Figure 2.7. Simulation 4: multiple compromised nodes simulations over Erdös-Rényi
graphs with link weights selected uniformly at random from [1, 100], p = .05, n = 100,
and diameter=6.14.
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eliminating a possible routing loop between x and y. However, poisoned reverse only

eliminates routing loops between two immediately adjacent nodes [48]. Here we study

the benefits of applying poisoned reverse to 2nd-Best and CPR.

We repeat Simulations 2, 3, and 4 using poisoned reverse with 2nd-Best and

CPR. We do not apply poisoned reverse to Purge because no routing loops (resulting

from the removal of v) exist during Purge’s recovery. Additionally, we do not repeat

Simulation 1 using poisoned reverse because we observed few routing loops in that

simulation.

The results from repeating Simulation 2 using poisoned reverse are shown for one

representative topology in Figure 2.8(a), where 2nd-Best+PR and CPR+PR refer

to each respective algorithm using poisoned reverse. CPR+PR has modest gains

over standard CPR because few routing loops occur with CPR. On other hand,

2nd-Best+PR sees a significant decrease in message overhead when compared to the

standard 2nd-Best algorithm because poisoned reverse removes the many pairwise

routing loops that occur during 2nd-Best recovery. However, 2nd-Best+PR still

performs worse than CPR+PR and Purge. When compared to CPR+PR, the same

reasons described in Simulation 2 account for 2nd-Best+PR’s poor performance.

Comparing Purge and 2nd-Best+PR yields interesting insights into the two

different approaches for eliminating routing loops: Purge prevents routing loops

using diffusing computations and 2nd-Best+PR uses poisoned reverse. Because

Purge has lower message complexity than 2nd-Best+PR and poisoned reverse

only eliminates pairwise routing loops, it suggests that Purge removes routing loops

larger than 2.

Repeating Simulation 3 using poisoned reverse yields the same trends as repeating

Simulation 2 with poisoned reverse. Finally, we consider poisoned reverse in the case

of multiple compromised nodes (e.g., we repeat Simulation 4). 2nd-Best+PR and

CPR+PR over Erdös-Rényi graphs with unit link weights perform only slightly better
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(b) Multiple Compromised nodes

Figure 2.8. Simulation 5 plots. Algorithms run over Erdös-Rényi graphs with ran-
dom link weights, n = 100, p = .05, and average diameter=6.14. 2nd-Best+PR
refers to 2nd-Best using poisoned reverse. Likewise, CPR+PR is CPR using poi-
soned reverse.

than the basic version of each algorithm, respectively. This is expected because few

pairwise routing loops occur in this scenario.

Like the single compromised node scenario, in the case of multiple compromised

nodes, 2nd-Best+PR and CPR+PR over Erdös-Rényi graphs with random link

weights provide significant improvements over the basic version of each algorithm.

Particularly for 2nd-Best, we observed many pairwise loops in Simulation 4 (Fig-

ure 2.7(b)). This accounts for the effectiveness of poisoned reverse in this simula-

tion. Despite the significant improvements, 2nd-Best+PR still performs worse than

CPR+PR and Purge. CPR+PR performs best among all the recovery algorithms

because, as we have discussed, rolling back to a network-wide checkpoint is more effi-

cient than using distance vector’s iterative procedure. Furthermore, poisoned reverse

helps CPR+PR reduce the count-to-infinity problem, improving CPR’s effectiveness

in the face of multiple compromised nodes.
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2.5.2 Simulations using Graphs with Changing Link Weights

So far, we have evaluated our algorithms over different topologies with fixed link

weights in scenarios with single and multiple compromised nodes. We found that

CPR using poisoned reverse outperforms the other algorithms because CPR removes

false routing state with a single diffusing computation, rather than using an iterative

distance vector process as in 2nd-Best and Purge, and poisoned reverse removes

all pairwise routing loops that occur during CPR recovery.

In the next three simulations we evaluate our algorithms over graphs with changing

link weights. We introduce link weight changes between the time v is compromised

and when v is discovered (e.g., during [t′, tb]). In particular, let there be λ link weight

changes per timestep, where λ is deterministic. To create a link weight change event,

we choose a link (except for all (v, v̄) links) whose link will change equiprobably

among all links. The new link weight is selected uniformly at random from [1, n].

2.5.2.1 Simulation 6: Effects of Link Weight Changes

Except for λ, our simulation setup is identical to the one in Simulation 2. We let

λ = {1, 4, 8}. In order to isolate the effects of link weights changes, we assume that

CPR checkpoints at each timestep.

Figure 2.9 shows Purge yields the lowest message overhead for p = .05, but only

slightly lower than CPR. CPR’s message overhead increases with larger k because

there are more link weight change events to process. After CPR rolls back, it must

process all link weight changes that occurred in [t′, tb]. In contrast, 2nd-Best and

Purge process some of the link weight change events during the interval [t′, tb] as

part of normal distance vector execution. In our simulation setup, these messages are

not counted because they do not occur in Step 4 (i.e., as part of the recovery process)

of our simulation scenario described in Section 2.5.
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Our analysis further indicates that 2nd-Best performance suffers because of the

count-to-infinity problem. The gap between 2nd-Best and the other algorithms

shrinks as λ increases because as λ increases, link weight changes have a larger effect

on message overhead.

With larger p values, λ has a smaller effect on message complexity because more

alternate paths are available. Thus when p = 0.15 and λ = 1, most of Purge’s

recovery effort is towards removing
−→
bad state, rather than processing link weight

changes. Because CPR removes
−→
bad using a single diffusing computation and there

are few link weight changes, CPR has lower message overhead than Purge in this

case. As λ increases, CPR has higher message overhead than Purge: there are more

link weight changes to process and CPR must process all such link weight changes,

while Purge processes some link weight changes during the interval [t′, tb] as part of

normal distance vector execution.

2.5.2.2 Simulation 7: Applying Poisoned Reverse Heuristic

In this simulation, we apply poisoned reverse to each algorithm and repeat Sim-

ulation 6. Because Purge’s diffusing computations only eliminate routing loops

corresponding to
−→
bad state, Purge is vulnerable to routing loops stemming from link

weight changes. Thus, contrary to Simulation 5, poisoned reverse improves Purge

performance. The results are shown in Figure 2.10. Results for different p values

yield the same trends.

All three algorithms using poisoned reverse show remarkable performance gains.

As confirmed by our profiling numbers, the improvements are significant because

routing loops are more pervasive when link weights change. Accordingly, the poisoned

reverse optimization yields greater benefits as λ increases.

Purge+PR removes all routing loops including loops with more than two nodes,

while 2nd-Best+PR does not. For this reason, Purge+PR has lower message
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(a) p = 0.05, diameter=6.14, λ = 1
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(b) p = 0.05, diameter=6.14, λ = 4
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(c) p = 0.05, diameter=6.14, λ = 8
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(d) p = 0.15, diameter=3.01, λ = 1
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(e) p = 0.15, diameter=3.01, λ = 4
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(f) p = 0.15, diameter=3.01, λ = 8

Figure 2.9. Simulation 6: Message overhead as a function of the number of hops
false routing state has spread from the compromised node (k) for p = {0.05, 0.15}
Erdös-Rényi with link weights selected randomly with different λ values.
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complexity. CPR+PR has the lowest message complexity. In this simulation, the

benefits of rolling back to a global snapshot taken before v was compromised outweigh

the message overhead required to update stale state pertaining to link weight changes

that occurred during [t′, tb]. As λ increases, the performance gap decreases because

CPR+PR must process all link weight changes that occurred in [t′, tb] while 2nd-

Best+PR and Purge+PR process some link weight change events during [t′, tb] as

part of normal distance vector execution.

However, CPR+PR only achieves such strong results by making two optimistic

assumptions: we assume perfectly synchronized clocks and checkpointing occurs at

each timestep. In the next simulation we relax the checkpointing assumption.

2.5.2.3 Simulation 8: Effects of Checkpoint Frequency

In this simulation we study the trade-off between message overhead and storage

overhead for CPR. To this end, we vary the frequency at which CPR checkpoints

and fix the interval [t′, tb]. Otherwise, our simulation setup is the same as Simulation

6.

Figure 2.11 shows the results for an Erdös-Rényi graph with link weights selected

uniformly at random between [1, n], n = 100, p = .05, λ = {1, 4, 8} and k = 2.

We plot message overhead against the number of timesteps CPR must rollback, z.

CPR’s message overhead increases with larger z because as z increases there are more

link weight change events to process. 2nd-Best and Purge have constant message

overhead because they operate independent of z.

We conclude that as the frequency of CPR snapshots decreases, CPR incurs

higher message overhead. Therefore, when choosing the frequency of checkpoints, the

trade-off between storage and message overhead must be carefully considered.
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(a) p = 0.05, λ = 1
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(b) p = 0.05, λ = 4
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(c) p = 0.05, λ = 8

Figure 2.10. Plots for Simulation 7 using Erdös-Rényi graphs with link weights
selected uniformly at random, p = 0.05, average diameter is 6.14, and λ = {1, 4, 8}.
Message overhead is plotted as a function of k, the number of hops false routing state
has spread from the compromised node. The curves for 2nd-Best+PR, Purge+PR,
and CPR+PR refer to each algorithm using poisoned reverse, respectively.
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(a) p = 0.05, k = 2, λ = 1
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(b) p = 0.05, k = 2, λ = 4
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(c) p = 0.05, k = 2, λ = 8

Figure 2.11. Simulation 8: message overhead for p = 0.05 Erdös-Rényi with link
weights selected uniformly random with different λ values. z refers to the number of
timesteps CPR must rollback. Note the y-axes have different scales.
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2.5.3 Summary of Simulation Results

Our results show CPR using poisoned reverse yields the lowest message and time

overhead in all scenarios. CPR benefits from removing false state with a single

diffusing computation. Also, applying poisoned reverse significantly reduces CPR

message complexity by eliminating pairwise routing loops resulting from link weight

changes. However, CPR has storage overhead, requires loosely synchronized clocks,

and requires the time v was compromised.

2nd-Best’s performance is determined by the count-to-infinity problem. In the

case of Erdös-Rényi graphs with fixed unit link weights, the count-to-infinity problem

was minimal, helping 2nd-Best perform better than Purge. For all other topologies,

poisoned reverse significantly improves 2nd-Best performance because routing loops

are pervasive. Still, 2nd-Best using poisoned reverse is not as efficient as CPR using

poisoned reverse and Purge.

In cases where link weights change, we found that Purge using poisoned reverse is

only slightly worse than CPR+PR. Unlike CPR, Purge makes use of computations

that follow the injection of false state, that do not depend on false routing state.

Because Purge does not make the assumptions that CPR requires, Purge using

poisoned reverse is a suitable alternative for topologies with link weight changes.

Finally, we found that an additional challenge with CPR is setting the parameter

which determines checkpoint frequency. Frequent checkpointing yields lower message

and time overhead at the cost of more storage overhead. Ultimately, application-

specific factors must be considered when setting this parameter.

2.6 Related Work

To the best our knowledge no existing approach exists to address recovery from

false routing state in distance vector routing. However, our problem is similar to that

of recovering from malicious but committed database transactions. Liu et al. [6] and
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Ammann et al [54] develop algorithms to restore a database to a valid state after a

malicious transaction has been identified. Purge’s algorithm to globally invalidate

false state can be interpreted as a distributed implementation of the dependency

graph approach by Liu et al. [54]. Additionally, if we treat link weight change events

that occur after the compromised node has been discovered as database transactions,

we face a similar design decision as in [6]: do we wait until recovery is complete

before applying link weight changes or do we allow the link weight changes to execute

concurrently?

Database crash recovery [62] and message passing systems [25] both use snapshots

to restore the system in the event of a failure. In both problem domains, the snapshot

algorithms are careful to ensure snapshots are globally consistent. In our setting,

consistent global snapshots are not required for CPR, since distance vector routing

only requires that all initial distance estimates be non-negative.

Garcia-Lunes-Aceves’s DUAL algorithm [32] uses diffusing computations to coor-

dinate least cost updates in order to prevent routing loops. In our case, CPR and

the prepossessing procedure (Section 2.3.1) use diffusing computations for purposes

other than updating least costs (e.g., rollback to a checkpoint in the case of CPR

and remove v as a destination during preprocessing). Like DUAL, the purpose of

Purge’s diffusing computations is to prevent routing loops. However, Purge’s dif-

fusing computations do not verify that new least costs preserve loop free routing (as

with DUAL) but instead globally invalidate false routing state.

Jefferson [40] proposes a solution to synchronize distributed systems called Time

Warp. Time Warp is a form of optimistic concurrency control and, as such, occasion-

ally requires rolling back to a checkpoint. Time Warp does so by “unsending” each

message sent after the time the checkpoint was taken. With our CPR algorithm, a

node does not need to explicitly “unsend” messages after rolling back. Instead, each
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node sends its
−−→
min taken at the time of the snapshot, which implicitly undoes the

effects of any messages sent after the snapshot timestamp.

2.7 Conclusions

In this chapter, we developed methods for recovery in scenarios where a malicious

node injects false state into a distributed system. We studied an instance of this

problem in distance vector routing. We presented and evaluated three new algorithms

for recovery in such scenarios. Among our three algorithms, our results showed that

CPR – a checkpoint-rollback based algorithm – yields the lowest message and time

overhead over topologies with fixed link weights. However, CPR had storage overhead

and required either loosely synchronized clocks or synchronization through logical

clocks. In the case of topologies where links weights can change, Purge performed

best by avoiding the problems that plagued CPR and 2nd-Best. Unlike CPR,

Purge has no stale state to update because Purge does not rollback in time. The

count-to-infinity problem resulted in high message overhead for 2nd-Best, while

Purge eliminated the count-to-infinity problem by globally purging false state before

finding new least cost paths.
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CHAPTER 3

PMU SENSOR PLACEMENT FOR MEASUREMENT
ERROR DETECTION IN THE SMART GRID

3.1 Introduction

This chapter considers placing electric power grid sensors, called phasor measure-

ment units (PMUs), to enable measurement error detection. Significant investments

have been made to deploy PMUs on electric power grids worldwide. PMUs provide

synchronized voltage and current measurements at a sampling rate orders of magni-

tude higher than the status quo: 10 to 60 samples per second rather than one sample

every 1 to 4 seconds. This allows system operators to directly measure the state of

the electric power grid in real-time, rather than relying on imprecise state estimation.

Consequently, PMUs have the potential to enable an entirely new set of applications

for the power grid: protection and control during abnormal conditions, real-time dis-

tributed control, postmortem analysis of system faults, advanced state estimators for

system monitoring, and the reliable integration of renewable energy resources [13].

An electric power system consists of a set of buses – electric substations, power

generation centers, or aggregation points of electrical loads – and transmission lines

connecting those buses. The state of a power system is defined by the voltage phasor

– the magnitude and phase angle of electrical sine waves – of all system buses and

the current phasor of all transmission lines. PMUs placed on buses provide real-time

measurements of these system variables. However, because PMUs are expensive,

they cannot be deployed on all system buses [9][22]. Fortunately, the voltage phasor

at a system bus can, at times, be determined (termed observed in this thesis) even

47



when a PMU is not placed at that bus, by applying Ohm’s and Kirchhoff’s laws

on the measurements taken by a PMU placed at some nearby system bus [9][14].

Specifically, with correct placement of enough PMUs at a subset of system buses, the

entire system state can be determined.

In this chapter, we study two sets of PMU placement problems. The first prob-

lem set consists of FullObserve and MaxObserve, and considers maximizing the

observability of the network via PMU placement. FullObserve considers the min-

imum number of PMUs needed to observe all system buses, while MaxObserve

considers the maximum number of buses that can be observed with a given number

of PMUs. A bus is said to be observed if there is a PMU placed at it or if its voltage

phasor can be calculated using Ohm’s or Kirchhoff’s Law. Although FullObserve

is well studied [9, 14, 36, 60, 77], existing work considers only networks consisting

solely of zero-injection buses, an unrealistic assumption in practice, while we general-

ize the problem formulation to include mixtures of zero and non-zero-injection buses.

Additionally, our approach for analyzing FullObserve provides the foundation with

which to present the other three new (but related) PMU placement problems.

The second set of placement problems considers PMU placements that support

PMU error detection. PMU measurement errors have been recorded in actual systems

[75]. One method of detecting these errors is to deploy PMUs “near” each other, thus

enabling them to cross-validate each-other’s measurements. FullObserve-XV aims

to minimize the number of PMUs needed to observe all buses while insuring PMU

cross-validation, and MaxObserve-XV computes the maximum number of observed

buses for a given number of PMUs, while insuring PMU cross-validation.

We make the following contributions in this chapter:

• We formulate two PMU placement problems, which (broadly) aim at maximiz-

ing observed buses while minimizing the number of PMUs used. Our formula-
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tion extends previously studied systems by considering both zero and non-zero-

injection buses.

• We formally define graph-theoretic rules for PMU cross-validation. Using these

rules, we formulate two additional PMU placement problems that seek to maxi-

mize the number of observed buses while minimizing the number of PMUs used

under the condition that the PMUs are cross-validated.

• We prove that all four PMU placement problems are NP-Complete. This rep-

resents our most important contribution.

• Given the proven complexity of these problems, we evaluate heuristic approaches

for solving these problems. For each problem, we describe a greedy algorithm,

and prove that each greedy algorithm has polynomial running time.

• Using simulations, we evaluate the performance of our greedy approximation

algorithms over synthetic and actual IEEE bus systems. We find that the greedy

algorithms yield a PMU placement that is, on average, within 97% optimal.

Additionally, we find that the cross-validation constraints have limited effects

on observability: on average our greedy algorithm that places PMUs according

to the cross-validation rules observes only 5.7% fewer nodes than the same

algorithm that does not consider cross-validation.

The rest of this chapter is organized as follows. In Section 4.2 we introduce

our modeling assumptions, notation, and observability and cross-validation rules.

In Section 3.3 we formulate and prove the complexity of our four PMU placement

problems. Section 3.4 presents the approximation algorithms for each problem and

Section 3.5 considers our simulation-based evaluation. We conclude with a review of

related work (Section 3.6) and concluding remarks (Section 3.7).
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3.2 Preliminaries

In this section we introduce notation and underlying assumptions (Section 3.2.1),

and define our observability (Section 3.2.2) and cross-validation (Section 3.2.3) rules.

3.2.1 Assumptions, Notation, and Terminology

We model a power grid as an undirected graph G = (V,E). Each v ∈ V represents

a bus. V = VZ ∪ VI , where VZ is the set of all zero-injection buses and VI is the set

of all non-zero-injection buses. A bus is zero-injection if it has no load nor generator

[80]. All other buses are non-zero-injection, which we refer to as injection buses. Each

(u, v) ∈ E is a transmission line connecting buses u and v.

Consistent with the conventions in [9, 14, 18, 60, 77, 78], we make the following

assumptions about PMU placements and buses. First, a PMU can only be placed

on a bus. Second, a PMU on a bus measures the voltage phasor at the bus and the

current phasor of all transmission lines connected to it.

Using the same notation as Brueni and Heath [14], we define two Γ functions. For

v ∈ V let Γ(v) be the set of v’s neighbors in G, and Γ[v] = Γ(v) ∪ {v}. A PMU

placement ΦG ⊆ V is a set of nodes at which PMUs are placed, and ΦR
G ⊆ V is the

set of observed nodes for graph G with placement ΦG (see definition of observability

below). k∗ = min{|ΦG| : ΦR
G = V } denotes the minimum number of PMUs needed

to observe the entire network. Where the graph G is clear from the context, we drop

the G subscript.

For convenience, we refer to any node with a PMU as a PMU node. Additionally,

for a given PMU placement we shall say that a set W ⊆ V is observed if all nodes in

the set are observed, and if W = V we refer to the graph as fully observed.

3.2.2 Observability Rules

We use the simplified observability rules stated by Brueni and Heath [14]. For

completeness, we restate the rules here:
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Figure 3.1. Example power system graph. PMU nodes (a, b) are indicated with
darker shading. Injection nodes have solid borders while zero-injection nodes (g)
have dashed borders.

1. Observability Rule 1 (O1). If node v is a PMU node, then v ∪ Γ(v) is

observed.

2. Observability Rule 2 (O2). If a zero-injection node, v, is observed and

Γ(v)\{u} is observed for some u ∈ Γ(v), then v ∪ Γ(v) is observed.

Consider the example in Figure 3.1, where the shaded nodes are PMU nodes and g

is the only zero-injection node. Nodes a−d are observed by applying O1 at the PMU

at a, and nodes a, b, f and g are observed by applying O1 at b. e cannot be observed

via c because c does not have a PMU (O1 does not apply) and is an injection node

(O2 does not apply). Similarly, j is not observed via f . Finally, although g ∈ VZ , O2

cannot be applied at g because g has two unobserved neighbors i, h, so they remain

unobserved.

Since O2 only applies with zero-injection nodes, the number of zero-injection nodes

can greatly affect system observability. For example, consider the case where c and

f are zero-injection nodes. a − d, g and f are still observed as before, as O1 makes

not conditions on the node type. Additionally, since now c, f ∈ VZ and each has

a single unobserved neighbor, we can apply O2 at each of them to observe e, j, re-

spectively. We evaluate the effect of increasing the number of zero-injection nodes on

observability in our simulations (Section 3.5).
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3.2.3 Cross-Validation Rules

Cross-validation formalizes the intuitive notion of placing PMUs “near” each other

to allow for measurement error detection. From Vanfretti et al. [75], PMU measure-

ments can be cross-validated when: (1) a voltage phasor of a non-PMU bus can

be computed by PMU data from two different buses or (2) the current phasor of a

transmission line can be computed from PMU data from two different buses. 1

For convenience, we say a PMU is cross-validated even though it is actually the

PMU data at a node that is cross-validated. A PMU is cross-validated if one of the

rules below is satisfied [75]:

1. Cross-Validation Rule 1 (XV1). If two PMU nodes are adjacent, then the

PMUs cross-validate each other.

2. Cross-Validation Rule 2 (XV2). If two PMU nodes have a common neigh-

bor, then the PMUs cross-validate each other.

In short, the cross-validation rules require that the PMU is within two hops of another

PMU. For example, in Figure 3.1, the PMUs at a and b cross-validate each other by

XV1.

XV1 derives from the fact that both PMUs are measuring the current phasor of

the transmission line connecting the two PMU nodes. XV2 is more subtle. Using

the notation specified in XV2, when computing the voltage phasor of an element

in Γ(u) ∩ Γ(v) the voltage equations include variables to account for measurement

error (e.g., angle bias) [74]. When the PMUs are two hops from each other (i.e.,

have a common neighbor), there are more equations than unknowns, allowing for

measurement error detection. Otherwise, the number of unknown variables exceeds

the number of equations, which eliminates the possibility of detecting measurement

errors [74].

1Vanfretti et al. [75] use the term “redundancy” instead of cross-validation.
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3.3 Four NP-Complete PMU Placement Problems

In this section we define four PMU placement problems (FullObserve, MaxOb-

serve, FullObserve-XV, and MaxObserve-XV) and prove their NP-Completeness.

FullObserve-XV and MaxObserve-XV both consider measurement error detec-

tion, while FullObserve and MaxObserve do not. We begin with a general

overview of NP-Completeness, as well as a high-level description of the proof strategy

used in this chapter (Section 3.3.1). In the remainder of Section 3.3 we present and

prove the NP-Completeness of four PMU placement problems, in the following order:

FullObserve (Section 3.3.2), MaxObserve (Section 3.3.3), FullObserve-XV

(Section 3.3.4), and MaxObserve-XV (Section 3.3.5).

In all four problems we are only concerned with computing the voltage phasors of

each bus (i.e., observing the buses). Using the values of the voltage phasors, Ohm’s

Law can be easily applied to compute the current phasors of each transmission line.

Also, we consider networks with both injection and zero-injection buses. For similar

proofs for purely zero-injection systems, see Appendix B.

3.3.1 NP-Completeness Overview and Proof Strategy

Before proving that our PMU placement problems are NP-Complete (abbreviated

NPC), we provide some background on NP-Completeness. NPC problems are the

hardest problems in complexity class NP . It is generally assumed that solving NPC

problems is hard, meaning that any algorithm that solves an NPC problem has ex-

ponential running time as function of the input size. It is important to clarify that

despite being NPC, a specific problem instance might be efficiently solvable. This

is either due to the special structure of the specific instance or because the input

size is small, yielding a small exponent. For example, in Section 3.5 we are able to

solve FullObserve for small IEEE bus topologies due to their small size. Thus,

by establishing that our PMU placement problems are NPC, we claim that there
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exist bus topologies for which these problems are difficult to solve (i.e., no known

polynomial-time algorithm exists to solve those case).

To prove our problems are NPC, we follow the standard three-step reduction

procedure. For a decision problem Π, we first show Π ∈ NP . Second, we select a

known NPC problem, denoted Π′, and construct a polynomial-time transformation,

f , that maps any instance of Π′ to an instance of Π. Finally, we must ensure that for

this f , x ∈ Π′ ⇔ f(x) ∈ Π [33].

Next, we outline the proof strategy we use throughout this section. In Sections

3.3.2 through Section 3.3.5 we use slight variations of the approach presented by

Brueni and Heath in [14] to prove the problems we consider here are NPC. In general

we found their scheme to be elegantly extensible for proving many properties of PMU

placements.

In [14], the authors prove NP-Completeness by reduction from planar 3-SAT

(P3SAT). A 3-SAT formula, φ, is a boolean formula in conjunctive normal form

(CNF) such that each clause contains at most 3 literals. For any 3-SAT formula

φ with the sets of variables {v1, v2, . . . , vr} and clauses {c1, c2, . . . , cs}, G(φ) is the

bipartite graph G(φ) = (V (φ), E(φ)) defined as follows:

V (φ) = {vi | 1 ≤ i ≤ r} ∪ {cj | 1 ≤ j ≤ s}

E(φ) = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

Note that edges pass only between vi and cj nodes, and so the graph is bipartite.

P3SAT is a 3-SAT formula such that G(φ) is planar [53]. For example, P3SAT

formula

ϕ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v2 ∨ v3 ∨ v5)

∧(v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5) (3.1)
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has graph G(ϕ) shown in Figure 3.2(a). Discovering a satisfying assignment for

P3SAT is an NPC problem, and so it can be used in a reduction to prove the

complexity of the problems we address here. Note that in this work we will use ϕ to

denote a specific P3SAT formula, while φ will be used to denote a generic P3SAT

formula.

Following the approach in [14], for P3SAT formula, φ, we replace each variable

node and each clause node in G(φ) with a specially constructed set of nodes, termed

a gadget. In this work, all variable gadgets will have the same structure, and all

clause gadgets have the same structure (that is different from the variable gadget

structure), and we denote the resulting graph as H(φ). In H(φ), each variable gadget

has a subset of nodes that semantically represent assigning “True” to that variable,

and a subset of nodes that represent assigning it “False”. When a PMU is placed at

one of these nodes, this is interpreted as assigning a truth value to the P3SAT variable

corresponding with that gadget. Thus, we use the PMU placement to determine a

consistent truth value for each P3SAT variable. Also, clause gadgets are connected

to variable gadgets at either “True” or “False” (but never both) nodes, in such a way

that the clause is satisfied if and only if at least one of those nodes has a PMU.

Although the structure of our proofs is adapted from [14], the variable and clause

gadgets we use to correspond to the P3SAT formula are novel, thus leading to a

different set of proofs. Our work here demonstrates how the approach from [14] can

be extended, using new variable and clause gadgets, to address a wide array of PMU

placement problems.

While we assume G(φ) is planar, we make no such claim regarding H(φ), though

in practice all graphs used in our proofs are indeed planar. The proof of NPC rests

on the fact that solving the underlying φ formula is NPC. In what follows, for a given

PMU placement problem Π, we prove Π is NPC by showing that a PMU placement
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(a) G(ϕ) formed from ϕ in Equation (3.1).
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(b) Graph formed from ϕ formula in Theorem 3.1 proof.

Figure 3.2. The figure in (a) shows G(ϕ) = (V (ϕ), E(ϕ)) using example formula, ϕ,
from Equation (3.1). (b) shows the new graph formed by replacing each variable node
in G(ϕ) – as specified by the Theorem 3.1 proof – with the Figure 3.3(a) variable
gadget.

in H(φ), Φ, can be interpreted semantically as describing a satisfying assignment for

φ iff Φ ∈ Π. Since P3SAT is NPC, this proves Π is NPC as well.

3.3.2 The FullObserve Problem

The FullObserve problem has been addressed in the literature (e.g., the PMUP

problem in [14], and the PDS problem in [36]) but only for purely zero-injection bus

systems. Here we consider networks with mixtures of injection and zero-injection

buses, and modify the NPC proof of PMUP in [14] to handle this mixture.

FullObserve Optimization Problem:

Input: Graph G = (V,E) where V = VZ ∪ VI and VZ 6= ∅. 2

Output: A placement of PMUs, ΦG, such that ΦR
G = V and ΦG is minimal.

FullObserve Decision Problem:

2We include the condition that VZ 6= ∅ because otherwise FullObserve reduces to
Vertex-Cover, making the NP-Completeness proof trivial.
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(a) Variable gadget used in Theorem 3.1
and 3.4.
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(b) Theorem
3.4 clause
gadget.
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(c) Variable gadget used in Theorem
3.5, containing two disconnected sub-
graphs.

Figure 3.3. Gadgets used in Theorem 3.1 - 3.7. Zi in Figure 3.3(a), Zt
i in Figure

3.3(c), and Zb
i in Figure 3.3(c) are the only zero-injection nodes. The dashed edges

in Figure 3.3(a) and Figure 3.3(c) are connections to clause gadgets. Likewise, the
dashed edges in Figure (b) are connections to variable gadgets. In Figure 3.3(c),
superscript, t, denotes nodes in the upper subgraph and superscript, b, indexes nodes
in the lower subgraph.

Instance: Graph G = (V,E) where V = VZ∪VI , VZ 6= ∅, k PMUs such that k ≥ 1.

Question: Is there a ΦG such that |ΦG| ≤ k and ΦR
G = V ?

Theorem 3.1. FullObserve is NP-Complete.

Proof Idea: We introduce a problem-specific variable gadget. We show that in

order to observe all nodes, PMUs must be placed on variable gadgets, specifically on

nodes that semantically correspond to True and False values that satisfy the corre-

sponding P3SAT formula.

For our first problem, we use a single node as a clause gadget denoted aj, and the

subgraph shown in Figure 3.3(a) as the variable gadget. Note that in the variable

gadget, all the nodes are injection nodes except for Zi. For this subgraph, we state

the following simple lemma:

Lemma 3.2. Consider the gadget shown in Figure 3.3(a), possibly with additional

edges connected to Ti and/or Fi. Then (a) nodes Ii, Zi are not observed if there is

no PMU on the gadget, and (b) all the nodes in the gadget are observed with a single

PMU iff the PMU is placed on either Ti or Fi.
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Proof. (a) If there is no PMU on the gadget, O1 cannot be applied at any of the nodes,

and so we must resort to O2. We assume no edges connected to Ii, Zi from outside

the gadget, and since Ti, Fi ∈ VI , we cannot apply O2 at them, which concludes our

proof.

(b) In one direction, if we have a PMU placed at Ti, from O1 we can observe Zi, Ii.

Since Zi is zero-injection and one neighbor, Ti has been observed, from O2 at Zi we

can observe Fi. The same holds for placing a PMU at Fi, due to symmetry.

In the other direction, by placing a PMU at Ii (Zi) we observe Ti and Fi via O1.

However, since Fi, Ti /∈ VZ , O2 cannot be applied at either of them, so Zi (Ii) will not

be observed.

Proof of Theorem 3.1. We start by arguing that FullObserve ∈ NP . First, non-

deterministically select k nodes in which to place PMUs. Using the rules specified in

Section 3.2.2, determining the number of observed nodes can be done in linear time.

To show FullObserve is NP-hard, we reduce from P3SAT. Let φ be an arbitrary

P3SAT formula with variables {v1, v2, . . . , vr} and the set of clauses {c1, c2, . . . , cs},

and G(φ) the corresponding planar graph. We use G(φ) to construct a new graph

H0(φ) = (V0(φ), E0(φ)) by replacing each variable node in G(φ) with the variable

gadget shown in Figure 3.3(a). The clause nodes consist of a single node (i.e., are the

same as in G(φ)). We denote the node corresponding to cj as aj. All clause nodes

are injection nodes. In the remainder of this proof we let H := H0(φ). In total, VZ

contains all Zi nodes for 1 ≤ i ≤ r, and all other nodes are in VI . The edges connecting

clause nodes with variable gadgets express which variables are in each clause: for each

clause node aj, (Ti, aj) ∈ E0(φ) ⇔ vi ∈ cj, and (Fi, aj) ∈ E0(φ) ⇔ vi ∈ cj. As a

result, the following observation holds:

Observation 3.3. For a given truth assignment and a corresponding PMU place-

ment, a clause cj is satisfied iff aj is attached to a node in a variable gadget with a

PMU.
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The resulting graph for the example given in Figure 3.2(a) is shown in Figure ??.

Nodes with a dashed border are zero-injection nodes. 3 The corresponding formula

for this graph, ϕ, is satisfied by truth assignment Aϕ: v1, v2, v3, v4, and v5 are True.

This corresponds to the dark shaded nodes in Figure 3.2(b). While this construction

generates a graph with very specific structure, in Section 3.3.6, we detail how to

extend our proof to consider graphs with a wider range of structures.

With this construct in place, we move on to our proof. We show that φ is satisfiable

if and only if k = r = |ΦH | PMUs can be placed on H such that ΦR
H = V .

(⇒) Assume φ is satisfiable by truth assignment Aφ. Then, consider the placement

ΦH such that for each variable gadget Vi, Ti ∈ ΦH ⇔ vi = True in Aφ, and Fi ∈

ΦH ⇔ vi = False. From Lemma 3.2(b) we know that all nodes in variable gadgets are

observed by such a placement. From Observation 3.3, all clause nodes are observed

because our PMU assignment is based on a satisfying assignment. Thus, we have

shown that ΦR
H = V .

(⇐) Suppose there is a placement of r PMUs, ΦH , such that ΦR
H = V . From

Lemma 3.2(a) we know that for each Vi with no PMU, at least two nodes are not

observed, so each Vi must have a PMU placed in it. Since we have only r PMUs,

that means one PMU per gadget. From Lemma 3.2(b) we know this PMU must be

placed on Ti or Fi, since otherwise the gadget will not be fully observed. Note that

these nodes are all in VI .

Since we assume the graph is fully observed, all aj are observed by ΦH . Because we

just concluded that PMUs are placed only on injection nodes in the variable gadgets,

each clause node aj can only be observed via application of O1 at Ti/Fi nodes to which

it is attached – specifically, aj is attached to a node with a PMU. From Observation

3Throughout this chapter, nodes with dashed borders denote zero-injection nodes.

59



3.3 this means that all clauses are satisfied by the semantic interpretation of our PMU

placement, which concludes our proof.

3.3.3 The MaxObserve Problem

MaxObserve is a variation of FullObserve: rather than consider the mini-

mum number of PMUs required for full system observability, MaxObserve finds the

maximum number of nodes that can be observed using a fixed number of PMUs.

MaxObserve Optimization Problem:

Input: Graph G = (V,E) where V = VZ ∪ VI , k PMUs such that 1 ≤ k < k∗.

Output: A placement of k PMUs, ΦG, such that |ΦR
G| is maximum.

MaxObserve Decision Problem:

Instance: Graph G = (V,E) where V = VZ ∪ VI , k PMUs such that 1 ≤ k < k∗.

Question: For a given m < |V |, is there a ΦG such that |ΦG| ≤ k and m ≤ |ΦR
G| <

|V |?

Theorem 3.4. MaxObserve is NP-Complete.

Proof Idea: First, we construct problem-specific gadgets for variables and clauses.

We then demonstrate that any solution that observes m nodes must place the PMUs

only on nodes in the variable gadgets. Next we show that as a result of this, the

problem of observing m nodes in this graph reduces to Theorem 3.1.

Proof. MaxObserve ∈ NP using the same argument in the proof for Theorem 3.1.

Next, we reduce from P3SAT as in the proof for Theorem 3.1, where φ is an

arbitrary P3SAT formula. We create a new graph H1(φ) = (V1(φ), E1(φ)) which is

identical to H0(φ) from the previous proof, except that each clause node in H0(φ) is

replaced with the clause gadget shown in Figure 3.3(b), comprising of two injection

nodes. As before, the edges connecting clause nodes with variable gadgets express

which variables are in each clause: for each clause node aj, (Ti, aj) ∈ E1(φ)⇔ vi ∈ cj,

and (Fi, aj) ∈ E1(φ)⇔ vi ∈ cj. Note that Observation 3.3 holds here as well.
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We are now ready to show MaxObserve is NP-hard. For convenience, we let

H := H1(φ). Recall φ has r variables and s clauses. Here we consider the instance

of MaxObserve where k = r and m = 4r + s, and show that φ is satisfiable if and

only if r = |ΦH | PMUs can be placed on H such that m ≤ |ΦR
H | < |V |. In Section

3.3.6 we discuss how to extend this proof for any larger value of m and different |VZ ||VI |

ratios.

(⇒) Assume φ is satisfiable by truth assignment Aφ. Then, consider the placement

ΦH such that for each variable gadget Vi, Ti ∈ ΦH ⇔ vi = True in Aφ, and Fi ∈

ΦH ⇔ vi = False. In the proof for Theorem 3.1 we demonstrated such a placement

will observe all nodes in H0(φ) ⊂ H1(φ), and using the same argument it can easily be

checked that these nodes are still observed in H1(φ). Each bj node remains unobserved

because each aj ∈ VI and consequently O2 cannot be applied at aj. Since |H0(φ)| =

4r + s = m, we have observed the required nodes.

(⇐) We begin by proving that any solution that observes m nodes must place the

PMUs only on nodes in the variable gadgets. By construction, each PMU is either

on a clause gadget or a variable gadget, but not both. Let 0 ≤ t ≤ r be the number

of PMUs on clause gadgets, we wish to show that for the given placement t = 0.

First, note that at least max(s− t, 0) clause gadgets are without PMUs, and that for

each such clause (by construction) at least one node (bi) is not observed. Next, from

Lemma 3.2(a) we know that for each variable gadget without a PMU, at least two

nodes are not observed.

Denote the unobserved nodes for a given PMU placement as Φ−H . Thus, we get

|Φ−H | ≥ 2t + max((s− t), 0). However, since m nodes are observed and |V | −m ≤ s,

we get |Φ−H | ≤ s, so we know s ≥ 2t+ max((s− t), 0). We consider two cases:

• s ≥ t: then we get s ≥ t+ s⇒ t = 0.

• s < t: then we get s ≥ 2t, and since we assume here 0 ≤ s < t this leads to a

contradiction and so this case cannot occur.

61



Thus, the r PMUs must be on nodes in variable gadgets. Note that the variable

gadgets in H1(φ) have the same structure as in H0(φ). We return to this point shortly.

Earlier we noted that for each clause gadget without a PMU, the corresponding

bj node is unobserved, which comes to s nodes. To observe m = 4r+ s nodes, we will

need to observe all the remaining nodes. Thus, we have reduced the problem to that

of observing all of H0(φ) ⊂ H1(φ). Our proof for Theorem 3.1 demonstrated this can

only be done by placing PMUs at nodes corresponding to a satisfying assignment of

φ, and so our proof is complete.

3.3.4 The FullObserve-XV Problem

The FullObserve-XV optimization and decision problems are defined as fol-

lows:

FullObserve-XV Optimization Problem:

Input: Graph G = (V,E) where V = VZ ∪ VI .

Output: A placement of PMUs, ΦG, such that ΦR
G = V , and ΦG is minimal under

the condition that each v ∈ ΦG is cross-validated according to the rules specified in

Section 3.2.3.

FullObserve-XV Decision Problem:

Instance: Graph G = (V,E) where V = VZ ∪ VI , k PMUs such that k ≥ 1.

Question: Is there a ΦG such that |ΦG| ≤ k and ΦR
G = V under the condition that

each v ∈ ΦG is cross-validated?

Theorem 3.5. FullObserve-XV is NP-Complete.

Proof Idea: We show FullObserve-XV is NP-hard by reducing from P3SAT.

We create a single-node gadget for clauses (as for FullObserve) and the gadget

shown in Figure 3.3(c) for each variable. Each variable gadget here comprises of

two disconnected components, and there are two Ti and two Fi nodes, one in each

component. First, we show that each variable gadget must have 2 PMUs for the
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entire graph to be observed, one PMU for each subgraph. Then, we show that cross-

validation constraints force PMUs to be placed on both T nodes or both F nodes.

Finally, we show how to use the PMU placement to derive a satisfying P3SAT truth

assignment.

Lemma 3.6. Consider the gadget shown in Figure 3.3(c), possibly with additional

nodes attached to Ti and/or Fi nodes. (a) nodes I ti , Z
t
i are not observed if there is no

PMU on V t
i , and (b) all the nodes in V t

i are observed with a single PMU iff the PMU

is placed on either T ti or F t
i . Due to symmetry, the same holds when considering V b

i .

Proof. The proof is straightforward from the proof of Lemma 3.2, since both V t
i and

V b
i are identical to the gadget from Figure 3.3(a), which Lemma 3.2 refers to.

Proof of Theorem 3.5. First, we argue that FullObserve-XV ∈ NP . Given a

FullObserve-XV solution, we use the polynomial time algorithm described in our

proof for Theorem 3.1 to determine if all nodes are observed. Then, for each PMU

node we run a breadth-first search, stopping at depth 2, to check that the cross-

validation rules are satisfied.

To show FullObserve-XV is NP-hard, we reduce from P3SAT. Our reduction

is similar to the one used in Theorem 3.1. We start with the same P3SAT formula

φ with variables {v1, v2, . . . , vr} and the set of clauses {c1, c2, . . . , cs}.

For this problem, we construct H2(φ) in the following manner. We use the single-

node clause gadgets as in H0(φ), and as before, the edges connecting clause nodes with

variable gadgets shown in Figure 3.3(c) express which variables are in each clause:

for each clause node aj, (T ti , aj), (T
b
i , aj) ∈ E1(φ) ⇔ vi ∈ cj, and (F t

i , aj), (F
b
i , aj) ∈

E1(φ) ⇔ vi ∈ cj. For notational simplicity, we shall use H to refer to H2(φ). Note

that once again, by construction Observation 3.3 holds for H.

Moving on, we now show that φ is satisfiable if and only if k = 2r PMUs can be

placed on H such that H is fully observed under the condition that all PMUs are
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cross-validated, and that 2r PMUs are the minimal bound for observing the graph

with cross-validation.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For each 1 ≤ i ≤ r, if

vi = True in Aφ we place a PMU at T bi and at T ti of the variable gadget Vi. Otherwise,

we place a PMU at F b
i and at F t

i of this gadget. From the fact that Aφ is satisfying

and Observation 3.3, we know the PMU nodes in Vi must be adjacent to some clause

node4, making T ti (F t
i ) two hops away from T bi (F b

i ). Therefore, all PMUs are cross-

validated by XV2.

Assignment ΦH observes all v ∈ V : from Lemma 3.6(b) we know the assignment

fully observes all the variable gadgets. From Observation 3.3 we know all clause nodes

are adjacent to a node with a PMU, so they are observed via O1, which concludes

this direction of the theorem.

(⇐) Suppose ΦG observes all nodes in H under the condition that each PMU is

cross-validated, and that |ΦH | = 2r. We want to show that φ is satisfiable by the

truth assignment derived from ΦH . We do so following a similar method as for the

previous Theorems.

From Lemma 3.6(a) we know that each component in each variable gadget must

have at least one PMU in order for the entire graph to be observed. Since we have 2r

PMUs and 2r components, each component will have a single PMU. This also means

there are no PMUs on clause gadgets.

From Lemma 3.6(b) we know that full observability will require PMUs be on

either T or F nodes in each variable gadget. As a result, cross-validation constraints

require for each variable gadget that both PMUs are either on T ti , T
b
i or F t

i , F
b
i . This

is because any T ti (F t
i ) is four hops or more away from any other T/F node. Since

4Each variable must be used in at least a single clause, or it is not considered part of the formula.
If there is a variable that has no impact on the truth value of φ, we always place the PMUs on two
nodes (both T or both F) that are adjacent to a clause node.
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we assume the clause nodes are all observed and we know no PMUs are on clause

nodes, from Observation 3.3 this means the PMU placement satisfies all clauses, which

concludes our proof.

3.3.5 The MaxObserve-XV Problem

The MaxObserve-XV optimization and decision problems are defined below:

MaxObserve-XV Optimization Problem:

Input: Graph G = (V,E) where V = VZ ∪ VI and k PMUs such that 1 ≤ k < k∗.

Output: A placement of k PMUs, ΦG, such that |ΦR
G| is maximum under the

condition that each v ∈ ΦG is cross-validated according to the rules specified in

Section 3.2.3.

MaxObserve-XV Decision Problem:

Instance: Graph G = (V,E) where V = VZ ∪ VI , k PMUs such that 1 ≤ k < k∗,

and some m < |V |.

Question: Is there a ΦG such that |ΦG| ≤ k and m ≤ |ΦR
G| < |V | under the

condition that each v ∈ ΦG is cross-validated?

Theorem 3.7. MaxObserve-XV is NP-Complete.

Proof Idea: We show MaxObserve-XV is NP-hard by reducing from P3SAT.

Our proof is a combination of the NP-hardness proofs for MaxObserve and FullObserve-

XV. From a P3SAT formula, φ, we create a graph G = (V,E) with the clause gadgets

from MaxObserve (Figure 3.3(b)) and the variable gadgets from FullObserve-

XV (Figure 3.3(c)). The edges in G are identical the ones the graph created in our

reduction for FullObserve-XV.

We show that any solution that observes m = |V |−s nodes must place the PMUs

exclusively on nodes in the variable gadgets. As a result, we show 1 node in each

clause gadget – bj for clause Cj – is not observed, yielding a total s unobserved nodes.
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This implies all other nodes must be observed, and thus reduces our problem to the

scenario considered in Theorem 3.5, which is already proven.

Proof. MaxObserve-XV is easily in NP . We verify a MaxObserve-XV solution

using the same polynomial time algorithm described in our proof for Theorem 3.5.

We reduce from P3SAT to show MaxObserve-XV is NP-hard. Our reduction

is a combination of the reductions used for MaxObserve and FullObserve-XV.

Given a P3SAT formula, φ, with variables {v1, v2, . . . , vr} and the set of clauses

{c1, c2, . . . , cs}, we form a new graph, H3(φ) = (V (φ), E(φ)) as follows. Each clause

cj corresponds to the clause gadget from MaxObserve (Figure 3.3(b)) and the

variable gadgets from FullObserve-XV (Figure 3.3(c)). As in Theorem 3.5, we

refer to the upper subgraph of variable gadget, Vi, as V t
i and the lower subgraph as

V b
i . Also, we denote here H := H3(φ).

Let k = 2r and m = 8r + s = |V | − s. As in our NP-hardness proof for MaxOb-

serve, m includes all nodes in H except bj of each clause gadget. We need to show

that φ is satisfiable if and only if 2r cross-validated PMUs can be placed on H such

that m ≤ |ΦR
H | < |V |.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For each 1 ≤ i ≤ r, if

vi = True in Aφ we place a PMU at T bi and at T ti of the variable gadget Vi. Otherwise,

we place a PMU at F b
i and at F t

i of this gadget. In either case, the PMU nodes in

Vi must be adjacent to a clause node, making T ti (F t
i ) two hops away from T bi (F b

i )5.

Therefore, all PMUs are cross-validated by XV2.

This placement of 2r PMUs, ΦH , is exactly the same one derived from φ’s satis-

fying instance in Theorem 3.5. Since ΦH only has PMUs on variable gadgets, all aj

nodes are observed by the same argument used in Theorem 3.5. Thus, at least 8r+ s

nodes are observed in H. Because no PMU in ΦH is placed on a clause gadget, Cj,

5See previous note on FullObserve-XV
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and O2 cannot be applied at aj since aj ∈ VI , we know that no bj is observed. We

conclude that exactly m nodes are observed with ΦH .

(⇐) We begin by proving that any solution that observes m nodes must place the

PMUs only on nodes in the variable gadgets. Assume that there are 1 < t ≤ r variable

gadgets without a PMU. Then, at most t PMUs are on nodes in clause gadgets, so at

least max(s− t, 0) clause gadgets are without PMUs. We want to show here that for

m = 8r + s, t = 0.

To prove this, we rely on the following observations:

• As shown in Theorem 3.5, a variable gadget’s subgraph with no PMU has at

least 2 unobserved nodes.

• In any clause gadget Cj, bj nodes cannot be observed if there is no PMU some-

where in Cj.

Thus, given some t, |Φ−H | ≥ 2t + max(s − t, 0), where Φ−H denotes the unobserved

nodes in H. Since |V | −m ≤ s, we know |Φ−H | ≤ s and thus s ≥ 2t + max(s − t, 0).

We consider two cases:

• s ≥ t: then we get s ≥ s+ t⇒ t = 0.

• s < t: then we get s ≥ 2t, and since we assume here 0 ≤ s < t this leads to a

contradiction and so this case cannot occur.

Thus, we have concluded that the 2r PMUs must be on variable gadgets, leaving

all clause gadgets without PMUs. We now observe that for each clause gadget Cj,

such a placement of PMUs cannot observe nodes of type bj, which amounts to a total

of s unobserved nodes – the allowable bound. This means that all other nodes in H

must be observed in order for the requirement to be met. Specifically this is exactly

all the nodes in H2(φ) from the Theorem 3.5 proof. Since PMUs can only be placed

on variable gadgets – all of which are included H2(φ) – we have reduced the problem
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to the problem in Theorem 3.5. We use the Theorem 3.5 proof to determine that all

clauses in φ are satisfied by the truth assignment derived from ΦH .

3.3.6 Proving NPC for Additional Topologies

A quick review of our NPC proofs reveals that the graphs are carefully constructed

regarding our selection of |VZ |, |VI | and (where relevant) m. From a purely theoretical

standpoint this is sufficient to prove that the class of problems is NPC. However, we

argue that the NPC of these problems holds for a much wider range of topologies.

To support this claim, in this section we show that slight adjustments to the variable

and/or clause gadgets can generate a wide selection of graphs – changing |VZ |, |VI |

and (where relevant) m and m/|V | – in which the same proofs from Section 3.3.2 -

Section 3.3.5 can be applied. We present the outline for new gadget constructions

and leave the detailed analysis to the reader.

The number of injection nodes, |VI |, for each of our four problem definitions can

be increased by introducing new variable gadgets. For FullObserve and MaxOb-

serve, we use the variable gadget shown in Figure 3.4(a) in place of the original

variable gadget (Figure 3.3(a)). Our proofs for Theorem 3.1 and Theorem 3.4 can

remain largely unchanged because the same PMU placement described in each NP-

Completeness proof observes these newly introduced nodes. 6 For FullObserve-

XV and MaxObserve-XV we increase |VI | using the variable gadget shown in

Figure 3.4(b). The PMU placements described in the proofs for Theorem 3.5 and

Theorem 3.7 observe all newly introduced nodes in Figure 3.4(b).

Similarly, the number of zero-injection nodes |VZ | can modified by changing the

variable gadgets. FullObserve and MaxObserve – using the variable gadget

shown in Figure 3.5(a) – and FullObserve-XV and MaxObserve-XV – using

the variable gadget shown in Figure 3.5(a) – are easily extended to include more zero-

6The PMU on a Ti or Fi node observes Ii1, Ii2, . . . , Iip via O1.
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injection nodes. By repeatedly applying O2 at the newly introduced zero-injection

nodes, all variable gadget nodes are observed using the same PMU placement de-

scribed in the NP-Completeness proofs for each problem. For this reason, our proofs

only require slight modifications.

In the MaxObserve-XV and MaxObserve proofs we demonstrated NPC for

m = |V |−s. In order to increase the size of |V | while keeping m the same, we replace

each clause gadget, Cj for 1 ≤ j ≤ s, with a new clause gadget, C ′j, shown in Figure

3.6. Note that all C ′j nodes are injection nodes. 7 In this new clause gadget, placing

a PMU on any node but aj results in the observation of at most 3 nodes. Using this

simple insight, we can easily argue that more nodes are always observed by placing a

PMU on the variable gadget rather than at a clause gadget. Then, we can argue that

PMUs are only placed on variable gadgets and finally leverage the argument from

Theorem 3.4 to show MaxObserve is NP-Complete for any m
|V | . A similar argument

can be made for MaxObserve-XV.

3.4 Approximation Algorithms

Because all four placement problems are NPC, we propose greedy approximation

algorithms for each problem, which iteratively add a PMU in each step to the node

that observes the maximum number of new nodes. We present two such algorithms,

one that directly addresses MaxObserve (greedy) and the other MaxObserve-

XV (xvgreedy). greedy and xvgreedy can easily be used to solve FullObserve

and FullObserve-XV, respectively, by selecting the appropriate k value to ensure

full observability. We prove these algorithms have polynomial complexity (i.e., they

are in P), making them feasible tools for approximating optimal PMU placement.

7Other modifications exist for the clause gadgets that do not involve solely injection
nodes, with similar results.
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(a) Modified variable gadget used in FullObserve and MaxObserve, con-
taining additional injection nodes: Ii1, Ii2, . . . Iip.
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(b) Modified variable gadget used in FullObserve-XV and MaxObserve-
XV. Each disconnected subgraph has additional injection nodes: nodes
It
i1, I

t
i2, . . . I

t
ip are added to the upper subgraph and nodes Ib

i1, I
b
i2, . . . I

b
ip are

included in the bottom subgraph.

Figure 3.4. Figures for variable gadget extensions to include more injection nodes
described in Section 3.3.6. The dashed edges indicate connections to clause gadget
nodes.
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(a) Modified variable gadget used in FullObserve and MaxObserve, con-
taining additional injection nodes: Zi1, Zi2, . . . Zip.
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(b) Modified variable gadget used in FullObserve-XV and MaxObserve-
XV. Each disconnected subgraph has additional injection nodes: the upper
subgraph includes nodes Zt

i1, Z
t
i2, . . . Z

t
ip and nodes Zb

i1, Z
b
i2, . . . Z

b
ip are added in

the bottom subgraph.

Figure 3.5. Figures for variable gadget extensions to include more non-injection
nodes described in Section 3.3.6. The dashed edges indicate connections to clause
gadget nodes.

ajbi1bi2bip ...

Figure 3.6. Extended clause gadget, C ′j, used in Section 3.3.6. All nodes are injection
nodes.
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Lastly, we explore the possibility that the PMU observability rules are submodular

functions (Section 3.4.2).

3.4.1 Greedy Approximations

greedy Algorithm. We start with Φ = ∅. At each iteration, we add a PMU to

the node that results in the observation of the maximum number of new nodes. The

algorithm terminates when all PMUs are placed. 8 The pseudo-code for greedy can

be found in Appendix B.2 (Algorithm B.2.1).

Theorem 3.8. For input graph G = (V,E) and k PMUs greedy has O(dkn3) com-

plexity, where n = |V | and d is the maximum degree node in V .

Proof. The proof can be found in Appendix B.2 (Theorem B.4).

xvgreedy Algorithm. xvgreedy is almost identical to greedy, except that PMUs

are added in pairs such that the selected pair observe the maximum number of nodes

under the condition that the PMU pair satisfy one of the cross-validation rules. We

provide the pseudo code for xvgreedy in Algorithm B.2.2.

Theorem 3.9. For input graph G = (V,E) and k PMUs xvgreedy has O(kdn3)

complexity, where n = |V | and d is the maximum degree node in V .

Proof. This theorem is proved in Appendix B.2 (Theorem B.5).

3.4.2 Observability Rules as Submodular Functions?

Submodular functions are set functions with diminishing marginal returns: the

value that each subsequent element adds decreases as the size of the input set in-

creases. More formally, let X be a ground set such that |X| = n. We define a set

8The same greedy algorithm is proposed by Aazami and Stilp [4] and is shown to Θ(n)
approximation ratio under the assumption that all nodes are zero-injection.
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function on X as f : 2X → R. Using the definition from Dughmi [24] f is submodular

if, for all A,B ⊆ X with A ⊆ B, and for each j ∈ X,

f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B) (3.2)

It has been shown that greedy algorithms admit a 1− 1/e approximation of submod-

ular functions [63], where e is the base of the natural logarithm. For this reason, we

aim to show that our observability rules are submodular.

For the PMU placement problem, consider G = (V,E). For S ⊆ V we define f(S)

as the number of observed nodes derived by placing a PMU at each s ∈ S. We prove

that f is not submodular for graphs containing zero-injection nodes (Theorem 3.10)

but is submodular when restricted to graphs with only injection nodes (Theorem

3.11).

Theorem 3.10. f is not submodular for graphs, Gz, with zero-injection nodes.

Proof. Let Gz be the graph from Figure 3.7, A = {a}, and B = {a, b}. Then,

f(A ∪ {c})− f(A)
?

≥ f(B ∪ {c})− f(B)

f(A ∪ {c})− 2
?

≥ f(B ∪ {c})− 3

3− 2
?

≥ 8− 3

1
?

≥ 5

We conclude that f is not submodular for Gz.

Note that in this example, O2 prevented us from meeting the criteria for submod-

ular functions. For PMU placement B∪{c}, we were able to apply O2 at e, resulting

in the observation of the chain of nodes at the top of the graph. However, we were

unable to apply O2 for the PMU placement A ∪ {c}. This observation provides the

motivation for our next Theorem (3.11).
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efgh

A = {a}
B = {a,b}

d c

ba

Figure 3.7. Example used in Theorem 3.10 showing a function defined using our
observability rules is not submodular for graphs with zero-injection nodes. Nodes
with a dashed border are zero-injection nodes and injection nodes have a solid border.
For set function f : 2X → R, defined as the number of observed nodes resulting from
placing a PMU at each x ∈ X, we have f(A) = f({a}) = 2 where {a, d} are observed,
while f(B) = f({a, b}) = 3 where {a, b, d} are observed.

Theorem 3.11. f is a submodular function for graphs, GI , containing only injection

nodes.

Proof. Consider a graph GI = (VI , EI) where each v ∈ VI is an injection node. Let

A ⊆ B ⊆ VI and j ∈ VI . Placing a PMU at j can at most result in the observation

of j ∪ Γ(j) because we cannot apply O2 in GI since we have assumed all nodes are

injection nodes. We claim that any x ∈ j ∪ Γ(j) that is unobserved after placing a

PMU at nodes in B is not observed with the PMU placement derived from A. x is

unobserved only if x has no PMU nor if any Γ(x) has a PMU. Since A ⊆ B and we have

assumed x is not observed using B, it must be the case that x is not observed under

A. Since we have show that all unobserved nodes resulting from PMU placement B

must be unobserved under A, we conclude that f(A∪{j})−f(A) ≥ f(B∪{j})−f(B)

and, therefore, f is submodular for GI .

3.5 Simulation Study

Topologies. We evaluate our approximation algorithms using simulations over

IEEE topologies as well as synthetic ones. For IEEE topologies, we use bus systems
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14, 30, 57, and 118 9. The bus system number indicates the number of nodes in the

graph (e.g., bus system 57 has 57 nodes). Synthetic graphs are then generated based

on each of these topologies, and are used to quantify the performance of our greedy

approximations.

Since observability is determined by the connectivity of the graph, we use the

degree distribution of IEEE topologies as the template for generating our synthetic

graphs. A synthetic topology is generated from a given IEEE graph by randomly

“swapping” edges in the IEEE graph. Specifically, we select a random v ∈ V and

then pick a random u ∈ Γ(v). Let u have degree du. Next, we select a random

w /∈ Γ(v) with degree dw = du − 1. 10 Finally, we remove edge (v, u) and add

(v, w), thereby preserving the node degree distribution. We continue this swapping

procedure until the original graph and generated graph share no edges, and then

return the resulting graph.

Evaluation Methods. We are interested in evaluating how close our algorithms

are to the optimal PMU placement. Thus, when computationally possible (for a given

k) we use brute-force algorithms to iterate over all possible placements of k PMUs in a

given graph and select the best PMU placement. When computationally infeasible, we

present only the performance of the greedy algorithm without corresponding optimal

solutions. In what follows, the output of the brute-force algorithm is denoted optimal,

and when we require cross-validation it is denoted xvoptimal.

We present three different simulations in Section 3.5.1-3.5.3. In Section 3.5.1 we

consider performance as a function of the number of PMUs, and in Section 3.5.2

we investigate the performance impact of the number of zero-injection nodes in the

network. These two sections are performed over sets of synthetic graphs. We conclude

9http://www.ee.washington.edu/research/pstca/

10Here “random” means uniformly at random.
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in Section 3.5.3 where we compare these results to the performance over the actual

IEEE graphs.

3.5.1 Simulation 1: Impact of Number of PMUs

In the first simulation scenario we vary the number of PMUs and determine the

number of observed nodes in the synthetic graph. Each data point is generated as

follows. For a given number of PMUs, k, we generate a graph, place k PMUs on the

graph, and then determine the number of observed nodes. We continue this procedure

until [0.9(x), 1.1(x)] – where x is the mean number of observed nodes using k PMUs

– falls within the 90% confidence interval.

In addition to generating a topology, for each synthetic graph we determined the

members of VI , VZ . These nodes are specified for the original graphs in the IEEE bus

system database. Thus, we randomly map each node in the IEEE network to a node

in the synthetic network with the same degree, and then match their membership to

either VI or VZ .

We present here results for solving MaxObserve and MaxObserve-XV. The

number of nodes observed given k, using greedy and optimal, are shown in Figure

3.8, and Figure 3.9 shows this number for xvgreedy and xvoptimal. In both sets of

plots we show 90% confidence intervals. We omit results for graphs based on IEEE

bus 14 because the same trends are observed.

Our greedy algorithms perform well. On average, greedy is within 98.6% of

optimal, is never below 94% of optimal, and in most cases gives the optimal result.

Likewise, xvgreedy is never less than 94% of xvoptimal and on average is within

97% of xvoptimal. In about about half the cases xvgreedy gives the optimal result.

These results suggest that despite the complexity of the problems, a greedy approach

can return high-quality results. Note, however, that these statistics do not include

performance over large topologies (i.e., IEEE graphs 57, 118) when k is large. It is
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(c) Graphs based on IEEE Bus 118

Figure 3.8. Mean number of observed nodes over synthetic graphs – using greedy

and optimal – when varying number of PMUs. The 90% confidence interval is shown.

an open question whether the greedy algorithms used here would do well for larger

graphs.

Surprisingly, when we compare our results with and without the cross-validation

requirement, we find that this set of constraints does not have a significant effect

on the number of observed nodes for the same k. Our experiments show that on

average xvoptimal observed only 5% fewer nodes than optimal. Similarly, on average

xvgreedy observes 5.7% fewer nodes than greedy. This suggests that the cost of

imposing this requirement is low, with the clear gain of ensuring PMU correctness

across the network via cross-validation.
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(c) Graphs based on IEEE Bus 118

Figure 3.9. Over synthetic graphs, mean number of observed nodes – using xvgreedy
and xvoptimal – when varying number of PMUs. The 90% confidence interval is
shown.

3.5.2 Simulation 2: Impact of Number of Zero-Injection Nodes

Next, we examine the impact of |VZ | on algorithm performance. For each synthetic

graph, we run our algorithms for increasing values of |VZ | and determine the minimum

number of PMUs needed to observe all nodes in the graph (k∗). For each z := |VZ |,

we select z nodes uniformly at random to be zero-injection, and the rest are in VI .

Because we compute k∗ here, we solve FullObserve and FullObserve-XV, rather

than MaxObserve and MaxObserve-XVas in Simulation 1.

We generate each data point using a similar procedure to the one described in

Section 3.5.1. For each z = zi, we generate a graph and determine k∗. We then
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compute k∗, the mean value of k∗ over all simulation runs with |VZ | = zi. We continue

this procedure until [0.9(k∗), 1.1(k∗)] falls within the 90% confidence interval.

Figure 3.10(a) shows the simulation results for solving FullObserve and FullObserve-

XV on synthetic graphs modeled by IEEE bus 57. Results for other topologies con-

sidered here (i.e., 14, 30 and 118) followed the same trend and are thus omitted. Due

to the exponential running time of optimal and xvoptimal, we present here only

results of our greedy algorithms.

As expected, increasing the number of zero-injection nodes – for both greedy

and xvgreedy – reduces the number of PMUs required for full observability. More

zero-injection nodes allow O2 to be applied more frequently (Figure 3.10(b)), thereby

increasing the number of observed nodes without using more PMUs. In fact, we found

the relationship between |VZ | to the greedy estimate of k∗ to be linear.

The gap in k∗ between greedy and xvgreedy decreases as z grows. greedy and

xvgreedy observe a similar number of nodes via O2 across all z values: the mean

absolute difference in the number of nodes observed by O2 between the two algorithms

is 1.66 nodes. Thus, as z grows the number of nodes observed by O2 accounts for an

increasing proportion of all observed nodes (Figure 3.10(b)), causing the gap between

greedy and xvgreedy to shrink.

3.5.3 Simulation 3: Synthetic vs Actual IEEE Graphs

In this section, we compare our results with the performance over the original

IEEE systems. We assign nodes to VZ and VI as specified in the IEEE database files.

Our results indicate that the trends we observed over the synthetic graphs apply as

well to real topologies.

Figure 3.10(c) shows the number of observed nodes for the greedy, xvgreedy,

optimal, and xvoptimal algorithms for IEEE bus system 57. greedy and xvgreedy

observe nearly as many nodes as the corresponding optimal solution. In many cases,
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(a) Simulation 2: Number of PMUs needed
for full observability for different |VZ | values,
using synthetic graphs based on IEEE Bus 57.
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Figure 3.10. Results for Simulation 2 and 3. In Figures (a) and (b) the 90%
confidence interval is shown.

greedy yields the optimal placement. Similarly, as with the synthetic graphs, the

number of PMUs required to observe all nodes decreases linearly as |VZ | increases. 11

To compare the actual values for synthetic graphs to those over IEEE graphs, we

took the mean absolute difference between the results, and normalized by the result

for the synthetic graph. For example, let nk be the mean number of observed nodes

using greedy over all synthetic graphs with input k, and let nG,k be the output of

11The same trends were observed using IEEE bus systems 14, 30, and 118.
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greedy xvgreedy optimal xvoptimal

Simulation 1 4% 4.6% 6% 7.6%
Simulation 2 9.1% 16.1% N/A N/A

Table 3.1. Mean absolute difference between the computed values from synthetic
graphs and IEEE graphs, normalized by the result for the synthetic graph.

greedy for IEEE graph G and k. We compute nd,k = (|nk − nG,k|)/nk. Finally, we

calculate the mean over all nd,k. This process is done for each algorithm we evaluate.

The resulting statistics can be found in Table 3.1. The small average difference

between the synthetic graphs and the actual IEEE topologies suggests that the node

degree distribution of the IEEE graph is an effective feature for generating similar

synthetic graphs.

3.6 Related Work

FullObserve is well-studied [9, 14, 36, 60, 77]. Haynes et al. [36] and Brueni

and Heath [14] both prove FullObserve is NPC. However, their proofs make the

unrealistic assumption that all nodes are zero-injection. We drop this assumption and

thereby generalize their NPC results for FullObserve. Additionally, we leverage the

proof technique from Brueni and Heath [14] in all four of our NPC proofs, although

our proofs differ considerably in their details.

MaxObserve and FullObserve are closely related to the problem of finding

a dominating set of minimum size [33]. A dominating set of an undirected graph,

G = (V,E), is a set of nodes S such that every v ∈ V is either in S or has a neighbor

in S. Finding the minimum size dominating set is equivalent to finding the minimum

number of PMUs required to observe all graph nodes (FullObserve) where nodes

can only be observed using observability rule 1. Aazami and Stilp [4] extend the

dominating set problem to account for observability rule 2. This new formulation,
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called the power dominating set problem, is equivalent to the general FullObserve

problem formulation where nodes can be observed by observability rule 1 and 2.

In the power systems literature, Xu and Abur [77, 78] use integer programming

to solve FullObserve, while Baldwin et al. [9] and Mili et al. [60] use simulated

annealing to solve the same problem. All of these works allow nodes to be either

zero-injection or non-zero-injection. However, these papers make no mention that

FullObserve is NPC, i.e., they do not characterize the fundamental complexity of

the problem.

Aazami and Stilp [4] investigate approximation algorithms for FullObserve.

They derive a hardness approximation threshold of 2log1−ε n. Aazami and Stilp also

prove that greedy, from Section 3.4, is a Θ(n)-approximation. However, this perfor-

mance ratio is derived under the assumption that all nodes are zero-injection.

Chen and Abur [18] and Vanfretti et al. [75] both study the problem of bad PMU

data. Chen and Abur [18] formulate their problem differently than FullObserve-

XV and MaxObserve-XV. They consider fully observed graphs and add PMUs

to the system to make all existing PMU measurements non-critical (a critical mea-

surement is one in which the removal of a PMU makes the system no longer fully

observable). Vanfretti et al. [75] define the cross-validation rules used in this chapter.

They also derive a lower bound on the number of PMUs needed to ensure all PMUs

are cross-validated and the system is fully observable.

3.7 Conclusions

In this chapter, we formulated four PMU placement problems and proved that

each one is NPC. Consequently, future work should focus on developing approxima-

tion algorithms for these problems. As a first step, we presented two simple greedy

algorithms: xvgreedy which considers cross-validation and greedy which does not.
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Both algorithms iteratively add PMUs to the node which observes the maximum of

number of nodes.

Using simulations, we found that our greedy algorithms consistently reached close-

to-optimal performance. Our simulations also showed that the number of PMUs

needed to observe all graph nodes decreases linearly as the number of zero-injection

nodes increase. Finally, we found that cross-validation had a limited effect on ob-

servability: for a fixed number of PMUs, xvgreedy and xvoptimal observed only 5%

fewer nodes than greedy and optimal, respectively. As a result, we believe imposing

the cross-validation requirement on PMU placements is advised, as the benefits they

provide come at a low marginal cost.

There are several topics for future work. The success of the greedy algorithms

suggests that bus systems have special topological characteristics, and we plan to

investigate their properties. Additionally, we intend to implement the integer pro-

gramming approach proposed by Xu and Abur [77] to solve FullObserve. This

would provide valuable data points to measure the relative performance of greedy.
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CHAPTER 4

RECOVERY FROM LINK FAILURES IN A SMART GRID
COMMUNICATION NETWORK

4.1 Introduction

In this chapter we continue our study of issues related to PMU sensors. In the

previous chapter, we proposed and evaluated algorithms to ensure that PMU measure-

ments are observed in the first place and are correct. Now we consider algorithms that

take these (correct) PMU measurements and disseminate them quickly and reliably

to power grid operators, utility companies, and power grid managing and monitoring

entities.

PMU applications have stringent, and in many cases ultra-low, per-packet delay

and loss requirements. If these per-packet delay requirements are not met, PMU

applications can miss a critical power grid event (e.g., lightning strike, power link

failure), potentially leading to a cascade of incorrect decisions and corresponding

actions. For example, closed-loop control applications require delays of 8 − 16 ms

per-packet [8]. If any packet is not received within this time window, the closed-loop

control application may take a wrong control action. In the worst case, this can

lead to a cascade of power grid failures similar to the August 2003 blackout in North

America [7] and the recent power grid failures in India [79].

As a result of this sensitivity, the communication network that disseminates PMU

data must provide hard end-to-end data delivery guarantees [8]. For this reason,

the Internet’s best-effort service model alone is unable to meet the stringent packet

delay and loss requirements of PMU applications [12]. Instead, either a new network
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architecture or enhancements to the existing Internet architecture and its protocols

are needed [8, 12, 13, 39] to provide efficient, in-network forwarding and fast recovery

from link and switch failures. Additionally, multicast should figure prominently in

data delivery, since PMUs disseminate data to applications across many locations [8].

Software-defined networking (SDN) provides a vehicle for this type of innovation

by providing programmable access to the forwarding plane of network switches and

routers. New network services are defined in a programmable control plane, which

SDN cleanly separates from the data plane (e.g., forwarding), and are instantiated as

forwarding rules installed at network switches. The communication between the con-

trol and data planes, including the messaging to install forwarding rules, are typically

managed by the OpenFlow protocol [58]. 1

This separation of control and data planes is similar in spirit to the approach

used by the Gridstat system [8] that also manages data plane actions through a

separate control plane. Gridstat is a publish-subscribe system designed specifically

for disseminating critical power grid data; however, because Gridstat is an overlay

service built on top of existing network protocols, Gridstat alone cannot meet the

delivery requirements of PMU applications. Rather, the underlying network protocols

themselves must also be improved. This is the emphasis of our research here.

In this chapter, we use OpenFlow to define and implement new control plane algo-

rithms, tailored specifically for disseminating critical power grid data, that program

data plane forwarding by installing forwarding rules at network switches. We focus on

algorithms for fast recovery from link failures. Informally, a link that does not meet

its packet delivery requirement (either due to excessive delay or actual packet loss)

is considered failed. We propose, design, and evaluate solutions to all three aspects

1Protocols other than OpenFlow can be used. OpenFlow is the first and most popular protocol
used to interface between SDN control and data planes.
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of link failure recovery: link failure detection, algorithms for pre-computing backup

multicast trees, and fast backup tree installation.

We make the following contributions in this chapter:

• Design a link-failure detection algorithm. We design a link-failure detec-

tion and reporting mechanism, Pcount, that uses OpenFlow [58] to detect link

failures when and where they occur, inside the network. In-network detection is

used to reduce the time between when the loss occurs and when it is detected.

In contrast, most previous work [5, 16, 30] focuses on measuring end-to-end

packet loss, resulting in slower detection times.

• Formulate a novel optimization problem for computing backup mul-

ticast trees. Inspired by MPLS fast-reroute algorithms that quickly reroute

time-critical unicast IP flows over pre-computed backup paths [69], we formulate

a new problem, Multicast Recycling, that pre-computes backup multicast

trees, to be used after a link failure, with the aim of minimizing the control

overhead required to install the backup trees. This optimization criteria differs

from those proposed in the literature [20, 27, 59, 67, 76] that use optimization

criteria specified over a single multicast tree and typically emphasize maximiz-

ing node (link) disjointedness between the backup and primary path, while we

consider conditions specified across multiple multicast trees.

• Prove Multicast Recycling is at least NP-hard and propose an approx-

imation algorithm, Bunchy, for Multicast Recycling. Bunchy uses an

approximation to the directed Steiner Tree problem taken from the literature

[17] to compute backup trees and modifies link weights to encourage backup

trees to reuse existing forwarding rules installed in the network. Doing so re-

duces both the number of control messages the controller must send to install

each backup tree and the number of forwarding rules maintained at each switch.
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• Propose Merger, an OpenFlow implementation of multicast that aims

to reduce forwarding state. Merger uses local optimization to create a

near minimal set of forwarding rules by “merging” forwarding rules in cases

where multiple multicast trees have common forwarding behavior.

• Design two algorithms – Proactive and Reactive – for fast backup

tree installation. Proactive pre-installs backup tree forwarding rules and

activates these rules after a link failure is detected, while, Reactive installs

backup trees after a link a failure is detected. We show how Merger can be

applied to Proactive and Reactive to reduce the amount of Proactive

pre-installed forwarding state and decrease Reactive signaling overhead.

• Provide a prototype implementation of our algorithms, Appleseed,

using POX and evaluate each algorithm using Mininet. Pcount,

Bunchy, Merger, Proactive, and Reactive are implemented in POX [57],

an open-source OpenFlow controller.

We use emulations based on Mininet [50] to evaluate our algorithms over syn-

thetic graphs and actual IEEE bus systems. We find that Pcount provides

fast and accurate link loss estimates: after sampling only 75 packets, the 95%

confidence interval is within 15% of the true loss probability. Additionally, we

find Proactive yields faster recovery than Reactive (Reactive sends up

to 10 times more control messages than Proactive) but at the cost of stor-

age overhead at each switch (in our emulations, pre-installed backup trees can

account for as much as 35% of the capacity a conventional OpenFlow switch

[21]). Lastly, we observe that Merger reduces control plane messaging and

the amount of pre-installed forwarding state by a factor of 2 to 2.5 when com-

pared to a standard multicast implementation, resulting in faster installation

and smaller flow table sizes.
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The remainder of this chapter is structured as follows. In the following section

(Section 4.2), we provide necessary background on PMU application requirements

and OpenFlow, as well as introduce a running example used later to describe our

algorithms. Then, we outline our algorithms in Section 4.3: Section 4.3.1 details

our link-failure detection algorithm called Pcount; in Section 4.3.2, we outline our

algorithms for computing backup multicast trees; and then describe algorithms for

installation backup trees in Section 4.3.3; Section 4.3.5 presents Merger, a fast

multicast implementation when applied to our backup tree installation algorithms

can significantly improve performance. Next, we briefly survey relevant literature

(Section 4.4). Our emulation study is presented in Section 4.5. Section 4.6 concludes

this chapter with a summary.

4.2 Preliminaries

In this section, we provide the necessary background to describe our algorithms in

Section 4.3. First, we describe several PMU applications and their QoS requirements,

including justification for multicasting PMU measurement data (Section 4.2.1). Then,

we present a motivating example referenced throughout this chapter (Section 4.2.2).

Section 4.2.3 defines terms and notation. We give an overview of OpenFlow in Section

4.2.4 and Section 4.2.5 details our OpenFlow multicast implementation.

4.2.1 PMU Applications and Their QoS Requirements

In this work, we consider the design of a communication network for disseminating

critical Smart Grid data, principally data associated with PMU applications. Here we

detail the QoS requirements of a few of these applications, with a particular emphasis

on PMU applications with the most stringent end-to-end delay requirements. Table

4.1 shows packet delay and frequency requirements of three PMU applications, each

described below.
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PMU Application E2E Delay Rate (Hz)

SIPS 8− 16 ms 120− 720+
Wide Area Control 5− 50 ms 1− 240
Anti-Islanding 5− 50 ms 30− 720+

Table 4.1. PMU applications and their QoS requirements [8]. The end-to-end (E2E)
delay requirement is per-packet, as advocated by Bakken et al. [8].

Example PMU Applications and Their QoS Requirements. System In-

tegrity Protection Scheme (SIPS) applications ensure that the entire power grid re-

mains in a healthy state after local power grid components (e.g., relays) have taken

mitigating actions to remedy local emergencies. To do so, SIPS applications require

accurate and timely PMU measurements to identify system instability and to take

correct mitigating actions (e.g., trip power generation) [8].

Islanding is a safety measure commonly used in power systems that separates

entire sections (i.e., an island) of the power grid from the larger system in periods

of voltage and frequency instability. Due to a lack of real-time situational aware-

ness, power grid operators and oversight bodies mandate a conservative approach of

disconnecting all distributed generation sources (e.g., wind and solar) from a locally

islanded system. PMU measurements can provide the situational awareness to allow

more narrowly targeted islands to be identified. Moreover, as distributed generation

increases (as is the current trend), simultaneously disconnecting large number of gen-

eration sources may actually further destabilize the grid. PMUs are critical to future

anti-islanding applications that will use PMU data to determine when distributed

generation sources can safely remain online and thereby help preserve power grid

stability [8].

Wide-area control is a more general category of PMU applications, referring to

applications that gather PMU data from disparate sources to determine the health of

the power grid and initiate control actions, both in real-time. For example, Southern
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California Edison [43] measures (using PMUs) and controls voltage at remote loca-

tions to ensure voltage safety limits are met for its bulk energy transfers. Another

wide-area control application uses PMUs to measure, detect, and dampen inter-area

oscillations in real-time[8].

Why Multicast is Needed. As noted by Bakken et al. [8], PMU measurements

are increasingly needed at multiple locations (e.g., utility companies, balancing au-

thorities) and by many different power grid applications making multicast a natural

fit. In today’s electric power grid, the set of receivers that would require real-time

PMU measurements is relatively small and localized (near the location of a PMU).

However, as the power grid evolves to make distributed power generation (e.g., wind

and solar) a larger portion of its energy portfolio, we believe PMU measurements

will need to be multicasted to a larger set of receivers in order for these distributed

sources of power to be safely integrated into the power grid. It is in this context that

we define our PMU data dissemination problem and corresponding algorithms.

4.2.2 Motivating Example

Here we present a motivating example to highlight different aspects of the chal-

lenges addressed in this work. This example is used throughout this chapter to help

describe our algorithms.

Figure 4.1 shows two source-based multicast trees used to disseminate PMU mea-

surement data produced by a PMU at b and another at c. The multicast tree, Tb,

shown in green, is rooted at b and disseminates b’s PMU data to its leaf nodes (i.e.,

data sinks) {p, q, r, s}. The blue multicast tree, Tc, multicasts c’s PMU measure-

ments to its leaf nodes {r, s, t, u, v}. Half-green/half-blue nodes are in both Tb and

Tc. Dashed and solid lines indicate network links, with links in the multicast tree

marked by arrows. Before any link failures occur, the original multicast trees (Figure

4.1(a)) meets the delay requirements specified by each data sink.
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(a) Original multicast trees Tb (green) and Tc

(blue).
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(b) Backup multicast trees – T̂b and T̂c for Tb and
Tc, respectively – installed after (g, l) fails. New
links for each backup tree are circled.

Figure 4.1. Example problem scenarios with two source-based multicast trees, one
rooted at b (in green), Tb, and the other at c (in blue), Tc. Half-blue/half-green
nodes are members of both multicast trees. Let fb and fc denote the multicast flows
corresponding to Tb and Tc, respectively. The multicast trees are shown before and
after link (g, l) fails.

At some point, link (g, l) fails (e.g., its loss rate exceeds a threshold or it goes

completely offline). This prevents p, q, r and s from receiving any packets from either

Tb or Tc until each multicast tree is repaired, leaving the delay requirement of each

these sink nodes unsatisfied. Figure 4.1(b) shows two backup multicast trees – one for

Tb and the other for Tc – installed after it is detected that (g, l) has failed. Notice that

each backup tree contains no path using the failed link, (g, l), and has a path between

its root and each of its data sinks. In the following sections we present algorithms

that detect these types of link failures, compute backup multicast trees such as those

shown in Figure 4.1(b), and quickly install these backup trees in order to minimize

packet loss and delay.

4.2.3 Notation and Assumptions

We model the communication network as a directed graph G = (V,E), where

(u, d) ∈ E denotes a directed edge from u to d and V consists of three types of nodes:

ones that send PMU data (PMU nodes), nodes that receive PMU data (data sinks),

and switches connecting PMU nodes and data sinks (typically via other switches).
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We assume G has m ≥ 1 source-based multicast trees to disseminate PMU data. Let

T = {T1, T2, . . . , Tm} refer to the set of m source-based multicast trees in G such that

each Ti = (Vi, Ei, r, S) is a tree rooted at r with directed edges Ei, vertices Vi, and a

directed path from r to each s ∈ S. Let w(Ti) be the total weight of all Ti edges.

For convenience, denote T li = (V l
i , E

l
i, r, S) as the ith directed tree with l ∈ El

i.

For each link l in each directed tree i, T li is a backup tree T̂ li = (V̂ l
i , Ê

l
i, r, S), a directed

tree with root r, a directed path from r to each s ∈ S such that l /∈ Êl
i. We refer to

T li and T̂ li as a primary tree and backup tree, respectively. In Figure 4.1(b) the two

backup trees – one for Tb and the other for Tc – both route around the failed link,

(g, l), and have a directed path from its root (b and c) to their data sinks ({p, q, r, s}

and {r, s, t, u, v}).

Corresponding to each primary tree, Ti = (Vi, Ei, r, S), is a multicast flow fi =

(r, S) with source, r, and data sinks S = {d1, d2, ...dk}. Each di ∈ S has an end-to-end

per-packet delay requirements and loss rate requirement (specified as the maximum

tolerable loss rate of each e ∈ Ei). Let F be the set of all multicast flows in G.

Lastly, we make the following simplifying assumptions:

• Before any link fails, we assume that all packets (of PMU data) are correctly

delivered such that each data sink’s per-packet delay and loss requirements are

satisfied.

• All sinks have the same same per-packet delay and loss rate requirements.

• We consider the case where multiple links fail over the lifetime of the network

but assume that only a single link fails at-a-time.

4.2.4 OpenFlow

Our algorithms are built using OpenFlow abstractions and features. Here we

provide a brief overview of OpenFlow, with a particular emphasis on the features

used by our algorithms.
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OpenFlow is an open standard that cleanly separates the control and data planes,

and provides a programmable (and possibly centralized) control framework [58]. All

OpenFlow algorithms and protocols are managed by a (logically) centralized con-

troller, while network switches (as their only task) forward packets according to the

local forwarding rules installed by the controller at that switch.

OpenFlow exposes the flow tables of its switches, allowing the controller to add,

remove, and delete flow table entries, which determine how switches forward, copy, or

drop packets associated with a controller-managed flow. We will use the terms “flow

table entry” and “forwarding rule” interchangeably.

OpenFlow switches follow a “match plus action” paradigm [58], in which each

switch matches an incoming packet based on its header fields to a flow table table en-

try. Actions (e.g., forward packet, drop packet, copy packet, or modify packet header

fields) are then applied to the packet as encoded in the flow table entry instructions.

Switches maintains statistics for each flow table entry (e.g., packet counter, number of

bytes received, time the flow was installed) that can can be queried by the controller.

These statistics are key to our algorithm for detecting packet loss (Section 4.3.1).

Several of our algorithms use OpenFlow to modify packet headers to customize

forwarding and other actions in parts of the network. We write identifiers in unused

packet header fields to customize the set of actions applied to packets carrying specific

identifiers. We refer to these identifiers as tags. Tags are an abstraction we use to

measure packet loss rates (Pcount in Section 4.3.1), pre-install backup tree flow

table entries (Proactive in Section 4.3.3), and consolidate flow table entries that

have common forwarding state (Merger in Section 4.3.5).

Measurement studies from the literature [21, 70] have identified significant hard-

ware limitations in OpenFlow switches. OpenFlow switches can only support a lim-

ited number of flow table entries because they rely on expensive TCAM memory to

perform wildcard matching. For example, the HP5406zl switch supports approxi-
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mately 1500 OpenFlow rules [21] and the Pronto 3290 switch can handle 1919 flow

table entries [29]. Another major limitation is control plane bandwidth: OpenFlow

switches have been found to have four orders of magnitude less control plane band-

width than data plane forwarding bandwidth [21]. This limited bandwidth, along

with their slow control/management CPUs, limits the rate in which flow table entries

can be installed. Our emulation study (Section 4.5) shows the tangible effects these

hardware limitations have on our algorithms (especially Pcount).

4.2.5 Multicast Implementation

In keeping with its role as a general framework that provides primitives for pro-

grammable networks, OpenFlow does not explicitly provide an implementation for

multicast. Thus, we design our own multicast implementation called Basic. Basic

assigns a multicast IP address to each multicast group and uses this address to setup

the flow tables at the multicast tree switches. 2

After the controller computes a multicast tree (described in Section 4.3.2), Ti =

(Vi, Ei, r, S), Basic installs a flow table entry at each switch in Vi. The flow table

entry matches packets using the group’s multicast address (all other field are left as

wildcards) and forwards a copy of each packet out the ports corresponding to the

switch’s outgoing links in Ei. If a switch in Ei is adjacent to a downstream host, hj,

in the multicast group, then the flow table entry rewrites the destination layer 2 and

3 addresses of the packet copy sent to hj to hj’s layer 2 and 3 addresses. 3

2Because multicast group membership is static for power grid applications (Section 4.2.1, we
simply determine the members of each multicast group by reading their static assignment from a
text file. Note that if dynamic group membership were to be required, we could replace this static
policy using a protocol like IGMP.

3Our initial plan was to use the group table abstraction described in the OpenFlow 1.1 specifi-
cation [66] to implement multicast but, unfortunately, as of the writing of this chapter, this feature
is not yet supported by the POX controller [57] used to implement our algorithms and the Mininet
emulator [50] used in our emulations.
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4.3 Algorithms

We propose a set of algorithms, collectively referred to as Appleseed, that make

multicast trees robust to link failures. 4 Appleseed runs at the OpenFlow controller

with the goal of minimizing packet loss associated with link failures while ensuring

that end-to-end delay requirements are satisfied. Appleseed divides into three parts:

1. Pcount algorithm: monitor and quickly detect link failures when and

where they occur inside the network (Section 4.3.1).

2. Precompute backup trees that are amenable to fast installation. In Section

4.3.2 we formulate a new problem, Multicast Recycling, that aims to com-

pute backup trees that reuse primary tree edges, prove Multicast Recycling

is at least NP-hard, and provide an approximation algorithm for Multicast

Recycling called Bunchy.

3. Fast install of pre-computed backup trees by reusing existing forwarding

rules installed in the network, sharing forwarding rules among backup trees

with common links, and in some cases pre-installing forwarding rules before link

failures occur (Section 4.3.3). The backup trees are computed using Bunchy

from part (2). Pcount, from part (1), triggers the installation of a set of

backup trees.

4.3.1 Link Failure Detection Using OpenFlow

We present Pcount, an algorithm that uses OpenFlow to detect link failures

inside the network. In-network detection is used to reduce the time between when

packet loss occurs and when it is detected. Fast packet loss detection is crucial to

the critical PMU applications that we target in this work, as they are particularly

4The name Appleseed is inspired by Johnny Appleseed, the famous American pioneer and
conservationist known for planting apple nurseries and caring for its trees.
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sensitive to packet loss. Most previous work [5, 16, 30] focuses on measuring end-to-

end packet loss, resulting in slower detection times.

Pcount considers a link as failed when the rate of packet loss exceeds a threshold,

given as input. For simplicity, our description of Pcount assumes it measures packet

loss over a single link, (u, d). At the end of the section we comment on how Pcount

easily generalizes to detect packet loss between multiple switches and non-adjacent

switches.

Although we present Pcount as an algorithm that detects packet loss of a sin-

gle network link, the use of “link” should not be interpreted literally. Rather, each

“link” represents a path where the two endpoints are OpenFlow switches that can

be connected with a multi-hop path containing several (non-OpenFlow) switches

and routers. In practice, we expect that OpenFlow switches will coexist with non-

OpenFlow routers and switches, making this broader definition more compelling.

From our presentation below it will be clear that strictly defining a link as a single

physical link connecting two switches is not necessary for Pcount to work correctly.

Pcount Algorithm Details. Pcount estimates packet loss over a sampling

window of length w. For each w, Pcount estimates packet loss along (u, d) by

measuring the aggregate loss rate experienced by flows M = {f1, f2, ..., fk} across

link (u, d), where M is given as input, using the following steps:

1. Install rules (downstream) to count all tagged fi packets received at

d. Pcount does so by installing a new flow table entry for each fi at d, that

matches packets using the identifier (i.e., the tag) applied at u in step (2).

As noted in Section 4.2.4, for each flow table entry, OpenFlow automatically

updates the packet counter each time a packet matches the flow table entry.

2. Tag (upstream) all packets from each fi ∈ M . Suppose u uses flow table

entry ei to match and forward flow fi packets. First, Pcount generates a

unique identifier (tag). Then, for each fi, Pcount creates a new flow table
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entry, e′i, that is an exact copy of ei except that e′i embeds a the tag in the

packet’s dl vlan field. e′i is installed with a higher OpenFlow priority than ei,

ensuring that all flow fi packets are tagged.

3. After w time units, turn tagging off at u by installing a copy of each fi’s

original flow table entry, ei, but with a higher priority than e′i.

4. Query u and d for packet counts in order to compute the packet loss.

Each tagging rule is queried individually at u, while a single aggregate query

(matching flows based on their the vlan id field) is issued at d to retrieve the

packet counts of total packet count of all fi ∈M . 5 Before querying d, Pcount

waits time proportional to half the average RTT from u to d, starting from the

time step (3) completes, to ensure all in-transit packets are considered at d.

5. Signal an alarm if the estimated loss rate exceeds the input threshold.

6. Delete tagging and counting flow table entries created in steps (1) and

(2).

Consider the example in Figure 4.1 and assume Pcount monitors packet loss of

both multicast flows traversing (g, l); fb for primary tree Tb (blue) and fc for primary

tree Tc (green). First, Pcount selects a unique dl vlan value (the identifier) and

installs two flow table entries at l, one for fb and the other fc. These flow table entries

match packets based on the packet’s multicast address and dl vlan value. Next, a

flow table entry for fb and fc is installed upstream at g that writes the dl vlan

identifier in each packet sent along the outgoing link to l. After w seconds, tagging

is turned off at g and the flow statistics are read from g and l. Two individual flow

5We are unable to issue an aggregate query at u because OpenFlow does not support query
predicates specified over flow table entry actions. In our case, it would be convenient if we could to
specify an aggregate query of the form “return statistics of all flow table entries that write identifier
x in the dl vlan field”.
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statistic queries are sent to g, while a single aggregate query at l gathers packet

counts of the two flow table entries installed in the first step. Lastly, the packet

counts are used to compute the loss rate and, if necessary, Pcount raises an alarm

if the measured loss rate during window w exceeds the given threshold. If not, a new

Pcount session is initiated, repeating the above steps.

Tagging ensures that for monitored flow Pcount accounts for all packets dropped

during w. However, in some cases Pcount may be configured to monitor a subset

of flows traversing a monitored link because doing so can reduce the time required

to compute packet loss, since k + 1 statistic queries are required when monitoring k

flows. For example, in Figure 4.1 Pcount may only monitor fb’s packet loss along

(g, l). As a result, only a single read statistics request needs to be sent to g rather

than two statistic queries if fc were also monitored. However, monitoring a subset of

flows means that Pcount does not account for packet loss of unmonitored flows. In

Section 4.5.1 we use emulations to explore how adjusting the number of monitored

flows affects the speed and accuracy of packet loss estimates.

Although Pcount sends instructions simultaneously to start tagging each M flow

(step 2) and, likewise, sends all k messages in parallel to stop tagging (step 3), in

practice these actions are unlikely to be executed at the same time. The implication

is that across each fi ∈M the start and stop time of w is not perfectly synchronous.

This does not affect the accuracy of Pcount packet loss measurements, provided

that all tagged packets that will eventually reach the downstream node do so before

that node is queried.

Pcount Extensions. No changes are required for Pcount to monitor packet loss

between non-adjacent switches. Consider the case where Pcount measures packet

loss between two non-adjacent switches a and b. The Pcount actions at a and b

are the same as described above, while the forwarding at any switches along a path
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Figure 4.2. Example topology used to explain how Pcount can be used to monitor
packet loss between multiple non-adjacent switches.

between a to b disregards (as they already do) any tag applied at a or b. In this

scenario, Pcount measures packet loss of a path rather than that of a single link.

Pcount can also be used to monitor packet loss between multiple (possibly)

non-adjacent switches. Consider the example topology in Figure 4.2, where Pcount

measures packet loss between u and downstream nodes d1 and d2. For simplicity, we

assume a single flow multicasts packets from u to d1 and d2. Pcount installs a rule

to tag packets at u, leaves v is unchanged, and installs a rule at d1 and d2 to count

packets tagged at u. Then, Pcount (as its only modification) queries u, d1, and d2

for their packet counts.

Notice that by comparing packet counts between u, d1, and d2, packet loss of links

(u, v), (v, d1), and (v, d2) can all be estimated using network tomography techniques

[15]. For example, if u and d1 have the same packet counts but d2 counts fewer packets

than u, we can infer packet loss incurs along (v, d2). This approach provides the same

coverage (scope of packet loss measurements) as an alternative approach that creates

three separate Pcount sessions between (u, v), (v, d1), and (v, d2), but does do so

using fewer measurement points. We later find in our emulations (Section 4.5.1) that

monitoring a large number of flows using a single link incurs high processing time

at network switches, suggesting that the savings projected here of running a single

Pcount session between multiple switches can provide significant savings.
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4.3.2 Computing Backup Trees

Appleseed pre-computes backup trees to install after Pcount detects a link

failure. Here we present a new problem, Multicast Recycling, and an approx-

imate solution to Multicast Recycling, called Bunchy, that aim to facilitate

fast recovery by computing backup trees that maximize the number of edges common

between each backup tree and its primary tree. This reuse of primary tree edges

speeds recovery from link failures because, in SDN, this reduces the number of new

flow table entries that need to be installed in network routers in response to a link

failure.

Appleseed uses Bunchy as a part of system initialization, where the set of

backup trees are computed for each network link, l; Appleseed computes a single

backup tree for each primary tree using l. Additionally, Bunchy is used after a set of

backup trees, T̂ l, are installed in response to a link failure. For each newly installed

tree T̂ li ∈ T̂ l, Appleseed computes a backup tree for each link in T̂ li .

4.3.2.1 Multicast Recycling Problem

The goal of the Multicast Recycling problem is to compute backup trees that

maximize reuse of primary tree edges. Recycling primary tree edges allows the SDN

controller, when generating the forwarding rules for multicasting packets using the

backup tree, to use primary tree rules already installed in the network rather than

install new ones. This speeds recovery in cases where backup trees are installed after

a link failure is detected and reduces the number of flow table entries pre-installed at

switches (control state) when backup trees are installed before a link failure occurs.

Reducing control state is especially important with OpenFlow because OpenFlow

switches can only store a limited number of flow table entries (see Section 4.2.4). 6

6Following from our assumption that a single link fails at-a-time, Multicast Recycling as-
sumes that all other links besides the failed one, l, satisfy packet loss requirements.
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For the primary tree T li = (V l
i , E

l
i, r, S) and its backup T̂ li = (V̂ l

i , Ê
l
i, r, S), we

define a binary variable clv for all v ∈ V̂ l
i . If v has exactly the same predecessors

(outgoing edges) in T li and T̂ li , then clv takes value 0. Otherwise, clv = 1. For the T li ,T̂
l
i

pair define:

C l
i =

∑
∀v∈V̂ li

clv (4.1)

For our purposes, C l
i is the number of new rules (i.e., non-recycled primary tree

rules) needed to install T̂ li . Note that the primary tree rules not recycled by T̂ li

should be deleted after l fails and T̂ li is installed, especially considering the limited

size of OpenFlow switch flow tables (Section 4.2.4). As we describe in Section 4.3.4,

these rules can be garbage collected in the background because stale primary tree

forwarding rules do not affect how packets are (correctly) forwarded by T̂ li . For this

reason, Multicast Recycling aims to minimize the number of new rules needed

to install a backup tree, rather than the number of primary tree rules that must be

garbage collected after a link failure.

Consider the example in Figure 4.1 where (g, l) fails. The green backup tree, T̂b,

shown in Figure 4.1(b), has Cb = 2 because a new forwarding rule is required at b,

and f to account for the new outgoing links at each node. T̂c, in blue, has only one

link, (m, l) not in T̂c’s primary tree. As a result, Cc = 3.

Our Multicast Recycling problem definition below references a modified ver-

sion of the Steiner tree problem, called the Steiner-Arborescence problem [17].

As input, Steiner-Arborescence is given a directed graph G = (V,A), a root ver-

tex r, and a set of terminals, S. An arborescence is defined as a tree rooted at r that

has directed edges spanning S. Steiner-Arborescence aims to find a minimum

cost arborescence, called a Steiner arborescence or directed Steiner tree. We denote
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SAi(G) = (V,E, r, S) as the Steiner arborescence computed over directed graph, G,

rooted at r, and spanning S such that r, S ∈ Ti.

We formulate the Multicast Recycling problem as follows:

• Input: (G, T l, l, α) where G = (V,E) is a directed graph, T l = {T l1, T l2, . . . T lk}

where each T li ∈ T l is a primary tree that uses l, l ∈ E, and α ≥ 1.

• Output: A backup tree for each primary tree using l. This set of backup trees,

T̂ l = {T̂ l1, T̂ l2, . . . , T̂ lk}:

minimize
∑

1≤i≤k

C l
i

subject to w(T̂ li ) ≤ α · w(SAi(G
′)), ∀T̂ li ∈ T̂ l

(4.2)

where G′ = (V ′, E ′) such that E ′ = E − {l} and w(T̂ li ) is the sum of T̂ li ’s link

weights. 7

The objective function maximizes the reuse of primary tree edges, while α bounds

how large the backup tree can grow as consequence of minimizing C l
i . When applied

to our problem scenario this formulation reduces the number of installation rules by

reusing rules already installed in the network, under the constraint that the backup

tree does not become too large to meet the end-to-end latency requirements. By

defining G′ as a copy of G with the failed link removed from G, we are assuming that

all links in G besides l are operational. For our purposes, this amounts to assuming

that all non-l links have packet loss rates less than their threshold.

Notice that we have defined C l
i in Equation 4.1 on a per-backup tree basis where

for backup tree T̂ li , C
l
i is a relationship defined strictly between T̂ li and its primary tree

T li (there are no constraints specified across any other primary or backup tree). As

7We assume T̂ l
i , satisfies all per-packet delay and loss requirements if l /∈ T̂ l

i and w(T̂ l
i ) ≤

α · w(SAi(G′))
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a result, the globally optimal solution for Multicast Recycling (i.e., the optimal

set of backup trees for a single link) can be found by computing the optimal backup

for each primary tree in isolation and then taking the union of these solution We

shall revisit this important property when describing our approximation algorithm

for Multicast Recycling.

Theorem 4.1. Multicast Recycling is at least NP-hard.

Proof. The details of our proof can be found in Appendix C.1. This proof shows

that Multicast Recycling is NP-hard even when considering just a single backup

tree. The proof demonstrates that in some cases an optimal solution to Multicast

Recycling requires a solution to Steiner-Arborescence, a problem known to

be NP-hard. This proves Multicast Recycling is NP-hard when considering a

single backup tree and therefore the general Multicast Recycling problem for k

backup trees must at least be NP-hard.

4.3.2.2 Bunchy Approximation Algorithm

Bunchy is a simple approximation algorithm for Multicast Recycling that

manipulates link weights to encourage each backup tree to reuse primary tree edges.

For each link l, Bunchy separately computes a backup tree for each primary tree

using l and then returns the union of these computed trees.

Bunchy leverages the
√
s Steiner-Arborescence approximation, where s is

the number of terminal nodes, from Charikar et al. [17]. Their approximation algo-

rithm computes bunches, where a bunch is a subgraph formed by taking the shortest

path from the root to an intermediate vertex, i, and the union of shortest paths from i

to the terminal nodes. The algorithm produces the bunch with best density – density

is the average cost of connecting a terminal node with the root – as its approximation.

The lowest density bunch can easily be computed in polynomial time: a brute-force
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approach that tries all possible nodes as the intermediate vertex yields an O(ns2 log s)

time algorithm.

Given (G, T l, l, α), for each T li ∈ T l Bunchy uses the following two-step procedure

to compute T̂ li :

1. Make a copy of G called G′ = (V ′, E ′) and remove l from E ′. Set the link weight

of each e ∈ T li to 0 and the link weight of e /∈ T li to 1.

2. Run the Steiner-Arborescence approximation, using the brute-force ap-

proach described above, over G′ and set T̂ li to be the result. If T̂ li satisfies the

Equation 4.2 constraint, return T̂ li as the solution. Otherwise, return False.

Setting the primary tree link weights to 0 in Step (1) allows the Steiner-Arborescence

approximation algorithm to use any primary tree edge without penalty (i.e., adding

cost to the backup tree) and so encourages reusing primary tree edges. If Bunchy

returns False in Step (2) either α must be made larger or a new multicast tree should

be computed from scratch that satisfies the tree-size constraint.

In Figure 4.1, Bunchy uses f as the the intermediate node for T̂b, yielding density

of 2 (the cost of connecting terminals p,q,r, and s to the root is 2). Bunchy selects f

as the intermediate node by iterating over all nodes and remembering the node with

the smallest density. g or l could have been used as the intermediate node because

both, like f , have density of 2 (f is selected arbitrarily using a tiebreaker). The

bunch for T̂c is formed using m as the intermediate node with density 0.4: the cost

of connecting r and s to the root is 1 and t,u, and v connect with the root at 0 cost.

4.3.3 Installing Backup Trees

We are now ready to describe the last part of Appleseed, installing backup

trees. Installing a backup tree is a two-step process. First, the flow table entries

that forward packets along the backup tree are generated. Second, the controller sig-

nals the necessary switches to install the generated forwarding rules. Here we intro-

104



duce two such installation algorithms, Proactive and Reactive. Both algorithms

compute forwarding rules for a single backup tree at-a-time and so our description

of each algorithm (with some abuse of notation) refers to a generic primary tree,

T l = (V l, El, r, S), and its backup tree for l ∈ El, T̂ l = (V̂ l, Êl, r, S).

Reactive Algorithm. Reactive first determines which nodes require a new

forwarding rule. In cases where T̂ l and T l use exactly the same outgoing links of a

common node, u, we say T̂ l can “reuse” T l’s forwarding rule at u; since T l’s forwarding

rule is already installed at u, no new forwarding rule (for T̂ l) needs to be installed.

Forwarding rules are only required at any v ∈ V̂ l \ V l and at each v ∈ V l ∩ V̂ l with

different outgoing links in T̂ l and T l. We refer to this set of nodes as Bl.

Consider Tb and T̂b in the Figure 4.1 example. Because Tb and T̂b share the same

outgoing links at l and k, T̂b can reuse Tb’s flow table entry at each of these nodes,

whereas new forwarding rules are required at b and f .

Reactive then pre-computes a basic flow table entry for each b ∈ Bl. Like the

flow table entries Basic computes (see Section 4.2.5), a basic flow table entry, for a

multicast tree Ti and u ∈ Vi, matches packets using Ti’s multicast address and has

instructions to forward matching packets out the correct ports at u. Lastly, when l

fails, the Reactive signals each b ∈ Bl to install the pre-computed basic flow rule.

Proactive Algorithm. Proactive computes and installs backup tree flow table

entries before a primary tree link, l, fails. After l fails, Proactive signals the backup

tree root to install a forwarding rule that activates the backup tree. We use the term

“activate” to indicate that packets are multicasted using the backup tree rather than

the primary tree. Note that the Proactive algorithm can respond quickly to link

failures, as only a single new flow table entry needs to be installed at the backup tree

root.

Proactive cannot, without modifications, pre-install basic flow table entries at

all nodes because incorrect forwarding would result. Doing so at a node, d, common
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to the primary and backup tree, where the backup and primary tree have different

outgoing links, would either result in packets erroneously forwarded at d using the

backup tree before a link failure occurs or incorrectly forwarding packets using the

primary tree after the link failure. We say that d ∈ Dl, where Dl contains each node

with one or more outgoing links in T l and one or more outgoing links in T̂ l \ T l.

Revisiting T̂c from Figure 4.1 example, g,m ∈ Dl and so installing a forwarding rule

at these two switches before (g, l) fails would be problematic for the reasons just

described.

To circumvent this issue, Proactive assigns a unique backup tree id, denoted

bid, to each backup tree. For each d ∈ Dl, the flow table entry matches and forwards

packets using the bid value written in the dl src field. When the backup tree T̂ l is

activated, Proactive writes the bid in the dl src packet header field, indicating

that these packets should be disseminated by T̂ l rather than T l. In more detail,

Proactive preinstalls and activates T̂ l using the following steps, where we assume

T̂ l has bid=AA:

1. At each d ∈ Dl, Proactive pre-installs a flow table entry matching packets

using T̂ l’s multicast address, dl src = AA, and has wildcards for all other match

fields. Proactive preinstalls a basic flow table entry at each b ∈ Bl \Dl that

matches packets using T̂ l’s multicast address and has wildcards for all other

match fields (including dl src).

2. When it is detected that l fails, Proactive installs a rule at the T̂ l root node

that writes AA in the dl src header field of each T̂ l packet.

For T̂c in Figure 4.1, Proactive pre-installs a forwarding rule at g and m that

matches packets using T̂c’s bid, CC, and Tc’s multicast address. After (g, l) fails,

Proactive signals c to write CC in the dl src header field of each T̂c packet. As a
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result, packets at g are correctly forwarded to m and, similarity, m correctly forwards

packets to l, n, and t.

Comparing Proactive and Reactive. Since Proactive must signal only a

single node, as opposed to multiple nodes with Reactive, to install a backup tree,

Proactive is fast. However, Proactive’s speed comes at the cost of storing a

potentially large number of flow table entries at the switches, especially since Ap-

pleseed computes, for each primary tree, a backup tree for each primary tree link.

Reactive, on the other hand, only installs backup tree flow table entries after a link

failure is detected. These trade-offs are studied in Section 4.5 using emulations.

4.3.4 Garbage Collection

After a link fails, primary tree forwarding rules may become stale. Appleseed’s

garbage collection routine identifies and deletes these stale flow table entries. Because

garbage collection is not needed for correct data dissemination, garbage collection is

run when necessary to free switch flow table space.

Garbage collection is straightforward, but more involved than simply deleting all

flow table entries of each primary tree, T l, using l. Doing so would be problematic

because a backup tree may be reusing one of these flow table entries. To address

this, Appleseed maintains a dictionary, rule map. For each node, v, rule map

records each flow table entry installed at v and the multicast trees using the flow

table entry. When l fails, the garbage collection routine determines the set of stale

forwarding rules for each T li ∈ T l by consulting rule map. A stale rule exists at each

v ∈ Vi \ V̂ l
i (i.e., nodes unique to the primary tree) and each d ∈ Dl

i (nodes where the

backup tree diverges from the primary tree). Finally, each stale forwarding rule is

either explicitly removed (if using a hard-state signaling protocol [42]) or Appleseed

allows the forwarding rule to timeout (if using a soft-state signaling algorithm [19]).
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Figure 4.3. Example showing a subtree of two multicast trees, T1 and T2. The edges
used by each multicast tree are marked.

4.3.5 Optimized Multicast Implementation

As an optimization to the Basic multicast implementation, described in Section

4.2.4, we present the Merger algorithm. Given a set of directed trees, Merger

produces a near-minimum set of OpenFlow forwarding rules by consolidating flow

table entries at each node where multiple trees use the same set of out-links. Merger

reduces the control state (i.e., number of forwarding rules) necessary to multicast

packets and, when applied to installing backup trees, can yield faster recovery since

fewer control messages are needed to activate backup trees.

In the next section (4.3.5.1), we motivate the need for Merger by demonstrating

several inefficiencies in Basic. Next, Section 4.3.5.2 presents a simplified version of

Merger that considers only primary trees. Then, we extend Merger in Section

4.3.5.3 to account for backup trees. Section 4.3.5.4 concludes the section with a dis-

cussion of how Merger affects garbage collection and Pcount, along with informal

commentary on its optimality.

4.3.5.1 Motivation: Basic Algorithm Inefficiencies

The Basic multicast implementation creates a flow table entry at each node of

a multicast tree that matches incoming packets using the tree’s multicast address.

As a result, a switch, v, may have multiple flow table entries executing the same

forwarding actions. This occurs when multicast trees share the same outgoing links
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at v. 8 These inefficiencies are the motivation for developing the Merger algorithm,

which replaces the set of flow table entries Basic would create at v with a single flow

table entry. To do so, Merger writes a common identifier, or tag, in packet headers

at the node immediately upstream from v. Using this tag, Merger creates a single

rule at v to match and forward packets of all trees with the same outgoing links at v.

Consider the simple example shown in Figure 4.3 with two multicast trees T1 and

T2. The directed links used by each tree are marked. Basic creates a flow table entry

for T1 at a, c, d, e, and f and a flow table entry at b, c, d, e, and g for T2. Because

T1 and T2 both use the same outgoing links at c and d, only a single forwarding

rule is needed at each node. In the next two sections we describe how Merger

finds duplicate forwarding actions and creates forwarding rules shared by multiple

multicast trees.

4.3.5.2 Merger Algorithm for Primary Trees

Merger consolidates flow table entries at each node, v, where multiple primary

trees share the same outgoing links. Upstream from v, Merger writes an identifier,

or tag, in packet headers and uses this tag to match packets at v using a single rule

shared by each of these primary trees. The tag is removed downstream from v where

the trees diverge.

A tag is a globally unique Ethernet address that Merger writes in a packet

header’s dl dst field (i.e., the Ethernet destination address). When possible, Merger

flow table entries use tags to match and forward packets, meaning that packets are

matched solely on their dl dst value. When the same Ethernet address is applied to

the packets of more than one multicast tree, we refer to this as a group tag. A single

tag is an Ethernet address used by only one tree. We use the term tag to generically

8In cases where the tree can either be a primary tree or backup tree, we refer to the tree as a
multicast tree.
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u d

Figure 4.4. Subgraph used to describe Merger in Section 4.3.5.2.

refer to either a group or single tag. Note that, like Basic, Merger has each switch

adjacent to a downstream host, hj, overwrite the destination layer 2 (including the

dl dst field) and 3 fields in the packet forwarded to hj, setting these fields to hj’s

layer 2 and 3 addresses. This allows Merger to safely modify the dl dst field inside

the multicast tree for its tagging purposes, while ensuring successful forwarding of

packets to each multicast group host.

We are now ready to describe Merger in more detail. First, Merger marks the

edges used by each primary tree. Then, Merger executes a breadth first search of

each primary tree, Ti, starting at its root. For each link (u, d) ∈ Ti as shown in Figure

4.4, Merger determines the match pattern to create at d and the tagging actions to

apply at u using the following steps: 9

1. Finds the set of trees, S, using (u, d) that share the same outgoing links as Ti

at d.

2. If |S| ≥ 1, Merger creates an action to write a group tag at u. For each

Tj ∈ S ∪ {Ti}, Merger finds the rule at u used to forward Tj and appends

an action to write a group tag to the rule’s action list. Then, a single rule is

created at d that matches packets using this group tag and has an initial action

list forwarding packets out the appropriate ports.

9Because Ti is a tree, (u, d) must be its only incoming link to d. Therefore, we can determine
Ti’s locally optimal tagging rule at d by only considering u and d.
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3. If S = ∅, Merger looks upstream at u to determine whether to use a single

tag or Ti’s multicast destination address to match Ti’s packets at d. When Ti

is matched using either a single tag or its multicast destination address at u,

Merger creates a rule at d to match packets using a single tag and writes this

single tag at u. Otherwise, Merger creates a rule at d matching packets using

Ti’s multicast destination address (no action is needed at u).

In step (3), we aim to use single tags to match packets because they allow any

backup tree to reuse Ti’s rule at d by simply writing this tag at u. Whereas, if Ti’s

multicast address is used to match packets at d, only Ti’s backup trees can reuse this

forwarding rule (since Ti’s multicast address is unique to its multicast group). We

comment further on this design decision in the next section.

In the Figure 4.3 example, Merger creates an action at a and b to write a group

tag in the packet headers of all packets traversing (a, c) and (b, c). Then, at c and d,

Merger creates a single rule to match and forward packets based solely on this tag.

With regard to the breadth-first search (BFS) described earlier, Merger executes

the following steps in its breadth-first search (BFS) of T1 at nodes c, d, and e. At

c, S = {T2} so Merger finds T1’s rule at a and includes an action to write a group

tag, 12, in all packets sent out a’s port to c. Then, Merger creates a flow table

entry at c that matches packets with dl dst = 12 and forwards packets out the port

to d. The same set of actions occur when the BFS reaches d. Merger creates a

forwarding rule at e that matches packets using T1’s multicast address and forwards

these packets to f .

4.3.5.3 Merger Algorithm for Backup Trees

Having discussed Merger for the primary tree case, we are now ready to extend

Merger to generate merged forwarding rules for backup trees. Merger aims to

reuse forwarding rules of primary trees because these rules are already installed in
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the network, allowing the installation algorithm (e.g., Proactive or Reactive) to

avoid installation of redundant forwarding rules. In cases where primary tree rules

cannot be reused, Merger consolidates flow table entries with other backup trees

that have common forwarding behavior.

For a set of backup trees, T̂ l, Merger generates backup-tree forwarding rules as

follows. Merger executes two rounds of BFS, traversing all T̂ li ∈ T̂ l in each round.

In the first round, for each T̂ li , Merger finds each node where T̂ li has the same

outgoing links as a primary tree. If so, T̂ li reuses the primary tree flow table entry

at this node, v: Merger writes the primary tree tag at v’s parent node allowing T̂ li

packets to be forwarded using the primary tree rule, and makes no changes at v.

In the second round of BFSs, Merger consolidates flow table entries among the

other backup trees for l at nodes where primary tree tag reuse was not possible. To

do so, the algorithm from Section 4.3.5.2 is executed but compares T̂ li ’s outgoing links

with the outgoing links of each T̂ lj 6= T̂ li at nodes where T̂ li and T̂ lj were unable to

reuse primary tree tags.

When Merger is applied to Proactive and Reactive (referred to as Proac-

tive+Merger and Reactive+Merger) the tag becomes the sole match crite-

ria used by its flow table entry, with one exception. This occurs with Proac-

tive+Merger when a bid is required to distinguish between a backup and primary

tree, as described in Section 4.3.3. In those cases, the bid and dl dst fields are both

used as matching criteria.

4.3.5.4 Merger Discussion

We conclude our presentation of Merger by commenting on some of the proper-

ties of the algorithm along with the implications of using Merger on other important

aspects of Appleseed.
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Benefits. In comparison with Basic, Merger reduces the number of forwarding

rules required to install each multicast tree. As a result, Merger is more space effi-

cient and can yield faster backup tree installation; in Section 4.5.2 we quantitatively

evaluate these gains. Recall that for each primary tree, Appleseed pre-computes a

backup tree for each of its links. In this scenario Proactive+Merger can signifi-

cantly reduce the number of pre-installed rules. These savings are especially impor-

tant because, as noted in Section 4.2.4, OpenFlow switches can only support a limited

number of flow table entries. With Reactive, Merger can yield faster recovery

because fewer backup tree flow table entries translates into fewer control messages to

activate backup trees.

Time Complexity. Like Basic, Merger’s complexity is bounded by the breadth-

first search (BFS) executed for each of the m multicast trees given as input. At each

node, v, visited in the BFS, Merger compares the out-links used by all other multi-

cast trees that use v. Since there can be at most m such trees, this takes O(m) time.

If we let n be the number of graph nodes, each BFS takes O(mn) time 10 and the

total time complexity of Merger is O(m2n).

Garbage Collection. Appleseed’s garbage collection algorithm remains un-

changed from the description in Section 4.3.4. Recall that rule map is a dictionary

that maps the flow table entry installed at each node to the set of backup and primary

trees using the flow table entry. The only difference between Basic and Merger

garbage collection is the number of stale rules it identifies (likely fewer stale rules

with Merger) not how the stale rules are found. As with Basic, Merger garbage

collection can find any stale forwarding rules by consulting rule map.

10BFS has O(|V | + |E|) complexity. In our case, each BFS is over a directed tree, meaning the
number of edges traversed in each BFS is O(n−1). Therefore, we can simplify BFS time complexity
to O(n).

113



Do No Harm. We say that Merger is an algorithm that does “no harm” 11

because (a) Merger never creates more flow table entries than Basic and (b) when

generating rules for backup trees, Merger makes no modifications to flow table

entries of primary trees that do not use the failed link. We informally demonstrate

each of these properties below.

Regarding (a), consider an arbitrary multicast tree (primary of backup tree), Ti.

Merger creates at most one flow table entry at any v ∈ Ti. The flow table entry,

ei, either matches and forwards packets using a group tag, a single tag, or using the

Ti’s multicast address. Any ei tagging actions are simply appended to ei’s action list

(when Merger visits Ti’s children of v), requiring the creation of no additional flow

table entries. We conclude that in the worst case, Merger creates the same number

of flow table entries as Basic.

Now consider property (b) where we let Tj refer to a primary tree not using l. By

construction, Merger only creates flow table entries and new actions for the backup

trees of link l (i.e., T̂ l). These flow table entries have different match criteria than

Tj’s. If a backup tree reuses Tj’s flow table entry at v, no changes are made to this

flow table entry. Lastly, Appleseed’s garbage collection algorithm ensures that no

Tj flow table entry is removed.

Optimality. Because Merger makes tagging decisions locally at each node, v,

based only on the multicast trees using v’s outgoing links and the tags used at v’s

parent nodes, Merger does not always yield the minimum set of forwarding rules.

Consider again Figure 4.3 but replace T1 with S1 and T2 with S2, where S1 and S2

are sets of multicast trees of size k. In this scenario, Merger writes the same group

tag, denoted 12, at a and b for each tree in S1 and S2. Then, at c and d Merger

installs a single rule that matches and forwards using the 12 tag. Lastly, for each

11This is similar in spirit to the Hippocratic Oath taken by physicians that they will “never do
harm [to patients]”
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Ti ∈ S1 ∪ S2, a rule is created at e that matches packets using each Ti’s multicast

address.

A better solution in this example would be to use a different group tag for S1 and

S2. In this case, let 11 be the group tag applied to each tree in S1 at a and 22 the

tag written in the packet header of each tree in S2. These group tags can be used

to create two separate rules at c, d, and e to forward S1 packets based on 11 and S2

packets using 22. By using different tags for S1 and S2, we avoid having to create

2k separate rules for each tree in S1 ∪ S2 at e, clearly a better solution that the one

produced by Merger.

This example suggests that an algorithm, A, that finds the minimum number of

forwarding rules for a set of multicast trees T must consider, for S ⊆ T where each

multicast tree Si ∈ S uses link (u, d), how each of S’s subsets share links downstream

from d. Since this requires computing the power set of S and there are an exponential

number of ways S’s subsets can use common links downstream from d, we conjecture

that no polynomial time A exists.

Implications for Pcount. Pcount requires no changes to monitor the packet

loss of flows forwarded using Merger rules. However, we make the case here that

Merger can improve the accuracy of Pcount loss rate estimates and reduce the

time to compute these estimates. In Section 4.5.1, we will find that our emulations

bear out the qualitative argument made here.

Recall from Section 4.3.1 that with Pcount the number of monitored flows, k,

can be tuned. Determining an appropriate value for k involves a trade-off between the

accuracy of packet loss estimates and time: larger k yield more accurate packet loss

estimates but at the cost of slower detection times (the time between when packet loss

occurs and when it is detected). Detection times of a monitored link, (u, d), increase

with larger k for two reasons. First, for each of the k flows, Pcount makes a copy

of the flow’s forwarding rule at u and d in order tag and count packets. Secondly,
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Pcount sends k queries to u to read the state of each flow table entry generated by

Pcount.

With Merger, the same flow table entry, ei, can be used by r multiple flows. In

these cases, Pcount only needs to explicitly monitor one of these flows to measure

the packet loss of all r flows. That is, Pcount can monitor the loss of all r flows at

the cost of monitoring a single flow: the one copy of ei Pcount makes at u and d

ensures that packets of any of these r flows are tagged and counted and thus only a

single statistic query is needed to retrieve ei’s packet count.

Consider the example in Figure 4.1(a) and suppose that Pcount monitors link

(g, l). Two multicast flows – fb for primary tree Tb and fc for primary tree Tc –

traverse (g, l). Basic creates a separate forwarding rule for fb and fc at g while

Merger generates a single forwarding rule at g used by both fb and fc. As a result,

with Merger, Pcount can track the packet loss of fb and fc by querying just the

single shared Merger forwarding rule at g (rather than interact with two separate

Basic forwarding rules). These savings are quantified via emulation in Section 4.5.1.

4.4 Related Work

Related work divides into the following categories: smart grid communication

networks (Section 4.4.1), algorithms for detecting packet loss (Section 4.4.2), and

link failure recovery algorithms (Section 4.4.3).

4.4.1 Smart Grid Communication Networks

The Gridstat project, started in 1999, was one of the first research projects to

consider smart grid communication abstractions.12 Our work has benefited from

their detailed requirements specification [8]. Gridstat proposes a publish-subscribe

12http://gridstat.net/
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architecture for PMU data dissemination. By design, subscription criteria are simple

in order to ensure fast forwarding of PMU data.

Gridstat is separated into a data plane and a management plane. The management

plane keeps track of subscriptions, monitors the quality of service provided by the data

plane, and computes paths from subscribers to publishers. To increase reliability, each

Gridstat publisher sends data over multiple paths to each subscriber. Each of these

paths is a part of a different (edge-disjoint) multicast tree. Meanwhile, the data plane

simply forwards data according to the paths and subscription criteria maintained by

the management plane.

In North America, all PMU deployments are overseen by the North American

SynchroPhasor Initiative (NASPI) [13]. NASPI has proposed and started (as of De-

cember 2012) to build the communication network used to deliver PMU data, called

NASPInet. The interested reader can consult [13] for more details.

Although Gridstat [8] and NASPI [13] have similarities with Appleseed, these

projects have a different focus than ours. Gridstat and NASPI are overlay networks

built on top of existing network protocols (e.g., IP, MPLS), while the emphasis of

our work is in making network protocols more robust to handle PMU application

requirements.

Hopkinson et al [39] propose a Smart Grid communication architecture that han-

dles heterogeneous traffic: traffic with strict timing requirements (e.g., protection

systems), periodic traffic with greater tolerance for delay, and aperiodic traffic. They

advocate a multi-tiered data dissemination that uses a technology such as MPLS to

make hard bandwidth reservations for critical applications, the use of Gridstat to

handle predictable traffic with less strict delivery requirements, and finally the use of

Astrolab (which uses a gossip protocol) to manage aperiodic traffic sent over the re-

maining available bandwidth. They advocate hard bandwidth reservations – modeled

as a multi-commodity flow problem – for critical Smart Grid applications.

117



4.4.2 Detecting Packet Loss

Most previous work for detecting packet loss [5, 16] is based on end-to-end mea-

surements. These approaches require too many measurements (and therefore too

much time between when the loss occurs and when it is detected) to accurately mea-

sure packet loss in our problem setting. For example, the loss model proposed by

Càceres et al. [16] requires approximately 2000 end-to-end probe messages for packet

loss estimates to converge on the true underlying packet loss rate. In our problem,

where packet loss must be detected at small time scales, these 2000 probe messages

would either need to be sent at a high rate to detect packet loss at small time scales

(e.g., to detect packet loss at 1 second intervals, probe messages would need to be

sent at a rate 30 times higher than PMU sending rates of 60 msgs/sec) 13 or require

a prohibitively large window of time if probes were sent at a rate proportional to

PMU measurement rates (e.g., over 30 seconds is required to send 2000 probes at

a rate of 60 msgs/sec). Pcount provides faster and more accurate loss estimates

of individual links than these approaches based on end-to-end measurements since it

directly measures actual traffic inside the network.

Friedl et al. [30] propose a passive measurement algorithm that directly measures

actual network traffic to determine application-level packet loss rates. Unfortunately,

their approach can only measure packet loss after a flow is expired. Since PMU

application flows are long lasting (running continuously for days, weeks, and even

years), this makes their algorithm unsuitable for our purposes. Pcount has no such

restriction that packet loss can only be measured over expired flows.

A standard Internet-based approach to passive monitoring of packet loss is to

query the native Management Information Base (MIB) counters stored at each router

using the Simple Network Management Protocol (SNMP) [10]. This approach is well-

13The would likely lead to inaccurate results [10].
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suited for course-grained packet loss measurements but not for the fine-grained packet

loss detection required by critical PMU applications. Specifically, this approach can-

not provide synchronized reads of packet counts across routers/switches, resulting

inaccuracies too large for the applications we target.

Existing network protocols, such as BGP, send periodic keep-alive messages be-

tween routers to ensure network links are operational. Detecting down links is a

different (but complementary) problem than the one we consider, estimating packet

loss rates over small time scales.

Pcount’s approach for ensuring consistent reads of packet counters bears strong

resemblance to the idea of per-packet consistency introduced by Reitblatt et al. [68].

Per-packet consistency ensures that when a network of switches changes from an old

policy to a new one, that each packet is guaranteed to be handled exclusively by

one policy, rather than some combination of the two policies. In our case, we use

per-packet consistency to ensure that when Pcount reads packet counters between

an upstream node, u, and downstream node, d, that exactly the same set of packets

are considered (excluding, of course, packets that are dropped at u or dropped along

the path from u to d.)

4.4.3 Recovery from Link Failures

MPLS is commonly used to extend IP routing with traffic engineering capabilities

and fast failure recovery [69]. MPLS pre-computes backup paths for link and router

(node) failures and stores these paths at the node immediately upstream from the

failed component. This allows for fast, localized recovery: the node detecting a link

or node failure immediately reroutes packets along its pre-computed backup path.

Unfortunately, MPLS cannot be directly applied to our multicast problem scenario

because MPLS addresses unicast communication (a backup unicast path applied to a

multicast tree may not result in a valid tree). However, Proactive is in-part inspired
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by MPLS fast reroute’s approach of storing pre-computed backup paths inside the

network.

Multicast Recycling uses different optimization criteria to compute backup

trees than prior work [20, 27, 46, 51, 52, 56, 59, 67, 76]. Past approaches use lo-

cal/myopic optimization criteria (i.e., constraints specified over a single multicast

tree), while we consider global (network-wide) criteria (i.e., constraints specified

across multiple multicast trees). 14 In addition, none of these approaches seek to

reuse already installed forwarding rules or minimize control signaling, as Multicast

Recycling does. Instead, backup paths or trees are computed with one of the follow-

ing objective functions: maximize node (link) disjointedness with the primary path

[20, 27, 56, 59], minimize bandwidth used [76], minimize backup bandwidth reserva-

tions [46, 51, 52], minimize the number of group members that become disconnected

after a link failure [67], or minimize path length [73].

Because these backup paths/trees are computed using distributed algorithms, the

mechanisms to install these backup trees must navigate an inherent trade-off between

high overhead (e.g., message complexity, storing large number of backup paths at

routers) and fast recovery (i.e., the time between when the failure is detected and

when the multicast tree is repaired should be small) [20]. Algorithms that compute

and install backup paths on-demand (after a component failure is detected) scale well

since forwarding state for backup paths is only installed after a failure is detected.

However, on-demand solutions can be have slow convergence time.

Algorithms that pre-compute and pre-install backup path/trees are fast but scale

poorly as significant forwarding state must be stored and maintained at routers.

Scalability is particularly challenging because previous work [20, 27, 46, 51, 52, 56,

14Li et al. [52] is an exception; they compute backup paths that aim to minimize the total
bandwidth reserved by all backup paths.
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59, 67, 76] is tailored to support Internet-based applications that typically have a

large number of short-lived multicast groups and dynamic group membership.

Our algorithms for installing backup trees avoid the scalability issues addressed by

prior work [20, 27, 59]. SDN allows backup trees to be pre-computed offline and stored

(in the case of Reactive) at the controller, thus introducing no extra forwarding

state at the switches. In the case of Proactive, where backup trees are pre-installed

in the network, managing extra forwarding state is tractable because the smart grid is

many orders of magnitude smaller than the Internet and smart grid multicast group

membership is mostly static [8] (for example, a utility company subscribing to a PMU

data stream are likely to always want to receive updates from this PMU). As a result,

the volume of pre-installed state is manageable and requires infrequent updates.

In the context of OpenFlow, Kotani et al. [47] propose an approach for fast

switching between IP multicast trees, where each multicast group has two multicast

trees, a primary tree and a backup tree. Each tree is assigned a unique tree ID and

both trees are installed in the network, but only the primary tree is used during

normal operation. After a link failure, the root node is signaled to write the backup

tree ID in each packet header to force packets to be forwarded using the backup tree.

Proactive uses a similar backup tree ID to quickly activate a pre-installed backup

tree. However, Proactive takes advantage of common forwarding state between a

backup tree and its primary tree to reduce the amount of pre-installed state, while

Kotani et al. [47] wastefully pre-installs forwarding rules at each switch in the backup

tree.

4.5 Evaluation

We implement each algorithm from Section 4.3 in the POX OpenFlow controller

[57] and run emulations using the Mininet 2.0.0 virtualization environment [50]. Em-

ulations run on a Linux machine with four 2.33GHz Intel(R) Xeon(R) CPUs and
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15GB of RAM. Mininet is configured to run inside Oracle’s VirtualBox 15 virtual ma-

chine and is allocated 4GB RAM and a single CPU. All generated virtual networks

use Mininet’s default software switch, Open vSwitch 16. The fidelity of Mininet em-

ulations are discussed in [35, 38, 50, 70]. Unless otherwise noted, the Appleseed

controller algorithm runs inside the VirtualBox VM.

4.5.1 Link Failure Detection Emulations

We run two sets of Mininet-based emulations to evaluate Pcount. First, we mea-

sure the accuracy of Pcount loss probability estimates and quantify how accuracy

improves as more flows are monitored. Then, we consider how controller and switch

processing time increases as Pcount monitors more flows.

h1

h2
u d

s1

smhm

...

s2
...

Figure 4.5. Dumbbell topology used in the Pcount evaluation.

Accuracy of Loss Probability Estimates. For the dumbbell topology shown in

Figure 4.5, we use Pcount to measure the packet loss over link (u, d). We generate

m multicast groups where each h1, h2, ..., hm multicasts packets to terminal nodes

s1, s2, ..., sm at a constant rate of 60 packets per second, the standard sampling rate

of PMUs. Basic is used to implement multicast, resulting in m separate flow table

entries at u and d. At the end of the section we comment on how our results apply

15https://www.virtualbox.org/

16http://openvswitch.org/
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(c) Processing time, with 95% confidence in-
tervals, as a function of number of monitored
flows.

Figure 4.6. Pcount results monitoring a single link, (u, d), from Figure 4.5.

to Merger. We let m = {10, 20, 30, 40, 50} 17 and, using Mininet, drop packet

traversing (u, d) using a Bernoulli process with loss probability p = {.01, .05, .10}.

In this emulation, we quantify how the accuracy of Pcount loss estimates –

measured relative to the true underlying loss rate, p – as we modify the number

of flows Pcount monitors. Recall from Section 4.3.1 that Pcount accounts for

17Emulations run prohibitively slow for m > 50 due to CPU overload.
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every dropped packet of a flow it monitors, meaning that the only error in Pcount

estimates results from unmonitored flows. Because the same trends hold across all m

and p values, we describe here only a single representative case, where m = 10 and

p = .05.

Recall from Section 4.3.1 that Pcount can measure packet loss over more gen-

eral structures than a single physical link. Notably, in Figure 4.5, u and d may be

connected with a multi-hop path containing several (non-OpenFlow) switches and

routers; Pcount requires only that u and d are OpenFlow-enabled switches. We

encourage the reader to interpret the results in this section in this broader context.

Figure 4.6(a) compares the 95% confidence intervals of Pcount’s link loss prob-

ability estimates – centered around the true loss probability (.05) for consistency

– as a function of window size w = {0.5, 1, ..., 5} seconds. Pcount is config-

ured such that each measurement window starts only after the packet loss from the

previous window has been computed. Results are shown where Pcount monitors

k = {10%, 40%, 70%, 100%} of (u, d) flows (each monitored flow is selected randomly).

The confidence intervals for each w, k pair are computed over 100 emulation runs.

Pcount loss rate estimates are extremely accurate: the 95% confidence interval,

across all w and k, lies within 15% of the true loss probability. This is the case even

when Pcount’s estimate is based on only 30 packets (occurs when k = 10% and

w = 0.5). Figure 4.6(b), which plots link loss probability estimates as a function

of the number of packets considered during each emulation run, shows that after

Pcount considers 75 packets, 80% of the emulations are within 5% of the true loss

probability. As expected, Pcount accuracy increases with larger k. For each k, the

standard deviation (of Pcount loss probability estimates) decreases as a function of

the square root of w.

Processing Time. Next, we quantify how Pcount processing time increases

when Pcount monitors additional flows. We measure packet loss over (u, d) from
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Figure 4.5. Processing time is measured as the time between when Pcount sends

its first statistic query and when Pcount computes its packet loss estimate. Recall

from Section 4.3.1 that if Pcount monitors packet loss of k flows traversing (u, d),

Pcount sends k statistic queries to u and one aggregate query to d.

Pcount is configured such that each measurement window starts only after the

packet loss from the previous window has been computed. Additionally, Pcount

window size is fixed to 2 seconds. Because Mininet multiplexes CPU resources using

the default Linux scheduler, we found that running the constant rate PMU flows

introduces unwanted CPU contention, adding noise to our results. For this reason,

we create only a single multicast group (with source h1 and a single sink s1) but do

not actually send any packets between the two hosts. Thus, we measure the time to

send the statistic queries from the controller, process each query at the switch, and

receive the query results at the controller. To further reduce CPU contention, we run

Pcount as a remote control application, outside of the VirtualBox VM.

As computed, processing time accounts for (a) the time at the controller to gener-

ate k+1 statistic queries, (b) the transmission delay associated with sending the k+1

statistic queries from the controller to u and d, (c) the network delay in sending each

statistic query from the controller to switch, (d) total time to process the statistic

query at u and d, (e) the delay in sending the k + 1 query results from switch to

controller, and (f) the latency in receiving and recording statistic query replies at

the controller. We subtract (c) and (e), the network delay between controller and

switches, from the measured processing times. Because the combined delay of (a),

(b), and (f) accounts for less than 1% of the overall processing time, part (d), the

time to process statistic queries at u and d, determines the overall processing times.
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Figure 4.6(c) shows the processing time, computed as described in the previous

paragraph, as a function of the number of flows Pcount monitors, k. 18 Each data

point is the mean computed over 50 emulation runs. To measure the effect of flow

table size on query processing time, we install r additional flow table entries at u and

d.

We find that processing time increases roughly quadratically with k and there is

a significant gap in processing time between each r (where r denotes the number of

flow table entries installed at u and d that are not part of the Pcount tagging and

counting). In practice, we expect non-empty flow tables so the r = 0 curve is overly

optimistic. Therefore, to reasonably achieve sub-second processing time, our results

show that fewer than 75 flows can be monitored.

Because the switches are completely idle during each emulation run, except for

the time to process the read state queries, and the software switches used have con-

siderably more powerful CPUs relative to hardware switches [21, 70], these results

likely underestimate processing time. Nonetheless, these results underscore the high

cost in monitoring and (in particular) querying a large number of flows.

Summary. The slow processing times associated with monitoring large numbers

of flows and the highly accurate loss estimates for even small k strongly suggest that

k should be small. Because the software switch skews the processing time results

in favor of Pcount, we expect that even a stronger case for using small k can be

made using hardware switches. We also note that the (Bernoulli) loss process favors

Pcount because loss rates are uniform across all flows traversing (u, d) and loss

events are i.i.d..

18Fake multicast groups and corresponding flow table entries are generated and installed at u and
d in cases where Pcount monitors more than the 1 multicast group.
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4.5.2 Backup Tree Installation Emulations

In this section, we emulate the failure of a single link and then measure recovery

time, control plane signaling, and garbage collection overhead for Proactive and

Reactive both with and without the Merger optimization. We aim to answer the

following questions with these emulations:

• How effective is Bunchy in reusing primary tree edges and in providing oppor-

tunities for backup-tree installation algorithms to reuse primary-tree forwarding

rules?

• How much faster does Proactive recover from link failure than Reactive?

• How many fewer control messages are needed to install backup trees under

Proactive versus Reactive?

• How much control state does Proactive pre-install?

• In terms of recovery time, control plane signaling, and garbage collection, how

much does Merger improve performance relative to Basic?

Setup. We use IEEE bus systems 14, 30, 57, and 118 19 and synthetic graphs

based on these IEEE bus systems to evaluate our algorithms. Each bus system con-

sists of buses – electric substations, power generation centers, or aggregation points of

electrical loads – and transmission lines connecting those buses. The IEEE bus sys-

tems are actual portions of the North American transmission network, where PMUs

are being deployed. Synthetic graphs are generated using a procedure described in

Section 3.5 of Chapter 3 that uses an IEEE bus system as a template to generate

graphs with the same degree distribution as the template bus system.

19http://www.ee.washington.edu/research/pstca/.
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We assume that the communication network mirrors the physical bus system

topology, that an OpenFlow switch is co-located at each bus, and that two unidi-

rectional communication links, one in each direction, connects these switches follow-

ing the same configuration as the bus system’s transmission lines. Additionally, we

connect each switch with a leaf host using a bidirectional communication link. In

this setup, the PMUs measure voltage and current phasors at the buses, then these

measurements are sent by the bus’s attached host to its first-hop switch, which then

multicasts the PMU measurements using the network of OpenFlow switches to a set

subscribing hosts (terminals).

For each bus system n, we generate synthetic topologies with n switches, n hosts,

and set all link weights to 1. Then, we randomly create m = {1, 2, ..., n
2
} multicast

groups, each with n/3 random terminal hosts, and use the Steiner-Arborescence

approximation proposed by Charikar et al. [17] to compute the m primary trees.

Bunchy, with α = 1.1, is then used to pre-compute, for each primary tree, a backup

tree for each primary tree link. Next, a random communication link, l, that is used

by at least one primary tree is chosen to fail (i.e., drop enough packets to trigger a

Pcount alert), triggering the installation of backup trees using either Reactive or

Proactive. For each m, we generate 35 different synthetic graphs and 3 random

sets of multicast groups, yielding a total of 105 emulation runs per m.

The results described in the remainder of this section are those from synthetic

topologies generated using IEEE bus system 57 as a template. The trends are con-

sistent across all other networks. Switches in the networks generated using IEEE bus

system 57 have an average diameter of 11.75 and average degree 3.74. For each of

the m multicast groups, we initially attempted to multicast packets at a constant

rate flow of 60 packets per second from the root host but this caused CPU emulator

overload. Instead, in each emulation run we only initiated the constant rate flows for

the primary trees using the failed link.
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4.5.2.1 Bunchy Results

The primary trees computed using the Steiner-Arborescence approximation

described in Section 4.3.2.2 have an average root-to-terminal hop count of 7.54, while

the Bunchy backup trees are slightly larger with an average end-to-end (E2E) length

of 8.4. Based on the E2E latency requirements reported in Section 4.2.1, the per-link

delay in our emulated topologies would need to be in the range of 0.6−1ms to satisfy

QoS requirements using these multicast trees. 20

On average, the Bunchy backup trees have stretch of 1.17. Stretch is defined

per multicast tree and is the ratio of path length from the root to terminal along

the multicast tree to the length of the shortest unicast path in the graph to that

terminal. For comparison with Bunchy results, we compute a second backup tree

for each primary tree, T li , by running the Steiner-Arborescence approximation

described in Section 4.3.2.2 over the original graph with l removed. We denote the

set backup trees for l computed using this algorithm as Bl.

TheBl backup trees are marginally smaller than the T̂ l backup trees: w(T̂ l)/w(Bl) =

1.08. Recall that T̂ l refers to a set of backup tree computed by Bunchy and w(T̂ l)

denotes, for all T̂ li ∈ T̂ l, the sum of T̂ li ’s link weights. This is expected because T̂ l

is computed using a heuristic to guide Bunchy to reuse primary tree edges, while

Bl trees are an approximation of the least cost directed tree (and so are computed

independently of the edges used by the primary tree).

However, T̂ l reuses more primary tree edges (T̂ l reuses 59% of primary tree edges

versus 41% under Bl). Most importantly, when comparing T̂ l and Bl with the primary

tree, T̂ l has more common nodes with the primary tree that have the same children

20The average root-to-terminal path lengths were largest for IEEE bus system 57 and the synthetic
graphs based on this bus system. The multicast trees computed for bus system 118 have an average
E2E path length approximately 1 hop fewer than those for bus system 57, even though IEEE bus
system 118 has more than twice as many nodes as bus system 57. This is mainly due to bus system
118’s higher density (than bus system 57).
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in T̂ l and the primary tree (55% of T̂ l nodes) than Bl (38% of Bl nodes). This last

point is important because this allows T̂ l to reuse more primary tree rules once T̂ l

is installed, thus requiring fewer rules to install after a failure. In summary, these

results suggest that Bunchy computes backup trees only slightly larger than an

approximation of the least cost tree with a significant gain in primary tree edge and

forwarding rule reuse.

4.5.2.2 Signaling Overhead

Next, we compare the number of control messages required to install backup

trees as function of the number of primary trees (m) installed in the network. Figure

4.7(a) shows the results for Reactive running in Basic and Merger mode, referred

to as Reactive+Basic and Reactive+Merger, respectively; a lower bound for

Reactive (Reactive+LB); and Proactive in Basic mode, denoted as Proac-

tive+Basic. Note that the results for Proactive are the same using Basic and

Merger because Proactive only requires that the root node of each backup tree

needs to be signaled to activate the backup. We shall later see how Basic and

Merger affect the number of forwarding rules Proactive pre-installs.

Reactive+LB summary. Reactive+LB computes the lower bound on the

number of new rules required to install backup trees T̂ l after l fails. Informally,

Reactive+LB finds the number of unique sets of outgoing links used by T̂ l at each

node, v, since at least this many rules are required to forward T̂ l packets at v. These

values are summed across all nodes used by T̂ l to find a lower bound on the total

number of control messages necessary to install backup trees T̂ l.

In more detail, Reactive+LB first marks each edge and node used by each

T̂ li ∈ T̂ l. Then, each marked node, v, is processed. The lower bound computation

finds the set of outports used by all primary trees installed in the network and the

outports used by T̂ l. Any T̂ li ∈ T̂ l with the same outports as a primary tree does not

130



require a new forwarding rule because T̂ li can reuse the primary tree forwarding rule.

Among the remaining backup trees, Reactive+LB finds the number of unique sets

of outports, b, used by these trees. We claim that b is equal to the minimum number

of forwarding rules that must be installed at v. Consider the case where fewer than

b rules are installed at v. This would imply that packets corresponding to at least

one T̂ lj ∈ T̂ l would not match with a rule that forwards packets out the complete set

of ports associated with T̂ lj . Therefore, it must be the case that least b new rules are

required at v.

Finally, Reactive+LB sums the b values computed at each v ∈ T̂ l and returns

this value as the lower bound on the number of new rules required to install T̂ l.

Note that we can reason about the number of forwarding rules required at each node

separately because the lower bound at each node, v, depends only the set of outgoing

links used by T̂ l at v.

Results. As expected, we find that Proactive requires less signaling overhead

than Reactive, including even Reactive+LB. Proactive activates the backup

trees by sending a single control message (to install a pre-computed forwarding rule)

to the root switch of each of backup tree using the failed link, whereas Reactive

must signal multiple switches to install each backup tree.

For Reactive, the gap between Basic and Merger increases as we introduce

more primary trees. When m = 1 there are no opportunities for Merger to con-

solidate forwarding rules so Merger and Basic require exactly the same number of

control messages to install the backup tree.

As m grows, three factors contribute to an increasing gap between Basic and

Merger. First, there are more primary tree forwarding rules (installed in the net-

work) that Merger can reuse. Our results show that for m ≥ 7, 75% of Merger

savings (versus Basic) are due to reusing primary tree forwarding rules. Second, as m

increases, more graph edges are used: when m = 28, 90% of all network links are used
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by at least one primary tree and is at least 80% for m ≥ 10. This benefits Merger

because it increases the likelihood that at any switch a backup tree shares the same

outgoing links as at least one primary tree. Finally, as m increases more primary trees

are affected by a link failure causing more backup trees to be installed for each link

failure. This provides additional opportunities for Merger to consolidate flow table

entries with other backup trees. However, this third factor is less significant than the

previous two, as only 25% of Merger savings are due to consolidating flows with

other backup trees.

With Reactive, Merger does well compared with LB. On average, Merger

requires 25% more control messages than LB, suggesting that Merger’s local opti-

mization does not miss many opportunities for consolidating flows.

4.5.2.3 Time to Install Backup Trees

Here we compare the time required by each of algorithms to install backup trees.

Specifically, we measure the time between when the link failure is detected at the

controller to when all pre-computed backup tree forwarding rules are installed at the

network switches. We refer to this time duration as tc. tc is a function of the controller

transmission delay (i.e., the time between when the first and last precomputed control

messages are sent from the controller), the controller to switch RTT, and the time to

install a forwarding rule at a switch.

We find the transmission delay to be negligible: on average, transmission delay is

less than 2.8% and 0.9% of the time to install a single flow table entry at a switch, for

Reactive+Basic and Reactive+Merger, respectively. Even if we conservatively

assume that the inter-arrival time of installation messages at each switch is equal to

the total transmission delay (i.e., the time to send all pre-computed forwarding rules

for T̂ l), it follows that each switch receives all control messages before completing the

installation of its first backup tree rule. Because rules are installed in parallel across
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switches, the time to install all backup tree rules occurs when the switch with the

most backup tree rules to install, sx, installs its last rule. If we assume sx has cx rules

to install, let td be the total transmission delay, and denote the average latency to

install a single rule at an OpenFlow switch as ti, then

tc =
1

2
RTT + td + cx(ti)

Because Mininet’s software switches lack performance fidelity in terms flow table

entry installation time [70], we determine ti values using measurement results from the

literature [29], rather than measure rule installation times in Mininet. Specifically, we

assume the mean installation time per rule is 7.12ms, as reported by Ferguson et al.

[29] using the Pronto 3290 OpenFlow switch running the Indigo 2012.09.07 firmware.

Figure 4.7(b) shows the estimated elapsed time to install all backup trees as a

function of m. We set RTT = 0 in this emulation. The trends for each algorithm

are a function of their cx values, the maximum number of rules any switch must

install, found at each m. With Proactive, cx is always 1. The difference in total

installation time between Reactive+Basic and Reactive+Merger is small in

absolute terms (at most 25ms) because the install times depend on the amount of

rule consolidation each algorithm is able to apply at a single switch, sx, rather than

the level of rule sharing possible at multiple switches (as we observed with signaling

overhead results). Nonetheless, the extra milliseconds saved using Merger can be

valuable to critical PMU applications.

4.5.2.4 Switch Flow Table Size

In our emulations in Section 4.5.2.2 we found that Proactive incurs less sig-

naling overhead than Reactive. Here we show that these savings come at a cost:

Proactive’s pre-installed forwarding rules can account for a significant portion of

limited OpenFlow switch capacity.
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Using the same setup as the other emulations in this section, we record the number

of pre-installed backup tree rules at each switch during each emulation run. Figure

4.7(c) shows the mean number of pre-installed rules per switch, r, as a function

of m. The confidence intervals are omitted because of high variance (during each

emulation run, individual counts range from 0 to 525.) Reactive is not included

because it does not pre-install forwarding rules. The number of pre-installed rules for

Proactive+LB is computed using the same algorithm described in Section 4.5.2.2

for Reactive+LB.

Similar to our Reactive signaling overhead findings, Merger yields up to 2.5

times better performance than Basic. Merger and LB savings increase with m

because more primary tree flows are reused and more backup tree rules are shared as

m grows. As a result, the number of pre-installed forwarding rules per backup tree

decreases linearly as m increases causing the rate at which r increases for Proac-

tive+Merger to slow.

In contrast, r increases linearly with m using Proactive+Basic. For each

backup tree, Basic is only able to avoid pre-installing a forwarding rule at a switch,

v, if the backup tree uses the same outports as its primary tree at v. Because this

condition depends only on the relationship between a backup tree and its primary

tree, the number of pre-installed rules per backup tree is constant for all m. Since

larger m implies more backup trees, r increases linearly with m.

Based on maximum flow table sizes of real OpenFlow switches (ranging from ap-

proximately 1500 to 1900 flow table entries [21, 29]), the number of pre-installed rules,

r, at most accounts for 19% and 6.7% of flow table capacity for Proactive+Basic

and Proactive+Merger, respectively. We find that the switch with the most

pre-installed forwarding rules (across all emulation runs) has at most has 525 pre-

installed forwarding rules (occurs with Proactive+Basic when m = 28). At most,

this accounts for 35% of the switch’s flow table capacity.
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4.5.2.5 Garbage Collection Overhead

After a link l fails, forwarding rules corresponding to primary trees using l may

become stale, as discussed in Section 4.3.4. These stale rules are deleted as part of

Appleseed garbage collection. In this section, we first we describe garbage collec-

tion results for Reactive and then for Proactive using the same emulation setup

described at the start of Section 4.5.2. Reactive+LB and Proactive+LB are

both computed based on the LB algorithm described in Section 4.5.2.2.

Reactive Garbage Collection. Figure 4.7(d) shows a modest change in the

number of stale rules between Basic, Merger, and LB. For each of these algo-

rithms, on average 55% of primary tree rules are reused by its backup tree (and are

therefore not garbage collected). 21 This implies that Reactive+Merger and Re-

active+LB are only able to reduce garbage collection over the remaining 45% of

primary tree rules. Among these remaining primary tree rules, Reactive+Merger

and Reactive+LB reduce garbage collection when any backup tree for l reuses a

primary tree rule. Our results show that this yields small savings in garbage collec-

tion.

Proactive Garbage Collection. Compared with Reactive, we find a signifi-

cant decrease in stale flows with Proactive because Proactive installs up to two

orders of magnitude more backup trees, providing more opportunities for primary

tree forwarding rules to be reused. Recall that Reactive only installs the backup

trees for l, whereas Proactive pre-installs, for each primary tree, a backup tree

for each primary tree link, amounting to approximately 32 backup trees per primary

tree. As a result, we observe 2.5 times fewer stale rules with Proactive+Basic ver-

sus Reactive+Basic and Proactive+Merger has up to an order of magnitude

decrease in garbage collection versus Reactive+Merger.

21Because all three algorithms use Bunchy to compute backup trees this statistic is the same for
Reactive+Basic, Reactive+Merger, and Reactive+LB.
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The number of stale Proactive+Merger forwarding rules actually decreases

as m grows. Recall that for a primary tree using l, any of its rules is not stale if at

least one other primary or backup tree uses this flow table entry. Because the number

of pre-installed backup trees is so large (approximately 32m), for large m, nearly all

primary tree rules are still used after a link failure (resulting in a decrease in stale

flow table entries as m grows).

4.5.2.6 Summary

In summary, we have shown quantitatively that as more primary trees are installed

in the network, the gap between Merger and Basic grows (for both Reactive

and Proactive) in terms of signaling overhead, total backup tree installation time,

number of pre-installed forwarding rules, and garbage collection overhead. The is

the case because, with larger m, there are more opportunities for Merger to reuse

primary tree rules and consolidate rules among other backup trees.

Additionally, we found Proactive yields fewer control messages and faster re-

covery than Reactive – Reactive sends up to 10 times more control messages

than Proactive – but at the cost of storage overhead at each switch. Proactive’s

pre-installed backup trees can account for as much as 35% of the capacity reserved

for wild-card matching rules of a conventional OpenFlow switches [21]. However,

when applying Merger to Proactive, this statistic drops to 20% and, on average,

Proactive+Merger accounts for only 6.7% of flow table capacity.

4.6 Conclusions

In this chapter we have addressed an important challenge in reliable multicast-

ing of critical Smart Grid data. We designed, implemented, and evaluated a suite

of algorithms that collectively provide fast packet loss detection and fast rerouting

using pre-computed backup multicast trees. Because this required making changes to
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network switches, we used OpenFlow to modify switch forwarding tables to execute

these algorithms in the data plane.

First, we presented Pcount, an algorithm that used OpenFlow primitives to

accurately detect per-link packet loss inside the network rather than using slower

end-to-end measurements. Next, we formulated a new problem, Multicast Recy-

cling, that considered computing backup trees that reuse edges of already-installed

multicast trees as a means to reduce control plane signaling. Multicast Recy-

cling was proved to be at least NP-hard so we designed an approximation algorithm

called Bunchy. Lastly, we presented two algorithms, Proactive and Reactive,

that installed backup trees at OpenFlow controlled switches. As an optimization to

Proactive and Reactive, we introduced Merger, an algorithm that consolidated

forwarding rules at switches where multiple trees had common children.

Mininet emulations were used to evaluate our algorithms over communication

networks that mirrored the structure of IEEE bus systems (actual portions of the

North American power grid). We found Pcount estimates were accurate when

monitoring even a small number of flows over short time window: after sampling

only 75 packets, the 95% confidence interval of Pcount loss estimates were within

15% of the true loss probability. By pre-installing backup trees, Proactive resulted

in up to a ten-fold decrease in control messages compared with Reactive, which

had to signal multiple switches to install each backup tree. However, in scenarios

with many multicast groups, Proactive’s pre-installed forwarding rules accounted

for a significant portion of scarce OpenFlow switch table capacity (up to 35% of

a standard OpenFlow switch). Fortunately, Merger reduced the amount of pre-

installed forwarding state by a factor of 2− 2.5, to acceptable levels.
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Figure 4.7. Reactive and Proactive results for a single random link failure of
synthetic topologies based on IEEE bus system 57. Each data point is the mean over
105 emulation runs and the 95% confidence interval is shown in all plots expect (c).
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CHAPTER 5

THESIS CONCLUSIONS AND FUTURE WORK

5.1 Thesis Summary

This thesis presented algorithms to make communication networks robust to com-

ponent failures. Three separate but related problems were considered: node (i.e.,

switch or router) failure in traditional networks such as the Internet or wireless sensor

networks, the failure of critical sensors that measure voltage and current throughout

the smart grid, and link failures in a smart grid communication network.

Chapter 2 considered scenarios where a malicious node injects and spreads false

routing state throughout a network of routers. We presented and evaluated three

new algorithms – 2nd-Best, Purge, and CPR – for recovery in such scenarios.

Among these algorithms, we found that CPR – a checkpoint-rollback based algorithm

– yielded the lowest message overhead and convergence time over topologies with

fixed link weights but at the cost of storage overhead at the routers. For topologies

where link weights could change, Purge performed best because Purge globally

invalidated false routing state, helping Purge avoid the problems that plagued CPR

and 2nd-Best: updating large amounts of stale state (CPR) and the count-to-

infinity problem (2nd-Best).

Next, in Chapter 3 we studied PMUs – critical sensors being deployed in electric

power grids worldwide that provide voltage and current measurements to power grid

operators – and a set of placement problems that considered detecting PMU mea-

surement errors. We formulated four PMU placement problems that considered two

constraints: place PMUs “near” each other to allow for measurement error detection
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and use the minimal number of PMUs to infer the state of the maximum number of

system buses and transmission lines. Each PMU placement problem was proved to

be NP-Complete. As a first step, we proposed and evaluated a simple greedy approx-

imation algorithm to each placement problem. Using simulations based on topologies

generated from real portions of the North American electric power grid, we found

our greedy algorithms consistently reached close-to-optimal performance (on average

within 97% of optimal). Additionally, our simulations showed that requiring PMUs

to placed near each other (in order to detect measurement errors) resulted in only

a small decrease in system observability (on average only 5% fewer buses were ob-

served with this additional constraint), which made for a strong case for imposing

this requirement.

In our final technical chapter, we designed algorithms that provide fast recovery

from link failures in a smart grid communication network. We proposed, designed, and

evaluated solutions to all three aspects of link failure recovery: link failure detection,

algorithms that pre-computed backup multicast trees, and fast backup tree installa-

tion. Because these algorithms required making changes to network switches, these

algorithms used OpenFlow to access and modify the forwarding plane of switches.

As an alternative to slower algorithms based on end-to-end measurements, we pre-

sented Pcount. Pcount used OpenFlow primitives to detect and report link failures

inside the network. Next, a new problem was formulated, Multicast Recycling,

that considered computing backup trees that reuse edges of already installed multi-

cast trees as a means to reduce control plane signaling. Multicast Recycling was

proved to be at least NP-hard so we designed an approximation algorithm for Multi-

cast Recycling. Lastly, we presented two algorithms, Proactive and Reactive,

that installed backup trees at OpenFlow controlled switches. As an optimization to

Proactive and Reactive, we designed Merger, an algorithm that consolidated

forwarding rules at switches where multiple trees have common children.
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These algorithms were evaluated with Mininet emulations using communication

networks that mirrored the structure of actual portions of the North American power

grid. Pcount packet loss estimates were accurate when monitoring even a small

number of flows over short time window: after sampling only 75 packets, the 95%

confidence interval of Pcount loss estimates were within 15% of the true loss proba-

bility. Proactive had a 10x decrease in control messages compared with Reactive

because Proactive required only a single control message to install each backup

tree since all other rules were pre-installed, whereas Reactive had to signal mul-

tiple switches to install each backup tree. However, Proactive’s pre-installed for-

warding rules accounted for a significant portion of scarce OpenFlow switch table

capacity, especially in cases with many multicast groups (up to 35% of flow table ca-

pacity of a standard OpenFlow switch). Fortunately, Merger reduced the amount

of pre-installed forwarding state by a factor of 2− 2.5, to acceptable levels.

5.2 Future Work

Our research in Chapter 2 only considered a single instance of false state where

we assumed that the compromised node falsely claimed the minimum distance to

all nodes. As future work, we are interested in exploring how our algorithms (i.e,

2nd-Best, Purge, and CPR) respond to other possible false state values. Some

interesting alternatives include false state that maximizes the effect of the count-

to-infinity problem and false state that contaminates a bottleneck link. We would

also like to see how our distributed recovery algorithms compare with a Software

Defined Networking (SDN) based approach to false state recovery. It is likely that

the concerns over convergence time addressed by our distributed recovery algorithms

are non-factors with an SDN approach. With SDN, recovery paths can be computed

centrally at the controller (as we did when computing backup multicast trees in

Chapter 4), negating the need for switches to exchange messages to compute new
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paths. However, new challenges are likely to emerge with an SDN-based approach.

For example, in what order should routers be signaled to install new routes such that

the count-to-infinity problem is minimized?

There are several topics for future work from Chapter 3 on PMU placement. The

success of the greedy PMU placement algorithms suggests that bus systems have

special topological characteristics, and investigating these properties could provide

interesting insight to power grid topologies. Because our brute-force optimal algo-

rithm could only produce data points for small inputs, much could be learned by

implementing the integer programming approach proposed by Xu and Abur [77] to

solve FullObserve. This would provide valuable data points to measure the relative

performance of greedy.

For the PMU placement problems from Chapter 3 (i.e., MaxObserve, FullOb-

serve, MaxObserve-XV, FullObserve-XV), there are a number of alternative

objective functions that could be used in place of the one used by each placement

problem that could lead to interesting new problem formulations both from a theoret-

ical and practical perspective. For example, we could associate a utility to observing

each node and define an objective function that aims to maximize a utility function,

defined using the utility associated with observing each node. This would remove

our implicit assumption that observing each node yields the same utility. Another

interesting objective function would be to minimize the distance (e.g., number of

hops) between each unobserved node and its nearest observed node. Intuitively, this

objective function seeks to ensure that no large subgraphs are completely unobserved,

which could make decisions of where to put the “next” PMU easier. A third alterna-

tive objective function is to maximize the number of observed links rather than the

number of observed nodes. This objective function is closely related to observing the

maximum number of nodes because PMUs must be placed at nodes and, doing so,

results in the observation of all links incident to the node where the PMU is placed.
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From Chapter 4, several problems still remain to be solved. One problem of inter-

est is using optimization criteria different from Multicast Recycling’s objective

function to compute backup trees and then evaluate Proactive, Reactive, and

Merger performance using these backup trees. For example, backup trees may be

computed with the goal of protecting against the worst-case impact of a subsequent

link failure by minimizing the maximum number of multicast trees using a single link.

It is unknown how effective our installation algorithms would be given these types of

backup trees.

Measurements using real OpenFlow hardware switches would strengthen our Pcount

processing time and backup tree installation time results, which both suffered from

inaccuracies due to Mininet’s performance fidelity issues. At the end of Section 4.3.1

we commented on how Pcount can be easily extended to monitor packet loss be-

tween multiple non-adjacent switches. We showed that in some cases packet loss at all

links connecting switches used in the same multicast tree can be estimated using only

a single Pcount session with measurement points at only a subset of these switches.

It would be interesting to quantify the savings (in terms of switch processing time) of

this approach when compared to a naive implementation that runs separate Pcount

sessions between all adjacent switches. Our Pcount simulation results suggest that

these savings could be significant. Lastly, the problem Merger addresses – find

the minimum number of forwarding rules for a set of multicast trees – has unknown

complexity. We conjectured that this problem is NP-hard in Section 4.3.5.4.

This thesis provided some encouraging initial results of how SDN (and specifically

OpenFlow) can simplify fault detection and recovery but we did so under somewhat

favorable conditions. For example, in Chapter 4 we assumed that any non-OpenFlow

switches or routers had no influence on our recovery algorithms (this is equivalent to

assuming that all network switches support OpenFlow). In practice, it is likely that

OpenFlow switches will coexist with existing network infrastructure (e.g., IP routers
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and switches), which will likely complicate matters. One potential issue is that many

backbone IP routers use MPLS to reroute flows in response to link failures. This

would result in new paths between OpenFlow switches. In these cases, it is unclear

if OpenFlow switches and the control plane need to be aware of these path changes.

Also what is the best way for the OpenFlow controller to monitor the state of non-

OpenFlow switches and routers? Would it be sufficient to passively monitor control

messages sent among IP routers? If so, how much control state needs to be tracked

and what is the cost of doing so?

Our hope is that the preliminary results in Chapter 4 will encourage other re-

searchers to develop OpenFlow-based solutions for smart grid communication. One

promising topic, not addressed in this thesis, is traffic engineering, which figures to

play an important role in smart grid data dissemination. We believe OpenFlow’s

capabilities to directly control traffic flows makes OpenFlow well-suited to designing

simple and effective traffic engineering solutions for the smart grid.

Although using OpenFlow and SDN for smart grid communication has many ben-

efits (e.g., open access the forwarding plane of switches, clean separation of the control

and data plane), using SDN introduces a potential new set of problems. For exam-

ple, the controller and the path between the switch and controller become potential

points of failure. 1 However, well-established solutions such as multipath routing [31]

(between the controller and switches) and hot standby [72] (at the controller) can

be used to mitigate these reliability issues. Another concern in using SDN is access

control: due to administrative boundaries, it is unlikely that a single controller will

have the ability to modify any switch. In practice, it likely that a number of peer

controllers or possibly a hierarchy of controllers must work together to control an

entire smart grid communication network. Again, this is not a new problem that

1This is not the case with a traditional network architecture where controller algorithms are
distributed algorithms run at the network switches and routers.
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must be solved and well-studied protocols can be used to coordinate communication

between controllers.

We conclude this thesis by considering a broader question, does OpenFlow render

all distributed computing in network control obsolete? In a word, no. We believe that

there are some cases where control decisions are better made locally. For example,

MPLS fast-reroute decisions are best made at the routers for increased speed because

doing so avoids any signaling delay between the switch/router and controller.
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APPENDIX A

PSEUDO-CODE AND ANALYSIS OF DISTANCE
VECTOR RECOVERY ALGORITHMS

A.1 Recovery Algorithm Pseudo-Code

Building on the notation specified in Table 2.1 (from Section 2.2), we define

some additional notation that we use in our pseudo-code specifications of 2nd-Best,

Purge, and CPR. Let msg refer to a message sent during Purge’s diffusing com-

putation (to globally remove false routing state). msg includes:

1. a field, src, which contains the node ID of the sending node

2. a vector,
−−−→
dests, of all destinations that include v as an intermediary node.

Let ∆ refer to the maximum clock skew for CPR.

Algorithm A.1.1: 2nd-Best run at each i ∈ adj(v)

1: flag ← false
2: set all path costs to v to ∞
3: for each destination d do
4: if v is first-hop router in least cost path to d then
5: c← least cost to d using a path which does not use v as first-hop router

6: update
−−→
mini and dmatrixi with c

7: flag ← true
8: end if
9: end for

10: if flag = true then

11: send
−−→
mini to each j ∈ adj(i) where j 6= v

12: end if
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Algorithm A.1.2: Purge’s diffusing computation run at each i ∈ adj(v)

1: set all path costs to v to ∞
2: S ← ∅
3: for each destination d do
4: if v is first-hop router in least cost path to d then

5:
−−→
mini[d]←∞

6: S ← S ∪ {d}
7: end if
8: end for
9: if S 6= ∅ then

10: send S to each j ∈ adj(i) where j 6= v
11: end if

Algorithm A.1.3: Purge’s diffusing computation run at each i /∈ adj(v)

Input: msg containing src,
−−−→
dests fields.1

1: S ← ∅
2: for each d ∈ msg.

−−−→
dests do

3: if msg.src is next-hop router in least cost path to d then

4:
−−→
mini[d]←∞

5: S ← S ∪ {d}
6: end if
7: end for
8: if S 6= ∅ then
9: send S to spanning tree children

10: else
11: send ACK to msg.src
12: end if
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Algorithm A.1.4: CPR rollback

1: if already rolled back then
2: send ACK to spanning tree parent node
3: end if
4: t̂← −∞
5: for each snapshot, S, do
6: t′′ ← S.timestamp
7: if t′′ < (t′ −∆) and t′′ > t̂ then
8: t̂← t′′

9: end if
10: end for
11: rollback to snapshot taken at t̂
12: if not spanning tree leaf node then
13: send rollback request to spanning tree children
14: else
15: send ACK to spanning tree parent node
16: end if

Algorithm A.1.5: CPR “steps after rollback” run at each i ∈ adj(v)

1: flag ← false
2: for each destination d do
3: if

−−→
mini[d] =∞ then

4: find least cost to d in dmatrixi and set in
−−→
mini

5: flag ← true
6: end if
7: end for
8: if flag = true or adjacent link weight changed during [t′, t] then

9: send
−−→
mini to each j ∈ adj(i) where j 6= v

10: end if
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Figure A.1. Timeline with important timesteps labeled.

A.2 Correctness of Recovery Algorithms

Here we prove correctness for the 2nd-Best, Purge, and CPR algorithms de-

scribed in Section 4.3. Our correctness proofs consider the general case where multiple

nodes are compromised. We use the following notation in our proofs:

• We refer to the set of compromised nodes as V .

• tb marks the time at outside algorithm detects that all V are compromised.

• t′ refers to the time the first v ∈ V is compromised.

• t∗ marks the time when the recovery algorithm (e.g., 2nd-Best, Purge, or

CPR), which started executing at time t, completes.

• We use the definition of G described in Section 4.3.

• We redefine G′ as follows. G′ = (V ′, E ′), where V ′ = V − V , E ′ = E − {(v, vi)

| v ∈ V ∧ vi ∈ adj(v)}.

All important timesteps are shown in Figure A.1.

We make the following assumptions in our proofs. All the initial dmatrix values

are non-negative. Furthermore, all
−−→
min values periodically exchanged between neigh-

boring nodes are non-negative. All v ∈ V know their adjacent link weights. All link

weights in G (and therefore G′ as well) are non-negative and do not change. G is

finite and connected. Finally, we assume reliable communication.
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Definition 1. An algorithm is correct if the following two conditions are satisfied.

One, ∀v ∈ V ′, v has the least cost to all destinations v′ ∈ V ′. Two, the least cost is

computed in finite time.

Theorem A.1. Distance vector is correct.

Proof. Bertsekas and Gallager [11] prove correctness for distributed Bellman-Ford for

arbitrary non-negative dmatrix values. Their distributed Bellman-Ford algorithm is

the same as the distance vector algorithm used in this thesis.

Corollary A.2. 2nd-Best is correct when a single node is compromised.

Proof. As per the preprocessing step, each v ∈ adj(v) initiates a diffusing computation

to remove v as a destination. For each diffusing computation, all nodes are guaranteed

to receive a diffusing computation (by our reliable communication and finite graph

assumptions). Further, each diffusing computation terminates in finite time. Thus,

we conclude that each v ∈ V ′ removes v as a destination in finite time.

After the diffusing computations to remove v as a destination complete, each

v ∈ adj(v) uses distance vector to determine new least cost paths to all nodes in their

connected component. Because all dmatrixv are non-negative for all v ∈ V ′, by The-

orem A.1 we conclude 2nd-Best is correct if no additional node(s) are compromised

during [t′, t∗].

Corollary A.3. 2nd-Best is correct when multiple nodes are compromised.

Proof. If multiple nodes, V , are simultaneously compromised the proof is the same

as that for Corollary A.2, substituting V for v.

Next, we prove 2nd-Best is correct in the case where a set of nodes, V 2, are

compromised concurrent with a running execution of 2nd-Best (e.g., during [t′, t∗]),

triggered by the compromise of V . First we show that any least cost computation

(e.g., one triggered by V ’s compromise) to any v ∈ V 2 is eventually terminated.
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We have already proved that the diffusing computations to remove each v ∈ V 2 as a

destination complete in finite time. Let td mark the time these diffusing computations

complete. For all t ≥ td, any running least cost computation to a destination v ∈ V 2

is terminated by the actions specified in Section 2.3.5. Therefore, the only remaining

least cost computations are to all v ∈ V ′, where V ′ = V −
(
V ∪ V 2

)
. Because all

dmatrixi values are non-negative for all i ∈ V ′, by Theorem A.1 we conclude 2nd-

Best is correct.

Since we have proved 2nd-Best is correct when multiple nodes are simultane-

ously compromised and when nodes are compromised concurrent with any 2nd-Best

execution, we conclude that 2nd-Best is correct when multiple nodes are compro-

mised.

Corollary A.4. Purge is correct when a single node is compromised.

Proof. Each v ∈ adj(v) finds every destination, a, to which v’s least cost path uses v

as the first-hop node. v sets its least cost to each such a to ∞, thereby invalidating

its path to a. v then initiates a diffusing computation. When an arbitrary node, i,

receives a diffusing computation message from j, i iterates through each a specified

in the message. If i routes via j to reach a, i sets its least cost to a to ∞, therefore

invalidating any path to a with j and v an intermediate nodes.

By our assumptions, each node receives a diffusing computation message for each

path using v as an intermediate node. Additionally, our assumptions imply that all

diffusing computation terminate in finite time. Thus, we conclude that all paths using

v as an intermediary node are invalidated in finite time.

Following the preprocessing, all v ∈ adj(v) use distance vector to determine new

least cost paths. Because all dmatrixi are non-negative for all i ∈ V ′, by Theorem

A.1 we conclude that Purge is correct.

Corollary A.5. Purge is correct when multiple nodes are compromised.
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Proof. The same proof used for Corollary A.3 applies for Purge.

Corollary A.6. CPR is correct when a single node is compromised.

Proof. CPR sets t′ to the time v was compromised. Then, CPR rolls back using

diffusing computations: each diffusing computation is initiated at each v ∈ adj(v).

Each node that receives a diffusing computation message, rolls back to a snapshot

with timestep less than t′. By our assumptions, all nodes receive a message and the

diffusing computation terminates in finite time. Thus, we conclude that each node

v ∈ V ′ rolls back to a snapshot with timestamp less than t′ in finite time.

CPR then runs the preprocessing algorithm described in Section 2.3.1, which

removes each v as a destination in finite time (as shown in Corollary A.2). Because

each node rolls back to a snapshot in which all least costs are non-negative and CPR

then uses distance vector to compute new least costs, by Theorem 1 we conclude that

CPR is correct if no additional nodes are compromised during [t′, t∗].

Corollary A.7. CPR is correct when multiple nodes are compromised.

Proof. If multiple nodes, V are simultaneously compromised, CPR sets t′ to the time

the first v ∈ V is compromised. Any nodes, V 2, compromised concurrent with V (e.g.,

during [t′, t∗]), trigger an additional CPR execution. The steps described in Section

2.3.5 ensure that all least cost computations (after rolling back) are to destination

nodes a ∈ V ′. By Theorem A.1 we conclude CPR is correct because all dmatrixi are

non-negative for all i ∈ V ′.

A.3 Analysis of Recovery Algorithms

In this section we first prove specific properties of our recovery algorithms (Section

A.3.1) and then find communication complexity bounds for each recovery algorithm

(Section A.3.2). These results were summarized in Section 2.4. All proofs assume

a synchronous model in which nodes send and receive messages at fixed epochs. In
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each epoch, a node receives a message from all its neighbors and performs its local

computation. In the next epoch, the node sends a message (if needed). Before we

begin with the analysis, we introduce additional notation used in our proofs.

Notation. We use the definition of G and G′ described in Section 4.3. For

convenience, |V | = n and the diameter of G′ is d. Let δt(i, j) be the least cost

between nodes i and j – used by node i – at time t (we refer to this cost as δ(i, j)).

pt(i, j) refers to i’s actual least cost path to j at time t. ps(i, j) is the least cost path

from node i to j used by i at the start of recovery and δs(i, j) is the cost of this path;

pw(i, j) is i’s least cost path to j at time t ∈ [tb, t
∗] and δw(i, j) the cost of this path 1;

and pf (i, j) is i’s final least cost path to j (least cost at t∗) and has cost δf (i, j). `(i, j)

is the minimum number of links between nodes i and j in G′. Let max
i∈V

(|adj(i)|) = m.

For each algorithm, let t̂mark the time all diffusing computations complete. Recall

with Purge, v is removed as a destination and
−→
bad state is invalidated in the same

diffusing computations. Likewise, each CPR diffusing computation performs two

actions: the diffusing computations remove v as a destination and implement the

rollback. For this reason, t̂ marks the same time across all three recovery algorithms.

Let C(i, j) = δf (i, j) − δt̂(i, j). That is, C(i, j) refers to the magnitude of change in

δ(i, j) after the diffusing computations for each algorithm complete.

A.3.1 Properties of Recovery Algorithms

In this section we formally characterize how
−−→
min values change during recovery.

The properties established in this section will aid in understanding the simulation

results presented in Section 2.5. Our proofs assume that link weights remain fixed

during recovery (i.e., during [t′, tb]). We prove properties about
−−→
min in order provide

a precise characterization of recovery trends. In particular, our proofs establish that:

1pw(i, j) and δw(i, j) can change during [tb, t∗].
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• The least cost between two nodes at the start of recovery is less than or equal

to the least cost when recovery has completed. (Theorem A.8)

• Before recovery begins, if the least cost between two nodes is less than its cost

when recovery is complete, the path must be using
−→
bad or

−→
old either directly or

transitively. (Corollary A.9)

• During 2nd-Best and CPR recovery, if the least cost between two nodes is

less than its distance when recovery is complete, the path must be using
−→
bad or

−→
old either directly or transitively. (Corollary A.10)

The first two statements apply to any recovery algorithm because they make no claims

about
−−→
min values during recovery.

Theorem A.8. ∀i, j ∈ V ′, δs(i, j) ≤ δf (i, j)

Proof. Assume ∃i, j ∈ V ′ such that δs(i, j) > δf (i, j). The paths available at the start

of recovery are a superset of those available when recovery is complete. This means

pf (i, j) is available before recovery begins. Distance vector would use this path rather

than ps(i, j), implying that δs(i, j) = δf (i, j), a contradiction.

Corollary A.9. ∀i, j ∈ V ′, if δs(i, j) < δf (i, j), then ps(i, j) is using
−→
bad or

−→
old either

directly or transitively.

Proof. ∃i, j ∈ V such that a path ps(i, j) with cost δs(i, j) is used before recovery

begins where δs(i, j) < δf (i, j) and ps(i, j) does not use
−→
bad or

−→
old. The only paths

available before recovery begins, which do not exist when recovery completes, are

ones using
−→
bad or

−→
old. Therefore, ps(i, j) must be available after recovery completes

since we have assumed that ps(i, j) does not use
−→
bad or

−→
old. Distance vector would

use ps(i, j) instead of pf (i, j) because δs(i, j) < δf (i, j). However this would imply

that δs(i, j) = δf (i, j), a contradiction.
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Corollary A.10. For 2nd-Best and CPR. ∀i, j ∈ V ′, if δw(i, j) < δf (i, j) then

pw(i, j) must be using
−→
bad or

−→
old either directly or transitively. 2

Proof. We can use the same proof for Corollary A.9 if we substitute δw(i, j) for δs(i, j)

and pw(i, j) for ps(i, j).

Corollary A.10 implies that 2nd-Best and CPR (after rolling back), count up

from their initial costs – using
−→
bad or

−→
old state – until reaching the final correct least

cost.

A.3.2 Communication Complexity

Next, we derive communication complexity bounds for each recovery algorithm.

First, we consider graphs where link weights remain fixed (Section A.3.2.1 - A.3.2.4).

Then, we derive bounds where link weights can change (Section A.3.2.5).

We make the following assumptions in our complexity analysis:

• There is only a single compromised node, v.

• We assume all nodes have unit link weight of 1 and that v falsely claims a cost

of 1 to each j ∈ V ′ (e.g., ∀j ∈ V ′, δs(v, j) = 1).

• Since we assume unit link weights of 1, a link weight increase correspond to the

removal of a link and a link weight decrease corresponds to the addition of a

link.

A.3.2.1 Diffusing Computation Analysis

We begin our complexity analysis with a study of the diffusing computations

common to all three of our recovery algorithms: 2nd-Best, CPR, and Purge. In

our analysis, we refer to a as our generic destination node.

2Corollary A.10 does not apply to Purge recovery because the δw(i, j) < δw(i, j) condi-
tion is not always satisfied.
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Lemma A.11. Each diffusing computation has O(E) message complexity.

Proof. Each node in a diffusing computation sends a query to all downstream nodes

and a reply to its parent node. Thus, no more than 2 messages are sent across a

single edge, yielding O(E) message complexity.

Theorem A.12. The diffusing computations for 2nd-Best, CPR, and Purge have

O(mE) communication complexity.

Proof. For each algorithm, diffusing computations are initiated at each i ∈ adj(v), so

there can be at most m diffusing computations. From Lemma A.11, each diffusing

computation has O(E) communication complexity, yielding O(mE) communication

complexity.

A.3.2.2 2nd-Best Analysis

Johnson [45] studies DV over topologies with bidirectional links and unit link

weights of 1. Specifically, Johnson analyzes DV update activity after the failure of a

single network resource, in which a resource is either a node or a link. She assumes

that nodes adjacent to a failed resource detect the failure and then react according

to DV: in the case of a failed node, each node sets its distance to the failed node to

n and no link connected to the failed node is used in the final correct shortest paths.

3 From this point, DV behaves exactly like 2nd-Best. 4 Therefore, by mapping

our false path problem to Johnson’s failed resource problem, we can use Johnson’s

analysis of DV to find bounds (and exact message counts) for 2nd-Best. To do so,

we modify the graph, G, that Johnson considers by adding false paths between v and

all other nodes.

3The maximum distance to any node under Johnson’s model is n, where n is the number
of nodes in the graph. This is equivalent to ∞ in our case.

4Note that in contrast to Johnson, we assume an outside algorithm identifies the com-
promised node.
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In Corollary A.10, we proved that with 2nd-Best nodes using v as an intermediate

node count up from an initial incorrect least costs to their final correct value. Johnson

proves the same for DV. Using this pattern, Theorem A.13 derives upper and lower

bounds for 2nd-Best. Intuitively, the lower bound occurs when nodes count up by

2 (to their final correct value) and the upper bound results when nodes count up by

1.

Theorem A.13. After t̂, 2nd-Best message complexity is bounded below by

∑
i∈V ′

⌈maxj∈V ′,i 6=j (C(i, j))

2

⌉
adj(i) (A.1)

and above by

∑
i∈V ′

max
j∈V ′,i 6=j

(C(i, j)) adj(i) (A.2)

Proof. Theorem 2 from [45] gives a lower bound of
∑

i,j∈V ′,i 6=j

⌈1

2
C(i, j)

⌉
adj(i). How-

ever, this lower bound applies to a version of DV in which each message contains

update costs for only a single destination; in a single epoch, if a node finds new least

costs to multiple destinations, a separate message is sent for each destination with a

new least cost (and is sent to each of the node’s neighbors). In contrast, 2nd-Best

handles updates to multiple destinations concurrently: in each epoch, a single mes-

sage sent by node i contains new distance values for all destinations in which i has

a new least cost. For this reason, the maximum C(i, j) value determines the number

of times a node sends a message to each neighbor node.

The upper bound (Equation A.2) is also derived from Theorem 2 in [45]. Theorem

2 gives us a upper bound of
∑

i,j∈V ′,i 6=j

C(i, j) ·adj(i). For the same reason described for

the lower bound, the maximum C(i, j) value determines the number of times a node

sends a message to each neighbor node.
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Corollary A.14. 2nd-Best has O(mnd) communication complexity.

Proof. From Lemma A.12, 2nd-Best’s diffusing computations have O(mE) commu-

nication complexity. Next, 2nd-Best runs DV. It must be the case that C(i, j) ≤ d

and each node can at most have m neighbors. Since |V ′| = n− 1, DV and therefore

2nd-Best has O(mnd) communication complexity.

Next, we restate Theorem 1 from Johnson [45] using our notation. Theorem A.15

introduces the term allowable path. An allowable path from node i to v is a path in

the original network (G) from node i to v which does not use v as an intermediate

node.

Theorem A.15. Each incorrect route table entry assumes all possible lengths of paths

of the form |P | + δs(v, a) where P is an allowable path from node i to v and δs(v, a)

is the length of the false path claimed by v.

Theorem A.15 translates the problem of finding the number of update messages

after false node detection into the problem of finding all possible allowable paths

between each node i and v. By doing so, we can find the exact number of messages

required for 2nd-Best recovery.

The next two theorems, Theorem A.16 and A.17, follow from Theorem 5 in [45]

and Theorem A.15.

Theorem A.16. If G contains no odd cycles, the number of update messages after t̂

is described exactly by Equation A.1.

Define S(p) to be the set of nodes such that if i ∈ S(p) there exists an allowable

path of length p and p + 1 from i to v. Let q(v, i) be the smallest positive integer p

such that i ∈ S(p) and q(v, i) = c.

158



Theorem A.17. If G contains an odd cycle and c+δs(v, a) < δf (i, a), then allowable

paths to v increase in length by increments of 2 until reaching the value c and then

increments by 1 thereafter. Thus, the number of changes in δ(i, a), after t̂, is:

C(i, a)− 1

2
(c− δs(i, a)) (A.3)

If c + δs(v, a) ≥ δf (i, a), then update activity ceases before node i’s least cost entries

begin to increase by 1. Thus, in this case the number of update messages, after t̂, is

described exactly by Equation A.1.

Theorem A.15 tells us that before converging on the correct distance to a desti-

nation, a, 2nd-Best exhaustively searches all paths from i to v and then uses v ’s

false path to a. If G contains no odd cycle, then i counts up by 2 until reaching the

final correct cost to a. Node i does so by hopping back and forth between an adjacent

node j (where j 6= v) k times (for some integer k ≥ 0), then uses an allowable path

from i to v, and finally uses v ’s false path to a.

However, if G contains an odd cycle then the update behavior is slightly more

complicated. Node i counts up by 2 until δ(i, a) reaches a specific value, c∗, at which

point, i counts up by 1 until i converges on the final correct distance to a. In Figure

A.2, c∗ = δ(i, h)+ δ(h, v)+ δs(v, a) = 1+(p−1)+1 = p+1. In the epoch after δ(i, a)

is set to c∗, node i uses its path via h of length p to v (and then v’s false path to a).

In the following epoch, i uses its path via l of length p + 1 to v. From this point,

i counts up by 1 by using allowable paths of lengths p + 2k, for integer k ≥ 1, (by

hopping back and forth between h) to v and allowable paths of length (p + 1) + 2k

(by ping-ponging with l) to v, until δ(i, a) counts up to δf (i, j).

A.3.2.3 CPR Analysis

The analysis for 2nd-Best applies to CPR because after rolling back CPR, exe-

cutes the steps of 2nd-Best. In fact, because CPR performs the rollback using the
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Figure A.2. The yellow node (v) is the compromised node. The dotted line from v
to a represents the false path.

same diffusing computations analyzed for 2nd-Best (e.g., the diffusing computations

that remove v as a destination), the results for 2nd-Best apply to CPR with no

changes.

Although Theorem A.13, Theorem A.16, and Theorem A.17 apply directly to

CPR, the bounds and exact message count can defer between 2nd-Best and CPR.

In most cases, δt̂(i, j) for 2nd-Best is smaller than δt̂(i, j) for CPR because CPR

rolls back to a checkpoint taken before v is compromised. 5 Thus, CPR’s C(i, j)

values are typically smaller than those for 2nd-Best, resulting in lower message

complexity for CPR.

A.3.2.4 Purge Analysis

Our Purge analysis establishes that after the diffusing computations complete,

all nodes using false routing state to reach a destination have a least cost of ∞ to

this destination. From this point, these least costs remain ∞ until updates from

nodes with a non-infinite cost to the destination spread through the network. Upon

receiving a non-infinite least cost to the destination, nodes switch from an infinite

5At worst, δt̂(i, j) is equivalent across 2nd-Best and CPR. This occurs when the false
least vector claimed by v matches the least cost vector used by v before being compromised
(e.g.,

−→
bad=

−→
old).
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least cost to a finite one (Lemma A.18). We establish that the first finite cost to the

destination is in fact the node’s final correct least cost to the destination (Theorem

A.20). In this way, least costs change from ∞ to their final correct value.

In the presence of a tie, we assume a node uses the least cost path that avoids v.

Note that if ties are broken by using the path with v as intermediate node, our proofs

still apply, although with a few minor changes. Now we are ready to define two sets

that are key structures in our Purge proofs.

Definition 2. Let B(a, t) be the set of nodes that have least cost ∞ to destination

node a at time t.

Definition 3. F (a, t) is the set of nodes such that if b ∈ F (a, t) then the following

must be true:

1. b /∈ B(a, t).

2. ∃b′ : b′ ∈ adj(b) ∧ b′ /∈ B(a, t).

3. ∃b′′ : b′′ ∈ adj(b) ∧ b′′ ∈ B(a, t).

Next, in Lemma A.18 we prove that the size of B(a, t) shrinks by at least one for

each timestep beginning with t′′ – where t′′ refers to the time that the first i ∈ V ′

with δ(i, a) =∞ changes δ(i, a) to a finite value – until B(a, t) is empty.

Lemma A.18. For each t ≥ t′′, |B(a, t)| ≥ |B(a, t+ 1)|+ 1, until B(a, t) = ∅.

Proof. Once Purge diffusing computations complete at t̂, a DV computation is trig-

gered at each v ∈ adj(v). At this point, all least costs corresponding to paths using

v as an intermediate node are set to ∞ (this is proved in Corollary A.4). As such,

each i ∈ B(a, t̂) sends a DV message with a least of ∞ to each neighbor, 6 unless i

6Recall that after t̂, Purge forces each node to send a least cost message to each neighbor
(even if the node’s least cost has not changed since t̂).
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has a neighbor node in F (a, t̂) (note that we denote this time as t′′). In this case, i

selects a finite least to a (which implies i /∈ B(a, t′′)), triggering the propagation of

finite least costs to a. Specifically, in each subsequent timestep t (until B(a, t) = ∅)

at least one node, j, changes δt(j, a) from∞ to a finite value. This is the case because

unless B(a, t) = ∅, a node i that has changed δt(i, a) from ∞ to a finite value, has

j ∈ adj(i) with δt(j, a) =∞ and thus δt+1(j, a) will be finite. A finite δt+1(j, a) value

implies j /∈ B(a, t+ 1). Since B(a, t) is monotonic, eventually B(a, t) = ∅.

Our next Lemma (A.19) lists all possible values for the number of links between

any b ∈ F (a, t̂) and v. We later use this Lemma in Theorem A.20.

Lemma A.19. For all b ∈ F (a, t̂), `(b, v) = {`(b, a), `(b, a)− 1}.

Proof. Let b be an arbitrary node in F (a, t̂). If `(b, v) < `(b, a)− 1, this would imply

b ∈ B(a, t̂), a contradiction (a violation of condition 1 of the F (a, t̂) definition). On

the other hand, consider the case where `(b, v) > `(b, a) and where b′ ∈ adj(b) and

b′ ∈ B(a, t̂). Any path b′ uses with v as an intermediate node has cost `(b, v) − 1 +

δs(v, a) = `(b, v)−1+1 = `(b, v). Since we have assumed `(b, v) > `(b, a), b′ would use

b as a next-hop router along pt̂(b
′, a). This implies b′ /∈ B(a, t̂), a contradiction.

The following theorem is the key argument in establishing Purge’s communica-

tion complexity. Theorem A.20 proves that once any i ∈ V ′ changes its least cost

from ∞, i changes its least cost to the final correct value.

Theorem A.20. For t > t̂ and an arbitrary destination a ∈ V ′, each i ∈ B(a, t̂) with

δt̂(i, a) =∞ only modifies δ(i, a) once, such that δ(i, a) changes from ∞ to δf (i, a).

Proof. Consider an arbitrary i ∈ V ′ such that i ∈ B(a, t̂). i must use some b ∈ F (a, t̂)

as an intermediate node along pf (i, a). Let b∗ be this node. If we show that δf (b
∗, a)

is the first least cost among all b ∈ F (a, t̂) to reach i, then we have proved our claim

because in Lemma A.18 we proved that i does not update its least cost to a finite value
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until it receives a least cost from a b ∈ F (a, t̂). 7 For the sake of contradiction, assume

that for some b′ ∈ F (a, t̂), where b′ 6= b∗, that δf (b
′, a) reaches i before δf (b

∗, a). 8

This implies that:

`(b′, v) + `(i, b′) < `(b∗, v) + `(i, b∗) (A.4)

From Lemma A.19, we know that `(b′, v) = {`(b′, a), `(b′, a) − 1} and `(b∗, v) =

{`(b∗, a), `(b∗, a) − 1} If we substitute `(b′, v) = `(b′, a) and `(b∗, v) = `(b∗, a) into

Equation A.4, it yields:

`(b′, a) + `(i, b′) < `(b∗, a) + `(i, b∗) (A.5)

However, since we have assumed that i routes via b∗, we know that:

`(b′, a) + `(i, b′) > `(b∗, a) + `(i, b∗) (A.6)

Thus, between Equation A.5 and Equation A.6 we have a contradiction. Similar

contradictions can be derived by substituting all other permutations of the `(b′, v)

and `(b∗, v) equalities, derived from Lemma A.19. In conclusion, we have shown

by contradiction that δ(i, a) only changes a single time: δ(i, a) changes from ∞ to

δf (i, a).

Corollary A.21. Purge is loop-free at every instant of time.

Proof. Before t̂, only diffusing computation run. Diffusing computations are loop-free

because computation proceeds along spanning trees, which are by definition acyclic.

7Note that any node i with δ(i, a) =∞ only changes δ(i, a) to a finite value. Thus, when
Purge forces nodes to send a message after t̂ to initiate the DV computation, no i ∈ B(a, t̂)
receiving a least cost of ∞ updates its least cost.

8From Lemma A.18 we know that a finite least cost to a reaches every node in B(a, t̂).
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After t̂, only DV computations run. From Theorem A.20 we know that each node

with least cost ∞ to an arbitrary destination, changes its least cost once: from ∞ to

the correct final least cost. We conclude that Purge is loop free.

Theorem A.22. Purge message complexity is O(mnd).

Proof. Purge consists of two steps: the diffusing computations to invalidate false

state and DV to compute new least cost paths invalidated by the diffusing compu-

tations. From Lemma A.12, Purge’s diffusing computations have O(mE) commu-

nication complexity. The DV message complexity can be understood as follows. To

start the computation, Purge enforces that each node sends DV message (to each

neighbor), even if no least costs are found. From Theorem A.20 and Lemma A.18,

all i ∈ B(a, t̂) only change δ(i, a) once: δ(i, a) changes from ∞ to δf (i, a). Purge

computations to all destinations run in parallel, meaning that all least cost updates

to nodes h away are handled in the same round of update messages. For this reason,

Purge only sends messages d+ 1 times after t̂. Finally, since there are n− 1 nodes,

each with a maximum of m neighbors, and each node sends messages d + 1 times,

Purge communication complexity if O(mnd).

A.3.2.5 Analysis that Considers Graphs with Link Weight Changes

In this section, we analyze each of our algorithms in the case where w link weight

changes occur. Because we assume unit link weights of 1, a link weight decrease

corresponds to the addition of a new link and a link weight increase corresponds to

the removal of a link. In our analysis, we assume that all w link weight changes finish

propagating before v is detected (e.g., before tb).

The analysis for 2nd-Best and Purge from Section A.3.2.2 and Section A.3.2.4,

respectively, does not change. This is the case because 2nd-Best and Purge do not

roll back in time, and thus all w link weight changes are accounted for when recovery
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begins at tb. The CPR analysis from Section A.3.2.3 changes because after rolling

back, all w link weight changes need to be replayed.

Let δ′f (i, a) be node i’s final least cost to a if no link weight changes occur during

[t′, tb]. Define C ′(i, j) = δ′f (i, a)− δt̂(i, j).

The communication complexity for a link weight increase is O(n2) [45] and O(E)

for a link weight decrease [44]. Let there be u link weight increases (e.g., u links are

removed from G) and w − u link weight decreases (e.g., w − u links are added to

G). At worst, the link weight changes are processed after v recovery completes. As a

result, CPR communication complexity with link weight changes is bounded above

by:

∑
i∈V ′

max
j∈V ′,i 6=j

(C ′(i, j)) adj(i) +O(un2) +O ((w − u)E) (A.7)

A.3.2.6 Discussion

The communication complexity for 2nd-Best, CPR, and Purge are all O(mnd)

over graphs with fixed unit link weights. It is not surprising that the communication

complexity is the same because all three algorithms use DV as their final step and DV

asymptotically dominates the communication complexity of each recovery algorithm.

Thus, the difference in message complexity between the three algorithms, found in

our simulations, amounts to marginal differences in each algorithm’s hidden constant

in the stated message complexity bound.

We also bounded the communication overhead incurred by CPR under conditions

of link weight changes. This overhead is not incurred by 2nd-Best and Purge

because do not roll back in time, and thus all link weight changes are accounted for

when recovery begins.
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APPENDIX B

ADDITIONAL PMU PLACEMENT PROBLEM PROOFS

In Chapter 3 we proved that FullObserve (Section 3.3.2), MaxObserve (Sec-

tion 3.3.3), FullObserve-XV (Section 3.3.4), and MaxObserve-XV (Section

3.3.5) are each NP-Complete when considering networks with both zero-injection and

injection buses. Here we prove that each problem is also NP-Complete for graphs

containing only zero-injection nodes. The proofs closely resemble those in Sections

3.3.2 - 3.3.5. Then, we provide pseudo-code and complexity proofs for the approxi-

mation algorithms described in Section 3.4. These proofs consider graphs with both

zero-injection and injection buses.

B.1 NP-Completeness Proofs for PMU Placement in Zero-

Injection Graphs

In the following order MaxObserve (Section B.1.1), FullObserve-XV (Sec-

tion B.1.2), and MaxObserve-XV (Section B.1.3), we prove that each problem is

NP-Complete for graphs containing only zero-injection nodes. Our proofs below do

not explicitly mention our assumption that all nodes are zero-injection; rather, this

assumption is implicit in the fact that we apply observability rule 2 whenever possi-

ble. We omit a new proof for FullObserve because Brueni and Heath [14] prove

FullObserve is NP-Complete for zero-injection graphs.

Our proofs follow the same strategy outlined in Section 3.3.1: we reduce for

P3SAT to show each problem is NP-Complete. Recall that our proofs from Chapter

3 relied on the definition of a bipartite graph G(φ) = (V (φ), E(φ)) where φ is a 3-SAT
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(a) Variable gadget Vi.The
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tions to clause gadgets.
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gadgets.

Figure B.1. Gadgets used in Theorem B.1 proof.

formula with variables {v1, v2, . . . , vr} and clauses {c1, c2, . . . , cs}. G(φ)’s vertices and

edges were defined as follows:

V (φ) = {vi | 1 ≤ i ≤ r} ∪ {cj | 1 ≤ j ≤ s}

E(φ) = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

B.1.1 MaxObserve Problem for Zero-Injection Graphs

A description of MaxObserve can be found in Section 3.3.3. Our proof for the

theorem below (Theorem B.1) is similar to that for Theorem 3.4.

Theorem B.1. MaxObserve is NP-Complete when considering graphs with only

zero-injection nodes.

Proof idea: First, we construct problem-specific gadgets for variables and clauses.

We then demonstrate that any solution that observes m nodes must place the PMUs

only on nodes in the variable gadgets. Next we show that as a result of this, the

problem of observing m nodes in this graph reduces to the NP-complete problem

presented in [14], which concludes our proof.

Proof. We start by arguing that MaxObserve ∈ NP . First, nondeterministically

select k nodes in which to place PMUs. Then we use the rules specified in Section

3.2.2 to determine the number of observed nodes.

167



We reduce from P3SAT, where φ is an arbitrary P3SAT formula, to show

MaxObserve is NP-hard. Specifically, given a graph G(φ) we construct a new

graph H1(φ) = (V1(φ), E1(φ)) by replacing each variable (clause) node in G(φ) with

the variable (clause) gadget shown in Figure B.1(a) (B.1(b)). The edges connecting

clause gadgets with variable gadgets express which variables are in each clause: for

each clause gadget Cj, node aj is attached to node T in variable gadget Vi if, in φ, vi

is in cj, and to node F if vi is in cj. For convenience, we let G = H1(φ).

With this construct in place, we move on to our proof. Here we consider the case

of k = r and m = 6r+2s, and show that φ is satisfiable if and only if r = |ΦG| PMUs

can be placed on G such that m ≤ |ΦR
G| < |V |. We will later discuss how to extend

this proof for any larger value of m.

(⇒) Assume φ is satisfiable by truth assignment Aφ. Then, consider the placement

ΦG s.t. for each variable gadget Vi, Ti ∈ ΦG ⇔ vi = True in Aφ, and Fi ∈ ΦG ⇔ vi =

False. It has been shown in [14] that for H(φ) this placement observes all H(φ), and

it can be easily verified that all nodes in H1(φ) are observed as well except for dj, ej

for each Cj. This amounts to 2s nodes, so exactly m nodes are observed by ΦG, as

required.

(⇐) We begin by proving that any solution that observes m nodes must place the

PMUs only on nodes in the variable gadgets. Assume that there are 1 < t ≤ r variable

gadgets without a PMU. Then, at most t PMUs are on nodes in clause gadgets, so at

least max(s− t, 0) clause gadgets are without PMUs. We want to show here that for

m = 6r + 2s, t = 0.

To prove this, we rely on the following two simple observations:

• In any variable gadget Vi, nodes X (Figure B.1(a)) cannot be observed unless

there is a PMU somewhere in Vi. Note that there are 4 such nodes per Vi.

• In any clause gadget Cj, nodes ej and dj cannot be observed unless there is a

PMU somewhere in Cj. Note that there are 2 such nodes per Cj.
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Figure B.2. Variable gadget used in Theorem B.2 proof. The dashed edges are
connections to clause gadgets.

Thus, given some t, the number of unobserved nodes is at least 4t+ max(2(s− t), 0).

However, since |V | − m ≤ 2s, there are at most 2s unobserved nodes. So we get

2s ≥ 4t+ max(2(s− t), 0). We consider two cases:

• s ≥ t: then we get 2s ≥ 2s+ 2t⇒ t = 0.

• s < t: then we get 2s ≥ 4t ⇒ s ≥ 2t, and since we assume here 0 ≤ s < t this

leads to a contradiction and so this case cannot occur.

Thus, we have concluded that the r PMUs must be on nodes in variable gadgets,

all of which, it is important to note, were also part of the original H(φ) graph. We

return to this point shortly.

We now observe that for each clause gadget Cj, such a placement of PMUs cannot

observe nodes of type ej, dj, which amounts to a total of 2s unobserved nodes - the

allowable bound. This means that all other nodes in G must be observed. Specifically,

this is exactly all the nodes in the original H(φ) graph, and PMUs can only be placed

on variable gadgets, all of which are included in H(φ) as well. Thus, the problem

reduces to the problem in [14]. We use the proof in [14] to determine that all clauses

in φ are satisfied by the truth assignment derived from ΦG.
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B.1.2 FullObserve-XV Problem for Zero-Injection Graphs

The problem statement for FullObserve-XV can be found in Section 3.3.4. The

proof for Theorem B.2, below, closely follows the structure of Theorem 3.5’s proof.

Theorem B.2. FullObserve-XV is NP-Complete when considering graphs with

only zero-injection nodes.

Proof. First, we argue that FullObserve-XV ∈ NP . Given a FullObserve-XV

solution, we use the polynomial time algorithm described in our proof for Theorem

B.1 to determine if all nodes are observed. Then, for each PMU node we run a

breadth-first search, stopping at depth 2, to check that the cross-validation rules are

satisfied.

To show FullObserve-XV is NP-hard, we reduce from P3SAT. Our reduction

is similar to the one used in Theorem B.1. For this problem, we use different variable

and clause gadgets. The clause gadgets consist of the edge (aj, bj) from Figure B.1(b),

which are the same as used in [14]. The new variable gadget is shown in Figure B.2.

As can be seen in this figure, the variable gadgets are comprised of two disconnected

subgraphs: we refer to the upper subgraph as Vit and the lower subgraph as Vib.

Clause gadgets are connected to a variable gadgets in the following manner: for each

clause cj that contains variable vi in φ, the corresponding clause gadget has the edges

(aj, Tt), (aj, Tb), and for each clause cj that contains variable vi in φ, the corresponding

clause gadget has the edges (aj, Ft), (aj, Fb). We denote the resulting graph as H2(φ),

and for what follows assume G = H2(φ).

We now show that φ is satisfiable if and only if k = 2r PMUs can be placed

on G such that G is fully observed under the condition that all PMUs are cross-

validated, and that 2r PMUs are the minimal bound for observing the graph with

cross-validation.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For each 1 ≤ i ≤ r, if

vi = True in Aφ we place a PMU at Tb and at Tt of the variable gadget Vi. Otherwise,

170



we place a PMU at Fb and at Ft of this gadget. In either case, the PMU nodes in

Vi must be adjacent to a clause node, making Tt (Ft) two hops away from Tb (Fb).

Therefore, all PMUs are cross-validated by XV2.

Now we argue that ΦG observes all v ∈ V :

• Consider a clause node aj. Since φ is satisfied, for some index i we have vi ∈

cj∧vi ∈ Aφ or vi ∈ cj∧vi ∈ Aφ. For the first case, the PMUs in Vi are placed on

{Tb, Tt} and as a result aj is observed by applying O1 at Tb or at Tt. A similar

argument applies for the second case. So, all aj nodes are observed.

• Next, consider the nodes on the variable gadgets. When vi ∈ Aφ, Tt’s neighbors,

in Vit, are observed via O1. (the second case, vi ∈ Aφ, follows by symmetry).

The remaining Vit nodes are observed via O2 - note that if Ft is connected to

a clause gadget we know from the previous step this clause is observed. By

symmetry of Vib and Vit, the same argument can be made for Vib to show all Vib

nodes are observed.

• Finally, all the neighbors of aj in variable gadgets are observed, and aj is ob-

served, so we can now apply O2 at each node aj to observe the remaining bj

nodes.

This completes this direction of the theorem.

(⇐) Suppose ΦG observes all nodes in G under the condition that each PMU is

cross-validated, and that |ΦG| = 2r. We want to show that φ is satisfiable by the

truth assignment derived from ΦG. We prove this by showing that (a) each variable

gadget must have exactly 2 PMUs and (b) there must be a PMU at each subgraph

of the variable gadget. Once (b) is shown, (c) cross-validation restrictions force the

PMUs to be either on both T -nodes or both F -nodes. We conclude by showing that

(d) the PMU nodes correspond to true/false assignments to variables which satisfy

φ.
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We begin by showing that each variable gadget must have 2 PMUs. Let Vi be

a variable gadget with less than two PMUs. By placing PMUs on clause gadgets

attached to Vi, at most we can observe Tt, Tb, Ft and Fb directly from the clause

gadgets. Next, at least one of the Vi subgraphs has no PMU: without loss of generality,

let this be Vit. We cannot apply O1 at Tt or Ft, since they have no PMU. We cannot

apply O2 at these nodes since they each have two unobserved Xt nodes. Thus, all

Xt nodes are unobserved in Vit, contrary to our assumption that the entire graph is

observed. Thus we have shown that there must be at least 2 PMUs at each variable

gadget. Also it is clear from this proof that, in fact, there must be at least one PMU

in each subgraph of each variable gadget. Finally, since there are 2r PMUs and r

variables, we conclude that each variable gadget has exactly two PMUs – one PMU

for each variable gadget subgraph – and there are no PMUs on clause nodes.

Due to the cross-validation constraint, it is clear that a PMU on Vit can only be

cross-validated by a PMU on Vib (since all other variable-gadgets are more than 2 hops

away), and specifically this would require both to be either on {Tt, Tb} or {Ft, Fb}.

Without loss of generality, assume for an arbitrary variable gadget, Vi, we placed

the PMUs at {Tt, Tb}. By applying O1 and O2, this placement can observe all nodes

in the variable gadget if {Ft, Fb} in this gadget are not adjacent to a clause node.

If they are adjacent to some ah node, each of {Ft, Fb} can observe its adjacent leaf-

X-node only via O2, and only if ah is already observed. Since we are given a PMU

placement that observes the entire graph, this implies that ah is indeed observed and

thus adjacent to some variable node with a PMU, such that O1 could be applied to

view ah. Assume without loss of generality, ah is adjacent to PMU nodes Tb, Tt from

variable gadget Vl, then the clause ch ∈ φ is satisfied if vl is true. A similar argument

can be made if Vl is adjacent to PMU nodes Ft, Fb. We conclude that all clauses in φ

are satisfied by the truth assignment derived from ΦG.
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B.1.3 MaxObserve-XV Problem for Zero-Injection Graphs

The MaxObserve-XV problem is described in Section 3.3.5. The proof below

for Theorem B.3 closely resembles the proof for Theorem 3.7.

Theorem B.3. MaxObserve-XV is NP-Complete when considering graphs with

only zero-injection nodes.

Proof Idea: We show MaxObserve-XV is NP-hard by reducing from P3SAT.

Our proof is a combination of the NP-hardness proofs for MaxObserve and FullObserve-

XV. From a P3SAT formula, φ, we create a graph G = (V,E) with the clause gadgets

from MaxObserve (Figure B.1(b)) and the variable gadgets from FullObserve-

XV (Figure B.2). The edges in G are identical the ones the graph created in our

reduction for FullObserve-XV.

We show that any solution that observes m = |V | − 2s nodes must place the

PMUs exclusively on nodes in the variable gadgets. As a result, we show 2 nodes in

each clause gadget – ej and dj for clause Cj – are not observed, yielding a total 2s

unobserved nodes. This implies all other nodes must be observed, and thus reduces

our problem to the scenario considered in Theorem B.2, which is already proven.

Proof. MaxObserve-XV is easily in NP . We verify a MaxObserve-XV solution

using the same polynomial time algorithm described in our proof for Theorem B.2.

We reduce from P3SAT to show MaxObserve-XV is NP-hard. Our reduction

is a combination of the reductions used for MaxObserve and FullObserve-XV.

Given a P3SAT formula, φ, with variables {v1, v2, . . . , vr} and the set of clauses

{c1, c2, . . . , cs}, we form a new graph, H3(φ) = (V (φ), E(φ)) as follows. Each clause

cj corresponds to the clause gadget from MaxObserve (Figure B.1(b)) and the

variable gadgets from FullObserve-XV (Figure 3.3(c)). As in Theorem B.2, we

refer to the upper subgraph of variable gadget, Vi, as Vit and the lower subgraph as

Vib. Also, we let H3(φ) = G = (V,E).
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Let k = 2r and m = 12r + 2s = |V | − 2s. As in our NP-hardness proof for

MaxObserve, m includes all nodes in G except dj, ej of each clause gadget. We

need to show that φ is satisfiable if and only if 2r cross-validated PMUs can be

placed on G such that m ≤ |ΦR
G| < |V |.

(⇒) Assume φ is satisfiable by truth assignment Aφ. For each 1 ≤ i ≤ r, if

vi = True in Aφ we place a PMU at Tb and at Tt of the variable gadget Vi. Otherwise,

we place a PMU at Fb and at Ft of this gadget. In either case, the PMU nodes in

Vi must be adjacent to a clause node, making Tt (Ft) two hops away from Tb (Fb).

Therefore, all PMUs are cross-validated by XV2.

This placement of 2r PMUs, ΦG, is exactly the same one derived from φ’s satisfying

instance in Theorem B.2. Since ΦG only has PMUs on variable gadgets, all aj and

bj nodes are observed by the same argument used in Theorem B.2. Thus, at least

12r + 2s nodes are observed in G. Because no PMU in ΦG is placed on a clause

gadget, Cj, we know that all ej and dj are not observed. We conclude that exactly

m nodes are observed using ΦG.

(⇐) We begin by proving that any solution that observes m nodes must place the

PMUs only on nodes in the variable gadgets. Assume that there are 1 < t ≤ r variable

gadgets without a PMU. Then, at most t PMUs are on nodes in clause gadgets, so at

least max(s− t, 0) clause gadgets are without PMUs. We want to show here that for

m = 12r + 2s, t = 0.

To prove this, we rely on the following observations:

• As shown in Theorem B.2, a variable gadget’s subgraph with no PMU has at

least 4 unobserved nodes.

• In any clause gadget Cj, nodes ej and dj cannot be observed if there is no PMU

somewhere in Cj. Note that there are 2 such nodes.
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Thus, given some t, the number of unobserved nodes is at least 4t+ max(2(s− t), 0).

However, since |V | − m ≤ 2s, there are at most 2s unobserved nodes. So we get

2s ≥ 4t+ max(2(s− t), 0). We consider two cases:

• s ≥ t: then we get 2s ≥ 2s+ 2t⇒ t = 0.

• s < t: then we get 2s ≥ 4t ⇒ s ≥ 2t, and since we assume here 0 ≤ s < t this

leads to a contradiction and so this case cannot occur.

Thus, we have concluded that the 2r PMUs must be on variable gadget. We now

observe that for each clause gadget Cj, such a placement of PMUs cannot observe

nodes of type ej, dj, which amounts to a total of 2s unobserved nodes - the allowable

bound. This means that all other nodes in G must be observed. Specifically this

is exactly all the nodes in H2(φ) from the Theorem B.2 proof, and PMUs can only

be placed on variable gadgets, all of which are included H2(φ) from the Theorem

B.2 proof. Thus, the problem reduces to the problem in Theorem B.2 and so we

the Theorem B.2 proof to determine that all clauses in φ are satisfied by the truth

assignment derived from ΦG.

B.1.4 Extending Gadgets to Cover a Range of m and |V | values

In the MaxObserve-XV and MaxObserve proofs we demonstrated NP-completeness

for m = |V |−2s. We show that slight adjustments to the variable and clause gadgets

can yield a much wider range of m and |V | values. We present the outline for new

gadget constructions and leave the detailed analysis to the reader.

To increase the size of m (e.g., the number of observed nodes), we simply add more

X nodes between the T and F nodes in the variable gadgets used in our proofs for

MaxObserve-XV and MaxObserve. The new variable gadgets for MaxObserve

and MaxObserve-XV are shown in Figure B.3(a) and Figure B.3(b), respectively.

The same PMU placement described in the NP-Completeness proofs for each problem

observes these newly introduced nodes.
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(a) Extended variable gadget used for MaxOb-
serve.

XtXt FtTt
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Xt...

XbXb FbTb Xb...

(b) Extended variable gadget used for MaxObserve-
XV.

Figure B.3. Figures for variable gadget extensions described in Section B.1.4. The
dashed edges indicate connections to clause gadget nodes.

In order to increase the size of |V | while keeping m the same, we replace each clause

gadget, Cj for 1 ≤ j ≤ s, with a new clause gadget, C ′j, shown in Figure B.4(a). For

MaxObserve, the optimal placement of PMUs on C ′j is to place PMUs on every

fourth bj,h node, as shown in Figure B.4(b). As a result, the optimal placement

of l PMUs on C ′j can at most observe 6l nodes. By adding 6l T nodes to each

variable gadget, more nodes are always observed by placing a PMU on the variable

gadget rather than at a clause gadget. We can use this to argue that PMUs are

only placed on variable gadgets and then leverage the argument from Theorem B.1

to show MaxObserve is NP-Complete for any m
|V | . A similar argument can be made

for MaxObserve-XV.
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(b) Observed nodes in extended clause gadget Cj

shown in (a). PMU nodes are dark gray, nodes ob-
served by O2 have a dashed border, and all other nodes
are observed by O1.

Figure B.4. Figures for clause gadget extensions described in Section B.1.4. The
dashed edges indicate connections to variable gadget nodes.

B.2 Approximation Algorithm Complexity Proofs

In Section 3.4 we presented two greedy approximation algorithms, greedy and

xvgreedy, that iteratively add a PMU in each step to the node that observes the

maximum number of new nodes. Here the pseudo-code for each algorithm is specified

and we prove that each algorithm has polynomial time complexity. We emphasize

that these algorithms, unlike the problems discussed in the previous section, make no

assumptions that nodes must be zero-injection.

The pseudo-code for greedy and xvgreedy can be found in Algorithm B.2.1 and

Algorithm B.2.2, respectively.

Theorem B.4. For input graph G = (V,E) and k PMUs greedy has O(dkn3) com-

plexity, where n = |V | and d is the maximum degree node in V .

Proof. The procedure to determine the number of nodes observed by a candidate

PMU placement spans steps 6− 18. 1 First, we apply O1 at each PMU node (steps

1In this proof, step i refers to the ith line in Algorithm B.2.1.
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Algorithm B.2.1: greedy with input G = (V,E) and k PMUs

1: ΦG ← ∅
2: for k iterations do
3: maxObserved← 0
4: for each v ∈ (V − ΦG) do
5: numObserved← 0
6: for each u ∈ (ΦG ∪ {v}) do
7: add PMU to u
8: apply O1 at u and update numObserved
9: end for

10: repeat
11: flag ← False
12: for each w ∈ (V − (ΦG ∪ {v})) do
13: if w ∈ (VZ ∩ ΦR

G) and w has 1 unobserved neighbor then
14: apply O2 at w and update numObserved
15: flag ← True
16: end if
17: end for
18: until flag = False
19: if numObserved > maxObserved then
20: greedyNode← v
21: maxObserved← numObserved
22: end if
23: end for
24: ΦG ← ΦG ∪ {greedyNode}
25: end for
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6 − 9). O1 takes O(d) time to be applied at a single node. Because |ΦG| ≤ k, the

total time to apply O1 is O(dk).

Then, we iteratively apply O2 (steps 10−18), terminating when no new nodes are

observed. Like O1, applying O2 at a single node takes O(d) time. In each iteration,

if possible we apply O2 at each v ∈ (VZ ∩ ΦR
G) (steps 13 − 16). It total, the loop

spanning steps 10 − 18 repeats at most O(n) times. This occurs when only a single

new node is observed in each iteration. The for loop spanning steps 12− 17 repeats

O(n) times. We conclude that O2 evaluation for each set of candidate PMU locations

takes O(dn2) time.

In order to determine the placement of each PMU, we try all possible PMU place-

ments among nodes without a PMU. We place the PMU at the node that observes

the maximum number of new nodes. This corresponds to Steps 4− 23, in which the

for loop iterates O(n) times. Thus the complexity of Steps 4− 23 is O(dn3).

Finally, the outer most for loop (Steps 2− 25) iterates k times: one iteration to

determine the greedy placement of each PMU. We conclude that the complexity of

greedy is O(dkn3).

Theorem B.5. For input graph G = (V,E) and k PMUs xvgreedy has O(kdn3)

complexity, where n = |V | and d is the maximum degree node in V .

Proof. The only difference between xvgreedy and greedy is that xvgreedy only

considers pairs of cross-validated nodes. For this reason, step 4 in Algorithm B.2.2

does not appear in Algorithm B.2.1. We can find all pairs of cross-validated nodes in

O(d2n) time. We do so by implementing a breadth-first search at each v ∈ (V −ΦG)

but stopping at a depth of 2. This takes O(d2) time for each node and since O(n)

searches are executed, step 4 takes O(d2n) time.

Because all other parts of Algorithm B.2.1 and Algorithm B.2.2 are nearly identical

– Algorithm B.2.2 adds PMUs in pairs while Algorithm B.2.1 adds PMUs one-at-
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Algorithm B.2.2: xvgreedy with input G = (V,E) and k PMUs

1: ΦG ← ∅
2: for k iterations do
3: maxObserved← 0
4: C ← all cross-validated node pairs in (V − ΦG)
5: for each {v1, v2} ∈ C do
6: numObserved← 0
7: for each u ∈ (ΦG ∪ {v1, v2}) do
8: add PMU to v1 and v2

9: apply O1 at u and update numObserved
10: end for
11: repeat
12: flag ← False
13: for each w ∈ (V − (ΦG ∪ {v1, v2})) do
14: if w ∈ (VZ ∩ ΦR

G) and w has 1 unobserved neighbor then
15: apply O2 at w and update numObserved
16: flag ← True
17: end if
18: end for
19: until flag = False
20: if numObserved > maxObserved then
21: greedyNodes← {v1, v2}
22: maxObserved← numObserved
23: end if
24: end for
25: ΦG ← ΦG ∪ greedyNodes
26: end for
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a-time – we are able to directly apply the analysis from Theorem 3.8 in this proof.

Therefore, we conclude the complexity of xvgreedy is O(k(d2n+dn3)) = O(dkn3).
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APPENDIX C

COMPLEXITY OF MULTICAST RECYCLING PROBLEM

C.1 NP-hardness Proof for Multicast Recycling

In this section, we first define a simplified version of Multicast Recycling,

1Multicast Recycling, that considers a single primary tree and its backup tree

for a given link. Then, we prove 1Multicast Recycling is NP-hard and use this

result to bound Multicast Recycling’s complexity. To enhance readability, we

drop the subscript from T li , T̂
l
i , SAi, and C l

i when defining 1Multicast Recycling.

The 1Multicast Recycling decision problem is defined as follows:

• Instance: (G, k, T l, l, α). G = (V,E) is a directed, connected graph. k is an

integer greater than 0 and α ≥ 1. T l = (V l, El, r,D) is a primary tree containing

nodes V l, edges El such that l ∈ El, has root r, and spans D = {d1, d2, ..., dm}.

• Question: Is there backup tree T̂ l = (V̂ l, Êl, r,D) such that l /∈ Êl and C l ≤ k

under the condition that w(T̂ l) ≤ α · w(SA(G′)) where G′ = (V ′, E ′) such that

E ′ = E − {l}; SA(G′) = (VA, EA, r,D) is a Steiner arborescence with root r

and spans D; and w(T̂ li ) is the sum of T̂ li ’s link weights?

Intuitively, we prove that 1Multicast Recycling is NP-hard by showing that in

some cases an optimal solution to 1Multicast Recycling requires a solution to

Steiner-Arborescence, a problem known to be NP-hard.

Theorem C.1. 1Multicast Recycling is NP-hard.

Proof. We reduce from the Steiner-Arborescence problem to show 1Multicast

Recycling is NP-hard. Let the input to Steiner-Arborescence be a directed
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graph G = (V,E) with unit link weights of 1, root node r ∈ V , and a set of ter-

minal nodes S ⊆ V . For integer q > 0, Steiner-Arborescence determines if an

arborescence exists such that the sum of its link weights is less than or equal to q.

We perform our reduction as follows. We keep r as the root node and set the

terminal nodes D = S. We make a copy of G, G+, and add a new node, i, to G+

with edges (r, i) and for all dj ∈ D, (i, dj). We let T l be the tree rooted at r, formed

by the addition of edges (r, i) and for all dj ∈ D, (i, dj). Finally, we set l = (r, i),

k = q, and and α = 1. Figure C.1 shows an example of this reduction procedure.

With this construction in place, we move on to show that a Steiner arborescence

rooted at r that spans S with cost less than or equal to q exists if and only if a

backup tree T̂ l = (V̂ l, Êl, r,D) exists in G+ such that l /∈ Êl and C l ≤ k under the

condition that w(T̂ l) ≤ α · w(SA(G+)) In the remainder of this proof, we refer to

SA(G+) simply as SA.

(⇒) Given a Steiner arborescence in G, A, rooted at r, spanning S, and with cost

q, we set T̂ l = A. By construction T̂ l has root r, spans D, does not use l, results in

C l ≤ k, and trivially satisfies w(T̂ l) ≤ α · w(SA).

(⇐) In the other direction, suppose we have a solution to 1Multicast Recy-

cling, a backup tree T̂ l = (V̂ l, Êl, r,D) in G+ such that l /∈ Êl, C l ≤ k, and

w(T̂ l) ≤ α ·w(SA). Since we have fixed l to be (r, i) and G+ is constructed such that

the only incoming edge to i is (r, i), T l must be the tree formed by the edges (r, i)

and ∀dj∈D(i, dj). Because l /∈ Êl, by construction, it must be the case that T̂ l is edge

disjoint from T l. Since we have assumed that C l ≤ k, it must be the case that T̂ l

has at most k = q edges. Lastly, we know that all nodes and edges in T̂ l exists in G,

meaning that T̂ l forms a Steiner arborescence in G rooted at r, spanning S, and has

cost q. This concludes our proof.

Theorem C.2. Multicast Recycling is at least NP-hard.
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(a) Graph G = (V,E) where S =
{a, b, c, d, e} and r are shaded blue.

r

a ec db

i

(b) Graph G+ = (V +, E+) resulting from our
reduction in Theorem 4.1. All nodes (i) and edges
(i’s incoming and outgoing edges) added G by our
reduction are dashed. The same dashed edges
make up the primary tree in G+, T l.

Figure C.1. Example of reduction used in Theorem 4.1.

Proof. 1Multicast Recycling is a special case of Multicast Recycling. Since

we have shown 1Multicast Recycling is NP-hard in Theorem C.1, Multicast

Recycling must at least be NP-hard.

184



BIBLIOGRAPHY

[1] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.

[2] Northeast blackout of 2003. http://en.wikipedia.org/wiki/Northeast_

blackout_of_2003.

[3] Rocketfuel. http://www.cs.washington.edu/research/networking/

rocketfuel/maps/weights/weights-dist.tar.gz.

[4] Aazami, A., and Stilp, M.D. Approximation Algorithms and Hardness for Dom-
ination with Propagation. CoRR abs/0710.2139 (2007).

[5] Almes, G., Kalidindi, S., and Zekauskas, M. A one-way packet loss metric for
ippm. Tech. rep., RFC 2680, September, 1999.

[6] Ammann, P., Jajodia, S., and Liu, Peng. Recovery from Malicious Transactions.
IEEE Trans. on Knowl. and Data Eng. 14, 5 (2002), 1167–1185.

[7] Andersson, G, Donalek, P, Farmer, R, Hatziargyriou, N, Kamwa, I, Kundur, P,
Martins, N, Paserba, J, Pourbeik, P, Sanchez-Gasca, J, et al. Causes of the 2003
major grid blackouts in north america and europe, and recommended means to
improve system dynamic performance. Power Systems, IEEE Transactions on
20, 4 (2005), 1922–1928.

[8] Bakken, D.E., Bose, A., Hauser, C.H., Whitehead, D.E., and Zweigle, G.C.
Smart generation and transmission with coherent, real-time data. Proceedings of
the IEEE 99, 6 (2011), 928–951.

[9] Baldwin, T.L., Mili, L., Boisen, M.B., Jr., and Adapa, R. Power System Observ-
ability with Minimal Phasor Measurement Placement. Power Systems, IEEE
Transactions on 8, 2 (May 1993), 707 –715.

[10] Barford, P., and Sommers, J. Comparing probe-and router-based packet-loss
measurement. Internet Computing, IEEE 8, 5 (2004), 50–56.

[11] Bertsekas, D., and Gallager, R. Data Networks. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1987.

[12] Birman, K.P., Chen, J., Hopkinson, E.M., Thomas, R.J., Thorp, J.S., Van Re-
nesse, R., and Vogels, W. Overcoming communications challenges in software
for monitoring and controlling power systems. Proceedings of the IEEE 93, 5
(2005), 1028–1041.

185

http://www.cc.gatech.edu/projects/gtitm/
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://en.wikipedia.org/wiki/Northeast_blackout_of_2003
http://www.cs.washington.edu/research/networking/rocketfuel/ maps/weights/weights-dist.tar.gz
http://www.cs.washington.edu/research/networking/rocketfuel/ maps/weights/weights-dist.tar.gz


[13] Bobba, R., Heine, E., Khurana, H., and Yardley, T. Exploring a tiered architec-
ture for NASPInet. In Innovative Smart Grid Technologies (ISGT), 2010 (2010),
IEEE, pp. 1–8.

[14] Brueni, D. J., and Heath, L. S. The PMU Placement Problem. SIAM Journal
on Discrete Mathematics 19, 3 (2005), 744–761.

[15] Bu, T., Duffield, N.G., Presti, F., and Towsley, D.F. Network tomography
on general topologies. In ACM SIGMETRICS Performance Evaluation Review
(2002), vol. 30, ACM, pp. 21–30.
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