
RELIABLE AND EFFICIENT MULTITHREADING

A Dissertation Presented

by

TONGPING LIU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2014

School of Computer Science

c© Copyright by Tongping Liu 2014

All Rights Reserved

RELIABLE AND EFFICIENT MULTITHREADING

A Dissertation Presented

by

TONGPING LIU

Approved as to style and content by:

Emery D. Berger, Chair

Scott F. H. Kaplan, Member

Yuriy Brun, Member

Israel Koren, Member

Lori A. Clarke, Chair
School of Computer Science

ACKNOWLEDGMENTS

I would first thank Emery Berger, my Ph.D. thesis advisor, for his wonderful

supervision and enthusiastic support in the development of this thesis work. Emery

taught me to work on those important and practical projects, and take everything

seriously. I hope that I could be as lively, enthusiastic, and energetic as Emery one

day to my students. I also thank my dissertation committee: Scott Kaplan, Yuriy

Brun, and Israel Koren, for their valuable insights, feedback, and support.

I am also fortunate to work with Chen Tian, Timothy Richards, Prashant Shenoy,

Ziang Hu, Daniel Waddington, Seetharami Seelam, Wei Tan, Liana Fong, and Arun

Iyengar. They provided me valuable guidance and suggestions on those projects we

worked on together. I also thank Leeanne Leclerc, James Allan, and Laurie Downey

for their help to make my experience at UMASS go as smoothly as possible.

I couldn’t finish my thesis without the help of PLASMA labmates, including

Charlie Curtsinger, Ting Yang, Gene Nowark, Kaituo Li, John Altidor, Divya Kr-

ishnan, Dan Barowy, Dimitar Gochev, John Vilk, Nitin Gupta, Jacob Evans, Justin

Aquadro, and Emma Tosch. I also feel lucky to meet many friends in the computer

science department, including Rui Wang, Ming Li, Tingxin Yan, Zongfang Lin, Kun

Tu, Xiaojian Wu, Pengyu Zhang, Bo Jiang, Xiaozhen Tie, Fangyuan Zhou, Hong

Zhang, Yue Wang, Wenzhao Liu, etc. I will never forget your help in my life.

Finally, I would give my special thanks for my wife, Yuyu Tang. She quit her

job to support my crazy idea of getting a Ph.D. degree. She also took care of most

of the household duties and spent much of her time taking care of our two adorable

kids, Yanbin Liu (Grace) and Yanlin Liu (Eileen). My buddy, Guangming Zeng,

iv

also deserves my special thanks for his generous help and valuable discussion when I

chose the career in the computer science field. I also want to thank my kids, my late

grandma, my parents, sisters, and brothers for their understanding and support.

v

ABSTRACT

RELIABLE AND EFFICIENT MULTITHREADING

MAY 2014

TONGPING LIU

B.S., HARBIN INSTITUTE OF TECHNOLOGY

M.E., HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger

The advent of multicore architecture has increased the demand for multithreaded

programs. It is notoriously far more challenging to write parallel programs correctly

and efficiently than sequential ones because of the wide range of concurrency errors

and performance problems.

In this thesis, I developed a series of runtime systems and tools to combat con-

currency errors and performance problems of multithreaded programs.

The first system, Dthreads, automatically ensures determinism for unmodified

C/C++ applications using the pthreads library without requiring programmer in-

tervention and hardware support. Dthreads greatly simplifies the understanding

and debugging of multithreaded programs. Dthreads often matches or even exceeds

the performance of standard thread libraries, making deterministic multithreading a

practical alternative for the first time.

vi

The second system attacks one notorious performance problem of multithreaded

programs: false sharing. We provide the first accurate and precise detection tool,

Sheriff-Detect, which can pinpoint the name of global variables or the allocation

context of heap objects that involve in false sharing problems, without false positives.

However, rewriting a program to fix false sharing can be infeasible when source code

is unavailable, or undesirable when padding objects can increase excessive memory

consumption or further worsen runtime performance. To resolve this problem, we pro-

vide a runtime system, Sheriff-Protect, to automatically boost the performance

of programs with false sharing problems.

The third system, Predator, improves the effectiveness of false sharing detec-

tion. It can detect one more type of false sharing: read-write false sharing. Also, it can

even detect false sharing problems without occurrences, thus overcomes a shortcoming

of all existing tools: they can only detect those observed false sharing problems.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . xii

CHAPTER

INTRODUCTION . 1

1. PROBLEMS OF MULTITHREADED PROGRAMS 5

1.1 Non-determinism . 5

1.1.1 Background . 5
1.1.2 Source of Non-determinism . 6
1.1.3 Effect of Non-determinism . 7

1.2 False Sharing . 7

1.2.1 Definition . 7
1.2.2 Reason of False Sharing . 8
1.2.3 Performance Impact . 9
1.2.4 Fixing False Sharing . 11

2. PROCESSES-AS-THREADS FRAMEWORK . 13

2.1 Thread Creation and Exit . 13
2.2 Synchronizations . 14
2.3 Shared Memory Semantics . 16

2.3.1 Twinning-and-Diffing mechanism . 17
2.3.2 Custom Memory Allocation . 17

2.4 Execution of a Transaction . 18

viii

3. DTHREADS:EFFICIENT DETERMINISTIC
MULTITHREADING . 20

3.1 Dthreads Overview . 21
3.2 Dthreads Architecture . 23

3.2.1 Isolated Execution . 24
3.2.2 Deterministic Memory Commit . 25

3.2.2.1 Fence and Token . 25
3.2.2.2 Commit Protocol . 27

3.2.3 Deterministic Synchronization . 27

3.2.3.1 Locks . 28
3.2.3.2 Condition Variables . 28
3.2.3.3 Barriers . 30
3.2.3.4 Thread Creation and Exit . 31
3.2.3.5 Thread Cancellation . 31

3.2.4 Deterministic Memory Allocation . 32

3.2.4.1 Deterministic Thread Index . 32
3.2.4.2 Custom Memory Allocation . 32

3.3 Optimizations . 33
3.4 Evaluation . 35

3.4.1 Methodology . 35
3.4.2 Determinism. 36
3.4.3 Performance . 37
3.4.4 Scalability . 39
3.4.5 Performance Analysis . 40

3.4.5.1 Benchmark Characteristics . 40
3.4.5.2 Performance Impact Analysis . 41

3.5 Discussion . 43

3.5.1 Design Tradeoffs . 43
3.5.2 Limitations . 44

4. PRECISE DETECTION AND AUTOMATIC MITIGATION OF
FALSE SHARING . 47

4.1 Detecting False Sharing . 48

ix

4.1.1 Basic Idea . 48

4.1.1.1 Accurate Detection . 50
4.1.1.2 Precise Detection . 51
4.1.1.3 Flexible Reporting . 52

4.1.2 Detailed Implementations . 52

4.1.2.1 Tracking Memory Accesses . 52
4.1.2.2 Tracking Cache Invalidations . 54

4.1.3 Optimizations . 55
4.1.4 Limitation . 56

4.2 Tolerating False Sharing . 57
4.3 Experimental Evaluation . 59

4.3.1 Detection Effectiveness . 60

4.3.1.1 Ease of Locating False Sharing Problems 63

4.3.2 Detection Performance Overhead . 64
4.3.3 Detection Sampling Rate Sensitivity . 66
4.3.4 Prevention Effectiveness . 68

5. PREDATOR: PREDICTIVE FALSE SHARING
DETECTION . 71

5.1 False Sharing Detection . 72

5.1.1 Overview . 72
5.1.2 Compiler Instrumentation . 73
5.1.3 Runtime System . 74

5.1.3.1 Tracking Cache Invalidations . 74
5.1.3.2 Reporting False Sharing . 75

5.1.4 Optimizations . 76

5.1.4.1 Threshold-Based Tracking Mechanism 77
5.1.4.2 Selective Compiler Instrumentation 77
5.1.4.3 Sampling Mechanism . 79

5.2 False Sharing Prediction . 79

5.2.1 Overview . 80
5.2.2 Basic Prediction Workflow . 82

x

5.2.3 Searching for Potential False Sharing . 83
5.2.4 Verifying Potential False Sharing . 84

5.3 Evaluation . 86

5.3.1 Detection and Prediction Effectiveness . 86

5.3.1.1 Benchmarks . 87
5.3.1.2 Real Applications . 89
5.3.1.3 Prediction Effectiveness . 89

5.3.2 Performance Overhead . 91
5.3.3 Memory Overhead . 92
5.3.4 Sampling Rate Sensitivity . 93

5.4 Discussion . 93

5.4.1 Instrumentation Selection . 93
5.4.2 Effectiveness . 95

6. RELATED WORK . 96

6.1 Processes-As-Threads framework . 96
6.2 Deterministic Multithreading . 97
6.3 False Sharing . 98

6.3.1 False Sharing Detection . 98
6.3.2 False Sharing Prevention . 100
6.3.3 False Sharing Detection and Prevention . 100

7. CONCLUSIONS AND FUTURE WORK . 101

7.1 Contributions . 101
7.2 Future Work . 102

BIBLIOGRAPHY . 104

xi

LIST OF FIGURES

Figure Page

1.1 Non-determinism problem . 6

1.2 False sharing and true sharing in a cache line with four words. 8

1.3 False sharing problem . 10

1.4 False sharing performance impact for the simple program shown in
Figure 1.3. 11

1.5 Fixing the false sharing problem shown in Figure 1.3. 12

2.1 Sheriff replaces threads with processes, thus it enables page-based
“per-thread” memory protection and memory isolation. Upon
synchronization points, local changes of different “threads” are
committed to the shared state by comparing the difference
between those working pages and their twin pages. 14

2.2 Pseudo-code for a synchronization. 16

3.1 An overview of Dthreads execution. 22

3.2 An overview of Dthreads phase. Program execution with
Dthreads alternates between parallel and serial phases. 24

3.3 Pseudocode for the internal fence. 25

3.4 Pseudocode for waitToken and putToken. 26

3.5 Pseudocode for thread creation and exit(§ 3.2.3.4). 30

3.6 Normalized execution time with respect to pthreads and
CoreDet(lower is better). For 9 of the 14 benchmarks, Dthreads
runs nearly as fast or faster than pthreads, while providing
deterministic behavior. 37

xii

3.7 Speedup of eight cores versus two cores (higher is better). When
possible to control with command line options, the number of
threads was matched to the number of cores enabled. 39

3.8 Normalized execution time with respect to pthreads (lower is better)
for three different configurations. 42

4.1 To detect false sharing, each cache line of the globals and heap
maintains a cache line status word, which is updated on each
memory access. 50

4.2 Overview of Sheriff-Detects operations. Sheriff-Detect
extends Sheriff with sampling, per-cacheline status arrays, and
per-word status arrays. For clarity of exposition, the diagram
depicts just one cache line per page and two words per cache
line. 53

4.3 A fragment of source code from reverse index. False sharing arises
when different threads modify different words in the same
use len array. 62

4.4 A fragment of linear regression code. Each thread works on its
independent elements of the array. Unfortunately, the size of
struct lreg args is not large enough (only 52 bytes) on 32-bit
machine, which causing two different threads to write to the same
cache line simultaneously. 63

4.5 PTU output for word count. 65

4.6 Sheriff-Detect performance overhead across two suites of
benchmarks, normalized to the runtime of using the pthreads

library (lower is better). 65

4.7 Sheriff-Detect performance with different sampling rates,
normalized to the performance with a sampling interval of 10ms
(presented in Figure 4.6); lower is better. 67

4.8 Sheriff-Protect performance across two suites of benchmarks,
normalized to the performance of pthreads (see Section 4.3.2). In
case of catastrophic false sharing, Sheriff-Detect dramatically
increases performance. 69

5.1 Pseudo-code of handling an access in Predator. 78

xiii

5.2 Performance of the linear regression benchmark (from Phoenix) is
highly sensitive to the memory layout between the (potentially)
falsely-shared object and corresponding cache lines. 80

5.3 False sharing under different environments. 81

5.4 Determining a virtual line with size sz according to hot accesses. 85

5.5 An example reported by Predator, indicating a potential false
sharing problem in the linear regression benchmark. 87

5.6 The false sharing problem inside the linear regression benchmark:
multiple threads simultaneously update distinct entries of a global
array. 90

5.7 Performance overhead of Predator with and without
prediction(PREDATOR-NP). 91

5.8 Absolute physical memory usage overhead with Predator. 93

5.9 Relative physical memory usage overhead with Predator. 94

5.10 Sampling rate sensitivity (execution time). 94

xiv

INTRODUCTION

For decades, applications enjoyed automatic and regular performance gains from

increasing CPU speed. However, the increase of CPU speed results in consuming

more energy and generating more heat. Thus, Intel and other vendors have turned

to providing multiple cores on a single machine. To take advantage of multiple cores,

software needs to be written using multithreading.

Building efficient and reliable multithreaded programs is still a challenging task

because of the following reasons. First, concurrency requires programmers to think

in an unnatural way that humans find difficult. Second, existing languages and tools

are inadequate to detect or prevent concurrency errors and performance anomalies.

Concurrency errors of multithreaded programs, such as race conditions, atomic-

ity violations, order violations, and deadlocks, are very hard to debug [42], because

their occurrences highly depend on some specific conditions, such as thread interleav-

ings and CPU scheduling [3, 17]. Instead of detecting possible concurrency errors,

one promising alternative approach is to attack the problem of concurrency bugs by

eliminating its source: non-determinism. A fully deterministic multithreading system

would prevent Heisenbugs by ensuring that executions of the same program with the

same inputs always yield the same results, even in the face of race conditions in the

code. Such a system would not only dramatically simplify debugging of concurrent

programs [19] and reduce their attendant testing overhead, but would also enable

a number of other applications. For example, a deterministic multithreaded system

would greatly simplify record-and-replay for multithreaded programs [20, 39] and the

deterministic replication of a multithreaded application on different machines for fault

tolerance [5, 8, 14, 50].

1

It is also difficult to write efficient multithreaded programs. The false sharing

problem is a notorious performance problem for multithreaded programs [12, 27]. It

occurs when multiple threads, running on different cores with their separate caches,

access logically independent words in the same cache line. If a thread modifies a

cache line, the cache coherence protocol invalidates the duplicates of this cache line

in other caches, which is crucial for true sharing cases. However, it is totally unnec-

essary for false sharing cases. False sharing can force one core to wait unnecessarily

for updates from another processor, thus wasting both the CPU time and precious

memory bandwidth.

Contributions

This thesis handles two categories of problems for multithreaded programs, relia-

bility and performance. It makes the following contributions:

• Sheriff framework: I developed a novel processes-as-threads framework de-

rived from Grace [7]. Sheriff is a software-only drop-in replacement of the

stand pthreads library. It turns threads into processes, with separate address

spaces but a shared file table. Sheriff provides per-thread memory protection

and isolation on page granularity by relying on the stand memory protection

mechanism and a twinning-and-diffing mechanism. Sheriff enables a range

of possible applications, including language support and enforcement of data

sharing, software transactional memory, thread-level speculation, and race de-

tection.

• I developed an efficient deterministic multithreading system, Dthreads, for

unmodified C/C++ applications, without programmer intervention and hard-

ware support. Dthreads is based on the Sheriff framework to isolate execu-

tions of different threads. Dthreads outperforms the previous state-of-the-art

runtime system (CoreDet) by a factor of 3, and often matches and sometimes

2

exceeds the performance with the standard pthreads library. Dthreads en-

forces robust/stable determinism even in the face of data races, greatly simplify-

ing program understanding and debugging: programs always behave identically,

even with different inputs and on different hardware, as long as the synchro-

nization order is the same. Because of this, Dthreads can also be used to

support replicated executions of multithreaded applications for fault tolerance

purposes.

• Based on the Sheriff framework, I developed another two tools, Sheriff-

Detect and Sheriff-Protect, to deal with false sharing problems of mul-

tithreaded programs, one of the notorious performance problems. Sheriff-

Detect find instances of false sharing accurately (no false positives), runs with

low overhead (on average 20%), and can pinpoint global variables and heap ob-

jects involving in false sharing. Sheriff-Protect mitigates false sharing by

adaptively isolating shared accesses on a cache line from different threads into

separate physical addresses, effectively eliminating the performance impact of

false sharing. It can automatically boost the performance of multithreaded

applications with false sharing problems.

• I also developed a tool, Predator, to improve the effectiveness of false sharing

detection. Instead of relying on the Sheriff framework to track memory writes,

Predator employs compiler instrumentation to track read and write memory

accesses, which make it possible to detect one more type of false sharing, read-

write false sharing. Predator also overcomes a key limitation of previous

detection tools: existing tools can only detect observed false sharing problems.

However, occurrences of false sharing highly depend on memory layout and size

of a cache line, which are affected by a lot of dynamic properties. Predator

can predict potential false sharing that does not manifest in a given execution

3

but may appear—and greatly degrade application performance–in a slightly

different execution environment. Predator is the first false sharing tool able to

automatically and precisely uncover false sharing problems in real applications,

including MySQL and the Boost library.

Outline

The rest of this thesis is organized as follows. Chapter 1 describes reliability

and performance problems of multithreaded programs, which we are going to han-

dle in this thesis. Chapter 2 describes the processes-as-threads framework, Sheriff,

which is the basis of Dthreads, Sheriff-Detect and Sheriff-Protect. Chap-

ter 3 describes Dthreads that ensures deterministic execution for multithreaded

programs linking to this drop-in library. Chapter 4 discusses how to precisely detect

and automatically tolerate false sharing problems based on the Sheriff framework.

Chapter 5 describes a generalized false sharing detection tool by combining compiler

instrumentation and runtime system, which improves the effectiveness of false sharing

detection. Chapter 6 provides a substantial comparison between previous work and

our approaches. Chapter 7 concludes the thesis with its contributions and possible

future work.

4

CHAPTER 1

PROBLEMS OF MULTITHREADED PROGRAMS

Writing Multithreaded programs can encounter concurrency errors and perfor-

mance anomalies. This thesis discusses in detail two different types of problems,

non-determinism and false sharing. We discuss the definitions, causes of these prob-

lems and their possible consequence as follows.

1.1 Non-determinism

1.1.1 Background

Deterministic behavior of programs is the most desirable behavior: given the

same input, a program produces the same output and generates the same execution.

Relying on this behavior, it is able to figure out problems of programs.

In reality, it is relatively easy for sequential programs to achieve this target if a

program do not explicitly rely on a randomized mechanism. However, it is hard to do

this for parallel programs. In shared memory multithreaded programs, an application

can only experience one of many possible schedules at a time. Thread scheduling,

the order of memory accesses on the shared data, operations depending on timing

and non-deterministic synchronizations, can easily lead to different executions of the

same program.

A simple example of non-deterministic execution can be seen in Figure 1.1. When

using the standard pthreads library, this program can print “1,0”, “0,1” or “1,1”

in the end, depending on the order of memory accesses from different threads. We

actually run this simple program for one million times. About 99.43% of time, it will

5

i n t a = b = 0 ;
main () {

spawn (p1 , t1) ;
spawn (p2 , t2) ;
j o i n (&p1) ;
j o i n (&p2) ;
p r i n t (a , b) ;
}

void ∗ t1 () {
i f (b == 0) {

a = 1 ;
}
r e turn NULL;

}

void ∗ t2 () {
i f (a == 0) {

b = 1 ;
}
r e turn NULL;

}

Figure 1.1. Non-determinism problem

print “1,0”, while 0.56% it will print “0,1” and 0.01% it will print “1,1”. According

to the semantics of this program, both “1,0” and “1,0” are correct results. Thus, the

unexpected result (“1,1”) caused by race conditions happens very rarely, only about

0.01%. It is very difficult to observe/reproduce these rare cases that caused by race

conditions.

1.1.2 Source of Non-determinism

Non-determinism can be caused by a lot of sources, both external sources and

internal sources. For example, the timing of external inputs is one of the sources

that can lead to non-determinism. This section only lists internal sources of non-

determnism [1].

Thread Communication: Thread communication is the most important source of

non-determinism for multithreaded programs. First, the order of accesses on shared

variables may change from one execution to the other. Second, the orders on shared

resources, such as memory allocation, synchronization, and library/system calls, vary

across different executions. Third, the interaction between compiler and run-time can

be changed. For example, lazy binding may cause the thread that performs address

resolution to execute much more instructions than others.

Memory Layout : Address space layout randomization (ASLR) in Linux envi-

ronment brings non-deterministic memory addresses of instructions and data across

6

different executions. Thus, a program relying on memory addresses lead to non-

deterministic execution of a program.

System or Library Dependence: Some library or system calls cannot return deter-

ministic results. For example, the gettimeofday() library call returns different time

values at different time, and read system calls may return different number of bytes,

depending on the timing of issuing read calls. An application relying on them can

execute non-deterministically too.

1.1.3 Effect of Non-determinism

Because of different sources of non-determinism, listed in the above section, exist-

ing multithreaded applications can not run deterministically: given the same input, a

program can have different executions that may or may not lead to different outputs.

Non-determinism can greatly complicate the reasoning and debugging in devel-

opment phases, which makes it hard for programmers to reproduce program errors.

Even worse, since executions of deployment can vary from executions of development

phase, a lot of programmer errors can be easily leaked to customers.

By contrast, determinism greatly simplifies the understanding and debugging of

multithreaded programs. We can always guarantee the same executions on both

development phases and the deployment phases, thus there is no need to worry about

erroneous results.

1.2 False Sharing

1.2.1 Definition

False sharing occurs when different processors in a shared-memory parallel system

are referencing distinct fields within the same coherence block (page or cache line)

simultaneously, thereby inducing “unnecessary” coherence traffic [13].

7

Thread 3 Thread 1

Thread 2 Thread 4

(a) False sharing

Thread 1

Thread 2

(b) True sharing

Figure 1.2. False sharing and true sharing in a cache line with four words.

Although it is difficult or impossible to know where a thread runs in an actual

execution, we can conservatively assume that different threads are running on differ-

ent processors with separate cache. Thus, in the multithreaded environment, false

sharing simply implies: multiple threads access distinct parts of the same cache line

simultaneously, while one of them is a write operation. False sharing is shown in

Figure 1.2(a). Based on the relationship of false sharing objects, false sharing can

be classified into inter-object and intra-object false sharing. When two different ob-

jects in the same cache line are accessed by different threads simultaneously, that is

inter-object false sharing. Otherwise, it is intra-object false sharing.

There is another concept, true sharing, which is opposite of false sharing. In true

sharing (Figure 1.2(b)), multiple threads are accessing the same word.

There is another way to differentiate false sharing with true sharing. False sharing

is avoidable, while true sharing is not.

1.2.2 Reason of False Sharing

As shown in Figure 1.2, false sharing only occurs when the size of coherence block

is larger than that of a single word. Multiple processors may reference different words

of the same coherence block. In this perspective, a single-word block size can avoid

false sharing problems.

However, using a single-word block size is not the actual case. In reality, the size

of a coherence block (cache line) is normally 32 or 64 bytes. The reason of using

8

multiple words in a cache line is to reduce the groups of transfers between the main

memory and the cache since programs always have some spatial locality of reference.

Those adjacent words are very likely to be referenced in the future.

From the performance perspective, reducing the coherence block size to one word

may minimize the data to transferred, but can increase the number of transfers. Thus,

the overhead of transferring less data at a time can be larger than the benefit of

eliminating false sharing coherence traffic. Actually, the hardware trend of cache line

is to increase the size of cache line, which makes false sharing problems increasingly

common.

1.2.3 Performance Impact

False sharing can greatly slowdown the execution of multithreaded programs,

which depends on many factors, including the cache block size, data layout, program

access patterns, and the cost of coherence operations [13].

In a typical shared-memory system, each processor may have a separate cache.

In order to increase the access speed, when a processor references a word, all the

data inside the same cache line is fetched from the main memory to its corresponding

cache. When multiple processors are accessing distinct words of the same cache line

simultaneously, the shared data can be replicated into caches of different processors

that access this cache line. Thus, it is very important to maintain the coherence

across different processors: if any copy is changed, this change should be propagated

to other processors immediately for correctness purposes. In real hardware, this data

propagation only happens lazily when the data is accessed again, thus duplicates are

invalidated at first. When a processor access an invalidated cache line, it should

wait for the data propagating from other processors, wasting CPU time and memory

bandwidth simultaneously.

9

In the false sharing case, this propagation is totally unnecessary because different

threads are actually accessing different parts of the same cache line. Thus, there is

no need for a processor to get the updated data that is not going to access. However,

hardware can only tracks the change of data on the granularity of a cache line and have

to propagate those changes if any word has been changed. When there are interleaved

writes, issued by different processors, on the same cache line, the ping-pong effect of

loading-and-invalidating of data on this cache line can greatly slow the execution of

programs. Programs with false sharing can even run slower in a multi-core machine

than in a single-core machine, losing the benefit of multiple cores.

Many common programming practices can easily cause false sharing. For exam-

ple, different threads accessing different entries of the same global array, listed in

Figure 1.3, is such an example. This example has no correctness problem, but a

serious performance problem.

i n t Array [8] ;
i n t W = 1 ;

i n t main (i n t THREADS) {
W = 8/THREADS;
f o r (i = 0 ; i< 8 ; i += W)
spawn (increment , i) ;

}

void ∗ c h i l d (i n t S) {
f o r (i = S ; i< S + W; i++)

f o r (j = 0 ; j < 1M; j++)
Array [i]++;

}

Figure 1.3. False sharing problem

We actually run this program on a real machine with 8 cores and Figure 1.4

presents performance results. On this evaluation, we specifically choose a different

number of threads, matching the number of hardware cores, from 1 thread to 8

threads, to perform the same amount of workload. We find out that false sharing can

greatly impact the performance, which brings around 13× difference between actual

performance and the expected performance. Two trends–the prevalence of multicore

10

0"

20"

40"

60"

80"

100"

120"

140"

1" 2" 4" 8"

Ru
n)

m
e(
s)
"

Number"of"threads"

Reality" Expecta)on"

Figure 1.4. False sharing performance impact for the simple program shown in
Figure 1.3.

architectures and the expected increase in the number of multithreaded applications in

broad use, and increasing cache line sizes–are likely to make false sharing increasingly

common.

1.2.4 Fixing False Sharing

There are several ways to fix false sharing problems after they are identified.

The basic idea is to prevent multiple threads from accessing the same cache line

simultaneously.

The first way is to change the size of corresponding structure or class, by padding

some useless words. Thus, we can prevent two threads concurrently accessing the same

cache line. One example of prevention, linear regression, can be seen in Section 4.3.1.

The second way is to assign the value to thread-local variables at first. Then

different threads only update their own local variables, and commit those changes

back to the shared variable in the end. For example, the problem shown in Figure 1.3

is fixed using this method, see Figure 1.5.

11

void ∗ c h i l d (i n t S) {
f o r (i = S ; i< S + W; i++) {

i n t temp = Array [i] ;

f o r (j = 0 ; j < 1M; j++)
temp++;

Array [i] = temp ;
}

}

Figure 1.5. Fixing the false sharing problem shown in Figure 1.3.

Some other approaches, to fix false sharing problems automatically, is described

in detail in Section 6.3.2, but they all suffer different shortcomings.

12

CHAPTER 2

PROCESSES-AS-THREADS FRAMEWORK

Sheriff extends the processes-as-threads idea, first introduced in Grace [7], to be

a drop-in replacement of the standard pthreads library. It interposes those thread-

spawning calls and replaces them with clone system calls with CLONE FILES flag,

turning threads into processes. Since different processes have separate address spaces

and signal handlers, different processes can isolate their executions and employ page-

based “per-thread” memory protection. In order to achieve the shared-memory se-

mantics of multithreaded programs, Sheriff replaces synchronizations with process-

based synchronizations (Section 2.2), runs the regions between synchronizations in

the isolation mode (Section 2.4), and commits process-private changes to the shared

mapping (Section 2.3).

2.1 Thread Creation and Exit

For thread creations, Sheriff interposes pthread create() functions and re-

places them with clone system calls. By taking advantage of a feature of Linux that

allows selective sharing of memory and file descriptors, Sheriff sets the CLONE FILES

flag when creating new processes, resulting in child processes with different address

spaces but the same shared file descriptor table. However, this attribute may not be

applicable to other systems, e.g., Solaris. That would require shims on I/O operations

to allow processes to share open file descriptors by sending them over UNIX domain

sockets [56, Section 17.4].

13

!"#$%&#'%$(") *(++#,)

!"#$%&''
!(#(%'

)"$%#&'

,-#").%/0)

12034$(")

!"#$%&"'()*

!"#$#'+,"-(*

#./01234*#356*

,178934*#356*

)*+%'

3(
+
+
#,)
5#
6
7)

Figure 2.1. Sheriff replaces threads with processes, thus it enables page-based
“per-thread” memory protection and memory isolation. Upon synchronization points,
local changes of different “threads” are committed to the shared state by comparing
the difference between those working pages and their twin pages.

For those children threads, Sheriff specifically invokes the exit function in or-

der to exit those processes. For pthread join, joiners call waitpid to wait for a

corresponding process to complete.

2.2 Synchronizations

Sheriff supports the full range of synchronizations, including mutexes, condi-

tional variables, barriers, and signals.

14

By definition, synchronization is used to coordinate activities and data accesses

among different threads. For example, a program calls mutex lock() before accessing

the shared data. Leveraging on the processes-as-threads mechanism, Sheriff actu-

ally runs the regions between synchronizations in an isolated mode, which actually

divides a program execution into different “transactions.” In the same transaction,

all reads/writes happen only on private pages after the first write operation on those

pages. Reads still perform on the shared mapping directly if a page is not written by

the current thread.

At synchronization points, Sheriff commits those private changes of each thread

to the shared mapping in order to achieve the shared memory semantics of multi-

threaded programs. Detailed implementation about the execution inside a transaction

is discussed in Section 2.4.

It is noted that the transaction concept here is different from that of transac-

tional memory [36]. Sheriff does not support rollback and favors more on a longer

transaction to better amortize the overhead.

Sheriff turns threads into processes and runs an application in an isolated mode

when there is no synchronization. But this isolation mechanism should not work

for those synchronization variables. For example, in the mutex lock(), if a process

only updates its private page holding this lock variable, then this update is not seen

by other processes, which can cause multiple processes to enter into the same crit-

ical section concurrently. In order to coordinate different threads, Sheriff invokes

process-based synchronizations on those synchronization variables that are shared

across different processes, shown in Figure 2.2. Whenever there is a synchronization,

Sheriff ends the current transaction, gets its process-shared variable, and synchro-

nizes on this variable by using a process-based synchronization. To quickly locate

its process-shared variable for a synchronization variable, Sheriff simply stores the

pointer of it into the first word of this synchronization variable.

15

1 void sync(var) {

2 endTransaction ();

3 realVar = getRealVariable(var);

4 sync_process_based(realVar);

5 beginTransaction ();

6 }

Figure 2.2. Pseudo-code for a synchronization.

2.3 Shared Memory Semantics

In order to create the shared memory illusion for the process-as-threads framework,

Sheriff employs the memory-mapped files to share the heap and globals across

different processes, but not the stack. Different threads are using their own stacks

and the stack is not used as a cross-thread communication in general.

Sheriff creates two different mappings for both the heap and the globals. One

is a shared mapping, which is used to hold the shared state. Another is a private,

copy-on-write(COW) mapping (per-process) that each process works on directly. User

applications can only access private mappings.

Private mappings are linked to shared mappings through the same memory mapped

file. In the isolated mode, reads initially go to the shared mapping until the first write

on a page. After the first write operation, both reads and writes happen on the private

mappings only. In order to achieve the shared memory illusion, Sheriff commits

the current thread’s local changes to the shared mapping at synchronization points

using the twinning-and-diffing mechanism described in Section 2.3.1. More details of

this are discussed in Section 2.4.

In the initialization phase, Sheriff checks its /proc/pid/maps file to find the

range of its globals and creates a shared mapping for the globals. For the heap,

Sheriff uses a customized memory allocator, which is discussed in Section 2.3.2.

16

2.3.1 Twinning-and-Diffing mechanism

In order to find out those local changes made by each thread, Sheriff] borrows

the twin page mechanism, which is introduced in TreadMarks and Munin [35, 18] for

tracking modifications on a page in the distributed share memory system.

The basic idea is to create an additional “twin” page before the actual modifica-

tion, by handling those memory protection faults. It is essential to ensure that the

“twin” page is identical to its “working” page. To achieve this target, Sheriff is-

sues a write operation to the original page, which specifically invokes a copy-on-write

operation to create a “working” page. Then Sheriff creates a “twin” page by copy-

ing this “working” page. At synchronization points, Sheriff compares the “twin”

page and its “working” page, using a byte-by-byte comparison, in order to find out

those changes made by a thread: the difference of two pages simply implies the local

changes made by the current thread.

2.3.2 Custom Memory Allocation

For the program heap, Sheriff replaces the default heap allocator with a BiBOP-

style memory allocator, built on HeapLayers [9]. Sheriff pre-allocates a fixed chunk

of memory from its underlying operating system using mmap system calls and satisfies

memory allocations from this block by redirecting all memory allocations and deal-

locations. In the heap, all heap objects have the block size of power of 2, using an

object header to mark its status and size information. There is no split and merge

operation on heap objects. If the size of an allocation is less than power of 2, Sheriff

allocates an object with the size of the next power of 2.

In order to minimize possible false sharing induced by the memory allocator,

Sheriff borrows a “per-thread-heap” idea from Hoard [6]. Sheriff divides the

heap into a fixed number of sub-heaps (currently 16), with the shared metadata of

the super heap. A thread can only allocate memory from its own sub-heap. When an

17

object is freed, this object is returned to the subheap owned by the current thread.

Since the subheap of each thread is allocated from different pages, this custom memory

allocator is unlikely to allocate two objects from different threads on the same cache

line, helping reduce the false sharing effect.

2.4 Execution of a Transaction

This section walks through an example of Sheriff’s execution from the beginning

of a transaction to its termination.

Transaction Begin: At the beginning of every transaction, Sheriff write-protects

all shared pages so that later writes to these pages can be caught by handling SEGV

protection faults.

Inside a Transaction: Inside each transaction, Sheriff runs at the same speed as

a conventional multithreaded program for program reads. However, the first write to a

protected page triggers a page fault that Sheriff handles: in the page fault handler,

Sheriff obtains an exact copy of this page (a “twin” page), records the page holding

the faulted address, and then unprotects this page so that future accesses run at full

speed. Since Sheriff only exposes the private mapping to user applications, write

accesses on a private mapping actually create a “working” page for every page written

inside a transaction.

Although protection faults are expensive, these costs are amortized over the entire

transaction because each page only incurs at most one page fault per transaction.

Transaction End: At the end of each transaction, at thread exits and before

synchronization points, Sheriff commits local changes of a thread to the shared

mapping to achieve the shared memory semantics. Sheriff commits only the differ-

ences between those “twin” pages and their “working” pages, using a byte-by-byte

comparison.

18

After those local changes are committed, Sheriff reclaims memory holding “twin”

pages and “working” pages. Sheriff issues the madvise call, with the MADV DONTNEED

flag, to discard those “working” pages. Then, the current thread can observe those

changes made by other threads from now on.

19

CHAPTER 3

DTHREADS:EFFICIENT DETERMINISTIC
MULTITHREADING

As described in Section 1.1, non-determinism can greatly complicate the rea-

soning and debugging of parallel programs. To resolve this problem, several recent

software-only proposals aim at providing deterministic multithreading. However, all

of these existing approaches suffer from a variety of disadvantages. Language-based

approaches are effective at removing non-determinism but require programmers to

write code in specialized languages, which can be impractical [11, 16, 55]. Recent de-

terministic systems that target legacy programming languages (especially C/C++)

are either incomplete or impractical. Kendo ensures determinism of synchronization

operations with low overhead, but does not guarantee determinism in the presence

of data races [48]. Grace prevents all concurrency errors but is limited to fork-join

programs, and although it is efficient, it requires code modifications to avoid large

runtime overhead [7]. CoreDet, a compiler and runtime system, enforces determinis-

tic execution for arbitrary multithreaded C/C++ programs [4]. However, it exhibits

prohibitively high overhead (running up to 8× slower than pthreads; see Section 3.4)

and generates thread interleavings at arbitrary points in the code, complicating pro-

gram reasoning, debugging, and testing.

Contributions: We develop Dthreads, an efficient deterministic runtime system

for multithreaded C/C++ applications. Dthreads guarantees deterministic execu-

tion of multithreaded programs even in the presence of data races (notwithstanding

external sources of non-determinism like I/O): given the same sequence of inputs, a

20

program using Dthreads always produces the same output. Dthreads’s deter-

ministic commit protocol not only eliminates data races but also prevents lock-based

deadlocks.

Dthreads is easy to deploy: it works as a direct replacement for the pthreads

library, requiring no code modifications or recompilation. Dthreads is also very

efficient. Dthreads leverages process isolation and virtual memory protection to

track and isolate concurrent memory updates, based on the Sheriff framework. Not

only does this approach greatly reduce overhead, comparing to approaches that track

memory reads and writes, it also eliminates cache-line based false sharing, a notori-

ous performance problem for multithreaded programs. These two features combine

to enable Dthreads to nearly match or even exceed the performance of pthreads

for the majority of benchmarks examined here. Dthreads thus marks a significant

improvement over the state-of-the-art in deployability and performance, and provides

promising evidence that fully deterministic multithreaded programming may be prac-

tical.

3.1 Dthreads Overview

Figure 1.1 shows an example multithreaded program that, because of data races,

non-deterministically produces the outputs: “1,0,” “0,1,” and “1,1.” The order of

instructions are changed from one execution to the other, resulting in these nonde-

terministic outputs. Using Dthreads, this program will deterministically produce

the same output “1,1.” Although this output can be a undesired one, the fact that

results are always reproducible would make it easy for developers to reproduce and

locate data races inside parallel programs.

Dthreads employs the following mechanisms to ensure the deterministic execu-

tion, illustrated by Figure 3.1:

21

Shared
State

Thread 1

Thread 2

Initial State Parallel Serial

Twin

Diff

Final State

Page

Read-Only
Page

Shared
Mapping

Copy

Time

Figure 3.1. An overview of Dthreads execution.

Isolated Memory Access: Based on the Sheriff framework, Dthreads runs

threads as separate processes with private and shared views of memory, thus isolating

executions of different “threads.” Dthreads uses this isolation mechanism to control

the visibility of memory state, so that updates made by a thread cannot be seen by

other threads if those updates are not committed explicitly to the shared mapping.

By doing this, we guarantee that each “thread” can operate independently until

synchronization points. Implementations are discussed in depth in Section 3.2.1.

Deterministic Memory Commit: Multithreaded programs use shared memory

for communication, thus Dthreads must make a thread’s changes seen by other

threads. To guarantee determinism, Dthreads should publish updates of different

threads in a deterministic order at deterministic points.

Dthreads actually commits the changes of a thread to the shared state in se-

quence at synchronization points. These points includes thread creation and exit;

mutex lock and unlock; condition variable wait and signal; posix sigwait and sig-

nal; and barrier waits. Commits are ordered using a global token that is passed

from one thread to the next; a thread can only commit when it holds the token.

The token-passing protocol is described in Section 3.2.2.1 and the implementation of

synchronization primitives is described in Section 3.2.3.

22

Dthreads relies on the twinning-and-diffing mechanism to find out local changes

of different threads, which has been discussed in Section 2.3.1.

Deterministic Synchronization: There is no deterministic guarantee on syn-

chronizations under existing operating systems. Thus, Dthreads re-implements the

full range of pthreads synchronization primitives and discusses them in details in

Section 3.2.3.

Fixing the data race example

About the example program in Figure 1.1, Dthreads effectively isolates the exe-

cution from each thread until it completes, and then orders updates from different

threads by thread creation time using a deterministic last-writer-wins protocol.

In the beginning of every execution, thread 1 and thread 2 have the same view of

shared state, with a = 0 and b = 0. Since changes by one thread to the value of a or

b are not visible to the other until this thread exits, both checks on two threads at

line 2 will be true. So thread 1 sets the value of a to 1, and thread 2 sets the value of

b to 1. These threads then commit their updates to the shared state and exit, with

thread 1 always committing before thread 2. The main thread then should always

print “1, 1” on every execution.

Determinism not only enables replay-without-recording and replicated executions,

but also effectively converts “Heisenbugs” into “Bohr” bugs, making them repro-

ducible. In addition, Dthreads optionally reports any conflicting updates due to

racy writes, further simplifying debugging.

3.2 Dthreads Architecture

This section describes Dthreads key algorithms—isolated execution, determin-

istic (diff-based) memory commit, deterministic synchronization, and deterministic

memory allocation—as well as other implementation details.

23

Serial Phase Parallel Phase

Thread 1

Thread 2

Thread 3

token
passing

trans start

commit

sync

time

Figure 3.2. An overview of Dthreads phase. Program execution with Dthreads
alternates between parallel and serial phases.

Figure 3.2 illustrates the execution of programs under Dthreads. Dthreads

divides the execution of each thread into alternating parallel phases and serial phases.

Based on the Sheriff framework, Dthreads isolates memory accesses in parallel

phases. These accesses work on private copies of memory; that is, updates are not

shared between threads during the parallel phases. When a synchronization point is

reached, updates are applied (and made visible) in a deterministic order, as well as

synchronizations.

3.2.1 Isolated Execution

Relying on the Sheriff framework, Dthreads turns threads into processes, with

separate address spaces but the shared file table (Section 2.1). Thus, Dthreads

isolates memory accesses among different threads between synchronization points:

different threads can only see their own local changes. Those changes are merged

together at synchronization points in order to achieve the shared memory semantics.

24

1 void waitFence(void) {

2 lock ();

3
4 while (! isArrivalPhase ()) {

5 CondWait ();

6 }

7
8 waiting_threads ++;

9 if(waiting_threads < alive_threads) {

10 while(! isDeparturePhase ()) {

11 CondWait ();

12 }

13 }

14 else {

15 setDeparturePhase ();

16 CondBroadcast ();

17 }

18
19 waiting_threads --;

20 if (waiting_threads == 0) {

21 setArrivalPhase ();

22 CondBroadcast ();

23 }

24
25 unlock ();

26 }

Figure 3.3. Pseudocode for the internal fence.

3.2.2 Deterministic Memory Commit

This section describes the mechanisms used to guarantee deterministic commits to

the shared memory. These mechanisms are not provided by the Sheriff framework.

3.2.2.1 Fence and Token

Dthreads places internal fences between parallel and serial phases. Dthreads

re-implements the fence because the standard pthreads’s barrier mechanism does not

support dynamic changes of threads number.

Figure 3.3 shows the pseudocode code for the internal fence. Threads must wait

at an internal conditional variable until all threads depart from the last departure

25

1 void waitToken () {

2 waitFence ();

3 while(isNotMyToken ()) { yield (); }

4 }

5 void putToken () {

6 passTokenToNextOfTokenQueue ();

7 }

Figure 3.4. Pseudocode for waitToken and putToken.

phase (lines 4-5). Then those threads are waiting at the fence until all alive threads

have arrived at the same fence (lines 8-11). The last thread initiates the departure

phase and wakes up all threads on the conditional variable (lines 14-15). As threads

leave the fence, they decrement the number of waiting threads. The last thread to

leave sets the fence to the arrival phase and wakes any waiting threads (lines 19-21).

To reduce overhead, whenever the number of running threads is less than or equal

to the number of cores, waiting threads use spin locks, instead of expensive cross-

process pthreads mutexes. When the number of threads exceeds the number of

cores, Dthreads falls back to using pthreads mutexes.

Another key mechanism of Dthreads is the global token, which Dthreads uses

to order memory commits and synchronizations. The token implementation is listed

in Figure 3.4. The token is a shared pointer that points to the next runnable thread

entry, which guarantees the global order for all operations in serial phases.

Dthreads introduces two subroutines to manage tokens. The waitToken() func-

tion first waits at the internal fence and then waits to acquire the global token in order

to enter or leave the serial phases. The putToken() function passes the token to the

next thread in the token-passing queue.

As shown in Figure 3.2, it is very important for a thread to wait at the internal

fence before a thread enters or leaves serial phases, even for a thread that is guaranteed

to have the token next. Otherwise, memory commits of a thread can affect other

threads’ behavior, bringing non-deterministic behavior for programs.

26

3.2.2.2 Commit Protocol

Figure 3.1 shows the steps to track modifications of every thread and expose them

in a deterministic order.

At the beginning of parallel phases, different threads have a read-only mapping

for all shared pages. In parallel phases, if a thread writes to a page, this write is

trapped in order to create a private copy and a identical twin page for this page.

After that, reads and writes on this page happen on the private copy only. For those

non-trapped pages, reads still go directly to the shared state.

In serial phases, threads first commit their local changes that made in last parallel

phase, guided by the global token. The first thread committing to a page can directly

copy its private working copy to the shared state (page-based commits), but subse-

quent commits can only commit the modified bytes (byte-based commits), using the

twinning-and-diffing mechanism discussed in Section 2.3.1. The byte-based commits

are much slower than the page-based commits, but they won’t overwritten changes

committed by those predecessors. After a thread commits its local changes, it issues

synchronizations before it passes the token to its next thread in the token-passing

queue.

In the end of serial phases, every thread has to release those private pages and

twin pages, recover the read-only mapping, wait at the internal fence before entering

into the next parallel phase. By removing those private pages and recovering those

mappings, a thread is able to observe changes made by other threads, achieving the

shared memory semantics.

3.2.3 Deterministic Synchronization

Dthreads supports the full range of synchronizations of pthreads library, in-

cluding locks, conditional variables, barriers and different types of thread exits. Since

27

the Sheriff framework can not provide any deterministic guarantee, Dthreads

implements different types of synchronizations in a deterministic way as follows.

3.2.3.1 Locks

Before a thread acquires a lock, it has to wait for the global token, by calling

waitToken.

Dthreads treats multiple locks as the same one. It only ends the current serial

phase for a thread when all locks held by this thread are released. Because of that,

it is possible for a program to avoid deadlock problems.

At acquisitions of locks, Dthreads checks at first whether the current thread is

already holding any locks. If not, the thread first waits for the token, commits those

changes happened in the last parallel phase to the shared state, and begins a new

atomic section. Then it increments the number of locks that it is currently holding

before entering into critical sections.

At deacquisitions of locks, Dthreads decrements the number of locks that the

current thread holds first. A thread does nothing if it still holds some locks, with

the number of locks not equal to 0. If all locks are released, Dthreads commits the

memory changes made in this serial phase to the shared state. Then it passes the

global token to the next thread in the token-passing queue, and waits on the internal

fence before entering into the next round’s parallel phase.

3.2.3.2 Condition Variables

Guaranteeing determinism for condition variables is much more complex than for

other synchronization primitives. The underlying operating system can not guarantee

that threads are going to be waken-up in the same order as their waits. Thus, a naive

implementation easily leads to a no-progress problem if the first waken-up thread can

not get the global token to proceed first.

28

When a thread calls pthread cond wait, it first acquires the global token and

commits local modifications made in the current serial phase since pthread cond wait

is generally issued inside a critical section. It then removes itself from the token-

passing queue, so that those threads waiting on condition variables do not participate

in the token pass. Then, it adds itself to the conditional variable’s waiting queue,

decreases the number of alive threads (used in the internal fence mechanism), and

passes the token to the next thread in the token-passing queue before actually waiting

on a process-shared conditional variable.

When a thread is awaken, it should check at first whether the current thread is

ready to run or not. For a deterministic reason, pthread cond signal should only

wake up the first thread waiting on a conditional variable and pthread cond broadcast

wakes up all waiting threads. However, the underlying operating system, like Linux,

can not guarantee this. To resolve this problem, in pthread cond signal, we specif-

ically wake up all threads, but only the first thread is given the permission to run: If

a thread is not able to run, it waits on this conditional variable again; If a thread is

the candidate thread to be waken up, it waits for the global token to enter into the

next serial phase; The candidate thread should get the token immediately in order to

avoid a no-progress problem.

For both pthread cond signal and pthread cond broadcast, the calling thread

first waits for the global token, and then commits any local modifications before issu-

ing an actual wake-up signal. When no threads are waiting on a condition variable,

it passes the token to the next thread immediately, treating those calls as no-ops ba-

sically. Otherwise, it migrates corresponding threads, one for pthread cond signal

and all for pthread cond broadcast, from the queue of this condition variable to

the head of the token-passing queue, marks them as ready, increments the number of

alive threads, and passes the token to the first thread in the token queue.

29

1 void thread_create () {

2 waitToken ();

3 clone(CLONE_FS| CLONE_FILES | CLONE_CHILD);

4 if(isChild) {

5 allocGlobalThreadIndex ();

6 insertToTokenQueue ();

7 notifyChildRegistered ();

8 // Wait for the parent to reach next sync point

9 waitParentBroadcast ();

10 }

11 else if (isParent) {

12 waitChildRegistered ();

13 }

14 }

1 void thread_exit () {

2 waitToken ();

3 atomicEnd(false);

4 removeFromTokenQueue ();

5 decreaseInternalFence ();

6 putToken ();

7 exitThread ();

8 }

Figure 3.5. Pseudocode for thread creation and exit(§ 3.2.3.4).

3.2.3.3 Barriers

Threads waiting on a barrier should not disrupt the token passing of running

threads: Dthreads removes those waiting threads from the token-passing queue,

and places them in corresponding barrier queue.

In order to ensure determinism, the calling thread first waits for the global token

to commit any local modifications. If the current thread is the last one to enter the

barrier, it moves all threads on the barrier queue to the token-passing queue, increases

the number of alive threads, and passes the token to the first thread in the barrier

queue. Otherwise, it removes itself from the token-passing queue, places itself in the

barrier queue, releases the token, and waits on this actual barrier.

30

3.2.3.4 Thread Creation and Exit

To guarantee determinism, thread creations and exits must be performed in serial

phases.

In order to improve the parallelism and performance, a thread is allowed to create

multiple threads without waiting for a new serial phase. Figure 3.5 shows the pseu-

docode for thread creation and thread exit. First, the calling thread waits for the

global token before proceeding (line 2). It then creates a new process, with shared

file descriptors but a distinct address space, by invoking the clone system call (line

3). Then the parent thread is waiting until its newly spawned child has registered

itself.

The newly spawned child obtains the global thread index (line 5), places itself

in the token-passing queue (line 6), and notifies the parent that registration has

finished(line 7). Then it waits for the notification from the parent to proceed when

the parent to reach the next synchronization point, not a thread creation. In this

way, we can allow a parent thread to create multiple children threads in the same

serial phase.

When thread exit() is called, the caller first waits for the global token before

committing any local modifications (line 3). It then removes itself from the token-

passing queue (line 4), and decreases the number of alive threads (line 5). Finally, it

passes the global token to the next thread in the token queue (line 6) and exits (line

7).

3.2.3.5 Thread Cancellation

Dthreads performs thread cancellations in serial phases for the deterministic

reason. A thread can only invoke pthread cancel while holding the global token.

If the thread being cancelled is waiting on a condition variable or a barrier, it is

removed from the queue deterministically. Finally, to cancel a thread, Dthreads

31

kills the target process using kill(tid, SIGKILL) and decrements the number of alive

threads after the cancellation.

3.2.4 Deterministic Memory Allocation

Sometimes, programs may rely on the addresses of objects returned by the memory

allocator intentionally (for example, by hashing objects based on their addresses), or

accidentally. A program with a memory error, like a buffer overflow, will yield different

results for different memory layouts.

The reliance on memory addresses can undermine other efforts to provide deter-

minism. For example, CoreDet is unable to fully enforce determinism because it relies

on the Hoard scalable memory allocator [4]. Hoard was not designed to provide deter-

minism and several of its mechanisms, thread id based hashing and non-deterministic

assignment of memory to threads, lead to nondeterministic execution in CoreDet for

the Canneal benchmark. To resolve this problem, Dthreads employs both deter-

ministic thread index and custom memory allocation mechanism.

3.2.4.1 Deterministic Thread Index

POSIX does not guarantee deterministic process or thread identifiers. To avoid

exposing this nondeterminism to threads that run as processes, Dthreads shims

pthread self() in order to return a deterministic thread index on different execu-

tions. This thread index is managed using a single global variable that is incremented

on every thread creation. This unique thread index is also used to manage per-thread

heaps and as an index into an array of thread entries.

3.2.4.2 Custom Memory Allocation

To preserve determinism in the face of intentional or inadvertent reliance on mem-

ory addresses, we designed the Dthreads memory allocator to be fully deterministic.

32

Dthreads assigns subheaps to each thread based on its deterministically assigned

thread index. In addition to guarantee the same mapping of threads to subheaps

on different executions, Dthreads allocates superblocks (large chunks of memory)

deterministically by acquiring a lock (under the global token) on each superblock

allocation. Thus, threads always use the same subheaps, and these subheaps always

acquires the same superblocks on each execution. The superblocks themselves are al-

located via mmap: while Dthreads could use a fixed address mapping for the heap,

we currently simply disable ASLR to provide deterministic mapping from mmap calls.

If a program does not rely on absolute addresses, Dthreads can guarantee deter-

minism even with ASLR enabled. However, hash functions and lock-free algorithms

frequently use absolute addresses, and any deterministic multithreading system must

disable ASLR to provide deterministic results for these cases.

3.3 Optimizations

Dthreads performs a number of optimizations to improve its performance.

Lazy commit: Dthreads reduces its copying overhead and the time spent in

serial phases by lazily committing pages. When only one thread has ever modified a

page, Dthreads considers this thread to be the owner of this page. An owned page

is committed to the shared state only when another thread attempts to read or write

this page. Dthreads tracks accesses from other threads using page protection, and

signals the owning thread to commit pages on demand. To reduce the number of read

faults, pages holding global variables (which we expect to be shared) and any pages

in the heap that have ever had multiple writers are all considered unowned and are

not read-protected.

Single-threaded-execution: When only one thread is running, Dthreads

does not enable memory protection and treats all synchronization operations as no-

ops. In addition, when only one thread is active and other threads are waiting on

33

conditional variables, Dthreads does not commit local changes to the shared map-

ping (and discard private dirty pages). Updates are only committed when the current

thread issues a cond signal or cond broadcast call, which can wake up other threads

and thus require publication of all updates made by this thread.

Lazy twin creation and diff elimination: To further reduce Dthreads’s

copying and memory overhead, twin pages are only created for those pages that have

multiple writers during the same transaction. In commit phases, a single writer of a

page can directly copy its private working page to shared state, without performing

a byte-by-byte comparison. Thus, when one thread is the sole writer of a page, this

optimization saves a page allocation and a page copy during the execution (either

parallel phases or serial phases), and a comparison in commit phases. In addition,

Dthreads eliminates unnecessary comparisons for all first committers, by associat-

ing a global version number (incremented at each commit) for every dirty page: In

the page fault handler, every thread gets a local version number for current dirty page

additionally; A thread can directly copies its working copy for each page whenever

its local version number equals its global version number, since this thread is the first

committer on this page and there is only one thread that can commit at a time in

serial phases.

Lock ownership: Dthreads uses lock ownership to avoid unnecessary waiting

when threads are using distinct locks. Initially, all locks are unowned. Any thread

attempting to acquire a lock that it does not own must wait until a serial phase to

do so. If multiple threads attempt to acquire the same lock, this lock is marked

as “shared”. If only one thread attempts to acquire a lock, this thread takes the

ownership of this lock and can acquire and release it during parallel phases. Lock

ownership can result in starvation if a thread continues to re-acquire an owned lock

without entering serial phases, while other threads are aiming to acquire the same

lock (and waiting on the fence). To avoid this problem, each lock has a maximum

34

number of times that it can be acquired during a parallel phase before a serial phase

is required.

Parallelization: Dthreads attempts to exploit as much parallelism as pos-

sible in the runtime system. One optimization is that at the start of transactions,

Dthreads performs certain cleanup tasks, including releasing private page frames or

resetting pages to a read-only mode. It is safe to perform these cleanup tasks concur-

rently since these operations do not affect other threads’s behavior. Thus, Dthreads

parallelizes a thread’s cleanup tasks with other threads commit operations, without

holding the global token. With this optimization, the token is passed to the next

thread as soon as possible, reducing time in serial phases.

3.4 Evaluation

We perform our evaluation on an Intel Core 2 dual-processor CPU system, equip-

ping with 16GB of RAM. Each processor is a 4-core 64-bit Xeon, running at 2.33GHZ

with a 4MB L2 cache. The operating system is an unmodified CentOS 5.5, running

with Linux kernel version 2.6.18-194.17.1.el5.

3.4.1 Methodology

We evaluate the performance and scalability of Dthreads (versus CoreDet and

pthreads) across the PARSEC [10] and Phoenix [52] benchmark suites.

In order to compare performance directly against CoreDet, which relies on the

LLVM infrastructure [37], all benchmarks are compiled with the LLVM compiler at

the “-O3” optimization level [37]. Since Dthreads does not currently support 64-

bit binaries, all benchmarks are compiled for 32 bit environments (using the “-m32”

compiler flag). Each benchmark is executed ten times on a quiescent machine. To

reduce the effect of outliers, results with the worst and best performance for each

benchmark are discarded, so each result is the average of the remaining eight runs.

35

Tuning CoreDet: The performance of CoreDet [4] is extremely sensitive to three

parameters: the granularity for the ownership table (in bytes), the quantum size (in

number of instructions retired), and the choice between full serial mode and reduced

serial mode. We compare the performance and scalability of Dthreads with the best

possible results that we could obtain for CoreDet on our system—that is, with the

lowest average normalized runtime—after an extensive search of the parameter space

(six possible granularities and 8 possible quanta, for each benchmark). The results

presented here are for a 64-byte granularity, a quantum size of 100,000 instructions,

and in full serial mode.

Unsupported Benchmarks: We do not include results for 7 benchmarks from

PARSEC, since they do not currently work with Dthreads (note that many of

these also do not work for CoreDet). vips and raytrace would not build as 32-bit

executables; bodytrack, facesim, and x264 depend on sharing of stack variables;

fluidanimate uses ad-hoc synchronization, so it cannot run without modifications;

and freqmine does not use pthreads.

Scalability Experiment: For all scalability experiments, we logically disable

CPUs using Linux’s CPU hotplug mechanism, which allows us to disable or enable a

specific CPU by writing “0” or “1” to a file: /sys/devices/system/cpu/cpuN/online.

3.4.2 Determinism

We first experimentally verify Dthreads’ ability to ensure determinism by ex-

ecuting the racey determinism tester [48]. This stress test contains, as its name

suggests, numerous data races and is thus extremely sensitive to memory-level non-

determinism. Dthreads reports the same results for 2,000 runs. We also verify that

the schedules and outputs of all benchmarks of every execution are identical.

36

0	

2	

4	

6	

8	

10	

PH
OE
NI
X	

his
tog
ram
	

km
ean
s	

lin
ear
_re
gre
s

ma
trix
_m
ult
i

pca
	

rev
ers
e_i
nd
e

str
ing
_m
atc
h	

wo
rd_
cou
nt	

PA
RS
EC
	

bla
cks
cho
les
	

can
nea
l	

ded
up
	

fer
ret
	

str
eam
clu
ste

sw
apt
ion
s	

hm
ean
	

ru
nt

im
e

re
la

tiv
e

to
 p

th
re

ad
s	

 Overhead vs. pthreads	

CoreDet	

dthreads	

pthreads	

Figure 3.6. Normalized execution time with respect to pthreads and CoreDet(lower
is better). For 9 of the 14 benchmarks, Dthreads runs nearly as fast or faster than
pthreads, while providing deterministic behavior.

Benchmark CoreDet
pthreads

Dthreads
pthreads Input

histogram 4.35× 0.52× large.bmp

kmeans 5.05× 0.91× -d 3 -c 1000 -p 100000 -s 1000

linear regression 1.50× 0.13× key file 500MB.txt

matrix multiply 1.55× 1.00× 2000 2000

pca 1.94× 1.03× -r 4000 -c 4000 -s 100

reverse index 4.64× 2.73× datafiles

string match 5.95× 0.65× key file 500MB.txt

word count 7.67× 1.09× word 100MB.txt

blackscholes 1.13× 0.98× 8 in 1M.txt prices.txt

canneal 1.00× 4.12× 7 15000 2000 400000.nets 128

dedup 2.69× 3.39× -c -p -f -t 2 -i media.dat output.txt

ferret 3.69× 2.84× corel lsh queries 10 20 1 output.txt

streamcluster 4.87× 1.44× 10 20 128 16384 16384 1000 none output.txt 8

swaptions 7.61× 0.95× -ns 128 -sm 50000 -nt 8

Table 3.1. Benchmarks: normalized execution time and input parameters.

3.4.3 Performance

For performance, We compare Dthreads to CoreDet and pthreads. Figure 3.6

presents these results graphically (normalized to the runtime of pthreads); Table 3.1

provides detailed information about the normalized execution time and input param-

eters.

Dthreads outperforms CoreDet on 12 out of 14 benchmarks (running between

20% and 12× faster). For 9 benchmarks, Dthreads runs nearly the same as or

better performance than pthreads. Because Dthreads isolates updates in separate

37

processes, it can improve performance by eliminating false sharing: since concurrent

“threads” actually perform at different physical pages, there is no coherence traf-

fic caused by false sharing between synchronization points. Dthreads eliminates

catastrophic false sharing in the linear regression benchmark, allowing it to exe-

cute over 8× faster than pthreads and 12× faster than CoreDet. The string match

benchmark exhibits a similar, though less dramatic, false sharing problem, allowing

Dthreads to run almost 56% faster than pthreads and 9× faster than CoreDet.

Two benchmarks, histogram and swaptions, also run faster with Dthreads than

with pthreads (2× and 6%, respectively; 2.7× and 9× faster than with CoreDet).

We believe but have not yet verified that the reason is false sharing.

Dthreads runs substantially slower than pthreads for 4 of the 14 benchmarks

examined here. The ferret benchmark relies on an external library to analyze image

files during the first stage in its pipelined execution model; this library makes intensive

(and in the case of Dthreads, unnecessary) use of locks. Lock acquisitions and

deacquisitions in Dthreads imposes higher overhead than ordinary pthreads mutex

operations. More importantly in this case, the intensive use of locks in one stage

forces Dthreads to effectively serialize the other stages in the pipeline, which must

repeatedly wait on these locks to enforce a deterministic lock acquisition order. The

other three benchmarks (canneal, dedup, and reverse index) modify a large number

of pages. With Dthreads, each page modification triggers a segmentation violation,

a system call to change memory protection, the creation of a private copy of the page,

and a subsequent copy into the shared space during commit phases. We note that

CoreDet also substantially degrades performance for dedup and reverse index), so

much of this slowdown may be inherent to any deterministic runtime system.

38

0	

1	

2	

3	

4	

4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

 4	

 8	

hist	

 kmeans	

 l.reg	

 m.mul	

 pca	

 r.index	

 s.match	

 w.count	

 b.schol	

 dedup	

 ferret	

 s.clust	

 swap	

 hmean	

sp
ee

du
p

ov
er

 tw
o

co
re

s	

 Scalability	

CoreDet	

 dthreads	

 pthreads	

Figure 3.7. Speedup of eight cores versus two cores (higher is better). When possible
to control with command line options, the number of threads was matched to the
number of cores enabled.

3.4.4 Scalability

To measure the scalability cost of running Dthreads, we ran two benchmark

suite (excluding canneal) on the same machine with eight cores, four cores, and

just two cores enabled. Whenever possible without source code modifications, the

number of threads was matched to the number of CPUs enabled. We have found that

Dthreads scales at least as well as pthreads for 9 of 13 benchmarks, and scales

as well or better than CoreDet for all but one benchmark. On average, Dthreads

outperforms CoreDet by 3.5×. Detailed results of this experiment are presented in

Figure 3.7 and discussed as follows.

canneal was excluded from the scalability experiment because this benchmark

does more work when more threads are present, making the performance compari-

son between eight and two threads unfair. Dthreads hurts scalability (relative to

pthreads) for four of the benchmarks: kmeans, word count, dedup, and streamcluster,

although only marginally in most cases. In all of these cases, Dthreads scales better

than CoreDet.

Dthreads is able to match the scalability of pthreads for three benchmarks:

matrix multiply, pca, and blackscholes. With Dthreads, scalability actually

39

improves over pthreads for 6 out of 13 benchmarks: histogram, linear regression,

reverse index, string match, ferret, and swaptions.

3.4.5 Performance Analysis

3.4.5.1 Benchmark Characteristics

The data presented in Table 3.2 are obtained from the executions running on all 8

cores. Column 2 shows the percentage of time spent in serial phases. In Dthreads,

all memory commits and actual synchronization operations are performed in serial

phases. The percentage of time spent in serial phases thus can affect performance

and scalability. Applications with higher overhead in Dthreads often spend a higher

percentage of time in serial phases, primarily because they modify a large number of

pages that need to be committed during serial phases.

Column 3 shows the number of transactions in each application and Column 4

provides the average length of each transaction (ms). Every synchronization, in-

cluding locks, conditional variable, barriers, and thread exits, demarcate transac-

tion boundaries in Dthreads. For example, reverse index, dedup, ferret and

streamcluster perform numerous transactions whose execution time is less than

1ms, imposing a performance penalty for these applications. Benchmarks with longer

(or fewer) transactions run almost the same speed as or faster than pthreads, in-

cluding histogram or pca. In Dthreads, longer transactions amortize the overhead

of memory protection and copying over a longer period, thus reducing performance

overhead.

Column 5 and 6 provides more detail on the costs associated with memory up-

dates (the number and total volume of dirtied pages). From the table, it is clear why

canneal (the most notable outlier) runs much slower with Dthreads than with

pthreads. This benchmark updates over three million pages, leading to large per-

40

Serial Phase Transactions TransLength DirtyPages DirtyPages

Benchmark (% of time) (#) (ms) (#) (GB)

histogram 0 23 15.47 29 0
kmeans 0 3929 3.82 9466 0.04
linear regression 0 24 23.92 17 0
matrix multiply 0 24 841.2 3945 0.02
pca 0 48 443 11471 0.04
reverseindex 17% 61009 1.04 451876 1.72
string match 0 24 82 41 0
word count 1% 90 26.5 5261 0.02
blackscholes 0 24 386.9 991 0
canneal 26.4% 1062 43 3606413 13.75
dedup 31% 45689 0.1 356589 1.36
ferret 12.3% 484127 0.05 844184 3.21
streamcluster 18.4% 130001 0.04 131992 0.50
swaptions 0 24 163 867 0

Table 3.2. Benchmark characteristics.

formance overhead caused by creating private copies, handling protection faults, and

committing modifications on those pages to the shared memory mapping.

Conclusion: Most benchmarks examined here contain either a small number

of transactions, thus having long running transactions, and modify a modest number

of pages during execution. For these applications, Dthreads is able to amortize

its overhead: by eliminating false sharing, it can even run faster than pthreads.

However, for the few benchmarks that perform numerous short-lived transactions, or

modify a large amount of pages, Dthreads can introduce substantial overhead.

3.4.5.2 Performance Impact Analysis

We further evaluate the performance impact of two important components of

Dthreads: deterministic synchronization (sync-only) and memory protection(prot-

only).

Sync-only : This configuration enforces a deterministic synchronization order.

However, memory protection is not enabled so all “threads” (actually processes) ac-

cess the shared memory directly. We want to use this to show the performance impact

of load imbalance, caused by synchronization based scheduling.

41

0	

2	

4	

6	

PH
OE
NI
X	

his
tog
ram
	

km
ean
s	

lin
ear
_re
gre
s

ma
trix
_m
ult
i

pca
	

rev
ers
e_i
nd
e

str
ing
_m
atc
h	

wo
rd_
cou
nt	

PA
RS
EC
	

bla
cks
cho
les
	

can
nea
l	

ded
up
	

fer
ret
	

str
eam
clu
ste

sw
apt
ion
s	

hm
ean
	

ru
nt

im
e

re
la

tiv
e

to
 p

th
re

ad
s	

 Overhead of dthreads components	

sync-only	

prot-only	

dthreads	

Figure 3.8. Normalized execution time with respect to pthreads (lower is better)
for three different configurations.

Prot-only : This configuration runs threads in isolation, and commits at syn-

chronization points. The order of synchronization and memory commits are non-

deterministic. This configuration eliminates false sharing, but also introduces the

performance overhead of isolation and memory commits. In order to guarantee correct

execution, we replaced those synchronizations as corresponding cross-processes syn-

chronizations. The lazy twin creation and single-threaded execution optimizations are

disabled here because they are unsafe without deterministic synchronization. Thus,

this configuration actually evaluates the performance of the Sheriff framework.

The performance results of these two configurations are shown in Figure 3.8 and

discussed in the following.

• The reverse index, dedup and ferret benchmarks show significant load im-

balance under sync-only configuration. Additionally, these benchmarks intro-

duces significant overhead with prot-only configuration because of a large num-

ber of transactions there. That explains why Dthreads doesn’t have good

performance on these benchmarks.

• The string match benchmark shows performance improvement with sync-only

configuration. The exact reason is not clear, may be due to our custom memory

allocator (described in Section 2.3.2) that eliminates false sharing problems.

42

• The linear regression, histogram and swaptions benchmarks improve per-

formance with prot-only configuration. The memory isolation mechanism elimi-

nates false sharing problems inside and contributes to the performance speedup.

• Normally the performance of Dthreads is not better than the performance

of the prot-only configuration. However, both ferret and canneal run faster

with determinism enabled (under Dthreads). Both are benefited from specific

optimization described in Section 3.3. ferret benefits from the single-threaded-

execution. The performance improvement of canneal is coming from the shared

twin pages for all threads in parallel phases.

3.5 Discussion

All DMT systems must impose an order on updates to shared memory and syn-

chronization operations. The mechanism used to isolate updates affects the limita-

tions and performance of the system. Dthreads represents a new point in the design

space for DMT systems with some inherent advantages and limitations as follows.

3.5.1 Design Tradeoffs

CoreDet and Dthreads both use a combination of parallel and serial phases

to execute programs deterministically. These two systems take different approaches

during parallel phases, as well as the transitions between phases:

Memory isolation: CoreDet orders updates to the shared memory by instru-

menting all memory accesses that could reference shared data. Synchronization op-

erations and updates to shared memory must be performed in serial phases, unless

those updates are performed by owners of a block, which can issued in parallel phases.

This approach results in high instrumentation overhead during parallel phases, but

incurs no additional overhead when exposing updates to the shared state since they

are shared already.

43

Dthreads takes an alternate approach: updates proceed at full speed, but are

isolated using hardware-supported virtual memory. When a serial phase is reached,

these updates are committed to the shared state in a deterministic order, with the

help of the twinning-and-diffing mechanism described in Section 2.3.1.

A pleasant side-effect of Dthreads is the elimination of false sharing. Because

threads work in separate address spaces, there is no need to keep caches coherent

between threads during parallel phases. For some programs, this results in a perfor-

mance improvement as large as 7× when compared to pthreads.

Phases: CoreDet employs a quantum-based scheduler: after the specified number

of instructions is executed in a parallel phase, the scheduler transitions to a serial

phase. This approach bounds the waiting time for any thread that are blocked to the

quantum, reducing the load imbalance problem. One drawback of this approach is

that transitions to a serial phase do not correspond to static program points. Any

changes of code and input will result in a new, previously-untested schedule.

Transitions between phases are static in Dthreads. Any synchronization oper-

ation will result in a transition to a serial phase, and a parallel phase will resume

once all threads have finished their critical sections. This makes Dthreads suscep-

tible to delays due to load imbalance between threads, but results in more robust

determinism. With Dthreads, only the order of synchronization operations affects

the schedule. For most programs, this means that different inputs, and even many

code changes, will not change the schedule produced by Dthreads, as long as those

changes won’t affect the order of synchronizations.

3.5.2 Limitations

This section analyzes some key limitations of Dthreads that restrict its ability to

run certain programs, limit the extent of determinism it can guarantee, or potentially

affect performance.

44

Unsupported programs: Dthreads supports programs that use the pthreads

library, but does not support programs that bypass it by using their own ad hoc

synchronization operations, such as those that use atomic operations. However, the

upcoming C++0X standard includes a library interface for atomic operations [31, pp.

1107–1128], and a future version of Dthreads could intercept these library calls and

treat them as synchronization points. While ad hoc synchronization is a common

practice, it is also a notorious source of bugs; Xiong et al. show that 22–67% of the

uses of ad hoc synchronization lead to bugs or severe performance issues [57].

Currently, Dthreads also does not share the stack across threads, so any up-

dates to stack variables are only locally visible, which could cause a program to fail.

However, communicating across different threads using stack variables is extremely

error-prone and generally deprecated, making this a rare coding practice.

External determinism: While Dthreads provides internal determinism, it

does not guarantee determinism when a program’s behavior depends on external

sources of non-determinism, such as system time or I/O events. Incorporation of

Dthreads in the dOS framework, an OS proposal that enforces system-level de-

terminism, would provide full deterministic execution, although this remains future

work [5].

Runtime performance: Section 5.3 shows that Dthreads can provide high

performance for a number of applications; in fact, for the majority of the benchmarks

examined, Dthreads matches or even exceeds the performance of pthreads. How-

ever, Dthreads could occasionally degrade performance, sometimes substantially.

One way it could do so would be to exhibit an intensive use of locks (that is, ac-

quiring and releasing locks at very high frequency), which are much more expensive

in Dthreads than in pthreads. However, because of its determinism guarantees,

Dthreads could allow programmers to greatly reduce their use of locks, and thus im-

45

prove performance. Other application characteristics, also explored in Section 3.4.3,

can also impair performance with Dthreads.

Memory consumption: Because Dthreads creates private, per-process copies

of modified pages between commits, it can increase a program’s memory footprint by

the number of modified pages between synchronization points. This increased foot-

print does not seem to be a problem in practice, both because the number of modified

pages is generally far smaller than the number of pages read, and because it is tran-

sitory: all private pages are relinquished to the operating system (via madvise()) at

the end of every commit operation.

Memory consistency: Dthreads provides a form of release consistency for

parallel programs, where updates are exposed at static program points. CoreDet’s

DMP-B mode also uses release consistency, but the update points depend on when

the quantum counter reaches zero. To the best of our knowledge, Dthreads cannot

produce an output that is not possible with pthreads, although for some cases it will

result in unexpected outputs. But the same unexpected output will be produced on

every run with Dthreads, making it easier for developers to track down the source

of the problem than with pthreads.

46

CHAPTER 4

PRECISE DETECTION AND AUTOMATIC
MITIGATION OF FALSE SHARING

False sharing is a well-known performance issue [12, 27]. We have discussed this

problem in Section 1.2.

Detecting false sharing requires tools support. Existing tools share a similar short-

coming, where they can not pinpoint the exact place with false sharing problems,

leaving the burden of finding actual places to programmers. Besides that, existing

tools suffer from one or more different shortcomings. Simulation based approaches

[53] and binary instrumentation based approaches [26, 40] normally introduce very

significant performance overhead, slowing down the execution over 100×. Hardware

performance counter based approaches generally provide much better performance,

but they cannot differentiate false sharing from true sharing problems [28, 29].

We provide two systems, Sheriff-Detect and Sheriff-Protect, to tackle

with false sharing problems, based on the Sheriff framework that discussed in Sec-

tion 2. Sheriff is a drop-in replacement of the standard pthreads library, but pro-

viding “per-thread” protection and isolation mechanism. Sheriff-Detect detects

false sharing problem accurately (without false positives) and precisely, by pointing

out the exact places with false sharing problems. It is also very efficient, only intro-

ducing 20% performance overhead. Sheriff-Protect automatically tolerate false

sharing problems when rewriting an application to resolve false sharing is infeasible

or impractical. The reasons can be caused by either source code is unavailable, or

padding data structures would degrade performance because of reduced cache utiliza-

tion and/or increase memory footprint.

47

4.1 Detecting False Sharing

This section first describes the basic idea of detecting false sharing.

4.1.1 Basic Idea

False sharing occurs when more than two threads concurrently access independent

data within the same cache line, at least one of them are writes. False sharing does

not necessarily cause performance problems. It can greatly degrade performance only

when those accesses, caused by threads running on different cores with separate cache,

actually cause a big number of cache invalidations. This is our basic observation.

Generally, there are two known approaches to know how many cache invalidations

actually occurring on a specific cache line, but they all suffer different shortcomings.

The first approach relies on the underlying hardware, called as “hardware-based

approach”. We may rely on specific hardware performance counters, existing in some

special hardware but not all, to know this information. But we cannot have thorough

information about cache invalidations since existing mechanisms are based on sam-

pling, which can lost a lot of information. Also, a tool based on this approach cannot

apply to a different hardware that do not have specific hardware support.

The second approach is to simulate the cache activity on different cache lines. To

do that, we have to know all hardware-related information, including cache hierarchy,

cache capacity and cache eviction rule, and the relationship between a thread and a

specific core (that is hard to match actual situation). Even worse, simulation-based

approaches are normally very slow and cannot be generalized to an execution running

on a different hardware environment.

To avoid these problems, we provide a software-only and generalized approach

that can only rely on memory access history of each cache line, which is used by both

Sheriff-Detect and Predator (discussed in Section 5). Our approach is based

on two conservative assumptions.

48

First assumption: All threads are running on different cores, with separate caches.

Using this assumption can avoid knowing actual hardware cache hierarchy and the

running situation between a thread and different cores. Although in a particular

execution, two threads may run on the same core, thus reducing the effect of possible

false sharing problems. Assuming that two threads are running on different cores

can always represent a worst-case scenario that can happen in future executions.

Thus, this assumption is very conservative, helping report any possible false sharing

problem.

Second assumption: A cache entry is never evicted from its private cache by cache

eviction, meaning that all caches have infinite capacity. This assumption allows us

to compute a cache invalidation without considering whether this entry is still in the

cache or not.

These two assumptions together allow us to compute cache invalidations based

on memory accesses only. Based on these assumptions, we have the following ob-

servation: there is a cache invalidation if a thread writes a cache line after another

thread’s access on the same cache line. Because the last thread accessing this cache

line creates a copy of the same cache line on its running core’s private cache (first

assumption) and holds this copy(second assumption), this write operation definitely

causes a cache invalidation, which invalidates the data copy on the core accessed by

last thread.

To locate cache lines with a big number of cache invalidations, we maintain a cache

line status word for each cache line in the globals and heap, shown in Figure 4.1. We

share a similar mechanism as another concurrent work of Zhao et.al. [58]. How-

ever, the detailed implementation is totally different. Zhao et.al. utilize the detailed

ownership bitmap to track those cores that have a duplicate copy of data, which can

even track how many cache invalidations may happen in a write operation. However,

their design cannot be easily scaled to more than 32 threads, requiring more memory

49

.

 Cache Line
Status Words

……

Globals and Heap

Figure 4.1. To detect false sharing, each cache line of the globals and heap maintains
a cache line status word, which is updated on each memory access.

overhead caused by more bits and more checking performance overhead. Also, their

approach misses one important factor – how many cache invalidations happening on

a specific cache line. Without this information, it is impossible to pinpoint false shar-

ing problems that can cause performance problems. Our approach overcomes these

shortcomings, by only tracking the last thread index and the number of cache inval-

idations. Thus, we can rank the seriousness of false sharing problems based on the

number of cache invalidations.

4.1.1.1 Accurate Detection

Accurate detection implies that we only report those false sharing problems that

can cause performance problems. We employs the following mechanisms to avoid false

positives.

First, we only report false sharing problems with a big number of cache invalida-

tions, larger than a pre-defined but changeable threshold, thus can potentially cause

performance problems. Utilizing the number of cache validations as an indicator

avoids the problem of some existing tools, like PTU [28, 29]. PTU aggregates mem-

ory accesses without considering memory access interleaving, which can report some

cases that has a big number of memory accesses but without many cache invalidations.

50

Second, we can differentiate false sharing from true sharing since true sharing can

also cause cache invalidations. To do this, Zhao et.al. update bitmaps for every read

and write in order to precisely determine whether an invalidation is related to a false

sharing or a true sharing [58]. However, this approach brings scalability problem

that can not scale to more threads, bringing more memory overhead. We achieve the

same target differently: we do not differentiate false sharing from true sharing during

normal executions, but only track word-level accesses information: how many reads

or writes are issued by which thread, where a word accessed by multiple threads is as

“shared”. This design lets us accurately distinguish false sharing from true sharing

in the reporting phase, while do not have the scalability issue. It also helps diagnose

where actual false sharing occurs when there are multiple fields or multiple objects in

the same cache line, as this can greatly reduce the manual effort required to fix the

false sharing problems.

Third, we can avoid pseudo false sharing (false positives) caused by memory

reuses. We intercept those memory allocations and deallocations, update informa-

tion at memory deallocations for those objects without false sharing problems; heap

objects involved in false sharing are never reused so that they can be reported in the

end or on demand.

4.1.1.2 Precise Detection

Precise detection implies that we can precisely point out where the problem is.

Thus, programmers can leverage on that to identify and correct false sharing prob-

lems.

For global variables, we identify the name of global variables involving in false

sharing problems, by looking up corresponding debug information. For heap objects,

we report the callsite of those memory allocations by presenting the line of source code.

In order to capture the origins of heap objects, we intercept those intercepting memory

51

allocations and deallocations and use different ways to get callsite information, which

are discussed in Section 4.1.3.0.1 and Section 5.1.3.2.

To help programmers precisely identify culprits of performance problem, we also

present word-level accesses information so that the exact variables or fields that cause

performance problems can be determined precisely.

4.1.1.3 Flexible Reporting

We provide two different ways to report those false sharing problems. Normally,

we can report those false sharing problems in the end of a program. However, this way

does not work for those long-running applications. Thus, we provide a on-demand

reporting way. User can send a specified signal to those applications that are installed

with our tool. By intercepting those signals, we can report false sharing problems on

demand.

In order to find out those cache lines with false sharing problems, we scan cache

line status words of all memory, including the globals and heap, and only report

those false sharing problems that can possibly cause performance problems, with the

number of cache invalidations larger than a pre-defined but adjustable threshold.

4.1.2 Detailed Implementations

Sheriff-Detect relies on the Sheriff framework to track memory writes, thus

detecting the write-write type of false sharing problems.

4.1.2.1 Tracking Memory Accesses

As discussed in Section 4.1.1, we can detect cache invalidations only based on

memory accesses: for every memory access, we check recent memory access history,

update the number of cache invalidations if possible, and update corresponding mem-

ory access history. Base on our observation, if the current access is a write, and other

threads have accessed this cache line since last invalidation, then there is a cache in-

52

!"##$%&

"'$($)*+&%,$)&

-)$.*+$/*.")&

!"#$%&''
!(#(%'

)"$%#&*'

01234.")&

!"#$%&"'()*

!"#$#'+,"-(*

#./01234*#356*

,178934*#356*

3"
#
#
$%&
5$
6
7&

)+,%'

3"89&
%2#8"'*'9&
%,$)&8*(2&

:*#8+$)(&;<*72&

:-;<*=>* :-?<*@>* :-?<*@>*
-%$./#0"%'
1+2%'!(#(34'

:-1<*A>*

-1*B*4308*C71867*
A*B*C71860*D971E5*03FG41E5*H*2IFF180*

:-;<*=>*

:;<*;>* :-;<*=>* :-?<*?>* :-;<*=>* :-?<*?>* :-;<*=>*
-%$.56$&'
!(#(34'

:;<*;>* :-;<=>*

!(#(34'76$&48'

+E867463A6D*J7186*
)686286D*

Figure 4.2. Overview of Sheriff-Detects operations. Sheriff-Detect extends
Sheriff with sampling, per-cacheline status arrays, and per-word status arrays. For
clarity of exposition, the diagram depicts just one cache line per page and two words
per cache line.

validation. The Sheriff framework isolates executions from different threads, only

commits those changes of different threads to the shared mapping at synchronization

boundaries. Thus, by comparing a “working” page against its “twin” page, Sheriff-

Detect can discover those accumulative memory writes that occurred in the last

transaction.

However, if a transaction is long-running, finding memory changes at the end of

every transaction is not enough to find those false sharing problems happening in the

middle of a transaction. For example, the linear regression benchmark (described

53

in Section 5.3), degrading the performance by more than 10× because of its false

sharing problem, only has a single transaction per thread.

In order to detect memory writes in the middle of an transaction, Sheriff-

Detect employs a sampling mechanism, employing the timer mechanism of the

underlying operating system. We utilize the alarm library API to generate a periodi-

cal alarm to our detection system: by handling the SIGALRM signal, Sheriff-Detect

tracks memory writes accumulatively in the current period using the twinning-and-

diffing mechanism (section 2.3.1). To do this, Sheriff-Detect also keeps and up-

dates a “temporary twin” page at every alarm interval, by simply copying from its

“working” page. The difference between a “working” page and its “temporary” page

implies those memory writes happening in the current sampling period.

Currently, Sheriff-Detect samples memory accesses of each thread at every

10 microsecond, which is adjustable in our implementation. More frequent sampling

may uncover more false sharing problems, but at the cost of increasing performance

overhead. The tradeoff between effectiveness and performance overhead is further

discussed and evaluated in Section 4.3.3.

4.1.2.2 Tracking Cache Invalidations

As the discussion in Section 4.1.1, Sheriff-Detect tracks and reports those

cache lines with a big number of cache invalidations, which may cause serious perfor-

mance problems.

In order to track cache invalidations, Sheriff-Detect introduces a cache line

status word for every cache line of the globals and heap, showed in Figure 4.1.

Sheriff-Detect introduces two fields for every cache line status word, the last

thread writing to this cache line and the number of cache invalidations of this cache

line. Every time, when Sheriff-Detect tracks a memory write, either at the end of

each transaction or during the sampling timer handler, it updates these two fields cor-

54

respondingly. Based on the assumptions described in Section 4.1.1, Sheriff-Detect

increments the number of cache invalidations when there is a write from a different

thread and changes the last thread to the current thread (by recording thread id). To

avoid using lock, Sheriff-Detect updates those counters using atomic primitives.

Since we base on thread id to identify whether there is a cache invalidation, without

keeping track of detailed ownership id, this approach can scale up to any number of

threads.

4.1.3 Optimizations

Sheriff-Detect employs the following optimizations in order to reduce its per-

formance overhead.

4.1.3.0.1 Getting Callsite Information. Sheriff-Detect intercepts mem-

ory allocation operations in order to collect callsites for every heap object. To reduce

the performance overhead, Sheriff-Detect does not use the bracktrace() func-

tion call, but identify the callsite by analyzing the return or frame address using

GCC extensions. However, this can not work on applications without debugging

information.

4.1.3.0.2 Reducing timer overhead. As explained in Section 4.1.2.1, Sheriff-

Detect uses a sampling mechanism to track cache invalidations. To reduce the

performance overhead caused by by handling those alarm signals, Sheriff-Detect

activates sampling only when the average transaction time is larger than a pre-defined

threshold (currently 10 milliseconds). Sheriff-Detect uses an exponential moving

average to track the average transaction time (α = 0.9). This optimization does not

significantly reduce the possibility of finding false sharing, since Sheriff-Detect

can track those accumulative writes inside every short transaction by checking only

at the end of transactions.

55

4.1.3.0.3 Sampling to find shared pages. If an application has a large number

of transactions or a large memory footprint, the overhead of handling page protection

can dominate the total running time. To reduce the number of pages that should

be tracked, Sheriff-Detect leverages a simple insight: if two threads can falsely

share (write-write share) a cache line, then they must simultaneously write to the

same page containing this cache line. Leveraging on this insight, Sheriff-Detect

only tracks those pages written by multiple threads.

In order to identify those shared pages, Sheriff-Detect is based on the following

assumption: if objects on a page are frequently falsely shared, the corresponding page

must also be frequently shared; thus, even relatively infrequent sampling on memory

accesses can reveal the shared relationship. Sheriff-Detect currently samples the

first 50 out of every 1,000 periods (one period equals one transaction or one sampling

interval). At the beginning of each sampling period, all memory pages are made

read-only so that any writes to each page will be detected. Upon finding a page

that is shared across multiple threads, Sheriff-Detect tracks all memory accesses

happening on this page, thus possibly finding any false sharing inside this page.

By using this sampling mechanism, those pages, with sharing status unknown, im-

pose no protection overhead at all. Sheriff-Detect only pays protection overhead

for those shared pages outside the sampling period, instead of all memory pages.

4.1.4 Limitation

Unlike previous tools, Sheriff-Detect reports no false positives, differentiates

true sharing from false sharing, and avoids false positives caused by the reuse of heap

objects.

However, Sheriff-Detect can under-report false sharing instances in the fol-

lowing situations:

56

4.1.4.0.4 Single writer. False sharing usually involves concurrent updates from

multiple threads. But it can also arise when there is exactly one thread writing to

part of a cache line while other threads read from this cache line. Because Sheriff-

Detect can only track writes, it cannot detect this single-writer false sharing, missing

some false sharing problems.

4.1.4.0.5 Heap-induced false sharing. Sheriff replaces the standard mem-

ory allocator with one that, like the Hoard allocator, avoids most heap-induced false

sharing. Sheriff’s memory allocator (like Hoard), carves memory into page-sized

chunks; each thread allocates from its own set of chunks, and the allocator never

splits cache lines across threads. Because Sheriff-Detect uses a different custom

memory allocator, it cannot detect false sharing that is caused by using the standard

memory allocator. Since it is straightforward to deploy Hoard or a similar allocator

to avoid heap-induced false sharing, this limitation is not a problem in practice.

4.1.4.0.6 Misses due to sampling. Since it uses sampling to find shared pages,

Sheriff-Detect may fail to track those pages that written in the middle of sampling

intervals. We hypothesize that false sharing instances that affect performance are

unlikely to perform frequent writes exclusively during that time, and so are unlikely

to be missed.

4.2 Tolerating False Sharing

While Sheriff-Detect can effectively find those false sharing problems of mul-

tithreaded programs, it is sometimes difficult or impossible to fix them. For example,

padding memory to avoid false sharing may even slowdown the performance because

of excessive memory consumption or reducing cache utilization [58]. Also, time con-

straints or unavailable source code may prevent the fixes.

57

Based on the Sheriff framework, we provide the second tool, Sheriff-Protect,

to automatically boost the performance for multithreaded applications with false shar-

ing problems, without programmer intervention.

Sheriff-Protect borrows the insight initially introduced by Dubois et.al. [25]:

delaying updates avoids false sharing. Because Sheriff replaces threads with pro-

cesses, executions of different threads are actually isolated from each other. Thus,

different “threads” (processes) actually access different physical pages (and cache

lines), when originally they are accessing the same cache line in the multithreading

environment. This helps avoid false sharing problems.

However, simply using the Sheriff framework introduces excessive performance

overhead because of the following reasons:

• The overhead of protecting and committing all pages may be too high. As we

already know in Section 2, Sheriff has to commit all local changes of different

threads to the shared mapping at the end of every transaction (synchronization

points) in order to achieve the shared memory semantics.

• If the length of a transaction is short, the overhead of protecting and committing

pages in the Sheriff framework can be easily higher than the performance

benefit by tolerating possible false sharing problems inside. Thus, there is no

benefit to tolerate false sharing problems for short-running transactions.

Sheriff-Protect provides two corresponding mechanisms to avoid these possi-

ble overhead.

Selective Protection. Sheriff-Protect only prevents false sharing on small

objects, with size less than 1024 bytes. All large objects are mapped shared and are

never protected, thus can not tolerate false sharing problems caused by these large

objects. We expect small objects to be a likely source of false sharing because more

of them can fit on a cache line. Also, for large objects, the cost of protecting and

58

committing changes can be bigger than the benefit of tolerating possible false sharing

problems inside.

Adaptive Prevention. Sheriff-Protect employs a simple adaptive mechanism:

it only isolates threads’ executions if the average transaction length is large than a

pre-set threshold. Sheriff-Protect keeps track of the length of each transaction

and uses a exponential weighted averaging (α = 0.9) to calculate the average trans-

action length. If the average transaction length falls below an established threshold,

Sheriff-Protect switches to the shared mappings for all memory and does no fur-

ther page protections. As long as transactions remain too short, without any benefit to

tolerate false sharing problems inside, the protection mechanisms remain switched off.

If the average transaction length rises back above the threshold, Sheriff-Protect

re-establishes private mappings and page protections, thus avoiding possible false

sharing to achieve better performance.

4.3 Experimental Evaluation

We perform all of our evaluations on a quiescent dual processor (totally 8 cores)

system with 8GB of RAM. Each processor is a 4-core 64-bit Intel Xeon, running at

2.33 GHz with a 4MB L2 cache. For compatibility reasons, we compile all applications

to a 32-bit target using the GCC compiler. All performance data is the average of

ten runs, excluding the maximum and minimum values.

The evaluation answers the following questions:

• How effective is Sheriff-Detect at finding false sharing and guiding pro-

grammers to their resolution? (Section 4.3.1)

• What is Sheriff-Detect’s performance overhead? (Section 4.3.2)

• How sensitive is Sheriff-Detect to different sampling rates? (Section 4.3.3)

• How effective does Sheriff-Protect mitigate false sharing? (Section 4.3.4)

59

Microbenchmark Perf Sensitive Sheriff-Detect PTU

False Sharing (adjacent objects) YES 4 4

False Sharing (same object) YES 4 4

True Sharing NO
Non-interleaved False Sharing NO 5

Heap Reuse(no sharing) NO 5

Table 4.1. False sharing detection results using PTU and Sheriff-Detect.
Sheriff-Detect correctly reports only actual false sharing instances that have per-
formance impact; 4 indicates a correct report and 5 indicates a false alarm.

4.3.1 Detection Effectiveness

This section evaluates whether Sheriff-Detect can be used to find false sharing

problems, both in synthetic test cases and in actual applications.

We developed a range of microbenchmarks that exemplify different situations

related to false sharing. We evaluate these benchmarks on both Sheriff-Detect

and Intel’s Performance Tuning Utility(PTU v3.2), the previous state-of-the-art work

of false sharing detection.

Detection results are shown in Table 4.1. Sheriff-Detect only reports those

false sharing instances that can possibly affect performance, while correctly ignores

those cases without performance impact. PTU has false alarms/positives. It does not

track access patterns, which reports false positives for those non-interleaved accesses.

Also, PTU does not track memory deallocations, thus it can not filter out those

pseudo false sharing caused by memory reuse. Sheriff-Detect avoids all of these

problems and reports false sharing problems correctly.

We further evaluate Sheriff-Detect and PTU on two widely-used benchmark

suites, Phoenix [52] and PARSEC [10]. We use the simlarge inputs for all applications

of PARSEC. For Phoenix, we choose available parameters that allow the programs to

run as long as possible. We were unable to successfully compile raytrace and vips,

and Sheriff is currently unable to run x264, bodytrack, and facesim. Freqmine

currently can not support pthreads. Thus, those benchmarks are excluded here.

60

Benchmark PTU Sheriff-Detect

Lines # Objects
kmeans 1916 2
linear regression 5 1
matrix multiply 468 0
pca 45 0
reverseindex N/A 5
word count 4 3
canneal 1 1
fluidanimate 3 1
streamcluster 9 1
swaptions 196 0
Total 2647 14

Table 4.2. Overall detection results of PTU and Sheriff-Detect on Phoenix and
PARSEC benchmark suites. We only list those benchmarks that at least one of tools
reports false sharing problems. For PTU, we show how many cache lines are marked
as falsely shared. For Sheriff-Detect, we show how many objects are reported by
Sheriff-Detect (with cache invalidations larger than 100). The item marked as
“N/A” means that PTU fails to show results because it runs out of memory.

The overall results are shown in Table 4.2. PTU reports that 2647 cache lines

may exist false sharing problems. Sheriff-Detect reveals that seven out of sixteen

evaluated benchmarks have false sharing problems. Totally, only 14 objects are re-

ported, but only 4 of them shows a big number of cache invalidations, thus needs to

be fixed.

Several reasons contribute to the number difference between these two approaches.

First, PTU reports cache lines involving in false sharing, while Sheriff-Detect only

reports objects. If an object has a size larger than the size of cache line, PTU can

report multiple times, one on each cache line. Second, PTU reports multiple times

if a heap object, with the same allocation site, is allocated multiple times, while

Sheriff-Detect only reports once. Third, PTU may report false positives since it

does not track interleaved accesses and overrates the problems caused by heap reuses.

We manually fix these four false sharing problems based on reports of Sheriff-

Detect, and show the performance gains after fixes in Table 4.3. To explain why

61

Benchmark Performance Improvement Updates

(M)
linear regression 818% 1323.6
reverseindex 2.4% 0.4
streamcluster 5.4% 28.7
word count 1% 0.3

Table 4.3. Performance data for four false sharing benchmarks. All data are obtained
using the standard pthreads library. “Updates” shows how many million updates
(in total) occurred on falsely-shared cache lines.

1 int * use_len;

2 void insert_sorted(int curr_thread) {

3

4 // After finding a new link

5 (use_len[curr_thread])++;

6

7 }

Figure 4.3. A fragment of source code from reverse index. False sharing arises
when different threads modify different words in the same use len array.

performance improvement are different, we also examine the maximum possible up-

dates that can occur on a false sharing object, although the actual number of inter-

leaved accesses depends on actual scheduling. For example, linear regression has

the largest updates, thus causing the most serious performance problem.

In reverse index and word count, multiple threads repeatedly modify the same

heap object. The pseudo code for these two benchmarks are listed in Figure 4.3.

For these two benchmarks, we can use thread-local variables to avoid performance

problems: each thread can operate on a temporary variable first, and then modify

the use len array at the end.

Linear regression’s false sharing problem is a little different (see Figure 4.4).

Two different threads write to two independent parts of the same cache line, when

these parts (caused by the size oflreg args structure) are not large enough to occupy

62

1 struct {

2 long long SX;

3 long long SY;

4 long long SXX;

5

6 } lreg_args;

7
8 void *lreg_thread(void *args_in) {

9 struct lreg_args * args = args_in;

10 for(i = 0; i < args ->num_elems; i++) {

11 args ->SX += args ->points[i].x;

12 args ->SXX += args ->points[i].x

13 * args ->points[i].x;

14 }

15

16 }

Figure 4.4. A fragment of linear regression code. Each thread works on its
independent elements of the array. Unfortunately, the size of struct lreg args

is not large enough (only 52 bytes) on 32-bit machine, which causing two different
threads to write to the same cache line simultaneously.

a cache line. This problem can be avoided easily by padding the structure lreg args,

thus preventing different threads concurrently accessing the same cache line.

The false sharing problem detected in streamcluster (one of the PARSEC bench-

marks) is similar to that in linear regression: two different threads are writing to

the same cache line. Examination of the source code indicates that the author tried

to avoid false sharing by padding, but the amount of padding, 32 bytes, was insuffi-

cient to accommodate the actual physical cache line size used in the evaluation (64

bytes). Setting the CACHE LINE macro to 64 bytes reduces the effect of false sharing,

improving the performance by 5.4%.

4.3.1.1 Ease of Locating False Sharing Problems

To illustrate how Sheriff-Detect can precisely locate false sharing problems, we

use one benchmark (word count, a Phoenix benchmark) as an example. Diagnosing

other false sharing issues is similar to this one.

63

Here is an example output from Sheriff-Detect for word count.

1st object, cache interleaving writes

13767 times (start at 0xd5c8e140).

Object start 0xd5c8e160, length 32.

It is a heap object with callsite:

[0]: ./wordcount_pthreads.c:136

[1]: ./wordcount_pthreads.c:441

Line 136 (wordcount pthreads.c) contains the following memory allocation:

use_len=malloc(num_procs*sizeof(int));

Grepping for use len, a global pointer, quickly leads to this line:

use_len[thread_num]++;

Now it is very clear that different threads are modifying the same object(use len).

Fixing the problem by using a thread-local data copy is now straightforward.

By contrast, we can compare PTU’s output that shown in Figure 4.5. Pinpointing

the false sharing problem inside is far more complicated with PTU: it only reports

functions involving in a questionable cache line, not to mention the fact that PTU

can report huge numbers of false positives. Another shortcoming of PTU is that

“Collected Data Refs” number cannot be used as a metric to evaluate the significance

of false sharing problems. For this example, PTU only reports 12 references, while

Sheriff-Detect observes 13767 cache invalidations.

4.3.2 Detection Performance Overhead

Sheriff-Detect’s runtime overhead (comparing to pthreads) on two multi-

threaded benchmarks suites, Phoenix and PARSEC, is shown in Figure 4.6. Sheriff-

Detect only introduces 20% performance on average, with the exception of three

64

Figure 4.5. PTU output for word count.

0.0	

0.5	

1.0	

1.5	

2.0	

bla
ck
sc
ho
les
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

ate
	

his
to
gra
m	

km
ea
ns
	

lin
ea
r_
re
gre
ssi
on
	

ma
tri
x_
mu
l=p
ly	

pb
zip
2	

pc
a	

pfs
ca
n	

re
ve
rse
_in
de
x	

str
ea
mc
lus
te
r	

str
ing
_m
atc
h	

sw
ap
=o
ns
	

wo
rd
_c
ou
nt
	

ge
om
ea
n	

N
or
m
al
iz
ed

	
 E
xe
cu
0
on

	
 T
im

e	

SHERIFF-­‐DETECT	
 overhead	

pthreads	
 SHERIFF-­‐DETECT	

8.2	
 11.4	

Figure 4.6. Sheriff-Detect performance overhead across two suites of bench-
marks, normalized to the runtime of using the pthreads library (lower is better).

outliers. For other benchmarks, Sheriff-Detects overhead is generally acceptable

and far lower than most existing tools.

Sheriff-Detect do not perform well on two benchmarks. canneal runs about

7× slower than that with pthreads. fluidanimate’s performance overhead is about

11× slower than that using pthreads.

The first reason is that both benchmarks trigger a high number of dirtied pages

(3.4 million and 2.15 million, respectively). For each dirty page, Sheriff-Detect

applies page protection twice, creates a “copy-on-write” page and a “twin” page,

checks false sharing problems at every sampling interval, and commits those local

65

changes to the shared mapping. Thus, given large amount of dirty pages, copying

overhead alone is very expensive and can dominate most of overhead. For example,

Canneal invokes around 3.4 million dirty pages, thus leading to substantial overhead.

Another reason for fluidanimate is that it invokes an unusually high number

of transactions (16.7 million). Sheriff-Detect introduces page protection and

commits overhead at every transaction boundary, thus, adding overhead if there are

dirty pages.

However, even with these outliers that run slowly, the overhead of Sheriff-

Detect is generally acceptable and far lower than most existing tools. Sheriff-

Detect actually improves performance by eliminating false sharing, using its process-

as-threads framework. Sheriff-Protect further reduces overhead as the next sec-

tion describes.

linear regression runs 8× faster with Sheriff-Detect than with pthreads,

even with the added overhead of protection, memory commits, sampling and other

mechanisms. There is a serious false sharing problem inside (see Table 4.3,) which

both Sheriff-Detect and Sheriff-Protect eliminate automatically. Other cases

where Sheriff-Detect outperforms pthreads are also due to false sharing elimi-

nation.

4.3.3 Detection Sampling Rate Sensitivity

Sheriff-Detect employs the sampling mechanism to detect false sharing hap-

pening in long-running transactions. Sampling is only triggered when the length

of a transaction exceeds a pre-defined threshold, usually 10ms. By handling those

SIGALARM signals, Sheriff-Detect tracks memory accesses by by comparing the

temporary twin page against its corresponding working version, and updates status

words of specific cache lines. Thus, increased sampling rates may uncover more false

sharing problems, but at the cost of increase performance overhead.

66

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

bla
ck
sc
ho
les
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

ate
	

his
to
gra
m	

km
ea
ns
	

lin
ea
r_
re
gre
ssi
on
	

ma
tri
x_
mu
l?p
ly	
 pc

a	

pfs
ca
n	

re
ve
rse
_in
de
x	

str
ea
mc
lus
te
r	

str
ing
_m
atc
h	

sw
ap
?o
ns
	

wo
rd
_c
ou
nt
	

ge
om
ea
n	

N
or
m
al
iz
ed

	
 E
xe
cu
0
on

	
 T
im

e	

Sensi0vity	
 To	
 Sampling	
 Rate	

2ms	
 10ms	
 50ms	

2.3	

Figure 4.7. Sheriff-Detect performance with different sampling rates, normal-
ized to the performance with a sampling interval of 10ms (presented in Figure 4.6);
lower is better.

To measure Sheriff-Detect’s sensitivity to different sampling rates, we evaluate

on three different sampling rates: 2ms, 10ms (our baseline), and 50ms.

4.3.3.0.1 Sampling Overhead: Figure 4.7 shows the performance overhead un-

der different sampling rates, normalized to the runtime of using the default 10ms

sample rate. For most of these benchmarks, sampling imposes relatively little over-

head either because the average number of shared pages is small, or because the

transaction length is often shorter than the sampling interval (thus no adding check-

ing overhead).

One outlier is canneal, which is extremely sensitive to a different sampling rate.

When the sampling rate is 2ms, canneal runs about 2.3× slower than that with a

10ms sampling rate; canneal runs 35% slower with a 50ms sampling rate than 2 10ms

sampling rate. The reason is that canneal dirties a large number of shared pages.

More frequent sampling thus creates more temporary “twin” pages and increases

checking overhead.

4.3.3.0.2 Sampling Effectiveness: The choice of sampling rates has relatively

little impact on detection and ranking, shown in Table 4.4. As expected, the number

67

Benchmark 2ms 10ms 50ms

objs writes objs writes objs writes
canneal 1 21444321 1 26369324 1 30580451
ferret 1 3 0 0 0 0
fluidanimate 1 3370 1 4064 1 2851
kmeans 2 2974 2 1122 1 98
linear regression 1 1050 1 311 1 71
reverse index 5 14494 5 14782 5 14981
streamcluster 2 52462 1 52283 1 52420
word count 4 9849 4 2699 3 622

Table 4.4. Sheriff-Detect precision with different sampling rates, including the
number of falsely-shared objects and interleaved writes. We omit those benchmarks
with no observed cases of false sharing.

of falsely-shared objects reported and the number of interleaved writes observed are

not significantly different.

Using a different sampling rate does affect the number of falsely-shared objects

detected, but Sheriff-Detect already reports all instances with a significant per-

formance impact under the default sampling rate. Increasing the sampling rate to

2ms (more frequent sampling) reveals two additional falsely-shared objects (in ferret

and streamcluster), but these two objects do not have a significant performance im-

pact since they can only cause few cache invalidations(under 10). Similarly, reducing

the sampling rate to 50ms (less frequent sampling) cannot detect two false sharing

problems (in kmeans and word count), but these objects also have little impact on

performance.

4.3.4 Prevention Effectiveness

We also examine the effectiveness of eliminating false sharing problems of using

Sheriff-Protect. Figure 4.8 presents the performance under Sheriff-Protect

and pthreads. For most cases, Sheriff-Protect either has no effect on perfor-

mance (when there is no false sharing problem inside) or improves the performance.

68

0.0	

0.3	

0.5	

0.8	

1.0	

1.3	

1.5	

1.8	

bla
ck
sc
ho
les
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

ate
	

his
to
gra
m	

km
ea
ns
	

lin
ea
r_
re
gre
ssi
on
	

ma
tri
x_
mu
l>p
ly	

pb
zip
2	

pc
a	

pfs
ca
n	

re
ve
rse
_in
de
x	

str
ea
mc
lus
te
r	

str
ing
_m
atc
h	

sw
ap
>o
ns
	

wo
rd
_c
ou
nt
	

ge
om
ea
n	

N
or
m
al
iz
ed

	
 E
xe
cu
0
on

	
 T
im

e	

SHERIFF-­‐PROTECT	
 performance	

pthreads	
 SHERIFF-­‐PROTECT	

Figure 4.8. Sheriff-Protect performance across two suites of benchmarks, nor-
malized to the performance of pthreads (see Section 4.3.2). In case of catastrophic
false sharing, Sheriff-Detect dramatically increases performance.

Benchmark Normalized Runtime

Sheriff-Detect Sheriff-Protect

blackscholes 1.00 1.00
canneal 8.23 1.11
dedup 1.27 1.02
ferret 1.03 1.03
fluidanimate 11.39 1.47
histogram 0.77 0.76
kmeans 1.29 1.28
linear regression 0.12 0.11
matrix multiply 1.00 1.00
pbzip2 1.13 1.00
pca 1.04 1.03
pfscan 1.02 0.85
reverse index 1.67 1.25
streamcluster 1.10 0.94
string match 0.61 0.60
swaptions 0.97 0.94
word count 1.09 1.05
Geomean 1.21 0.87

Table 4.5. Detailed execution times with Sheriff-Detect and Sheriff-
Protect, normalized to execution with the pthreads library; numbers below 1
(boldfaced) indicate a speedup over pthreads.

69

Table 4.5 presents detailed performance results of Sheriff-Detect and Sheriff-

Protect.

Sheriff-Protect improves the performance when an application is detected

to have false sharing problems inside. linear regression exhibits almost a 10×

speedup against the one using pthreads, by tolerating a serious false sharing problem

inside (see Table 4.3). histogram runs substantially faster with Sheriff-Protect

(24%) because of preventing a read-write false sharing problem, see Section 5.3.1.

string match runs 40% faster because of its custom memory allocator, preventing two

threads allocating different objects from the same cache line, which is why Sheriff-

Detect does not find.

Using Sheriff-Protect, three benchmarks runs up to 47% slower than using

pthreads because of different reasons. kmeans creates more than 3000 threads in eight

seconds. Since the overhead of creating one process is higher than that of creating one

thread, this dominates most of its overhead. For reverse index and fluidanimate,

they exhibit slowdown because of using the processes-as-threads framework: Operat-

ing on those file-based pages is more expensive than operating on anonymous pages

(the normal status of heap pages) under the Linux operating system; Writing to one

page (MAP SHARED) cause a Copy-On-Write operation in the kernel even when there

is only one user.

Because fluidanimate has an enormous number of transactions(18 Million), Sheriff-

Protect introduces some additional overhead for every transaction. That also ac-

counts for part of overhead.

70

CHAPTER 5

PREDATOR: PREDICTIVE FALSE SHARING
DETECTION

This chapter presents Predator, which improves the effectiveness of false sharing

detection. Sheriff-Detect reports false sharing accurately and precisely with only

20% performance overhead. However, it can only detect the write-write type of

false sharing for those programs using pthreads. Sheriff-Detect can also break

programs that communicate across different threads using stack variables or self-

defined synchronizations. These shortcomings greatly limit Sheriff-Detect’s usage

on real-world applications.

In contrast to Sheriff-Detect, Predator detects all types of false sharing

and has no limitations on applications. Predator has been utilized to find actual

false sharing problems of real applications, including MySQL and the Boost library.

In addition, Sheriff-Detect and other systems share one key limitation: they

can only report observed cases of false sharing. As Nanavati et al. point out, false

sharing is sensitive to where objects are placed in cache lines and so can be affected

by a wide range of factors [46]. For example, using the gcc compiler accidentally

eliminates false sharing of the linear regression benchmark at certain optimization

levels, while LLVM does not do so at any optimization level. A slightly different

memory allocation sequence (or different memory allocator) can reveal or hide false

sharing, depending on where objects end up in memory; using a different hardware

platform with different addressing or cache line sizes can have the same effect. All of

this means that existing tools cannot root out potentially devastating cases of false

71

sharing that could arise with different inputs, in different execution environments,

and on different hardware platforms.

Predator is the first system that can predict potential false sharing that does

not manifest in an execution, but may appear and greatly degrade the performance

of programs in a slightly different environment. Predictive false sharing generalizes

from a single execution to identify potential false sharing instances that fall into two

adjacent cache lines, which could be exposed by slight changes in object placement

and alignment. It also can predict false sharing in hardware platforms with larger

cache line sizes by tracking accesses within virtual cache lines that span multiple

physical lines. Predictive false sharing detection thus help avoids the predicament of

previous detection tools: those problems can easily leak to deployment environment

because of the changed execution environment.

Here, we first describe Predator’s false sharing detection mechanism in Sec-

tion 5.1, which consists of both compiler and runtime system components. Section 5.2

then explains how Predator predicts potential false sharing based on a single exe-

cution.

5.1 False Sharing Detection

5.1.1 Overview

Predator follows the same idea of detecting false sharing, described in Sec-

tion 4.1.1. We compute cache invalidations based only on memory accesses history

of each cache line, and only report those instances that may affect performance.

Predator is based on the similar basic observation: if a thread writes a cache

line after other threads have accessed the same cache line, this write operation causes

at least a cache invalidation. Drawing from this observation, Predator tracks cache

invalidations of all cache lines and ranks the severity of performance degradation

according to the number of cache invalidations.

72

To track memory accesses, Predator relies on the compiler instrumentation.

The design tradeoff of choosing compiler instrumentation, instead of other mecha-

nisms, has been discussed in Section 5.4.1. A compiler can easily identify read or

write accesses. However, a compiler does not know how and when those instructions

are being executed, since that depends on a specific execution, input, and runtime

environment.

Therefore, Predator combines a runtime system with compiler instrumentation

to track cache invalidations: the compiler instruments memory accesses so the runtime

system is notified when an access is executed (see Section 5.1.2), and the runtime

system is responsible for collecting and analyzing actual memory accesses to detect

and report false sharing (see Section 5.1.3).

5.1.2 Compiler Instrumentation

Predator relies on LLVM to perform instrumentation at the intermediate rep-

resentation level [38]. It traverses all functions one by one and searches for memory

accesses to those global and heap variables. For each memory access, Predator

instruments a function call to invoke the runtime system, passing with the address,

access type and unit of this memory access (how many bytes). Predator currently

omits accesses to stack variables by default because stack variables are normally used

for thread local storage and therefore do not normally introduce false sharing. How-

ever, instrumentation on stack variables can always be turned on when necessary.

The instrumentation pass is placed at the very end of the LLVM optimization

passes so that only those memory accesses surviving all previous LLVM optimization

passes are instrumented. This technique is similar to the one used by AddressSani-

tizer [54].

73

5.1.3 Runtime System

Predator’s runtime system collects every memory access by handling those func-

tions calls inserted during the compiler instrumentation phase. It analyzes possible

cache invalidations based on the basic observation discussed in Section 5.1.1. Finally,

it precisely reports any performance-degrading false sharing problems it finds. For

global variables involved in false sharing, Predator reports their name, address and

size; for heap objects, Predator reports the callsite stack for their allocations, ad-

dress and size. In addition, Predator provides word granularity access information

for those cache lines involved in false sharing: how many reads or writes are issued by

which thread. This information can further help users diagnose and fix false sharing

instances.

5.1.3.1 Tracking Cache Invalidations

Predator only reports those global variables or heap objects on cache lines

with a large number of cache invalidations, thus possibly affecting performance of

applications. To track cache invalidations, Predator maintains a two-entries-cache-

history table for each cache line. In this table, each entry has two fields: thread ID

and access type (read or write). Thread ID is used to identify the origin of each

access. As stated earlier, only accesses from different threads (with a different thread

ID) can cause a cache invalidation.

For every new access to a cache line L, Predator checks L’s history table T

to decide whether the current access leads to a cache invalidation. As described in

Section ??, only write accesses can cause cache invalidations and read accesses only

create a copy of data in the cache of the current core that the current thread is

running on. Also, it is noticed that table T only has two status: full and not full.

There is no “empty” status since every cache invalidation should replace its table

74

with the current write access, setting the first entry to the current access (with its

thread ID and write access type).

• For a read access R,

– If T is full, there is no need to record this read access.

– If T is not full and another existing entry has a different thread ID, then

Predator records this R (and its thread) by adding a new entry to the

table.

• For a write access W ,

– If T is full, then W can cause a cache invalidation since at least one of

two existing accesses are issued by a different thread (one thread can only

occupy one entry). After recording this invalidation, Predator updates

the existing entry with W (and its thread).

– If T is not full, Predator checks whether W and the existing entry has

the same thread ID. If so, W cannot cause a cache invalidation and there is

no need to do anything. Otherwise, Predator identifies a possible cache

invalidation on this line: it increments the number of cache invalidations

and updates the existing entry with the current W access.

5.1.3.2 Reporting False Sharing

Predator reports false sharing precisely and accurately. Accurately means

Predator only reports those false sharing instances with a large number of cache

invalidations, which may possibly cause performance problems. Predator also dif-

ferentiate actual false sharing from true sharing, since true sharing can also induce a

large number of cache invalidations.

Predator employs the following mechanisms to achieve this target, as well as

reducing the performance overhead.

75

• In order to accurately differentiate those false sharing problems with true shar-

ing problems, Predator tracks word-level accesses for those cache lines in-

volved in a big number of cache invalidations, which has been discussed in

Section 4.1.1.1.

• Predator relies on backtrace() function in the glibc library to obtain the

whole callsite stack, which is slower but much more robust to be used than the

ways used in Sheriff-Detect. Thus, it can report the callsite stack for those

heap objects.

• For every access, Predator needs to lookup the corresponding cache line’s

metadata. Because this operation is so frequent, at every access, lookups need

to be very efficient. Like AddressSanitizer [54] and other systems [47, 58],

Predator uses a shadow memory mechanism to store metadata for every piece

of application data. Thus, Predator can compute and locate corresponding

metadata directly via address arithmetic.

• In order to support shadow memory, Predator uses a pre-defined starting

address and fixed size for its heap. It also contains a custom memory allocator,

which is described in Section 2.3.2. However, using this custom memory allo-

cator also implies that false sharing caused by a memory allocator cannot be

detected by Predator: two threads allocate heap objects from the same cache

line concurrently. But this should not be a serious problem since all modern

memory allocators, like Hoard, already avoid this kind of false sharing and we

should always use this kind of memory allocator.

5.1.4 Optimizations

Tracking every memory access can be extremely expensive, thus Predator uti-

lizes the following mechanisms to further reduce performance and memory overhead.

76

5.1.4.1 Threshold-Based Tracking Mechanism

Predator aims to detect false sharing that significantly degrades performance.

Since cache invalidations are the root cause of performance degradation and only

writes can possibly cause cache invalidations, cache lines with a small number of

writes are never be a target with a significant performance impact. For this reason,

Predator only tracks cache invalidations once the number of writes to a cache line

crosses a pre-defined threshold, which we refer to as the Tracking-Threshold. Before

this threshold is reached, Predator only tracks the number of writes on a cache line

while skipping tracking reads. This mechanism reduces performance and memory

overhead at the same time.

In the current implementation, Predator maintains two arrays in shadow mem-

ory: CacheWrites tracks the number of memory writes on every cache line, and Ca-

cheTracking tracks detailed information for each cache line once the number of writes

on a cache line exceeds the Tracking-Threshold. If the threshold is not reached, there

is no need to check the corresponding CacheTracking. Figure 5.1 illustrates the de-

tailed mechanism.

To avoid expensive lock operations, Predator uses atomic instruction to incre-

ment the CacheWrites counter for each cache line. When the number of writes of a

cache line reaches the predefined threshold, it allocates space to track detailed cache

invalidations and word-level information. Predator also uses an atomic compare-

and-swap to set the cache tracking address for this cache line in the shadow mapping.

After CacheWrites on a cache line reaches the Tracking-Threshold, all read and write

accesses on this cache line are tracked.

5.1.4.2 Selective Compiler Instrumentation

Predator relies on compiler instrumentation to provide memory access infor-

mation to the runtime system and detects false sharing based on the sequences of

77

1 void HandleAccess(unsigned long addr , bool isWrite) {

2 unsigned long cacheIndex=addr >>CACHELINE_SIZE_SHIFTS;

3 cachetrack *track=NULL;

4
5 if(CacheWrites[cacheIndex]<TRACKING_THRESHOLD) {

6 if(isWrite) {

7 if(ATOMIC_INCR (& CacheWrites[cacheIndex])

8 == TRACKING_THRESHOLD -1) {

9 track=allocCacheTrack ();

10 ATOMIC_CAS (& CacheTracking[cacheIndex],0,track));

11 }

12 }

13 }

14 else {

15 track=CacheTracking[index]);

16 if(track){

17 // Track cache invalidations and detailed accesses

18 track ->handleAccess(addr , isWrite);

19 }

20 }

21 }

Figure 5.1. Pseudo-code of handling an access in Predator.

memory accesses on every cache line. The performance overhead of a specific pro-

gram is always proportional to the degree of instrumentation: more instrumentation

generally indicates more performance overhead. Thus, Predator provides a flexible

framework to instrument programs depending on the performance requirements of

the user.

Currently, Predator only instruments once for each type of memory access on

each address to the same basic block. This selective instrumentation does not nor-

mally affect the effectiveness of detection. Because Predator aims to detect false

sharing cases with a large number of cache invalidations, less tracking of accesses

inside a basic block can induce fewer cache invalidations, but it should not affect the

overall behavior of cache invalidations.

To improve performance further, Predator can be easily extended to support

more flexible instrumentation as follows:

78

• Predator could selectively instrument both reads and writes or only writes.

Instrumenting only writes reduces overhead while detecting write-write false

sharing, as Sheriff does.

• Predator can be set to instrument or skip specific code or data. For example,

the user could provide a black-list so that given modules, functions or variables

are not instrumented. Conversely, the user could provide a white-list so that

only specified functions or variables are instrumented.

5.1.4.3 Sampling Mechanism

As described in Section 5.1.4.1, when the number of writes on a cache line is

larger than Tracking-Threshold, every access must be tracked in detail: we have

to track word-level information, update the number of accesses and possible cache

invalidations, and update the cache access history table of this cache line. When a

cache line is involved in false or true sharing, updating those counters can exacerbate

the performance impact of sharing: not only is there an cache invalidation on this

application’s cache line, but there is also at least another cache invalidation caused

by updating the metadata of this corresponding cache line.

To further reduce the performance overhead, Predator only samples the first

specified number of accesses during each sampling interval. Currently, Predator

maintains an access counter for each cache line and only tracks the first 10, 000 ac-

cesses out of every 1 million accesses on a cache line, with 1% sampling rate. Sec-

tion 5.3.4 further evaluates the effect of different sampling rates on performance and

effectiveness.

5.2 False Sharing Prediction

This section further motivates predictive false sharing and explains how to support

it in the runtime system.

79

0"

1"

2"

3"

4"

5"

6"

Off
se
t=
0"

Off
se
t=
8"

Off
se
t=
16
"

Off
se
t=
24
"

Off
se
t=
32
"

Off
se
t=
40
"

Off
se
t=
48
"

Off
se
t=
56
"

Ru
n$

m
e'
(S
ec
on

ds
)'

Object'Alignment'Sensi$vity'

Figure 5.2. Performance of the linear regression benchmark (from Phoenix) is highly
sensitive to the memory layout between the (potentially) falsely-shared object and
corresponding cache lines.

5.2.1 Overview

The appearance of false sharing depends on the memory layout between objects

and corresponding cache lines. The performance of a real example, linear regression,

is shown in Figure 5.2: When the offset of the starting address between the potentially

falsely-shared object and corresponding cache lines is 0 or 56 bytes, there is no false

sharing; When the offset is 24 bytes, we see the most severe performance effect caused

by false sharing. The performance difference caused by false sharing can affect the

performance as large as 15× on an 8-core machine.

Existing detection tools can only report observed false sharing. That means, they

may miss such a very severe false sharing problem that could occur in the wild if

the offset of the starting address was 0 bytes or 56 bytes in their test environment.

Predator overcomes this shortcoming by accurately predicting potential false shar-

ing, without the need of occurrences.

80

Cache line 1 Cache line 2

(a) No false sharing

Cache line 1

(b) False sharing with
larger cache size

Cache line 1 Cache line 2 Cache line 3

(c) False sharing with different mem-
ory layout

Figure 5.3. False sharing under different environments.

Predator predicts potential false sharing, which does not manifest in the current

execution but may appear and greatly affect performance of programs in a slightly

different environment.

Figure 5.3 shows a simplified example why occurrences of false sharing can change

in different situations. In this figure, two rectangles with different patterns represents

two portions of the same object, updated by different threads. In Figure 5.3(a), there

is no false sharing when thread T1 only updates “cache line 1” and T2 only updates

“cache line 2”. However, false sharing appears in one of the following cases, even with

the same access pattern.

• Doubling cache line size (Figure 5.3(b)). When the size of a cache line doubles,

both T1 and T2 access the same cache line concurrently, thus causing false

sharing.

• Different starting address of an object(Figure 5.3(c)). When the starting address

of this object is not aligned with the starting address of the first cache line,

then T1 and T2 can update the second cache line simultaneously, causing a

false sharing problem.

Predator predicts whether programs can have potential false sharing in one of

these two situations, where they can be caused by different dynamic properties. These

dynamic properties include choosing a different compiler, enabling different compiler

optimizations, using a different memory allocator, adding or removing code involving

81

in memory allocations, switching to a different target platform with a different address

mode (32-bit or 64-bit), and changing the size of cache line (64 Bytes or 128 Bytes).

All dynamic properties, except changing the size of cache line, can lead to a different

memory layout, thus can possibly affect occurrences of a false sharing problem. Thus,

predicting false sharing in changing the memory layout or changing the size of cache

line actually explores many possibilities caused by all of these dynamic properties.

5.2.2 Basic Prediction Workflow

Predator focuses on potential false sharing that can cause performance prob-

lems. It is based on two key observations. First, only accesses to adjacent cache

lines can lead to potential false sharing, i.e., introducing cache invalidations when the

cache line size or an object’s starting address changes. Second, only those cache lines

with a large number of cache invalidations can degrade performance.

Based on these two observations, Predator develops the following workflow to

predict potential false sharing. Those detection optimizations listed in Section 5.1.4

can also be applied to here. We do not repeat these optimizations in this section.

1. Track the number of writes on different cache lines.

2. When the number of writes to a cache line L reaches Tracking-Threshold,

Predator tracks the detailed read and write accesses for every word on both

cache line L and its adjacent cache lines.

3. When the number of writes to a cache line L reaches a second threshold (called as

Predicting-Threshold), Predator identifies whether there exists false sharing in

L and its adjacent cache lines by analyzing word accesses information collected

in Step 2, which are described in Section 5.2.3 in detail.

82

4. If a potential false sharing is found, Predator starts to track cache line invali-

dations in order to confirm its seriousness, which are discussed in Section 5.2.4.

Otherwise, go back to Step 2 to track more detailed accesses.

5.2.3 Searching for Potential False Sharing

To describe potential false sharing in two different cases, we first introduce a

concept – “virtual cache line”. A virtual cache line is a contiguous memory range

that spans one or more physical cache lines.

In the case of double cache line size, a virtual line is composed of two originally

contiguous cache lines, where it starts with a even number cache line. Thus, only

cache lines 2 ∗ i and 2 ∗ i+ 1 can form a virtual cache line.

To evaluate a potential false sharing problem that can be caused by changing

memory layout, a virtual line should have the same size as an actual cache line, but

with a different starting address: unlike actual cache lines, the starting address of a

virtual cache line does not need to be multiple of the cache line size. For instance, a

64-byte-long virtual line can consist of the range [0, 64) bytes or [8, 72) bytes.

To search for a potential false sharing problem, Predator searches for a pair of

hot accesses, one on L and one on its previous or next cache line, based on detailed

word information collected in Step 2. Two accesses happening in the same actual

cache line should be detected by the normal detection mechanism, thus they can lead

to actual false sharing problems but not a potential false sharing problem.

A hot access refers to an access that has the number of read or write accesses

larger than the average number of accesses. In fact, for every hot access X in a

specific cache line L, Predator searches another hot access Y in L’s previous cache

line or next cache line, satisfying the following conditions:

• X and Y reside on the same virtual line.

• One of X and Y is a write access.

83

• X and Y are issued by different threads.

Whenever it finds such a pair, X and Y , Predator identifies a potential false

sharing problem: they can degrade performance when the number of cache invali-

dations possibly caused by X and Y (on a possible virtual line), is larger than a

pre-defined threshold. This approach is based on a similar observation as in detec-

tion: if a thread writes a virtual line after other threads have accessed the same virtual

line, this write operation causes at least one cache invalidation.

However, before tracking detailed memory accesses on a specific virtual line, it

is impossible to know exactly how many cache invalidations actually happen on this

virtual line. Thus, Predator conservatively assumes that accesses from different

threads occurs in a interleaved way, with the maximum number of cache invalidations.

Then Predator starts to track possible cache invalidations on a virtual covering both

X and Y , described in Section 5.2.4.

5.2.4 Verifying Potential False Sharing

Predator verifies potential false sharing by tracking possible cache invalidations

on a specific virtual line covering such a hot access pair, X and Y .

For potential false sharing caused by double cache line size, as described in Sec-

tion 5.2.3, a virtual line is always composed of cache line with index 2∗ i and 2∗ i+1.

Predator tracks cache invalidations on a virtual line that covering X and Y . This

virtual line is unique for a given X and Y pair.

However, for the case of changing memory layout, two hot accesses with distance

less than the cache line size can actually form multiple virtual lines. There is thus an

additional step to determine which virtual line to be tracked. Although a virtual line

to be chosen here is never a real cache line of actual hardware because of unaligned

addresses, we utilize this virtual line to simulate the effect of changing memory layout

correspondingly.

84

d

(sz-d)/2 (sz-d)/2

Y X

Cache Line 1

Tracked virtual line

Cache Line 2

Non-tracked virtual lines

Figure 5.4. Determining a virtual line with size sz according to hot accesses.

Figure 5.4 shows that multiple virtual lines can cover X and Y . However, Preda-

tor only chooses one of these virtual lines. Predator chooses the virtual line that

leaves the same space before X and after Y . That is, the virtual line starting at

location X − ((sz − d)/2) and ending at Y + ((sz − d)/2) is tracked by Predator.

This choice allows tracking of more possible cache invalidations caused by adjacent

accesses of X and Y . Since adjusting the starting address of a virtual line has the

same effect of adjusting the starting address of an object in detecting false sharing, all

cache lines related to the same object must be adjusted at the same time. Predator

then tracks cache invalidations based on these adjusted virtual lines.

In the end, Predator can report accurately whether the change of memory

layout can affect the performance or not, based on the possible number of cache

invalidations.

Currently, Predator only determines a specific virtual line to be tracked. How-

ever, we plan to extend this in the future work by using a much more flexible mecha-

nism: we can choose a different virtual line after a number of accesses if the current

choose cannot reveal a big number of cache invalidations.

85

5.3 Evaluation

This section answers the following questions:

• How effective is Predator at detecting and predicting false sharing?

• What is Predator’s overhead, in terms of execution time and memory ?

• How sensitive is Predator to different sampling rates?

5.3.0.0.1 Experimental Platform. All evaluations are performed on a quies-

cent Intel Core 2 dual-processor system, equipped with 16GB RAM in total. Each

processor is a 4-core 64-bit Intel Xeon running at 2.33 GHz, with a 4MB shared L2

cache and 32KB private L1 cache. The underlying operating system is an unmodified

CentOS 5.5, running with Linux kernel version 2.6.18-194.17.1.el5. The glibc version

is 2.5.

5.3.0.0.2 Evaluated Applications. This paper evaluates two popular bench-

mark suites, Phoenix (with large input) [52] and PARSEC (with simlarge input) [10].

Even with unmodified LLVM-3.2, Facesim cannot be compiled successfully (having

complaints on an undefined template) and Canneal aborts unexpectedly. Thus, these

two benchmarks are excluded. We also evaluate Predator on six real applications,

including MySQL, Boost, Memcached, aget, pbzip2 and pfscan.

5.3.1 Detection and Prediction Effectiveness

For every false sharing problem, Predator reports source code information and

detailed memory access information in order to help users fix those problems. Fig-

ure 5.5 shows an example for the linear regression benchmark. This report shows

that the heap object starting with 0x40000038 potentially causes a large number of

cache invalidations. The call stack of this memory allocation is provided to help lo-

cate culprits. In addition, Predator also reports word-level access information of

86

FALSE SHARING HEAP OBJECT: s t a r t 0x40000038 end 0x40000238 (with s i z e 200) .
Number o f a c c e s s e s : 5153102690; Number o f i n v a l i d a t i o n s : 175020; Number o f wr i t e s : 13636004.

C a l l s i t e s tack :
. / s t dd e f i n e s . h :53
. / l i n e a r r e g r e s s i o n −pthread . c :133

Word l e v e l in fo rmat ion :
.
Address 0x40000070 (l i n e 16777217) : reads 339508 wr i t e s 339507 by thread 1
Address 0x40000080 (l i n e 16777218) : reads 2716059 wr i t e s 0 by thread 2
.
Address 0x400000b0 (l i n e 16777218) : reads 339507 wr i t e s 339508 by thread 2
Address 0x400000c0 (l i n e 16777219) : reads 2716061 wr i t e s 0 by thread 3
Address 0x400000c8 (l i n e 16777219) : reads 339507 wr i t e s 0 by thread 3

Figure 5.5. An example reported by Predator, indicating a potential false sharing
problem in the linear regression benchmark.

Benchmark Source Code New Without Prediction With Prediction Improvement

histogram histogram-pthread.c:213 4 4 4 46.22%
linear regression linear regression-pthread.c:133 4 1206.93%
reverse index reverseindex-pthread.c:511 4 4 0.09%
word count word count-pthread.c:136 4 4 0.14%
streamcluster streamcluster.cpp:985 4 4 7.52%
streamcluster streamcluster.cpp:1907 4 4 4 4.77%

Table 5.1. False sharing problems in the Phoenix and PARSEC benchmark suites.

this object, which helps to identify where and how false sharing occurs. From that,

we can know that it is a latent false sharing problem predicted by Predator, since

different threads are accessing different cache lines.

5.3.1.1 Benchmarks

We evaluate Predator’s effectiveness on two benchmark suites, Phoenix and

PARSEC, and Table 5.1 presents those benchmarks with false sharing problems. The

first column lists those programs with false sharing problems. The second column

shows precisely where the problem is. Because all discovered false sharing occurs

inside heap objects, we show the source code information of callsite here. The third

column, “New”, marks whether this false sharing was newly discovered by Preda-

tor. A checkmark in the following two columns indicates whether the false sharing

was identified without prediction or with prediction enabled. The final column, “Im-

provement”, shows the performance improvement after fixing false sharing. Note

that the performance improvement shown here is different with that in Table 4.3

87

because Sheriff-Detect evaluates on a 32bit platform and Predator evaluates

on a 64bit platform. This also shows that performance effect is every sensitive to

hardware platform, which is one of dynamic properties that we discussed above.

As shown in the table, Predator reveals two unknown false sharing problems. It

is the first tool to uncover false sharing in histogram and at line 1907 of streamcluster.

In histogram, multiple threads simultaneously modify different locations of the same

heap object, thread arg t. Padding this data structure fixes the false sharing problem

and improves the performance by around 46%. In streamcluster, multiple threads

are simultaneously accessing and updating the same bool array, switch membership.

Simply changing all elements of this array to a long type reduces the false sharing

effect, improving performance by about 4.7%.

Other false sharing problems were discovered by previous work [41]. The detailed

reason of false sharing problems and how they are fixed are discussed in Section 4.3.1.

It is worth noting that linear regression has a potential false sharing problem

according to the execution environment of Predator. According to the observation

of Nanavati et al., this false sharing problem occurs when using clang and disappears

when using gcc with the -O2 and -O3 optimization level [46]. But we observed a

different result: when we are using the clang-3.2 compiler and our custom memory

allocator, the false sharing problem does not occur at all because the offset happens

to be 56 bytes (see Figure 5.2). However, it does occur in the original execution

environment, with the default memory allocator and using gcc compiler. That is

why fixing it improves the performance by more than 12×. This also exemplifies the

necessity of Predator predictive detection: existing tools may miss a false sharing

problem if it does not occur at their test environments.

88

5.3.1.2 Real Applications

To verify Predator’s practicality, we further evaluate several widely-used real

applications, whereas no previous work has done this. These real applications include

a server application (MySQL [45]), a standard C++ library (Boost [44]), a distributed

memory object caching system (Memcached), a network retriever (aget), a parallel

bzip2 file compressor (pbzip2), and a parallel file scanner (pfscan).

MySQL-5.5.32 and boost-1.49.0 are known to have false sharing problems. Other

applications (memcached-1.4.15, aget-0.4.1, pbzip2-1.1.6, and pfscan) do not have

known false sharing problems.

The false sharing of MySQL has caused a significant scalability problem and was

very difficult to be identified. According to the architect of MySQL, Mikael Ronstrom,

“we had gathered specialists on InnoDB..., participants from MySQL support... and a

number of generic specialists on computer performance...”, “[we] were able to improve

MySQL performance by 6× with those scalability fixes” [45]. The false sharing inside

Boost is caused by the usage of a spinlock pool. Different threads may utilize different

spinlocks located in the same cache line in this case. Reducing the number of spinlocks

on per cache line to 1 brings a 40% performance improvement. Predator is able to

pinpoint false sharing locations in both MySQL and the Boost library. For the other

four applications, Predator does not find severe false sharing problems.

5.3.1.3 Prediction Effectiveness

In this section, we verify whether prediction can always reveal un-observed false

sharing problems.

The linear regression benchmark is evaluated here because of the following two

reasons: (1) The false sharing problem of this benchmark cannot be detected without

prediction; (2) The false sharing problem severely degrades performance when it

actually occurs, thus it is a serious problem that should be detected.

89

1 struct

2 {

3 pthread_t tid; POINT_T *points;

4 int num_elems; long long SX;

5 long long SY; long long SXX;

6 long long SYY; long long SXY;

7 } lreg_args;

8
9 void * lreg_thread (void * args_in) {

10 struct lreg_args * args = args_in ;

11 for(i=0; i<args ->num_elems; i++) {

12 args ->SX+=args ->points[i].x;

13 args ->SXX+=args ->points[i].x*args ->points[i].x;

14 args ->SY+=args ->points[i].y;

15 args ->SYY+=args ->points[i].y*args ->points[i].y;

16 args ->SXY+=args ->points[i].x*args ->points[i].y;

17 }

18 }

Figure 5.6. The false sharing problem inside the linear regression benchmark: mul-
tiple threads simultaneously update distinct entries of a global array.

Figure 5.6 shows the data structure and the code exercising corresponding false

sharing. The size of this data structure, lreg args, is 64 bytes when the program is

compiled to a 64-bit binary using llvm compiler, with optimization level “-O3”. In

this benchmark, the main thread allocates an array, containing as the same number

of elements as hardware cores. Each element is a lreg args type with 64 bytes. This

array is then passed to different threads (lreg thread function) so that each thread

only updates its thread-dependent area. False sharing occurs if two threads happen

to update a cache line.

Figure 5.2 shows how sensitive the performance is to different starting addresses of

this falsely-shared object. When the offset is 0 or 56 bytes, this benchmark achieves

its optimal performance and has no false sharing. When the offset is 24 bytes, the

benchmark runs about 15 times slower than its optimal performance because of the

false sharing problem.

90

0"

3"

6"

9"

12"

15"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
mu
l:p
ly" pc

a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
:o
ns
""

x2
64
""

Re
alA
pp
lic
a:
on
s"
ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

AV
ER
AG
E"

N
or
m
al
iz
ed

+R
un

/
m
e+

Execu/on+Time+Overhead+

Original+

PREDATOR;NP+

PREDATOR+

23" 26"

Figure 5.7. Performance overhead of Predator with and without
prediction(PREDATOR-NP).

Our evaluation shows that Predator can always detect the false sharing problem

with prediction enabled, when this false sharing object starts with different offsets.

This demonstrates the effectiveness of its prediction mechanism.

5.3.2 Performance Overhead

We perform evaluations on different benchmarks and application 10 times and

show the average of 8 runs in in Figure 5.7. To avoid the effect caused by extreme

outliers, the maximum and minimum values are excluded here.

For 16 benchmarks from the Phoenix and PARSEC benchmark suites and six real

applications, Predator imposes 5.4× performance overhead averagely. There is no

noticeable difference on performance whether the prediction mechanism is enabled or

not.

Among five of these programs, histogram, kmeans, bodytrack, ferret, and swap-

tions, Predator introduces more than 8× performance overhead. The histogram

benchmark runs more than 26× slower than the one with pthreads, because tracking

detailed access on cache lines with false sharing exacerbates the false sharing effect

(see more discussion in Section 5.1.4.3). For bodytrack and ferret, although there is

no false sharing, Predator detects a large amount of cache lines with writes larger

91

than Tracking-Threshold. Thus, tracking those accessing details for those cache lines

imposes significant performance overhead. Currently, we have not identified the exact

cause of Predator’s high performance for kmeans.

Predator imposes a small performance overhead for IO-bound applications, such

as matrix multiply, blackscholes, x264, aget, Memcached, pbzip2, and pfscan, since

Predator does not add any performance overhead for IO operations.

5.3.3 Memory Overhead

We evaluate physical memory overhead of Predator, instead of virtual memory

overhead, because Predator allocates 4GB virtual memory for its custom memory

allocator beforehand. Proportional set size (PSS) of a specific memory mapping (in

/proc/self/smaps) reflects the physical memory increase because of running the

current application [34]. Thus, we periodically collect this data and use the sum

of different memory mappings as the total physical memory usage of running an

application. Figure 5.9 presents the normalized physical memory usage of running

different applications, comparing to that using pthreads.

Predator imposes less than 50% memory overhead for 17 out of 22 applications.

For swaptions and aget, Predator introduces more memory overhead because the

original memory footprints of them are very small, only 3 kilobytes. Adding the code

of detection, prediction and reporting (constant overhead) contributes to a large ratio

of memory overhead. The increase of memory consumption in MySQL, from 132 MB

to 512 MB, is due to Predator’s heap organization, which does not aggressively

reclaim memory held by individual threads. In all cases where Predator’s imposes

substantial memory overhead, the applications continue to comfortably fit into RAM

on modern platforms.

92

0"

200"

400"

600"

800"

1000"

1200"

1400"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
M
ul:
ply
"

pc
a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
:o
ns
""

x2
64
""

Re
alA
pp
lic
a:
on
s"

ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

M
em

or
y'
U
sa
ge
'(M

B)
'

Absolute'Memory'Overhead'

Original'

PREDATOR'

Figure 5.8. Absolute physical memory usage overhead with Predator.

5.3.4 Sampling Rate Sensitivity

Section 5.1.4.3 describes Predator’s sampling mechanism to reduce tracking

overhead. This section evaluates the effect of different sampling rates on performance

and effectiveness. Note that running an application with different sampling rates does

not affect its memory usage, thus memory overhead is not examined here.

The default sampling rate used by Predator is 1%. In this section, we also evalu-

ate two other sampling rates, 0.1% and 10%. Figure 5.10 presents performance results

under the three different sample rates. We only show the results of those programs

having false sharing problems inside, since only their performance are most likely to

be affected by different sampling rates. As expected, Predator introduces less per-

formance overhead under a lower sampling rate, but with a very minor performance

impact. About effectiveness, even when using the 0.1% sampling rate, Predator

can still detect all false sharing problems, although it reports a lower number of cache

invalidations. Thus, different sampling rates do not affect the detection effectiveness.

5.4 Discussion

5.4.1 Instrumentation Selection

Dynamic binary instrumentation and compiler-based instrumentation are two al-

ternative approaches to perform instrumentation [30]. They exhibit different tradeoffs

93

0"

0.5"

1"

1.5"

2"

2.5"

Ph
oe
nix
"

his
to
gra
m"

km
ea
ns
"

lin
ea
r_
re
gre
ssi
on
"

ma
tri
x_
mu
l8p
ly" pc

a"

re
ve
rse
_in
de
x"

str
ing
_m
atc
h"

wo
rd
_c
ou
nt
"

PA
RS
EC
"

bla
ck
sc
ho
les
""

bo
dy
tra
ck
""

de
du
p""

fer
re
t""

flu
ida
nim

ate
""

str
ea
mc
lus
te
r""

sw
ap
8o
ns
""

x2
64
""

Re
alA
pp
lic
a8
on
s"

ag
et
"

Bo
os
t"

M
em
ca
ch
ed
"

M
yS
QL
"

pb
zip
2"

pfs
ca
n"

AV
ER
AG
E"N

or
m
al
iz
ed

+M
em

or
y+
U
ag
e+

Rela1ve+Memory+Overhead+

Original+

PREDATOR+

7.8+ 6.8+ 3.8+

Figure 5.9. Relative physical memory usage overhead with Predator.

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"

his
to
gra
m
*

lin
ea
r_
re
gr
es
sio
n*

re
ve
rse
_in
de
x*

wo
rd
_c
ou
nt
*

str
ea
m
clu
ste
r*

AV
ER
AG
E*

N
or
m
al
iz
ed

*R
un

<
m
e*

Sample*Rate*Sensi<vity*

SampleRate*0.1%*

Default*SampleRate*1%*

SampleRate*10%*

Figure 5.10. Sampling rate sensitivity (execution time).

of performance and generality. Dynamic binary instrumentors, such as Valgrind [47],

Pin [43], and DynamoRIO [15], typically analyze the program’s code just before ex-

ecution in order to insert instrumentation. They introduce significant performance

overhead, mostly caused by run-time encoding and decoding, but the fact that they

operate directly on binaries makes them extremely convenient. By contrast, compiler

instrumentation inserts instrumentation in the compilation phase, which requires re-

compilation of all source code. Predator employs compiler-based instrumentation

both because of its better performance and its greater flexibility, as discussed in

Section 5.1.4.2.

94

5.4.2 Effectiveness

Several factors can affect Predator’s ability to identify false sharing.

Different Inputs. Different inputs trigger distinct executions of a program. If a

specific input does not exercise the code with false sharing problems, Predator can-

not necessarily detect them. However, Predator does generalize over inputs to find

latent false sharing problems on those exercised code. When any reasonably repre-

sentative set of inputs are exercised, as is required by any testing regime, Predator

can effectively predict false sharing.

Input Size. Input size may affect detection results. As discussed in Section 5.1.4,

Predator introduces several threshold values to reduce tracking overhead, which can

be adjusted as needed. If the input size is so small that it cannot generate enough

false sharing events to cross the pre-defined thresholds, then the detection mechanism

will not be triggered. In such cases, Predator will miss actual cases of false sharing.

However, realistically large inputs should be enough to trigger Predator’s detection

mechanisms.

Hardware Independence. Predator’s compiler-based approach make it indepen-

dent of the underlying hardware platform. This approach increases generality, but

may lead to over-report false sharing. Predator conservatively assumes that differ-

ent threads are running on different cores and detects false sharing problems based

on possible cache invalidations. However, if multiple threads involved in false sharing

are on the same core, then there will be no performance impact.

95

CHAPTER 6

RELATED WORK

This chapter first describes those related work to processes-as-threads framework

and deterministic execution. Then it describes related work in false sharing detection,

prevention, or both.

6.1 Processes-As-Threads framework

BOP relies on strong isolation of processes to automatically and safely parallelize

the execution of programs [24]. BOP forks a new process to do speculation, based

on those pre-defined possibly parallel regions (PPR). In order to check the correct-

ness, BOP tracks accesses on a page-based granularity. When there is no conflict

and a speculative process reaches the end of its current PPR, its predecessor always

commits its changes to the current process. However, BOP does not provide any

synchronization support and cannot be used to run normal multithreaded programs.

Grace is a process-based approach designed to prevent concurrency errors, such

as deadlock, race conditions, and atomicity errors by imposing a sequential semantics

on speculatively-executed threads [7]. Grace supports only fork-join programs with-

out inter-thread communication (e.g., condition variables or barriers), and rolls back

threads when accesses of threads would violate sequential semantics: a thread accesses

pages that have been accessed by its predecessors. Grace cannot support arbitrary

multithreaded programs. Similar to the Grace system, Sammati is a processes-as-

threads system to detect and tolerate deadlock problems [51]. However, Sammati

does not support the full range of synchronizations, without the support of condi-

96

tional variables, barriers, and signals. Also, Semmati cannot avoid race conditions

happening in creating twin pages, which are avoided by the Sheriff framework.

6.2 Deterministic Multithreading

The research on deterministic multithreading is a very active area these years. We

describe some software-only, non- language-based approaches here.

Grace prevents deadlocks, race conditions, ordering and atomicity violations er-

rors for those fork-join multithreaded programs by imposing a sequential semantics

at join points [7]. However, Grace does not support programs with inter-thread com-

munications, such as conditional variables and barriers.

CoreDet is a compiler-based approach to support general-purpose multithreaded

programs [4]. CoreDet instruments those memory read and write operations as long

as those operations cannot be proved to be thread-local in static analysis. In the

runtime phase, CoreDet divides the execution into alternating parallel and serial

phases and guides all memory operations using a memory ownership table: only

those owned locations can be accessed in the parallel phases; all non-owned locations

and synchronizations can only be accessed in the serial phases guided by a global to-

ken. CoreDet guarantees deterministic execution for racy programs without memory

errors, but with very high performance overhead: averagely 3.5× slower than those

using pthreads. In order to guarantee determinism, CoreDet has to serialize all ex-

ternal library calls without instrumentation. CoreDet does not provide deterministic

memory allocations, which can not guarantee determinism for programs with memory

errors. dOS [5] is an extension to CoreDet that uses the same deterministic scheduling

framework. dOS supports deterministic communication for those threads and pro-

cesses inside the same deterministic process groups (DPGs) and handle those external

non-determinism by recording and replaying interactions across DPG boundaries.

97

Determinator is a microkernel-based operating system that enforces system-wide

determinism [2]. Determinator provides separate address spaces and supports inter-

process communications at explicit synchronization points. Determinator is a proof-

of-concept system, which can not support the whole rage of threads APIs and can

not work on legacy programs.

Some other works can only support limited determinism or need user annotation.

Kendo can only guarantee the determinism for race-free programs [48]. TERN [23]

provides a best-effort system to apply memoized schedules for future runs with similar

inputs. It can not guarantee the determinism for racy programs, as Kendo. Pere-

grine [22] is a system based on TERN, which tries to record the order of memory

accesses for racy portions and apply those schedules for future runs possibly. How-

ever, both TERN and Peregrine do not support complete determinism (using a best

effort) and requires program annotations.

6.3 False Sharing

This section describes related work in false sharing detection, prevention, or both.

There is no previous system to predict unobserved false sharing.

6.3.1 False Sharing Detection

Based on the SIMICS functional simulator, Schindewolf et al. designed a tool to

report different kinds of cache usage information, such as cache misses and cache

invalidations [53]. Pluto relies on Valgrind dynamic instrumentation framework to

track the sequence of memory read and write events on different threads, and reports

a worst-case estimation of possible false sharing [26]. Similarly, Liu uses Pin to collect

memory access information, and reports total cache miss information [40]. These tools

impose about 100− 200× performance overhead.

98

Zhao et al. developed a tool based on DynamoRIO framework to detect false

sharing and other cache contention problems for multithreaded programs [58]. It uses

a shadow memory technique to maintain memory access history and detects cache

invalidations based on the ownership of cache lines. However, it can only support at

most 8 threads currently and it is hard to scale up, because of its per-bit-each-thread

bitmap design. In addition, it cannot differentiate cold cache misses from actual false

sharing problems.

Intel’s performance tuning utility (PTU) uses Precise Event Based Sampling

(PEBS) hardware support to detect false sharing problems [28, 29]. PTU cannot

distinguish true sharing from false sharing. In addition, PTU aggregates memory

accesses without considering memory reuses and access interleaving, leading to nu-

merous false positives. Sanath et al. designed a machine learning based approach to

detect false sharing problems. They train their classifier on mini-programs and apply

this classifier to general programs [32]. Instead of instrumenting memory accesses,

this tool relies on hardware performance counters to collect memory accesses events.

It achieves very low performance overhead (about 2%). But it relies on hardware

support for its efficiency. Also, it cannot detect a lot of actual false sharing prob-

lems that can greatly affect performance, such as histogram and streamcluster. We

guess that this incompleteness can be caused by their problematic training method

or hardware’s sampling mechanism, but the specific reason is not clear to us.

In addition to their individual disadvantages, all approaches discussed above share

two common shortcomings: They cannot pinpoint the exact location of false sharing

in the source code, so programmers have to examine the source code and identify

problems manually; they can only detect those observed false sharing problems.

Pesterev et al. present DProf, a tool that help programmers identify cache misses

based on AMD’s instruction-based sampling hardware [49]. DProf requires manual

99

annotation to locate data types and object fields, and cannot detect false sharing

when multiple objects reside on the same cache line.

6.3.2 False Sharing Prevention

Jeremiassen and Eggers use a compiler transformation to automatically adjust the

memory layout of applications through padding and alignment [33]. Chow et al. alter

parallel loop scheduling in order to avoid false sharing [21]. These approaches only

works for regular, array-based scientific code.

Berger et al. describe Hoard, a scalable memory allocator that can reduce the

possibility of false sharing by making different threads use different heaps [6]. Hoard

cannot avoid false sharing problem in global variables or within a single heap object:

the latter appears to be the primary source of real false sharing problems.

6.3.3 False Sharing Detection and Prevention

Plastic leverages the sub-page granularity memory remapping facility provided by

the Xen hypervisor to detect and tolerate false sharing automatically [46]. However,

the sub-page memory remapping mechanism is not currently supported by most ex-

isting operating system, reducing its generality. In addition, Plastic cannot pinpoint

the exact source of false sharing. In order to utilize Plastic’s prevention tool, a pro-

gram has to run on the Xen hypervisor, limiting the applicability of their prevention

technique.

100

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Because of hard physical limits, computer manufacturers have turned to provid-

ing more and more cores on a single machine. This phenomenon drives the biggest

revolution of software development: software has to be programmed in a concurrent

and parallel way in order to exploit the benefits of multi-core machines.

Building efficient and reliable concurrent software is still a challenging task. First,

concurrency requires programmers to think in an unnatural way that humans find

difficult. Second, existing languages and tools are inadequate to detect or prevent

concurrency errors.

7.1 Contributions

This thesis helps boost the performance and ease the reasoning and debugging,

by providing different tools and runtime systems. We present a novel processes-

as-threads replacement library, the Sheriff framework, which providing per-thread

memory protection and isolation on the page granularity. First, based on this frame-

work, we provide Dthreads to ensure deterministic execution of multithreaded

programs, even with race conditions. Dthreads outperforms the previous state-

of-the-art runtime system (CoreDet) by a factor of 3, and is the new basis of all

later deterministic multithreading systems. Second, we presents two tools based on

the Sheriff framework, Sheriff-Detect and Sheriff-Protect, to deal with

false sharing problems of multithreaded programs, one of the notorious performance

problems. Sheriff-Detect is the first tool to correctly and precisely identify false

101

sharing problems inside parallel applications. Sheriff-Protect is the first gen-

eralized system to automatically mitigate false sharing problems, without the need

of programmer intervention. Finally, we present another tool, Predator, to im-

prove the effectiveness by revealing read-write false sharing problems and overcome

a generalized issue of false sharing detection: Existing tools can only detect those

observed false sharing problems; Predator can predict potential false sharing that

does not manifest in a given execution but may appear—and greatly degrade appli-

cation performance–in a slightly different execution environment. Predator is the

first false sharing tool that is able to automatically and precisely uncover false sharing

problems in real applications, including MySQL and the Boost library.

7.2 Future Work

Dthreads performs synchronizations inside serial phases, which is susceptible to

delays due to load imbalance between threads. To handle this problem, one direction

of future work is to reduce the waiting time caused by load imbalance problem. We

observed that the overhead of Dthreads depends on the number of synchronizations:

with less synchronizations, Dthreads can achieve much better performance since it

can amortize the overhead better. Another direction of future work is to design

programs with Dthreads’s mechanism in mind, by extending a set of APIs, so that

users can design programs with less load imbalance problem and less synchronizations.

Thus, we could possibly achieve better performance.

This thesis also presents a set of tools to detect false sharing problems inside multi-

threaded programs. But false sharing problems can exist in the entire software stack,

including hypervisors, operating systems, and applications using different threading

libraries or other languages. In the future, we would like to extend the detection

mechanism, coming from Predator, to the entire software stack. Also, we can

102

leverage memory trace information to suggest fixes, in order to help programmers to

eliminate false sharing.

Sheriff-Protect introduces some performance overhead when a parallel pro-

gram does not have false sharing problem inside. It is helpful if this protection mech-

anism can leverage the output of detection: we only use this mechanism to boost the

performance if an application has some false sharing problems inside; further, we can

employ isolation on specific objects in order to further reduce performance overhead.

103

BIBLIOGRAPHY

[1] Abdelrahman, Cedomir Segulja Tarek S. False t is the cost of determinism? In
5th Workshop on Determinism and Correctness in Parallel Programming (2014),
WoDet’14.

[2] Aviram, Amittai, Weng, Shu-Chan, Hu, Sen, and Ford, Bryan. Efficient system-
enforced deterministic parallelism. In OSDI’10: Proceedings of the 9th Confer-
ence on Symposium on Opearting Systems Design & Implementation (Berkeley,
CA, USA, 2010), USENIX Association, pp. 193–206.

[3] Ball, Thomas, Burckhardt, Sebastian, de Halleux, Jonathan, Musuvathi, Madan-
lal, and Qadeer, Shaz. Deconstructing concurrency heisenbugs. In ICSE Com-
panion (2009), IEEE, pp. 403–404.

[4] Bergan, Tom, Anderson, Owen, Devietti, Joseph, Ceze, Luis, and Grossman,
Dan. CoreDet: a compiler and runtime system for deterministic multithreaded
execution. In Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems (New York, NY, USA,
2010), ASPLOS ’10, ACM, pp. 53–64.

[5] Bergan, Tom, Hunt, Nicholas, Ceze, Luis, and Gribble, Steven D. Deterministic
process groups in dOS. In OSDI’10: Proceedings of the 9th Conference on Sym-
posium on Opearting Systems Design & Implementation (Berkeley, CA, USA,
2010), USENIX Association, pp. 177–192.

[6] Berger, Emery D. The Hoard memory allocator. Available at http://www.

hoard.org.

[7] Berger, Emery D., Yang, Ting, Liu, Tongping, and Novark, Gene. Grace: safe
multithreaded programming for C/C++. In Proceeding of the 24th ACM SIG-
PLAN conference on Object oriented programming systems languages and appli-
cations (New York, NY, USA, 2009), OOPSLA ’09, ACM, pp. 81–96.

[8] Berger, Emery D., and Zorn, Benjamin G. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (New York, NY,
USA, 2006), ACM Press, pp. 158–168.

[9] Berger, Emery D., Zorn, Benjamin G., and McKinley, Kathryn S. Composing
high-performance memory allocators. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation (New York,
NY, USA, 2001), PLDI ’01, ACM, pp. 114–124.

104

[10] Bienia, Christian, and Li, Kai. PARSEC 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling, Bench-
marking and Simulation (June 2009).

[11] Bocchino, Jr., Robert L., Adve, Vikram S., Dig, Danny, Adve, Sarita V.,
Heumann, Stephen, Komuravelli, Rakesh, Overbey, Jeffrey, Simmons, Patrick,
Sung, Hyojin, and Vakilian, Mohsen. A type and effect system for deterministic
parallel Java. In Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications (New York, NY, USA,
2009), OOPSLA ’09, ACM, pp. 97–116.

[12] Bolosky, William J., and Scott, Michael L. False sharing and its effect on shared
memory performance. In SEDMS IV: USENIX Symposium on Experiences with
Distributed and Multiprocessor Systems (Berkeley, CA, USA, 1993), USENIX
Association, pp. 57–71.

[13] Bolosky, William J., and Scott, Michael L. False sharing and its effect on shared
memory performance. In USENIX Systems on USENIX Experiences with Dis-
tributed and Multiprocessor Systems - Volume 4 (Berkeley, CA, USA, 1993),
Sedms’93, USENIX Association, pp. 3–3.

[14] Bressoud, T. C., and Schneider, F. B. Hypervisor-based fault tolerance. In
SOSP ’95: Proceedings of the fifteenth ACM symposium on Operating systems
principles (New York, NY, USA, 1995), ACM Press, pp. 1–11.

[15] Bruening, Derek, Garnett, Timothy, and Amarasinghe, Saman. An infrastructure
for adaptive dynamic optimization. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-directed and runtime op-
timization (Washington, DC, USA, 2003), CGO ’03, IEEE Computer Society,
pp. 265–275.

[16] Burckhardt, Sebastian, Baldassin, Alexandro, and Leijen, Daan. Concurrent
programming with revisions and isolation types. In Proceedings of the ACM
international conference on Object oriented programming systems languages and
applications (New York, NY, USA, 2010), OOPSLA ’10, ACM, pp. 691–707.

[17] Burckhardt, Sebastian, Kothari, Pravesh, Musuvathi, Madanlal, and Na-
garakatte, Santosh. A randomized scheduler with probabilistic guarantees of
finding bugs. In ASPLOS (New York, NY, USA, 2010), James C. Hoe and
Vikram S. Adve, Eds., ASPLOS ’10, ACM, pp. 167–178.

[18] Carter, John B., Bennett, John K., and Zwaenepoel, Willy. Implementation
and performance of Munin. In SOSP ’91: Proceedings of the thirteenth ACM
symposium on Operating systems principles (New York, NY, USA, 1991), ACM,
pp. 152–164.

[19] Carver, Richard H., and Tai, Kuo-Chung. Replay and testing for concurrent
programs. IEEE Softw. 8 (March 1991), 66–74.

105

[20] Choi, Jong-Deok, and Srinivasan, Harini. Deterministic replay of java multi-
threaded applications. In Proceedings of the SIGMETRICS symposium on Par-
allel and distributed tools (New York, NY, USA, 1998), SPDT ’98, ACM, pp. 48–
59.

[21] Chow, Jyh-Herng, and Sarkar, Vivek. False sharing elimination by selection of
runtime scheduling parameters. In ICPP ’97: Proceedings of the international
Conference on Parallel Processing (Washington, DC, USA, 1997), IEEE Com-
puter Society, pp. 396–403.

[22] Cui, Heming, Wu, Jingyue, Gallagher, John, Guo, Huayang, and Yang, Junfeng.
Efficient deterministic multithreading through schedule relaxation. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11)
(October 2011).

[23] Cui, Heming, Wu, Jingyue, Tsa, Chia-che, and Yang, Junfeng. Stable determin-
istic multithreaded through schedule memoization. In OSDI’10: Proceedings of
the 9th Conference on Symposium on Opearting Systems Design & Implementa-
tion (Berkeley, CA, USA, 2010), USENIX Association, pp. 207–222.

[24] Ding, Chen, Shen, Xipeng, Kelsey, Kirk, Tice, Chris, Huang, Ruke, and Zhang,
Chengliang. Software behavior oriented parallelization. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2007), PLDI ’07, ACM, pp. 223–234.

[25] Dubois, Michel, Wang, Jin Chin, Barroso, Luiz A., Lee, Kangwoo, and Chen,
Yung-Syau. Delayed consistency and its effects on the miss rate of parallel pro-
grams. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing
(New York, NY, USA, 1991), Supercomputing ’91, ACM, pp. 197–206.

[26] Günther, Stephan M., and Weidendorfer, Josef. Assessing cache false sharing
effects by dynamic binary instrumentation. In WBIA ’09: Proceedings of the
Workshop on Binary Instrumentation and Applications (New York, NY, USA,
2009), ACM, pp. 26–33.

[27] Hyde, Randall L., and Fleisch, Brett D. An analysis of degenerate sharing and
false coherence. J. Parallel Distrib. Comput. 34, 2 (1996), 183–195.

[28] Intel Corporation. Intel performance tuning utility 3.2
update. http://software.intel.com/en-us/articles/

intel-performance-tuning-utility, November 2008.

[29] Intel Corporation. Avoiding and identifying false sharing
among threads. http://software.intel.com/en-us/articles/

avoiding-and-identifying-false-sharing-among-threads/, February
2010.

106

[30] Iskhodzhanov, Timur, Kleckner, Reid, and Stepanov, Evgeniy. Combining
compile-time and run-time instrumentation for testing tools. Programmnye pro-
dukty i sistemy 3 (2013), 224–231.

[31] ISO. Programming languages – c++. Available at http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2010/n3092.pdf.

[32] Jayasena, Sanath, Amarasinghe, Saman, Abeyweera, Asanka, Amarasinghe,
Gayashan, De Silva, Himeshi, Rathnayake, Sunimal, Meng, Xiaoqiao, and Liu,
Yanbin. Detection of false sharing using machine learning. In Proceedings of
SC13: International Conference for High Performance Computing, Networking,
Storage and Analysis (New York, NY, USA, 2013), SC ’13, ACM, pp. 30:1–30:9.

[33] Jeremiassen, Tor E., and Eggers, Susan J. Reducing false sharing on shared mem-
ory multiprocessors through compile time data transformations. In PPOPP ’95:
Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice
of parallel programming (New York, NY, USA, 1995), ACM, pp. 179–188.

[34] Justin L. A way to determine a process’s ”real” memory usage, i.e.
private dirty rss? http://stackoverflow.com/questions/118307/

a-way-to-determine-a-processs-real-memory-usage-i-e-private-dirty-rss,
October 2011.

[35] Keleher, Pete, Cox, Alan L., Dwarkadas, Sandhya, and Zwaenepoel, Willy.
Treadmarks: distributed shared memory on standard workstations and oper-
ating systems. In Proceedings of the USENIX Winter 1994 Technical Confer-
ence on USENIX Winter 1994 Technical Conference (Berkeley, CA, USA, 1994),
USENIX Association, pp. 10–10.

[36] Larus, James, and Rajwar, Ravi. Transactional Memory (Synthesis Lectures on
Computer Architecture), first ed. Morgan & Claypool Publishers, 2007.

[37] Lattner, Chris, and Adve, Vikram. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04) (Palo Alto,
California, Mar 2004).

[38] Lattner, Chris, and Adve, Vikram. Llvm: A compilation framework for life-
long program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization (Washington, DC, USA, 2004), CGO ’04, IEEE Computer Society,
pp. 75–.

[39] LeBlanc, T. J., and Mellor-Crummey, J. M. Debugging parallel programs with
instant replay. IEEE Trans. Comput. 36 (April 1987), 471–482.

[40] Liu, Chien-Lung. False sharing analysis for multithreaded programs. Master’s
thesis, National Chung Cheng University, July 2009.

107

[41] Liu, Tongping, and Berger, Emery D. Sheriff: precise detection and auto-
matic mitigation of false sharing. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications
(New York, NY, USA, 2011), OOPSLA ’11, ACM, pp. 3–18.

[42] Lu, Shan, Park, Soyeon, Seo, Eunsoo, and Zhou, Yuanyuan. Learning from
mistakes: A comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA, 2008),
ASPLOS XIII, ACM, pp. 329–339.

[43] Luk, Chi-Keung, Cohn, Robert, Muth, Robert, Patil, Harish, Klauser, Artur,
Lowney, Geoff, Wallace, Steven, Reddi, Vijay Janapa, and Hazelwood, Kim.
Pin: Building customized program analysis tools with dynamic instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (New York, NY, USA, 2005), PLDI ’05, ACM,
pp. 190–200.

[44] mcmcc. False sharing in boost::detail::spinlock pool? http://stackoverflow.

com/questions/11037655/false-sharing-in-boostdetailspinlock-pool,
June 2012.

[45] Mikael Ronstrom. Mysql team increases scalability by ¿50mysql 5.6
labs release april 2012. http://mikaelronstrom.blogspot.com/2012/04/

mysql-team-increases-scalability-by-50.html, April 2012.

[46] Nanavati, Mihir, Spear, Mark, Taylor, Nathan, Rajagopalan, Shriram, Meyer,
Dutch T., Aiello, William, and Warfield, Andrew. Whose cache line is it any-
way?: operating system support for live detection and repair of false sharing. In
Proceedings of the 8th ACM European Conference on Computer Systems (New
York, NY, USA, 2013), EuroSys ’13, ACM, pp. 141–154.

[47] Nethercote, Nicholas, and Seward, Julian. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation (New
York, NY, USA, 2007), PLDI ’07, ACM, pp. 89–100.

[48] Olszewski, Marek, Ansel, Jason, and Amarasinghe, Saman. Kendo: efficient de-
terministic multithreading in software. In ASPLOS ’09: Proceedings of the 14th
International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2009), ACM, pp. 97–108.

[49] Pesterev, Aleksey, Zeldovich, Nickolai, and Morris, Robert T. Locating cache
performance bottlenecks using data profiling. In EuroSys ’10: Proceedings of
the 5th European conference on Computer systems (New York, NY, USA, 2010),
ACM, pp. 335–348.

108

[50] Pool, Jesse, Sin, Ian, and Lie, David. Relaxed determinism: Making redundant
execution on multiprocessors practical. In Proceedings of the 11th Workshop on
Hot Topics in Operating Systems (HotOS 2007) (May 2007).

[51] Pyla, Hari K., and Varadarajan, Srinidhi. Avoiding deadlock avoidance. In
Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques (New York, NY, USA, 2010), PACT ’10, ACM, pp. 75–
86.

[52] Ranger, Colby, Raghuraman, Ramanan, Penmetsa, Arun, Bradski, Gary, and
Kozyrakis, Christos. Evaluating MapReduce for multi-core and multiprocessor
systems. In HPCA ’07: Proceedings of the 2007 IEEE 13th International Sym-
posium on High Performance Computer Architecture (Washington, DC, USA,
2007), IEEE Computer Society, pp. 13–24.

[53] Schindewolf, Martin. Analysis of cache misses using SIMICS. Master’s thesis,
Institute for Computing Systems Architecture, University of Edinburgh, 2007.

[54] Serebryany, Konstantin, Bruening, Derek, Potapenko, Alexander, and Vyukov,
Dmitry. Addresssanitizer: a fast address sanity checker. In Proceedings of the
2012 USENIX conference on Annual Technical Conference (Berkeley, CA, USA,
2012), USENIX ATC’12, USENIX Association, pp. 28–28.

[55] Simpson, David J., and Burton, F. Warren. Space efficient execution of de-
terministic parallel programs. IEEE Trans. Softw. Eng. 25 (November 1999),
870–882.

[56] Stevens, W. Richard, and Rago, Stephen A. Advanced Programming in the UNIX
Environment: Second Edition. Addison Wesley Professional, 2005.

[57] Xiong, Weiwei, Park, Soyeon, Zhang, Jiaqi, Zhou, Yuanyuan, and Ma, Zhiqiang.
Ad hoc synchronization considered harmful. In OSDI’10: Proceedings of the
9th Conference on Symposium on Opearting Systems Design & Implementation
(Berkeley, CA, USA, 2010), USENIX Association, pp. 163–176.

[58] Zhao, Qin, Koh, David, Raza, Syed, Bruening, Derek, Wong, Weng-Fai, and
Amarasinghe, Saman. Dynamic cache contention detection in multi-threaded
applications. In The International Conference on Virtual Execution Environ-
ments (Newport Beach, CA, Mar 2011).

109

